EP1713855A1 - Procede de solubilisation du polystryrene expanse - Google Patents

Procede de solubilisation du polystryrene expanse

Info

Publication number
EP1713855A1
EP1713855A1 EP04817619A EP04817619A EP1713855A1 EP 1713855 A1 EP1713855 A1 EP 1713855A1 EP 04817619 A EP04817619 A EP 04817619A EP 04817619 A EP04817619 A EP 04817619A EP 1713855 A1 EP1713855 A1 EP 1713855A1
Authority
EP
European Patent Office
Prior art keywords
solvent
solution
true solution
gel
initial solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04817619A
Other languages
German (de)
English (en)
Inventor
Franck Poutch
Pierre Dalet
José Alcorta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eska Co
Original Assignee
Eska Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eska Co filed Critical Eska Co
Publication of EP1713855A1 publication Critical patent/EP1713855A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • C08J11/08Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J125/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Adhesives based on derivatives of such polymers
    • C09J125/02Homopolymers or copolymers of hydrocarbons
    • C09J125/04Homopolymers or copolymers of styrene
    • C09J125/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for dissolving expanded polystyrene (EPS), allowing the recycling of waste based on this material.
  • EPS expanded polystyrene
  • This process calls for the use of two types of solvents: a so-called initial solvent, making it possible to destructure the polymer and a so-called complementary solvent, making it possible to obtain said polymer in the form of a true solution.
  • the invention also relates to a true EPS-based solution, capable of being obtained by said method, and which can be used in various applications such as the formulation of adhesive, mastic, varnish sealant, resins, paint or lacquer.
  • the magma is obtained by treating EPS with the aid of a treatment solution comprising a major proportion of a solvent such as acetone, a minor proportion of a non-fatty lubricant, such as glycerol, which gives a non-sticky surface finish, and, if necessary, alcohol in sufficient quantity to bind the solvent and the lubricant.
  • the magma thus formed has a reduced volume compared to the treated EPS and a non-sticky consistency making it easy to transport and handle.
  • the process for obtaining magma described in international application WO 99/07776 is simple and effective.
  • the magma obtained according to this process can be used in conventional injection, extrusion or molding processes in the plastics industry, as a semi-finished material pasty.
  • this magma tends to dissociate into two phases: the first, on the surface, is a mixture, generally transparent, of liquids, called supernatant; and the second, below the surface, is a mass of condensed, opaque and undissolved material whose microscopic appearance is similar to a gel of high viscosity and whose physical properties are characteristic of a heterogeneous system.
  • the term “gel” is understood here to mean a molecular structure in which the molecules form a three-dimensional network by strong electrostatic interactions (ionic or Van der Walls bond) or by crosslinking, and which results from the coagulation of a colloidal solution. .
  • These different phases are, in general, hardly miscible, even if mechanical mixing work is carried out.
  • the gel which contains polystyrene and represents the recoverable part of the magma, assumes an inhomogeneous appearance due to the state of constant equilibrium which exists between the solvent and the gelled polystyrene.
  • This inhomogeneity can make its industrial transformation difficult into products such as adhesives, paints, varnishes or lacquers.
  • to prepare these products it is important to be able to fractionate the magma as many times as necessary without observing any variation in its composition or in that of the products formed.
  • the inventors have sought to solve this problem in order to provide a product for recycling EPS, which remains homogeneous over time and which can be used to prepare products such as adhesives, paints, varnishes or lacquers.
  • this relates to a process for dissolving the EPS, characterized in that: i) the EPS is brought into contact with at least one initial solvent making it possible to pass the EPS from a solid state expanded to that of a gel; and ii) contacting said gel with at least one additional solvent, distinct from the initial solvent, allowing the solubilization of said gel so as to obtain a true solution.
  • the initial solvent and the additional solvent can, depending on the invention intervene in the process in the order indicated or simultaneously.
  • true solution is meant a homogeneous dispersion of molecules in a solvent.
  • the true solution is not colloidal, unlike gel, which is a type of colloid in which a liquid contains a solid forming a fine network, extending continuously. Depending on the balance that is established between the solvent and the solid, one of the phases of the other may come in excess. In the case of a true solution, on the contrary, the solid phase disappears and is found diluted when an excess of solvent is added.
  • the solubility of polystyrene in a solvent is explained by the neutralization of the association forces between the macromolecular chains which ensure the cohesion of the polymer.
  • a solvent can thus be characterized by its solubility parameter, which is a measure of its internal energy density of cohesion allowing it to maintain in cohesion molecules in the liquid phase.
  • the solubility parameters of the solvents are determined from the heat of vaporization and the molar volumes of the said solvents by the formula of HILDEBRAND, according to the following equation: or :
  • HV is the latent heat of vaporization (cal)
  • T is the temperature in ° K
  • V is the molecular volume (in cm 3 ) Its unit of measurement is usually expressed in (cal / cm 3 ) 1/2 .
  • Each solvent is characterized by a specific value of ⁇ , which may vary slightly depending on the experimental data from which it is calculated. The values mentioned below are taken from the following work: Engineering techniques, treated plastics and composites (1997), polymers in solution, Perrin, P. and Hourdet, D.
  • An initial solvent and a complementary solvent according to l The invention have different solubility parameters.
  • An initial solvent according to the invention is a solvent whose parameter solubility is greater than the PES solubility parameter. Generally the initial solvent has a solubility parameter greater than 9.5 (cal / cm 3 ) 1/2 .
  • the solubility parameter of the initial solvent is in the range 9.6 to 11.0.
  • a solvent is also called a latent solvent or diluent; it alone does not allow the PSE to be completely dissolved.
  • the solvents used are preferably organic solvents resulting from the refining / recycling of petroleum products or products of plant origin, or else produced by biotechnological processes.
  • the solvents reported in Table 1 below can be used as the initial solvent within the meaning of the invention. Table 1
  • the preferred initial solvents are butyronitrile, isophorone, n-butyl lactate, methylisobutylcarbinol, chloroethylene, ethyl-2-hexanol, methylene chloride, cyclohexanone and, more particularly, acetone.
  • An initial solvent of the invention is preferably miscible with water. The inventors have observed that the effectiveness of the process according to the invention is conditioned by the amount of residual water present on the surface of the EPS or absorbed by the EPS. It is estimated that the EPS has the capacity to absorb from 5 to 50 g of water per m 2 of contact surface.
  • the method for dissolving the EPS described above comprises a prior step according to which the EPS is washed with an initial solvent solution containing water, for example, an acetone solution. , ethanol or propanol or any other initial solvent of the invention.
  • an initial solvent solution containing water for example, an acetone solution. , ethanol or propanol or any other initial solvent of the invention.
  • An initial solvent of the invention is therefore preferably a water-miscible solvent making it possible to prepare an aqueous solution of said solvent for washing the EPS, such as acetone.
  • the preliminary washing solution of the EPS is preferably an acetone solution containing from 5 to 40% water, more preferably 10 to 30%.
  • Such a true solution has many advantages, among which one can cite a lower flammability, a low toxicity and a physicochemical stability of at least two years in suitable barrels.
  • step i) of the solubilization process consisting in bringing the EPS into contact with at least one initial solvent, is carried out in the presence of an anhydrous salt making it possible to trap the absorbed residual water by the PES or present on the surface of the PSE.
  • the anhydrous salt is of the calcium sulphate type.
  • the anhydrous salt can be immersed directly in the solvent in order to dehydrate it, especially when a solution of solvent and water has been previously used for washing the EPS, or it can be contained in cartridges through which have circulates the solvent used.
  • This second possibility allows the recycling of the solvent, but also that of the anhydrous salt contained in the cartridge, because the cartridge can be changed and the salt that it contains dehydrated.
  • 1 to 10% of anhydrous salt is added to the solvent, preferably 5 to 10%.
  • the amount of water collected is of the order of 0.1 to 0.4 g of water per gram of anhydrous salt.
  • a complementary solvent suitable for the present invention preferably lies in the range of ⁇ varying from 8.5 (cal / cm 3 ) 1 2 to 9.5 (cal / cm 3 ) 1 2 , more preferably between 8.7 (ca ! / cm 3 ) 1/2 and 9.3 (cal / cm 3 ) 1/2 .
