EP1725342A1 - Beschichtungsverfahren - Google Patents
BeschichtungsverfahrenInfo
- Publication number
- EP1725342A1 EP1725342A1 EP05729127A EP05729127A EP1725342A1 EP 1725342 A1 EP1725342 A1 EP 1725342A1 EP 05729127 A EP05729127 A EP 05729127A EP 05729127 A EP05729127 A EP 05729127A EP 1725342 A1 EP1725342 A1 EP 1725342A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plasma
- layer
- mbar
- layers
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
Definitions
- Organic coatings on metals have two main tasks: They give the workpieces made from the metals a decorative appearance and protect them against corrosion. There are two cases of corrosion: the so-called cosmetic corrosion, which only gives the workpiece an unattractive appearance, and the so-called functional corrosion, which can completely destroy a workpiece.
- the organic coating offers effective protection against both types of corrosion, for example with a varnish combined with chemical pretreatment. During the corrosion treatment, thin conversion layers are created that represent barrier layers for corrosive media.
- wet-chemical passivation processes such as yellow chromating, green chromating or chromium-free passivation processes, as well as the painting processes mentioned above, are usually used.
- These wet chemical passivation processes are associated with relatively long treatment times, since the process sequence consists of several successive steps such as pickling, rinsing, coating, rinsing, drying.
- the coating process further steps for waste water and waste air treatment are necessary.
- the painting processes usually also require pretreatment steps that create an adhesion between the paint and the base material.
- the object is achieved according to the invention by a method for producing a corrosion-resistant and functional surface on a metallic workpiece, in which a plurality of layers are applied to the surface of the workpiece by means of plasma coating, at least one of which is a corrosion-protective layer.
- the invention is based on the idea of providing an inexpensive method which makes it possible to reduce the production costs, for example for heat exchangers, by saving post-treatment and logistics costs (water and chemical savings).
- a one-step process for producing a surface coating by means of multi-plasma coating is provided, which does not require any dipping, spraying or flooding application.
- the single-stage multi-plasma coating process enables simplified process control, which is also a time-efficient coating technology.
- the residual heat stored in the heat exchanger after the soldering process can also be used. It is with the drive possible, a plasma or flame device separate from the soldering furnace with optional heating of the soldered workpiece possible.
- the single-stage multi-plasma coating creates thin, firmly adhering layers that have anti-corrosion, hydrophobic, hydrophilic, catalytic and / or antimicrobial properties. These layers with different properties can be deposited one after the other.
- At least one layer is formed as a corrosion-protective layer.
- Improved corrosion protection can be achieved by creating one or more hydrophobic layers.
- Corrosion protection can also be achieved by incorporating corrosion-inhibiting substances (inhibitors) into the layer or layers.
- corrosion protection can also be achieved by creating one or more hydrophobic layers and by incorporating corrosion-inhibiting substances into the layer or layers.
- At least one of the layers applied by means of the method can have hydrophilic properties.
- the hydrophilic layer can preferably be the upper layer or, if there are several hydrophilic layers, the upper layers.
- At least one of the layers applied by means of the method can be an antimicrobial layer.
- the antimicrobial The layer can preferably be the upper layer or, if there are several antimicrobial layers, the upper layers.
- the antimicrobial layer can contain antimicrobial agents which, by their action against bacteria and fungi, protect textiles from attack and destruction by these organisms. Antimicrobial agents are to be understood as means for controlling microorganisms.
- At least one of the layers applied by means of the multi-plasma coating method can have catalytic properties.
- the catalytically active layer can preferably be the upper layer or, if there are several hydrophilic layers, the upper layers.
- All suitable gases can be used as plasma gases.
- Noble gases such as argon and helium, or air, oxygen, nitrogen and / or nitrogen oxides, hydrocarbons, halogenated hydrocarbons, SF 6 , hydrogen or ammonia are preferably used.
- the gases can also be used in a mixture.
- Process gases can be supplied to the plasma, for example. These can be gaseous chemicals and / or vaporizable chemicals. Furthermore, finely sprayed chemicals (aerosols) can be added to the plasma. The process gases and the aerosols can also be present in the mixture in the plasma.
- finely divided dusts can be fed to the plasma.
- the size of the dust particles is between 1 nm and 5000 nm.
- the dusts can be metals, metal mixtures and / or their compounds or compound mixtures. Such dusts are particularly preferably miscible with plasma process gases, in particular with the formation of aerosols.
