EP1713753A1 - Entwässerung von kreislaufströmen bei der herstellung von bisphenol a - Google Patents

Entwässerung von kreislaufströmen bei der herstellung von bisphenol a

Info

Publication number
EP1713753A1
EP1713753A1 EP05701121A EP05701121A EP1713753A1 EP 1713753 A1 EP1713753 A1 EP 1713753A1 EP 05701121 A EP05701121 A EP 05701121A EP 05701121 A EP05701121 A EP 05701121A EP 1713753 A1 EP1713753 A1 EP 1713753A1
Authority
EP
European Patent Office
Prior art keywords
distillation
acetone
phenol
bisphenol
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05701121A
Other languages
English (en)
French (fr)
Inventor
Rainer Neumann
Ulrich Blaschke
Stefan Westernacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP1713753A1 publication Critical patent/EP1713753A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/84Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/685Processes comprising at least two steps in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/74Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes

Definitions

  • the present application relates to a process for the preparation of bisphenol A, in which the reaction mixture obtained by acid-catalyzed conversion of phenol and acetone is freed from the water formed during the reaction by distillation, a large part of the unreacted acetone remaining in the reaction mixture.
  • Bisphenols as condensation products of phenols and carbonyl compounds are starting materials or intermediates for the production of a large number of commercial products. Of particular technical importance is the condensation product from the reaction between phenol and acetone, 2,2-bis (4-hydroxyphenyl) propane (bisphenol A, BPA). BPA serves as a raw material for. Production of various types of polymeric materials such as polyarylates, polyether imides, polysulfones and modified phenol-formaldehyde resins. Preferred areas of application are in the production of epoxy resins and polycarbonates.
  • cocatalyst usually thiols that have at least one SH function.
  • the cocatalyst can either be dissolved homogeneously in the reaction solution or, in the case of the acidic ion exchangers, can be fixed on the catalyst itself.
  • Homogeneous cocatalysts are, for example, mercapto propionic acid, hydrogen sulfide, alkyl sulfides such as ethyl sulfide and similar compounds.
  • Fixed cocatalysts are aminoalkylthiols and pyridylalkylthiols which are ionically bound to the catalyst, where the SH function can be protected and is only released to the catalyst during or after fixation.
  • the cocatalyst can be covalently bound to the catalyst as alkyl or aryl thiol.
  • reaction is usually carried out in such a way that 100% conversion of the acetone is not achieved and 0.1-0.6% by weight in the reactor outlet. Acetone are included.
  • a processing and purification method of BPA is carried out by separating BPA from the reaction mixture in the form of an approximately equimolar crystalline. Adduct with phenol by cooling the reaction mixture with crystallization of the BPA-phenol adduct in a suspension crystallization. The BPA-phenol adduct crystals are then separated from the liquid phase by a suitable apparatus for solid-liquid separation, such as rotary filters or centrifuges, and sent for further purification.
  • Adduct crystals obtained in this way typically have a purity of> 99% by weight of BPA, based on the sum of BPA and the secondary components, with a phenol content of approximately 40% by weight.
  • suitable solutions which typically contain one or more components from the group consisting of acetone, water, phenol, BPA and secondary components, the adduct crystals can be freed from impurities adhering to the surface.
  • the liquid stream (mother liquor) obtained in the solid-liquid separation contains phenol, BPA, water formed in the reaction, unreacted acetone and is enriched in the secondary components typically obtained in the production of BPA.
  • This mother liquor stream is usually returned to the reaction unit.
  • water previously formed is removed by distillation, wherein any acetone still present is also removed from the mother liquor.
  • the dewatered reaction stream thus obtained is supplemented by phenol and acetone and returned to the reaction unit.
  • water and acetone can also be removed by distillation before the suspension crystallization of the BPA-phenol adduct is carried out.
  • the BPA-phenol adduct crystals obtained after the above-described suspension crystallization of the reaction solution and solid-liquid separation are passed on to further purification steps, with the separation of phenol and possibly a reduction in the concentration of secondary components being achieved.
  • the BPA-phenol adduct crystals can thus be recrystallized from phenol, organic solvents, water or mixtures of the solvents mentioned, which may also contain BPA and / or its isomers, by means of a suspension crystallization.