  • the additional solvent is preferably chosen from ketones comprising at least 3 carbon atoms, such as methyl ethyl ketone (EK), halogenated aliphatic compounds, such as trichloroethane, organic esters, such as ethyl acetate, or aromatic alcohols, such as phenylcarbinol.
  • EK methyl ethyl ketone
  • halogenated aliphatic compounds such as trichloroethane
  • organic esters such as ethyl acetate
  • aromatic alcohols such as phenylcarbinol.
  • the additional solvents make it possible to obtain good homogeneity and satisfactory physical stability of the true solution according to the invention.
  • the physicochemical characteristics of the solvents used in the context of the process of the invention are chosen so as to comply with regulatory or legislative, health and safety requirements. Thus, they do not present any toxicity or harmfulness incompatible with the technical applications envisaged.
  • the most suitable additional solvents are: cyclohexamine, ethyl acetate, butyric acid, chloroform, mesityl oxide, methyl ethyl ketone, 1-chlorobutane, amyl acetate, l n-butyl acetate, methylal, methylisoamyl ketone, methyl isobutyl ketone, propyl acetate, diethyl ketone, ethylbenzene and xylene.
  • ethyl acetate is preferred.
  • the initial solvent generally represents between 10% and 70%, of preferably between 30% and 70% of the volume of the final true solution, and the amount of additional solvent represents between 10% and 70%, preferably between 10% and 50% of the volume of said final true solution.
  • the proportion of additional solvent represents between 1% and 30%, preferably between 15% and 30% of the volume of the initial solvent; more generally, the volume ratio between initial solvent (s) and complementary solvent (s) is greater than 1.
  • the amount of EPS used for the invention is usually between approximately 0.2 and 1 kg per liter of initial solvent, and preferably between 0.5 and 1 kg.
  • the process of the invention involves acetone as the initial solvent and ethyl acetate as the additional solvent.
  • the present invention also relates to a composition allowing the solubilization of the EPS, capable of being implemented for the purposes of the process of the invention.
  • This composition comprises: an initial solvent enabling the EPS to pass from an expanded solid state to that of a gel; at least one complementary solvent distinct from the initial solvent, allowing the complete solubilization of said gel so as to obtain a true solution.
  • the nature, quantities and proportions of each of the components present in this composition are as defined above for the purposes of carrying out the method according to the invention.
  • the invention also consists of a true solution capable of being obtained by the method of the invention.
  • This true solution is characterized in that it contains: polystyrene; an initial solvent enabling the EPS to pass from an expanded solid state to that of a gel; at least one complementary solvent distinct from the initial solvent, allowing the complete solubilization of said gel so as to obtain a true solution.
  • 1 kg of true solution preferably comprises between 0.2 and 0.8 kg of PSE, more preferably, between 0.3 and 0.6 kg of PSE.
  • the true solution may comprise additives, in particular a plasticizer such as those mentioned below, preferably in a proportion of between 5% and 20% by volume relative to the total volume and more preferably between 10% and 15% by volume per compared to the total volume.
  • the true solution may also contain a tackifying agent, such as rosin, in a proportion which preferably varies between 10% and 20% by volume relative to the total volume.
  • a true solution according to the invention can be used to prepare different products, which constitute another object of the invention. These products may consist of paint, sealant, sealant, varnish, resin, paint or lacquer or an adhesive. To prepare such products, the true solution of the invention is used, to which one or more additives such as a dye, a pigment, a tackifying agent such as rosin, a cohesive agent, such as a alcohol such as ethanol, a filler to increase the volume or a plasticizer, which may be required to impart the desired flexibility.
  • additives such as a dye, a pigment, a tackifying agent such as rosin, a cohesive agent, such as a alcohol such as ethanol, a filler to increase the volume or a plasticizer, which may be required to impart the desired flexibility.
  • the preferred plasticizers belong to the following product classes: dialkylphthalates, diarylphthalates, dialkylarylphthalates, triaryl- phosphates, triarylalkylphosphat.es and trialkylphosphates. Examples of products of these classes which may be suitable are mentioned in Table 3 below: Table 3
  • Dioctyl phthalate is a preferred plasticizer.
  • the present invention also relates to the use of the true solution according to the invention for the preparation of a solid, pasty or liquid composite article.
  • These articles prepared from the true solution can consist of pasty or liquid products such as adhesives, in particular for wood and paper, varnishes, coatings, seals, paints and lacquers as well as solid products consisting in particular of agglomerated particle boards.
  • the liquid or pasty article may consist of a peelable product for the temporary protection of windows, hydrophobic varnishes for roofing tiles, temporary flexible joints for buildings, new adhesives.
  • An adhesive according to the invention may comprise a mixture of several true solutions obtained according to the method of the invention, or a true solution with an appropriate additional organic solvent.
  • An adhesive according to the invention can also contain anti-UV agents.
  • the true solution can also be used to regenerate or synthesize a polymer or copolymer based on styrene in an expanded or unexpanded form.
  • the examples presented below illustrate the invention.
  • EXAMPLE 1 Preparation of the EPS for its chemical treatment
  • Used cases of EPS which have been used for the refrigerated transport of foodstuffs (ex: fish) were recovered with a view to their transformation by the solubilization process of the invention.
  • the boxes have been stripped of heterogeneous elements that may surround them such as paper, fasteners or plastic packaging, then passed with a water jet so as to remove organic impurities and other encrustations.
  • the residual water on the surface of the EPS or absorbed by the EPS locally makes the action of the initial solvent ineffective during the chemical transformation of the EPS. It was undertaken, as shown in Table 4 below, washing tests and rinsing of the boxes prepared above with an acetone solution in which the percentage of water was varied.
  • the densification time is around 18 seconds.
  • the densification time increases to 64 seconds. If rinsed, this same EPS washed with hard water with an acetone solution containing 5% water, the densification time is reduced to 29 seconds. It therefore appears that a preliminary washing step with an acetone solution containing water makes it possible to treat wet or soiled recovery EPS, without significantly hampering the solubilization procedure which will follow.
  • the gel is in the form of a two-phase body characterized by the existence of a first phase consisting of a transparent mixture of liquids, called supernatant, and a second phase consisting of an opaque condensed material , without real cohesion.
  • a true solution was prepared in accordance with the invention using the gel formed in point 1 / above, to which was added either methyl ethyl ketone (MEK) or acetate d ethyl in proportions such that a homogeneous solution is obtained.
  • MEK methyl ethyl ketone
  • the true solutions obtained are used in the examples below.
  • the open time designates the maximum duration after coating during which the gluing is effective.
  • the ease of coating is dependent on the fluidity and the homogeneity of the adhesive.
  • the open limit time corresponds to the disappearance by evaporation of a percentage of solvent such that the film loses its tackifying properties (tackiness), which means that it no longer develops any interaction with the substrate. that it should stick.
  • tackiness tackifying properties
  • EXAMPLE 3 Mechanical properties of the yray solution
  • the same test was carried out using a vinyl adhesive marketed under the brand RAKOLL ® 6XL-3 / F-Neu. The results of these two tensile tests at 1 mm / min " 1 on a test piece in pine are shown in Table 9.
  • EXAMPLE 4 Addition of plasticizing agents and tackifying resins to the yray solution
  • the dioctylphthalate (DOP) was tested as an additive for a true solution obtained from a gel according to Example 2 to which added 12% ethyl acetate.
  • DOP is in the form of a liquid, the boiling point of which is 365 ° C and the solidification point of which is -50 ° C.
  • the percentage of DOP in the true solution was varied.
  • the procedure for testing the mechanical properties of the adhesive obtained is the same as that set out in Example 3.
  • the mechanical parameters obtained for the different formulations comprising a variable% of DOP, are given in Table 10, below. .
  • EXAMPLE 6 formulations of products made from yray solution.
  • the true solution used to prepare the products described below comprises 85% by volume of gel as defined in Example 2 and 15% by volume of MEK.
  • Hexolit® AP 422 (Clariant); 21% charge (ex: talc or chalk);
  • halogen-free flame retardant particle board A particle board is obtained by mixing: 13% of true solution; 36% wood particles;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paints Or Removers (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