- the process gas or process gas mixture and / or the aerosol or aerosol mixture can include the following chemicals:
- organic or organometallic compounds of the elements of main group III-VII of the PSE such as compounds:
- borate-based for example trimethyl borate, alkyl borate or mixtures thereof
- SiOx for example silanes, siloxanes, silazanes, silica or mixtures thereof,
- Halogen compounds of the sub-group elements preferably the sub-group IV-VI of the PSE, for example titanium (IV) fluoride or oxide, titanium (IV) chloride, zirconium (IV) chloride or fluoride or oxide, vanadium (V) fluoride or oxide or mixtures thereof;
- Halogen compounds of the elements of the main group III-VI of the PSE for example tetrafluorocarbon, boron (III) fluoride, silicon (VI) fluoride or
- elements of main group VII for example fluorine, bromine, iodine or mixtures thereof;
- Metal dust and / or metal dust mixtures for example tin, zirconium, titanium and / or dust from metal alloys.
- the chemicals which are not in the form of a gas and cannot be converted into the gas phase by evaporation or sublimation, can be dissolved in an organic and / or inorganic solvent and introduced into the plasma as an aerosol.
- These aerosols can contain one or more of the gaseous or vaporizable chemicals.
- the dusts are distributed finely, in particular in an appropriate protective gas, which can also be the plasma gas, supplied to the plasma.
- the surface can be cleaned or activated before the actual coating.
- the gases used here are preferably oxygen, nitrogen oxide, carbon monoxide and carbon dioxide, water, air, noble gases, nitrogen or hydrogen.
- the gases can also be used in a mixture.
- the multi-plasma coating is carried out with a process gas or process gas mixture pressure between 10 mbar and 1000 mbar, preferably are between 20 mbar and 800 mbar, particularly preferably between 50 mbar and 500 mbar.
- the plasma used in the process can operate in the range from low-pressure plasma to the range from atmospheric plasma. This includes ranges between 10 "5 mbar and 1.01325 bar, preferably between 10 " 3 mbar and 500 mbar, particularly preferably between 10 ⁇ 2 mbar and 100 mbar.
- the total thickness of the surface layers of the workpiece, e.g. of a heat exchanger can be between 0.05 ⁇ m and 5 ⁇ m, preferably between 0.1 ⁇ m and 4 ⁇ m and particularly preferably between 0.3 ⁇ m and 2 ⁇ m.
- the object temperature of the workpiece to be coated e.g. a heat exchanger can be between 15 ° C and 700 ° C, preferably between 20 ° C and 650 ° C and particularly preferably between 25 ° C and 450 ° C.
- the multi-plasma coating can be used to produce oxygen-containing (oxidic) layers on the workpiece.
- the respective layer can consist of reaction products of a chemical supplied to the plasma and / or a chemical mixture supplied to the plasma.
- oxides, fluorides or mixtures thereof of the base material can be contained in the surface layer.
- a multi-plasma coating of an aluminum heat exchanger is shown below as an example.
- the plasma process gas mixture is excited in a 2500 ml reactor with a high frequency in the range from 10 MHz to 20 MHz under a pressure of 0.02 mbar to 0.1 mbar and an output of 700 to 1500 watts.
- the surface of the aluminum heat exchanger is cleaned or activated with 50 sccm to 200 sccm oxygen and 300 sccm to 1000 sccm hydrogen.
- the main coating of the surface of the aluminum heat exchanger is then carried out in a second step with a plasma process gas mixture of 20 sccm to 100 sccm HMDSO and 50 to 300 sccm oxygen.