Procédé de solubilisation du polystyrène expansé (PSE), selon lequel on met en contact le PSE avec au moins un solvant initial permettant de faire passer le PSE d'un état solide expansé à l'état de gel, ledit gel étant ensuite traité avec au moins un solvant complémentaire distinct du solvant initial, permettant sa solubilisation de manière à obtenir une solution vraie, produit susceptible d'être obtenu par ce procédé et utilisation de ce produit.

Description

PROCÉDÉ DE SOULUB ISATION DU PO YSTRYRËNE EXPANSÉ
La présente invention concerne un procédé de solubilisation du polystyrène expansé (PSE), permettant le recyclage des déchets à base de ce matériau. Ce procédé fait appel à l'utilisation de deux type de solvants : un solvant dit initial, permettant de déstructurer le polymère et un solvant dit complémentaire, permettant d'obtenir ledit polymère sous la forme d'une solution vraie. L'invention concerne également une solution vraie à base de PSE, susceptible d'être obtenue par ledit procédé, et qui peut être utilisée dans différentes applications telles que la formulation d'adhésif, de mastic, de joint d'étanchéité de vernis, de résines, de peinture ou de laque. La demande internationale WO 99/07776, décrit un procédé pour recycler et valoriser des déchets de polymère expansé, notamment de polymère styrénique expansé de type polystyrène et de copolymères styréniques expansés. Dans ce procédé, les déchets d'un polymère expansé sont incorporés à un mélange de solvants et de non-solvants, pour obtenir un gel pâteux, appelé magma, et caractérisé par un extrait sec important. Plus particulièrement, le magma est obtenu en traitant du PSE à l'aide d'une solution de traitement comprenant une proportion majeure d'un solvant tel que l'acétone, une proportion mineure d'un lubrifiant non gras, tel que le glycérol, lequel confère un état de surface non collant, et, le cas échéant de l'alcool en quantité suffisante pour lier le solvant et le lubrifiant. Le magma ainsi formé, présente un volume réduit par rapport au PSE traité et une consistance non collante rendant son transport et sa manipulation aisée. Le procédé d'obtention du magma décrit dans la demande internationale WO 99/07776 est simple et efficace. Le magma obtenu selon ce procédé peut être utilisé dans des procédés classiques d'injection, d'extrusion ou de moulage dans l'industrie de la plasturgie, en tant que matière semi-finie pâteuse. Toutefois, ce magma a tendance à se dissocier en deux phases : la première, en surface, est un mélange, généralement transparent, de liquides, appelé surnageant ; et la deuxième, sous la surface, est un amas de matière condensée, opaque et non dissoute dont l'aspect microscopique est similaire à un gel de viscosité élevé et dont les propriétés physiques sont caractéristiques d'un système hétérogène. On entend ici par le terme de « gel », une structure moléculaire dans laquelle les molécules forment un réseau tridimensionnel par interactions électrostatique fortes (liaison ionique ou de Van der Walls) ou par réticulation, et qui résulte de la coagulation d'une solution colloïdale. Ces différentes phases sont, généralement, difficilement miscibles, même si on exerce un travail mécanique de mélange. Le gel, qui contient le polystyrène et représente la partie valorisable du magma, revêt un aspect inhomogène dû à l'état d'équilibre constant qui existe entre le solvant et le polystyrène gélifié. Cette inhomogénéité peut rendre difficile sa transformation industrielle en des produits tels que des adhésifs, peintures, vernis ou laques. En effet, pour préparer ces produits, il est important de pouvoir fractionner le magma autant de fois que nécessaire sans observer de variation dans sa composition ou dans celle des produits formés. Les inventeurs ont cherché à résoudre ce problème pour fournir un produit de recyclage du PSE, qui reste homogène dans le temps et qui peut être utilisé pour préparer des produits tels que des adhésifs, peintures, vernis ou laques. Selon un premier objet de l'invention, celle-ci concerne un procédé de solubilisation du PSE, caractérisé en ce que : i) on met en contact le PSE avec au moins un solvant initial permettant de faire passer le PSE d'un état solide expansé à celui d'un gel ; et ii) on met en contact ledit gel avec au moins un solvant complémentaire, distinct du solvant initial, permettant la solubilisation dudit gel de manière à obtenir une solution vraie. Le solvant initial et le solvant complémentaire peuvent selon l'invention intervenir dans le procédé dans l'ordre indiqué ou simultanément. Par solution vraie, on entend une dispersion homogène de molécules dans un solvant. La solution vraie n'est pas colloïdale, contrairement au gel, qui est un type de colloïde dans lequel un liquide contient un solide formant un fin réseau, s'étendant de manière continue. Selon l'équilibre qui s'établit entre le solvant et le solide, l'une au l'autre des phases peut venir en excès. Dans le cas d'une solution vraie, au contraire, la phase solide disparaît et se retrouve diluée lorsqu'on ajoute un excès de solvant. La solubilité du polystyrène dans un solvant s'explique par la neutralisation des forces d'association entre les chaînes macromoléculaires qui assurent la cohésion du polymère. Un solvant peut être ainsi caractérisé par son paramètre de solubilité, lequel est une mesure de sa densité d'énergie interne de cohésion lui permettant de maintenir en cohésion des molécules en phase liquide. Les paramètres de solubilité des solvants sont déterminés à partir des chaleurs de vaporisation et des volumes molaires desdits solvants par la formule de HILDEBRAND, selon l'équation suivante : où :
* HV est la chaleur latente de vaporisation (cal),
* R est la constante des gaz parfaits (1 ,986),
* T est la température en °K, et
* V est le volume moléculaire (en cm3) Son unité de mesure est habituellement exprimée en (cal/cm3)1/2. Chaque solvant est caractérisé par une valeur de δ spécifique, qui peut varier légèrement selon les données expérimentales à partir desquelles elle est calculée. Les valeurs mentionnées ci-après sont tirées de l'ouvrage suivant : Techniques de l'ingénieur, traité plastiques et composites (1997), polymères en solution, Perrin, P. et Hourdet, D. Un solvant initial et un solvant complémentaire selon l'invention sont de paramètres de solubilité différents. Un solvant initial selon l'invention est un solvant dont le paramètre de solubilité est supérieur au paramètre de solubilité du PSE. Généralement le solvant initial présente un paramètre de solubilité supérieur à 9,5 (cal/cm3)1/2. Plus généralement, le paramètre de solubilité du solvant initial est compris dans la plage 9,6 à 11 ,0. Un tel solvant est également appelé solvant latent ou diluant ; il ne permet pas à lui seul de dissoudre complètement le PSE. Les solvants utilisés sont de préférence des solvants organiques issus du raffinage/recyclage de produits pétroliers ou de produits d'origine végétale, ou bien fabriqués par des procédés biotechnologiques. Les solvants reportés dans le tableau 1 ci-dessous sont utilisables en tant que solvant initial au sens de l'invention. Tableau 1
Les solvants initiaux préférés sont le butyronitrile, l'isophorone, le lactate de n-butyle, le méthylisobutylcarbinol, le chloroéthylène, I'éthyl-2- hexanol, le chlorure de méthylène, le cyclohexanone et, plus particulièrement, l'acétone. Un solvant initial de l'invention est, de préférence, miscible à l'eau. Les inventeurs ont observé que l'efficacité du procédé selon l'invention était conditionnée par la quantité d'eau résiduelle présente à la surface du PSE ou absorbée par le PSE. On estime que le PSE a la capacité d'absorber de 5 à 50 g d'eau par m2 de surface de contact. Cette absorption est d'autant plus importante que la granulométrie des billes unitaires est faible et que la surface du PSE est altérée par les déchirures ou le broyage des déchets. L'absorption d'eau s'effectue en surface et par capillarité. Il en résulte un gradient de concentration en eau sur les parties périphérique du PSE qui limite la cinétique de densification. L'eau résiduelle présente l'inconvénient d'inhiber localement l'efficacité du solvant initial. La vitesse de densification, c'est-à-dire la cinétique de transformation du PSE par le solvant initial est, par exemple, diminuée de 50 % lorsque le solvant initial contient 1 % massique d'eau. Or, en général, le traitement des déchets de PSE souillés impose une étape de lavage par jet d'eau pour se débarrasser des impuretés organiques et autres incrustations. Cette étape peut être suivie d'un séchage thermique du PSE, cependant cette étape est consommatrice d'énergie et doit être contrôlé étroitement pour éviter des échauffements locaux pouvant dégrader le PSE. Dans le but de proposer un procédé pouvant être mis en œuvre dans une enceinte de taille réduite comme, par exemple, une camionnette pouvant aller d'un point de collecte à l'autre, les inventeurs ont prévu différentes solutions pratiques pour se débarrasser de l'eau résiduelle. Ainsi, selon un mode préféré de l'invention, le procédé de solubilisation du PSE décrit plus haut comprend une étape préalable selon laquelle on lave le PSE avec une solution de solvant initial contenant de l'eau, par exemple, une solution d'acétone, d'éthanol ou de propanol ou tout autre solvant initial de l'invention. Cette solution permet d'éliminer l'eau résiduelle de surface ou absorbée dans le PSE, sans modification du PSE avant traitement. Un solvant initial de l'invention est donc, de préférence, un solvant miscible à l'eau permettant de préparer une solution aqueuse dudit solvant pour laver le PSE, tel que l'acétone. La solution de lavage préalable du PSE est préférentiellement une solution d'acétone contenant de 5 à 40 % d'eau, plus préférentiellement 10 à 30 %. Un solvant initial tel que l'acétone (δ =9,8(cal/cm3)1/2), permet d'obtenir par la suite une solution vraie à faible coût dans la mesure où le volume de solvant initial utilisé est généralement supérieur au volume de solvant complémentaire (rapport supérieur à 1). Une telle solution vraie présente de nombreux avantages, parmi lesquels on peut citer une moindre inflammabilité, une faible toxicité et une stabilité physico-chimique d'au moins deux années en fût approprié. En outre, l'utilisation d'un tel solvant permet aux instruments servant à manipuler le gel obtenu à partir du PSE, d'être lavés à l'eau. Quand le PSE est traité avec de l'acétone ou bien un autre solvant initial préféré, le gel obtenu peut être conservé exposé aux intempéries sans que le produit ne perde ses qualités ou ne présente de risque pour l'environnement. Selon un autre mode préféré de l'invention, l'étape i) du procédé de solubilisation consistant à mettre en contact le PSE avec au moins un solvant initial, est effectuée en présence d'un sel anhydre permettant de piéger l'eau résiduelle absorbée par le PSE ou présent à la surface du PSE. De préférence, le sel anhydre est de type sulfate de calcium. Le sel anhydre peut être immergé directement dans le solvant afin de déshydrater celui-ci, notamment lorsque une solution de solvant et d'eau a été préalablement utilisée pour le lavage du PSE, ou alors il peut être contenu dans des cartouches au travers desquelles ont fait circuler le solvant utilisé. Cette seconde possibilité permet le recyclage du solvant, mais aussi celui du sel anhydre contenu dans la cartouche, car la cartouche peut être changée et le sel qu'elle contient déshydraté. En général, on ajoute 1 à 10% de sel anhydre dans le solvant, de préférence 5 à 10 %. La quantité d'eau captée est de l'ordre de 0,1 à 0,4 g d'eau par gramme de sel anhydre. Lorsque que le solvant complémentaire est mis en œuvre après le solvant initial, son adjonction peut avoir lieu immédiatement après la formation du gel ou seulement plus tard, par exemple après acheminement du gel sur un autre site industriel de transformation. Un solvant complémentaire approprié pour la présente invention se situe préférentiellement dans la gamme de δ variant de 8,5 (cal/cm3)1 2 à 9,5 (cal/cm3)1 2, plus préférentiellement entre 8,7 (ca!/cm3)1/2 et 9,3 (cal/cm3)1/2. Le solvant complémentaire est de préférence choisi parmi les cétones comprenant au moins 3 atomes de carbone, tels que la méthyléthylcétone ( EK), les composés aliphatiques halogènes, tels que le trichloroéthane, les esters organiques, tel que l'acétate d'éthyle, ou les alcools aromatiques, tel que le phenylcarbinol. Le tableau 2 ci-après donne, à titre indicatif, une liste de solvants pouvant être utilisés en tant que solvants complémentaires.
Tableau 2
Les solvants complémentaires permettent d'obtenir une bonne homogénéité et une stabilité physique satisfaisante de la solution vraie selon l'invention. Les caractéristiques physico-chimiques des solvants mis en œuvre dans le cadre du procédé de l'invention sont choisis de sorte à respecter les exigences réglementaires ou législatives, d'hygiène et de sécurité. Ainsi, ils ne présentent pas de toxicité ou de nocivité incompatible avec les applications techniques envisagées. Les solvants complémentaires les plus appropriés sont les suivants : le cyclohexamine, l'acétate d'éthyle, l'acide butyrique, le chloroforme, l'oxyde de mésityle, le methyléthylecétone, le 1-chlorobutane, l'acétate d'amyle, l'acétate de n-butyle, le méthylal, la methylisoamylcétone, la méthylisobutylcétone, l'acétate de propyle, la diéthylecétone, l'éthylbenzène et le xylène. Parmi ces solvants, l'acétate d'éthyle est préféré. Le solvant initial représente généralement entre 10 % et 70 %, de préférence entre 30 % et 70 % du volume de la solution vraie finale, et la quantité de solvant complémentaire représente entre 10 % et 70 %, de préférence entre 10 % et 50 % du volume de ladite solution vraie finale. En général, la proportion de solvant complémentaire représente entre 1 % et 30 %, de préférence entre 15 % et 30 % du volume du solvant initial ; plus généralement, le rapport en volume entre solvant(s) initial(aux) et solvant(s) complémentaire(s) est supérieur à 1. La quantité de PSE utilisée pour l'invention est habituellement comprise entre environ 0,2 et 1 kg par litre de solvant initial, et de préférence entre 0,5 et 1 kg. Typiquement, le procédé de l'invention fait intervenir l'acétone en tant que solvant initial et l'acétate d'éthyle en tant que solvant complémentaire. Il peut également faire intervenir l'acétone et la méthyléthylcétone (MEK), ainsi que toute combinaison d'au moins un solvant initial pris parmi la liste figurant dans le tableau 1 avec au moins un solvant complémentaire pris dans la liste figurant dans le tableau 2, sans se limiter toutefois à ces seuls solvants. L'utilisation d'un lubrifiant non gras, tel que le glycérol, qui était prescrite dans la demande de brevet antérieure WO 99/07776, n'est pas nécessaire pour la mise en œuvre du procédé de la présente invention. En effet, un tel lubrifiant présente l'inconvénient de limiter considérablement l'action du solvant complémentaire et donc la formation d'une solution vraie. En l'absence de glycérol, le procédé est plus efficace et consomme moins de solvant complémentaire, ce qui, sur le plan économique, entre autre, rend le procédé plus avantageux. La présente invention a encore pour objet une composition permettant la solubilisation du PSE, susceptible d'être mise en œuvre aux fins du procédé de l'invention. Cette composition comprend : un solvant initial permettant de faire passer le PSE d'un état solide expansé à celui de gel ; au moins un solvant complémentaire distinct du solvant initial, permettant la solubilisation complète dudit gel de manière à obtenir une solution vraie. La nature, les quantités et les proportions de chacun des composants présents dans cette composition sont telles que définies précédemment aux fins de la mise en oeuvre du procédé selon l'invention. L'invention consiste également en une solution vraie susceptible d'être obtenue par le procédé de l'invention. Cette solution vraie est caractérisée en ce qu'elle contient : du polystyrène ; un solvant initial permettant de faire passer le PSE, d'un état solide expansé à celui de gel ; au moins