- the layer for the hydrophilic effect of the coating is finished with a plasma process gas mixture of 2 sccm to 30 sccm HMDSO and 300 to 1000 sccm oxygen.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Laminated Bodies (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004013306A DE102004013306A1 (de) | 2004-03-17 | 2004-03-17 | Beschichtungsverfahren |
PCT/DE2005/000500 WO2005089960A1 (de) | 2004-03-17 | 2005-03-17 | Beschichtungsverfahren |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1725342A1 true EP1725342A1 (de) | 2006-11-29 |
Family
ID=34964867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05729127A Withdrawn EP1725342A1 (de) | 2004-03-17 | 2005-03-17 | Beschichtungsverfahren |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1725342A1 (de) |
JP (1) | JP2007529624A (de) |
DE (1) | DE102004013306A1 (de) |
WO (1) | WO2005089960A1 (de) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005056970A1 (de) * | 2005-11-30 | 2007-05-31 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Klimaanlagen-Verdampfer |
WO2008017382A2 (de) * | 2006-08-07 | 2008-02-14 | Behr Gmbh & Co. Kg | Verfahren zum herstellen von bauteilen in einem mediumkreislauf, wie insbesondere eines wärmeübertragers und solche bauteile |
DE102006054723A1 (de) * | 2006-11-21 | 2008-05-29 | Behr Gmbh & Co. Kg | Wärmetauscher, insbesondere Abgaswärmetauscher |
GB0717921D0 (en) | 2007-09-14 | 2007-10-24 | Teer Coatings Ltd | Coatings to resist and protect against aquatic biofouling |
CA2658210A1 (en) * | 2008-04-04 | 2009-10-04 | Sulzer Metco Ag | Method and apparatus for the coating and for the surface treatment of substrates by means of a plasma beam |
US20150132590A1 (en) * | 2012-05-07 | 2015-05-14 | Vrije Universiteit Brussel | Active Corrosion Protection Coatings |
JP6003778B2 (ja) | 2013-04-03 | 2016-10-05 | 株式会社デンソー | 熱交換器の製造方法 |
KR101796998B1 (ko) * | 2015-11-04 | 2017-11-13 | 한국에너지기술연구원 | 낮은 서리 부착력을 가지는 초발수 열교환기 및 이의 제조방법 |
JP2019151888A (ja) * | 2018-03-02 | 2019-09-12 | 株式会社デンソー | 板状部材、及び板状部材を用いて形成された熱交換器 |
CN110542343B (zh) * | 2019-10-08 | 2020-11-13 | 广东石油化工学院 | 一种换热器用耐高温防腐蚀涂层结构 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02154993A (ja) * | 1988-12-05 | 1990-06-14 | Matsushita Refrig Co Ltd | 熱交換器用フィン材 |
JPH03107458A (ja) * | 1989-09-22 | 1991-05-07 | Suzuki Motor Corp | 樹脂製容器内面に被膜を形成する方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60103171A (ja) * | 1983-11-09 | 1985-06-07 | Tetsuo Hayakawa | セラミツクスをプラズマ溶着した長波長赤外線放射体 |
JPH0745859B2 (ja) * | 1987-03-24 | 1995-05-17 | 株式会社丸山製作所 | 二サイクルエンジンの始動装置 |
DE4417235A1 (de) * | 1993-05-21 | 1994-11-24 | Fraunhofer Ges Forschung | Plasmapolymer-Schichtenfolge als Hartstoffschicht mit definiert einstellbarem Adhäsionsverhalten |
JPH07278779A (ja) * | 1994-04-06 | 1995-10-24 | Mitsubishi Alum Co Ltd | 熱交換器の製造方法 |
DE19521344C5 (de) * | 1995-06-12 | 2006-03-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verwendung von Plasmapolymer-Hartstoff-Schichtenfolgen als Funktionsschichten in Stofftransport - oder Wärmetauschersystemen |
EP0856592A1 (de) * | 1997-02-04 | 1998-08-05 | N.V. Bekaert S.A. | Beschichtung enthaltende Filme aus diamantartigem Kohlenstoff und diamantartigem Nanokomposit |
DE19748240C2 (de) * | 1997-10-31 | 2001-05-23 | Fraunhofer Ges Forschung | Verfahren zur korrosionsfesten Beschichtung von Metallsubstraten mittels Plasmapolymerisation und dessen Anwendung |
DE19807086A1 (de) * | 1998-02-20 | 1999-08-26 | Fraunhofer Ges Forschung | Verfahren zum Beschichten von Oberflächen eines Substrates, Vorrichtung zur Durchführung des Verfahrens, Schichtsystem sowie beschichtetes Substrat |
DE19831179A1 (de) * | 1998-07-11 | 2000-01-13 | Bbc Reaktor Gmbh | Verfahren zum Trennen von Metallteilen |
WO2001055489A2 (de) * | 2000-01-27 | 2001-08-02 | Incoat Gmbh | Schutz- und/oder diffusionssperrschicht |
JP2002090084A (ja) * | 2000-09-14 | 2002-03-27 | Daikin Ind Ltd | フィンとその製造方法及び該フィンを備えた熱交換器 |
DE10056242A1 (de) * | 2000-11-14 | 2002-05-23 | Alstom Switzerland Ltd | Kondensationswärmeübertrager |
KR20030078454A (ko) * | 2002-03-29 | 2003-10-08 | 주식회사 엘지이아이 | 표면처리장치와 그 방법 및 표면처리된 제품 |