un solvant complémentaire distinct du solvant initial, permettant la solubilisation complète dudit gel de manière à obtenir une solution vraie. On considère que 1 kg de solution vraie comprend de préférence entre 0,2 et 0,8 kg de PSE, plus préférentiellement, entre 0,3 et 0,6 kg de PSE. La solution vraie peut comprendre des additifs, en particulier un plastifiant tel ceux cités ci-après, de préférence dans une proportion comprise entre 5 % et 20 % en volume par rapport au volume total et plus préférentiellement entre 10 % et 15 % en volume par rapport au volume total. La solution vraie peut également contenir un agent tackifiant, telle que de la colophane, dans une proportion qui varie de préférence entre 10 % et 20 % en volume par rapport au volume total. Une solution vraie selon l'invention peut être utilisée pour préparer différents produits, qui constituent un autre objet de l'invention. Ces produits peuvent consister en une peinture, du mastic, du joint d'étanchéité, du vernis, une résine, de la peinture ou de la laque ou un adhésif. Pour préparer de tels produits on utilise la solution vraie de l'invention, à laquelle on peut ajouter un ou plusieurs additifs tels qu'un colorant, un pigment, un agent tackifiant tel que la colophane, un agent de cohésion, tel qu'un alcool comme l'éthanol, une charge pour augmenter le volume ou un plastifiant, qui peut être requis pour conférer la souplesse désirée. Les plastifiants préférés appartiennent aux classes de produits suivants : dialkylphtalates, diarylphtalates, dialkylarylphtalates, triaryl- phosphates, triarylalkylphosphat.es et trialkylphosphates. Des exemples de produits de ces classes pouvant convenir sont mentionnés dans le tableau 3 suivant : Tableau 3
Le phtalate de dioctyle (DOP) est un plastifiant préféré. La présente invention concerne aussi l'utilisation de la solution vraie selon l'invention pour la préparation d'un article composite solide, pâteux ou liquide. Ces articles préparés à partir de la solution vraie peuvent consister en des produits pâteux ou liquides tels des adhésifs, notamment pour bois et papier, des vernis, des enduits, des joints d'étanchéité, des peintures et des laques ainsi que des produits solides consistant notamment en des panneaux de particules agglomérées. L'article liquide ou pâteux peut consister en un produit pelable pour la protection temporaire des vitres, des vernis hydrophobes pour tuiles de couverture, des joints souples provisoire pour les bâtiments, de nouvelles colles. Un adhésif selon l'invention peut comprendre un mélange de plusieurs solutions vraies obtenues selon le procédé de l'invention, ou une solution vraie avec un solvant organique supplémentaire approprié. Un adhésif selon l'invention peut en outre contenir des agents anti-UV. La solution vraie peut aussi être utilisée pour régénérer ou synthétiser un polymère ou copolymère à base de styrène sous une forme expansée ou non expansée. Les exemples présentés ci-après illustrent l'invention.
EXEMPLE 1 : préparation du PSE en vue de son traitement chimique Des caisses usagées de PSE ayant servi pour le transport réfrigéré de denrées alimentaires (ex:poisson) ont été récupérées en vue de leur transformation par le procédé de solubilisation de l'invention. Les caisses ont été débarassées des éléments hétérogènes pouvant les entourer tels que le papier, des éléments de visserie ou d'emballage plastique, puis passées au jet d'eau de sorte à éliminer les impuretés organiques et autres incrustations. Comme évoqué dans la description, l'eau résiduelle à la surface du PSE ou absorbée par le PSE rend localement l'action du solvant initial inefficace lors de la transformation chimique du PSE. Il a été entrepris, comme le montre le tableau 4 ci-après, des essais de lavage et de rinçage des caisses préparées ci-dessus avec une solution d'acétone dans laquelle on a fait varier le pourcentage d'eau. Cette expérience a été réalisée afin de déterminer l'influence de la teneur en eau de la solution de lavage sur la vitesse de densification, c'est-à-dire de solubilisation, du PSE. L, I, H : Longueur, Largeur, Hauteur du volume de PSE traité
Lorsque le PSE est propre est sec (témoin) et que le solvant initial utilisé est de l'acétone, le temps de densification est de l'ordre de 18 secondes. Lorsque le PSE est lavé dans de l'eau pendant 30 secondes, le temps de densification passe à 64 secondes. Si on rince, ce même PSE lavé à l'eau dure avec une solution d'acétone contenant 5 % d'eau, le temps de densification est réduit à 29 secondes. Il apparaît donc qu'une étape préalable de lavage avec une solution d'acétone contenant de l'eau permet de traiter du PSE de récupération mouillé ou souillé, sans gêner de manière significative la procédure de solubilisation qui va suivre.
EXEMPLE 2 : transformation du gel en solution yraie
1/ Formulations et propriétés du gel
Les solutions vraies décrites ci-après ont été obtenues en solubilisant, dans un premier temps, 1 ,33 kg de PSE préalablement lavé et séché par circulation d'air forcée à température ambiante dans 1 kg d'une solution comprenant 98,7 % d'acétone et 1 ,3 % d'éthanol (% V/V). On obtient ainsi un gel présentant un extrait sec de 57 %, dont les propriétés physiques et mécaniques sont résumées ci-après :
- Propriétés physiques Le gel se présente sous la forme d'un corps biphasique caractérisé par l'existence d'une première phase constituée d'un mélange transparent de liquides, dit surnageant, et d'une deuxième phase constituée d'une matière condensée opaque, sans réelle cohésion.
- Propriétés adhésives Des essais comparatifs ont été réalisés afin d'évaluer les performances mécaniques du gel en tant qu'adhésif. Pour cela, des essais mécaniques de rupture ont été effectués à l'aide d'assemblages de substrats en contre-plaqué "standard", mis en contact avec l'adhésif à tester, qu'on soumet à des contraintes graduelles de plus en plus forte. A la rupture, on mesure le déplacement relatif des parties assemblées au moment de la rupture. Le gel a été utilisé pour réaliser un tel assemblage avec deux grammages différents : 150 g/m2 ou 300 g/m2. A titre de comparaison, le même protocole a été appliqué à un assemblage réalisé avec une colle néoprène classique commercialisée sous la marque BOSTIK® . Les résultats obtenus pour les deux types d'adhésifs sont reportés dans le tableau 5, ci-dessous.
Tableau 5 : Caractéristiques mécaniques du gel et de la colle BOSTIK®
Lorsqu'on utilise un grammage de 150 g/m2 de gel, la contrainte à la rupture est évaluée à environ 1 ,5 MPa (N/ mm2) contre 0,3 MPa pour les assemblages similaires réalisés avec la colle BOSTIK®. Le gel est donc plus résistant que la colle BOSTIK® (niveaux de contrainte nettement supérieurs à la rupture). Il est très cohésif. Cependant, l'adhésif BOSTIK® présente une déformation à la rupture environ 2 fois supérieure à celui du gel. Par rapport à BOSTIK®, le gel est donc beaucoup moins souple. Le film obtenu avec le gel est donc cohésif mais fragile, ce qui constitue un handicap en cas de réception de contraintes non axiales (pelage, étirage, ...) et/ou harmoniques (choc, vibrations, ...). 2/ Obtention d'une solution vraie On a préparé une solution vraie conforme à l'invention en utilisant le gel formé au point 1/ ci-dessus, auquel on a ajouté soit de la méthyléthylcétone (MEK), soit de l'acétate d'éthyle dans des proportions telles qu'on obtient une solution homogène. Les solutions vraies obtenues sont utilisées dans les exemples ci-après.
3/ Analyse de la solution vraie par mesure du temps ouvert et de la facilité d'enduction : Le temps ouvert (ou temps d'assemblage ouvert) désigne la durée maximum après enduction durant laquelle l'encollage est efficace. La facilité d'enduction est dépendante de la fluidité et de l'homogénéité de la colle. Dans les adhésifs en solution organique, le temps ouvert limite correspond à la disparition par évaporation d'un pourcentage de solvant tel que le film perd ses propriétés tackifiantes (pégosité), ce qui fait qu'il ne développe plus d'interaction avec le substrat qu'il devrait coller. Lors des essais de formulations, l'acétate d'éthyle et le MEK ont été incorporés dans le gel tel que décrit plus haut, en tant que solvant complémentaire, à raison de 0 % à 25 % du volume du gel. Les tableaux 6 et 7 ci-après récapitulent le temps ouvert et la facilité d'enduction obtenus pour chacune des formulations.
Tableau 6 : Effet de l'acétate d'éthyle
Tableau 7 : Effet du MEK.
L'acétone étant un solvant très volatil, sa disparition par évaporation lorsqu'il est déposé en fine couche est très rapide. Le gel a donc un temps ouvert qui est faible. Les résultats rapportés dans les tableaux 6 et 7 montrent que lorsque on ajoute à l'acétone un pourcentage croissant d'acétate d'éthyle (tableau 6) ou de MEK (tableau 7), on observe dans les deux cas, une augmentation sensible de la durée du temps ouvert. L'addition de solvant complémentaire permet donc d'obtenir un temps ouvert environ 4 fois supérieur à celui obtenu pour le gel. On constate que l'acétate d'éthyle permet d'améliorer sensiblement l'enduction à partir d'une concentration d'acétate d'éthyle de 5 %, et conduit à une enduction parfaite avec une concentration de 10 %.
4/ Mesure de viscosité- compatibilité des solvants La compatibilité d'un solvant complémentaire avec le gel peut être évaluée en mesurant la viscosité de la solution vraie. Plus le solvant et le gel sont compatibles, plus la solution vraie obtenue est fluide, à extrait sec équivalent. Des mesures de viscosité ont été réalisées à l'aide des solvants complémentaires MEK, acétate d'éthyle et trichloroéthane. Les mesures ont été effectuées avec un viscosimètre BROOKFIELD DV II+, avec mobile S64. L'essai a été réalisé à température ambiante et à une vitesse de 6 tours / minute. Les résultats obtenus avec différents volumes de solvants, sont reportés dans le tableau 8, ci-dessous :
Tableau 8 : Effet des solvants complémentaires sur la viscosité (en mPa.s.)
Les résultats obtenus montrent qu'à des volumes relativement faibles d'acétate d'éthyle, il est possible d'obtenir une solution vraie dont la viscosité est compatible avec la fabrication d'adhésif. Les quantités de MEK et de trichloroéthane doivent bien plus importantes pour obtenir une viscosité équivalente.
EXEMPLE 3 : Propriétés mécaniques de la solution yraie Une solution vraie obtenue à partir du gel de l'exemple 1 auquel on a jouté 15% d'acétate d'éthyle, a été testée afin de déterminer sa résistance à une contrainte mécanique de plus en plus forte, ainsi que sa déformation à la rupture. Un test de cisaillement simple de deux éprouvettes de pin de dimension 100 x 24 x 5 mm a été réalisé pour une surface de collage de 25 x 24 mm2, soit 6 cm2 pour un grammage en encollage simple (enduction sur une seule face) de 300 mg.m"2. Le même test a été réalisé en utilisant une colle vinylique commercialisée sous la marque RAKOLL®6XL-3/F-Neu. Les résultats de ces deux essais de traction à 1 mm/min"1 sur éprouvette en pin sont reportés dans le tableau 9.
Tableau 9 : Performances mécaniques de la solution vraie
Pour les deux types d'adhésif, solution vraie et RAKOLL on observe une rupture cohésive dans l'adhésif. Cette rupture intervient pour une valeur de contrainte maximale située dans les deux cas autour de 2,5 MPa. Les résultats des tests montrent que la déformation à la rupture est considérablement améliorée lorsqu'on ajoute de l'acétate d'éthyle au gel. L'adjonction de 15 % d'acétate d'éthyle permet de passer d'une déformation de 1 ,4 % dans le cas du gel seul (voir exemple 2, c'est à dire sans solvant complémentaire), à 2,8 % dans le cas où l'on ajoute le solvant complémentaire.
EXEMPLE 4 : Ajout d'aqents plastifiants et de résines tackifiantes.à la solution yraie Le dioctylphtalate (DOP), a été testé en tant qu'additif pour une solution vraie obtenue à partir d'un gel selon l'exemple 2 auquel on a ajouté 12 % d'acétate d'éthyle. Le DOP se présente sous forme d'un liquide, dont le point d'ébullition est de 365°C et dont le point de solidification est de -50°C. On a fait varier le pourcentage de DOP dans la solution vraie. Le mode opératoire pour tester les propriétés mécanique de l'adhésif obtenu est le même que celui exposé dans l'exemple 3. Les paramètres mécaniques obtenus pour les différentes formulations comprenant un % variable de DOP, sont reportés dans le tableau 10, ci-après.
Tableau 10 : Effet du DOP sur les propriétés mécaniques de la solution vraie
Essai de traction à 1 mm. min , sur éprouvettes en pin, grammage de 300g. m , par simple encollage.
Les résultats montrent que l'addition de DOP à hauteur de 13 % en volume de la solution finale permet un gain de souplesse (rupture cohésive moins nette) pour ce type de formulation. De même, il est apparu que l'ajout d'une quantité croissante de colophane brute en tant qu'additif dans la solution vraie obtenue selon l'exemple 2 en ajoutant 24 % d'acétate d'éthyle (tableau 11), permettait de diminuer la résistance mécanique de l'adhésif obtenu. Cela indique que la colophane, dans une certaine mesure, permet également de plastifier la solution vraie tout en augmentant son pouvoir adhésif.
Tableau 11 : Effet de la colophane sur les propriétés de la solution vraie
Essais de traction à 1 mm. min , sur éprouvettes en pin, grammage de 300 g. m par simple encollage.
EXEMPLE 5 : influence du glycérol sur l'obtention de la solution yraie. Dans la demande WO 99/07776, il est indiqué qu'un lubrifiant non gras comme le glycérol permet d'obtenir un magma pâteux présentant un état de surface non collant, ce qui est avantageux au regard de la manipulation dudit magma et de son transport. Pour évaluer l'impact du glycérol sur l'obtention en mode direct (le solvant initial et le solvant complémentaire sont utilisés de manière simultanée) de la solution vraie, on a traité du PSE d'une part avec une composition A comprenant 15 % d'acétate d'éthyle, 80 % d'acétone et 5 % d'eau et d'autre part une composition B comprenant 15 % d'acétate d'éthyle, 80 % d'acétone et 5 % de glycérol. Chaque composition a été placée sous agitation dans un Bêcher de 5 litres. De manière assez inattendue, à viscosité égale, on s'est aperçu que la quantité de PSE dissout à l'aide de la composition A était nettement supérieure à la quantité de PSE dissoute à l'aide de la solution B comprenant du glycérol. On observe donc ici un impact négatif du glycérol sur l'efficacité du traitement du gel par l'acétate d'éthyle.
EXEMPLE 6 : formulations de produits élaborés à base de solution yraie. La solution vraie mise en œuvre pour préparer les produits décrits ci-après, comprend 85 % en volume de gel tel que défini dans l'exemple 2 et 15 % en volume de MEK.
a) vernis hydrophobe pour tuiles de couverture Le vernis pour tuile de couverture obtenu en mélangeant : 20 % de solution vraie ;
- 78 % de MEK ;
- 1 ,5 % de DOP ; et 0,5 % de Tinuvin® (anti-oxydant).
b) Mastic Un mastic est obtenu en mélangeant : 30 % de solution vraie ;
- 27 % d'Hexolit® AP 422 (Clariant) ; 21 % de charge (ex : talc ou craie) ;
- 14 % de DOP ; 4 % de tackifiant (ex : ester de colophane) ; 3 % de colorant blanc (ex : oxyde de titane) ; et 1 % de couleur (colorant commercial pour peinture à l'huile).
c) Polymères souples propices au moulage et qui incorporent différentes natures de charges 30 % de solution vraie ; 52 % de charges (ex : talc, craie, fibres.... )
- 14 % de DOP ; 3 % de colorant blanc (ex : oxyde de titane) ; et 1 % de couleur (colorant commercial pour peinture à l'huile).
d) panneau de particule ignifugé sans halogène Un panneau de particule est obtenu en mélangeant : 13 % de solution vraie ; 36 % de particules de bois ;
- 9 % de MEK ;
- 40 % d'Hexolit® APP 750 (Clariant) ; et
- 2 % d'une solution SBS comprenant 70 % de MEK et 30 % d'Evoprène® 027.
e) Panneau de particule ignifugé M1 avec halogène 40 % d'héxabromocyclododécane 36 % de particules de bois ; 21.6 % de solution vraie
- 2.4 % d'une solution SBS comprenant 70 % de MEK et 30 % d'Evoprène® 027.
f) protection pelable pour vitres Une protection pelable pour vitres est obtenue en mélangeant 54 % de solution vraie ;
- 27 % de MEK ;
- 14 % de DOP ; 5 % d'essence de térébenthine.