DE10342448A1 (de) * | 2003-09-13 | 2005-04-07 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Korrosionsschutzbeschichtung |
-
2004
- 2004-03-17 DE DE102004013306A patent/DE102004013306A1/de not_active Withdrawn
-
2005
- 2005-03-17 EP EP05729127A patent/EP1725342A1/de not_active Withdrawn
- 2005-03-17 JP JP2007503190A patent/JP2007529624A/ja active Pending
- 2005-03-17 WO PCT/DE2005/000500 patent/WO2005089960A1/de active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02154993A (ja) * | 1988-12-05 | 1990-06-14 | Matsushita Refrig Co Ltd | 熱交換器用フィン材 |
JPH03107458A (ja) * | 1989-09-22 | 1991-05-07 | Suzuki Motor Corp | 樹脂製容器内面に被膜を形成する方法 |
Non-Patent Citations (2)
Title |
---|
DATABASE WPI Week 199124, Derwent World Patents Index; AN 1991-175476 * |
See also references of WO2005089960A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2007529624A (ja) | 2007-10-25 |
WO2005089960A1 (de) | 2005-09-29 |
DE102004013306A1 (de) | 2005-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005089960A1 (de) | Beschichtungsverfahren | |
DE102005059314B4 (de) | Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen | |
JP3375611B2 (ja) | 溶接可能被覆金属基板およびその作製および腐食防止方法 | |
EP2534279B1 (de) | Zusammensetzung für die alkalische passivierung von zinkoberflächen | |
EP1751326B1 (de) | Verfahren zum passivieren von metallischen oberflächen mit säuregruppen aufweisenden polymeren | |
EP2507408B1 (de) | Mehrstufiges vorbehandlungsverfahren für metallische bauteile mit zink- und eisenoberflächen | |
DE102005027633A1 (de) | Verfahren zum Herstellen von lackierten, flächenförmigen, metallischen Formkörpern | |
DE60127921T2 (de) | Verfahren zur Beschichtung von Metalloberflächen | |
DE102010062357B4 (de) | Vorrichtung und Verfahren zur Herstellung eines mit zumindest einer Korrosionsschutzschicht beschichteten magnesiumhaltigen Substrats | |
EP0948666A1 (de) | Verfahren zur behandlung metallischer oberflächen | |
WO1999029927A2 (de) | Chromfreies korrosionsschutzmittel und korrosionsschutzverfahren | |
EP2255026A1 (de) | Optimierte passivierung auf ti-/zr-basis für metalloberflächen | |
DE3408573A1 (de) | Verfahren zum behandeln von metalloberflaechen | |
DE933446T1 (de) | Phosphat gebunden Aluminium enthaltende Überzugslösungen, Überzüge und beschichtete Gegenstände | |
EP2021132A1 (de) | Mit einem korrosionsschutzsystem versehenes stahlblech und verfahren zum beschichten eines stahlblechs mit einem solchen korrosionsschutzsystem | |
EP2907894A1 (de) | Verfahren zum Herstellen eines mit einer Chrom-VI-freien und kobaltfreien Passivierung versehenen Substrats | |
DE102005045780A1 (de) | Verfahren zum Herstellen eines korrosionsgeschützten Stahlflachprodukts | |
WO2001059181A2 (de) | Korrosionsschutzmittel und korrosionsschutzverfahren für metalloberflächen | |
EP1570109B1 (de) | Verfahren zur beschichtung von metallsubstraten mit einem radikalisch polymerisierbaren berzugsmittel und beschichtete subst rate | |
EP3250724B1 (de) | Verfahren zum aufbringen eines metallischen schutzüberzugs auf eine oberfläche eines stahlprodukts | |
WO2001038596A2 (de) | Plasmabeschichtung von metallen bei atmosphärendruck | |
EP1208247A1 (de) | Verfahren zur korrosionsschützenden behandlung oder nachbehandlung von metalloberflächen | |
DE102014207447A1 (de) | Beschichtetes Stahlbauteil, Verfahren zur Herstellung des Stahlbauteils und Herstellungsanlage | |
EP2743376B1 (de) | Wässriges Mittel und Beschichtungsverfahren zur korrosionsschützenden Behandlung metallischer Substrate | |
EP0835332B1 (de) | Plasmapolymer-oberflächenschicht und damit beschichteter wärmeübertrager |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060915 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BEHR GMBH & CO. KG Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20080305 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN Owner name: BEHR GMBH & CO. KG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN Owner name: BEHR GMBH & CO. KG |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F28F 19/02 20060101ALI20121123BHEP Ipc: C23C 16/02 20060101ALI20121123BHEP Ipc: C23C 4/02 20060101ALI20121123BHEP Ipc: B05D 7/24 20060101AFI20121123BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20131123 |