Claims

REVENDICATIONS 1. Procédé de solubilisation du polystyrène expansé (PSE), caractérisé en ce que : i) on met en contact le PSE avec au moins un solvant initial permettant de faire passer le PSE d'un état solide expansé à celui d'un gel ; et ii) on met en contact ledit gel avec au moins un solvant complémentaire, distinct du solvant initial, permettant la solubilisation dudit gel de manière à obtenir une solution vraie. 2. Procédé suivant la revendication 1 , caractérisé en ce que les étapes i) et ii) sont effectuées successivement dans cet ordre ou simultanément. 3. Procédé selon les revendications 1 et 2, caractérisé en ce qu'il ne comporte pas la mise en œuvre d'un lubrifiant non gras, tel le glycérol . 4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la quantité de solvant initial représente entre 1 0 % et 70 %, de préférence entre 30 % et 70 % du volume de la solution vraie obtenue, et la quantité de solvant complémentaire représente entre 1 O % et 70 %, de préférence entre 10 % et 50 % du volume de la solution vraie obtenue. 5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la proportion de solvant complémentaire représente entre 1 % et 30 %, de préférence entre 15 % et 30 % du volume de solvant initial. 6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le solvant initial a un paramètre de solubilité supérieur à 9,5 (cal/cm3)1/2. 7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le solvant initial est choisi parmi l'acétone, le butyronitrile, l'isophorone, le lactate de π-butyle, le méthylisobutylcarbinol, le chloroéthylène, l'ethyl-2-hexanol, le chlorure de méthylène, et le cyclohexanone. 8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le solvant initial est l'acétone. 9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le solvant complémentaire a un paramètre de solubilité compris entre 8,5 (cal/cm3)72 et 9,5 (cal/cm3)1/2 , de préférence entre 8,7 (cal/cm3)172 et 9,3 (cal/cm3)1/2. 10. Procédé selon l'une quelconque des revendications 1 à 9 caractérisé en ce que le solvant complémentaire est choisi parmi le cyclohexamine, l'acétate d'éthyle, l'acide butyrique, le chloroforme, l'oxyde de mésityle, le methyléthylecétone, le 1-chlorobutane, l'acétate d'amyle, l'acétate de π-butyle, le méthylal, la methylisoamylcétone, la méthylisobutylcétone, l'acétate de propyle, la diéthylecétone, l'éthylbenzène et le xylène. 11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le solvant complémentaire est l'acétate d'éthyle ou la methyléthylecétone (MEK), ou un mélange d'acétate d'éthyle et de methyléthylecétone. 12. Procédé selon l'une quelconque des revendications 1 à 11 , caractérisé en ce que le solvant initial est l'acétone et le solvant complémentaire est l'acétate d'éthyle. 13. Procédé selon l'une quelconque des revendications 1 à 12, caractérisé en ce en ce que le solvant initial est l'acétone et le solvant complémentaire est le methyléthylecétone. 14. Procédé selon l'un quelconque des revendications 1 à 13, caractérisé en ce que ledit procédé comprend une étape préalable selon laquelle on lave le PSE avec une solution de solvant initial contenant de l'eau. 15. Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce que l'étape i) est effectuée en présence d'un sel anhydre permettant de piéger l'eau résiduelle absorbée par le PSE ou présent à la surface du PSE. 16. Procédé selon la revendication 15, dans laquelle le sel anhydre est de type sulfate de calcium. 17. Procédé selon l'une quelconque des revendications 14 à 16, dans laquelle la solution de solvant initial pour laver préalablement le PSE est une solution d'acétone contenant de 5 à 40 % d'eau, de préférence 10 à 30 %. 18. Composition permettant la solubilisation de PSE comprenant un solvant initial permettant de faire passer le PSE d'un état solide expansé à un gel ; et au moins un solvant complémentaire distinct du solvant initial, permettant la solubilisation complète dudit gel de manière à obtenir une solution vraie. 19. Solution vraie susceptible d'être obtenue par le procédé selon l'une quelconque des revendications 1 à 17. 20. Solution vraie selon la revendication 19, caractérisée en ce qu'elle comprend une quantité de PSE par litre de solution finale comprise entre 0,2 et 0,8 kg, de préférence entre 0,3 et 0,6 kg. 21. Solution vraie selon l'une des revendications 19 et 20, caractérisée en ce qu'elle comprend en outre au moins un additif choisi parmi : un agent modificateur pour améliorer les propriétés mécaniques de la solution ; un agent tackifiant ; un agent de cohésion, tel que de l'alcool ; et une charge pour augmenter le volume. 22. Solution vraie selon la revendication 21 , dans laquelle l'agent de modification est un plastifiant, tel le DOP, dans une proportion comprise entre 5 % et 20 %, de préférence entre 10 % et 15 % en volume par rapport au volume total de la solution. 23. Solution vraie selon la revendication 21 , dans laquelle l'agent tackifiant est la colophane, utilisée dans une proportion comprise entre 10 % et 20 % en volume par rapport au volume totale de la solution. 24. Utilisation d'une solution vraie selon l'une quelconque des revendications 15 à 19, en tant qu'adhésif. 25. Utilisation d'une solution selon l'une quelconque des revendications 19 à 23, pour la fabrication de panneaux de particules, de mastic, de joint d'étanchéité, de peinture, de vernis, de protection pelable pour vitres ou de résine. 26. Utilisation d'une solution vraie selon l'une quelconque des revendications 19 à 23, pour la régénération ou la synthèse d'un polymère ou copolymère à base de styrène.
EP04817619A 2003-12-31 2004-12-30 Procede de solubilisation du polystryrene expanse Withdrawn EP1713855A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0315621A FR2864544B1 (fr) 2003-12-31 2003-12-31 Procede de solubilisation du polystyrene expanse
PCT/FR2004/003416 WO2005073303A1 (fr) 2003-12-31 2004-12-30 Procede de solubilisation du polystyrene expanse

Publications (1)

Publication Number Publication Date
EP1713855A1 true EP1713855A1 (fr) 2006-10-25

Family

ID=34639730

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04817619A Withdrawn EP1713855A1 (fr) 2003-12-31 2004-12-30 Procede de solubilisation du polystryrene expanse

Country Status (6)

Country Link
US (1) US8546455B2 (fr)
EP (1) EP1713855A1 (fr)
JP (1) JP2007518851A (fr)
CN (1) CN1922250A (fr)
FR (1) FR2864544B1 (fr)
WO (1) WO2005073303A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931859B1 (fr) * 2008-05-30 2013-07-12 Andre Jules Gouin Dispositif pour enlever le polystyrene contenu dans les joints de dilatation entre blocs de batiment
ES2758521T3 (es) 2014-10-03 2020-05-05 Polystyvert Inc Procesos para el reciclaje de desechos de poliestireno
US9909069B2 (en) * 2014-11-13 2018-03-06 Abtech Industries, Inc. Process for recycling oil-sorbing polymeric media
RU2687975C1 (ru) * 2015-06-30 2019-05-17 Дзе Проктер Энд Гэмбл Компани Способ очистки загрязненных полимеров
CN105348554A (zh) * 2015-12-03 2016-02-24 吉林大学 用废旧聚苯乙烯制备可发性聚苯乙烯和石墨可发性聚苯乙烯的方法
MA41399B1 (fr) * 2017-11-10 2019-10-31 Karima Laklech Produit ecologique pour stabiliser l'avancement du sable sahara et la technologie de fertilisation du sol
DE202018006571U1 (de) 2017-11-20 2021-03-09 Polystyvert Inc. Vorgänge zum Recycling von Polystyrolabfällen
WO2020082184A1 (fr) 2018-10-26 2020-04-30 Polystyvert Inc. Procédés de recyclage de déchets de polystyrène et/ou de déchets de copolymère de polystyrène
CN113372606A (zh) * 2021-06-17 2021-09-10 宋渊 聚苯乙烯回料溶剂法制作可发性聚苯乙烯珠粒工艺

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2417381A1 (fr) * 1978-02-17 1979-09-14 Rueda Michel Procede de traitement des polystyrenes expanses en vue de leur recuperation et produit obtenu
US4282130A (en) * 1978-08-01 1981-08-04 Exxon Research & Engineering Co. Process for controlled gelation of polymeric solution (C-669)
JPH0357435A (ja) * 1989-07-26 1991-03-12 Toshiba Corp 磁気共鳴イメージング方法
JPH09165465A (ja) * 1995-08-18 1997-06-24 Internatl Foam Solutions Inc 発泡ポリスチレンの減容剤、減容方法及びポリスチレンと減容剤の分離方法
JPH09157435A (ja) 1995-12-06 1997-06-17 Bosai Soken:Kk 発泡スチロール廃材の減容処理方法、回収スチロール樹脂の製造方法および発泡スチロール廃材の減容処理剤
FR2766832B1 (fr) * 1997-08-04 1999-10-29 Financ Lea Sarl Transformation de polymeres expanses
WO2001068759A1 (fr) * 2000-03-15 2001-09-20 Kagoshimaken Production de particules de resine de polystyrene expansible recuperees
WO2002048246A1 (fr) * 2000-12-16 2002-06-20 Victech Co., Ltd. Agents reducteurs de volume pour polystyrene expanse, procedes et dispositifs pour le traitement de polystyrene expanse reposant sur l'utilisation de ces agents
US20020120020A1 (en) * 2000-12-18 2002-08-29 Horoaki Usui Volume reducing agents for expanded polystyrene, method and apparatus for processing expanded polystyrene using the same
JP2003145537A (ja) * 2001-08-29 2003-05-20 Nkk Corp 発泡スチロール樹脂のリサイクル方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005073303A1 *

Also Published As

Publication number Publication date
WO2005073303A1 (fr) 2005-08-11
US20110021647A1 (en) 2011-01-27
CN1922250A (zh) 2007-02-28
FR2864544A1 (fr) 2005-07-01
US8546455B2 (en) 2013-10-01
JP2007518851A (ja) 2007-07-12
FR2864544B1 (fr) 2006-05-19

Similar Documents

Publication Publication Date Title
EP2310447B1 (fr) Procede de preparation de compositions a base de composant amylace et de polymere synthetique
FR2539138A1 (fr) Composition de revetement contenant un polymere acrylique
FR2874018A1 (fr) Composition de peinture aqueuse et utilisations de celle-ci
EP1685201A1 (fr) Utilisation d'une dispersion aqueuse d'au moins un polymere biodegradable contenant au moins un agent stabilisant pour la preparation d'une composition filmogene aqueuse
EP1874262B1 (fr) Composition aqueuse pour vernis a ongles
CH649572A5 (fr) Composition adhesive d'emulsion aqueuse contenant une emulsion de copolymere ethylene-acetate de vinyle et son procede de fabrication.
EP1114099A1 (fr) Composition polymerique comprenant un polymere fluore semi-cristallin, un polymere acrylique et un agent nucleant, formulations et revetements obtenus a partir de ces compositions
EP1713855A1 (fr) Procede de solubilisation du polystryrene expanse
KR102069915B1 (ko) 스티렌계 불소 중합체 용액으로부터 캐스트 성형된 광학 필름
CH629234A5 (en) Internally plasticised polymer latex, process for producing the latex and its use
WO2005097918A1 (fr) Composition de revetement ou de moulage pour composites ou de mastic contenant des additifs a base de microfibrilles de cellulose
FR2762611A1 (fr) Silice poreuse modifiee, son procede de fabrication et son utilisation dans les peintures et comme vecteur de pigments et colorants
Bellon et al. Effect of expanded polystyrene waste in the creation of waterproofing paint
EP0616018B1 (fr) Adhésif pulvérisable à base de blocs copolymères styréniques linéaires hydrogénés
TWI739762B (zh) 中空聚合物組合物
CA2445240A1 (fr) Agent et solution de coagulation pour la fabrication de colles bi ou multicomposantes, procede de collage et dispositif correspondant
EP3259326B1 (fr) Colle contact de polychloroprene a base aqueuse
CH518349A (fr) Mélange adhésif à base de néoprène ne se séparant pas en deux phases
JP2001294799A (ja) 柑橘類表皮油を溶媒とする新規接着剤および塗料とその製造方法。
CA2626519C (fr) Dispersions aqueuses de polymere modifiees aux nanoparticules ramollies par solvant
WO2023126886A1 (fr) Produit de peinture et procédé de fabrication associé
EP1306124A1 (fr) Utilisation de sulfonate (s) de lignine comme stabilisateur (s) de la polymérisation en émulsion, dispersions, utilisations, et procédé correspondants
Szramowski et al. New primers for polyolefins based on PP-g-MAH
CH154189A (fr) Composition résistant à l'humidité.
BE622370A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DALET, PIERRE

Inventor name: POUTCH, FRANCK

Inventor name: ALCORTA, JOSE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070320

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140701