  • the phenol present in the adduct crystals can also be removed in whole or in part by the choice of suitable solvents. Any phenol remaining in the BPA after recrystallization is then completely separated off by suitable distillative, desorptive or extractive methods.
  • the phenol can also be removed from the BPA-phenol adduct crystals by means of a melting process. In these processes, however, the BPA is subject to thermal loads, which leads to undesirable splitting of BPA.
  • a bisphenol A melt is obtained which can be used without prior solidification for the production of polycarbonate by the transesterification process (melt polycarbonate).
  • the bisphenol A melt can, however, also be solidified by known processes, such as, for example, by the prilling process or by desquamation, for sale or further use.
  • the melt can be dissolved in sodium hydroxide solution and used in the polycarbonate process using the phase interface process.
  • Ge sacrificeen- if the phenol-free bisphenol A can be subjected to a purification step such as melt crystallization, distillation and / or primary crystallization from phenol, water or an organic solvent such as toluene or mixtures of these substances before further processing.
  • the mother liquor must be dewatered before it is returned to the reaction, since, due to the thermodynamic equilibrium, the water of reaction would strongly suppress the reaction of phenol and acetone to bisphenol A and thus reduce the reaction conversion.
  • the unreacted residual acetone should remain in the reaction solution, since it would otherwise have to be laboriously isolated from side streams and returned to the reaction in order to keep raw material losses low for economic reasons
  • the object of the present invention was therefore to provide a process for the preparation of bisphenol A. With which the water of reaction can be removed from the reaction solution or from the mother liquor which comes from the crystallization and filtration, the unreacted Most of the residual acetone remains in the reaction solution.
  • the invention relates to a process for the preparation of bisphenol A, in which
  • step b) before or after the distillation in step b), a bisphenol A-phenol adduct is separated off from the reaction mixture by crystallization and filtration.
  • the invention is based on the knowledge that when the reaction mixture is worked up by distillation in a vacuum distillation for water removal, the water can be separated off almost quantitatively, ie to more than 95%. At the same time, however, more than 80% of the unconverted acetone introduced into the distillation preferably remains in the bottom product in this vacuum distillation.
  • the bottom product also preferably contains between 0.01 and 0.2% by weight of water (based on the bottom product).
  • the distillation column used with a bottom temperature of 100 to 150 ° C, preferably 110 to 140 ° C, particularly preferably 125 to 135 ° C and a top temperature of 20 to 80 ° C, preferably 30 to 70 ° C, particularly preferably 50 to 60 ° C operated.
  • the vacuum in the top of the column is 50 to 300 mbar, preferably 80 to 200 mbar, particularly preferably 100 to 150 mbar.
  • the bottom vacuum is from 100 to 300mbar 5 preferably from 120 to 250mbar and more preferably 150 to 200 mbar.
  • Distillation devices which are known to the person skilled in the art and which contain internals, for example packing elements and / or packings and / or bottoms, can be used as the separation process for solving the problem.
  • the bottom product obtained in the distillation is, if appropriate after separating off the bisphenol A-phenol adduct crystals by means of a suspension crystallization, for reuse in the reaction after addition of the used components phenol and acetone and optionally cocatalyst.
  • the phenol used can be supplemented in whole or in part before the distillation.
  • Another advantage of the process according to the invention is that degradation compounds of the sulfur-containing cocatalyst, such as mercaptopropionic acid and of the sulfonic acid ion exchanger, are likewise removed overhead with the water of reaction and thus when the bottom product is returned to the reaction, not in the reaction and, above all, in the later removal of the Disrupt bisphenol A.
  • impurities from the raw materials used such as methanol, and by-products resulting from the production of bisphenol A, such as anisole from methanol and phenol, and the compounds resulting from the self-condensation of acetone, such as, for example, mesitylene, mesityl oxide and diacetone alcohol, can be at least partially, but preferably at least 5 . 0%, cut off overhead.
  • mercaptopropionic acid is used as the cocatalyst, the cocatalyst remains in the bottom product. Only the decomposed portion and the portion lost due to the withdrawal from the circuit have to be added in order to run the reaction with a constant cocatalyst content. ' ⁇ ⁇
  • the bisphenol A produced by the process according to the invention is preferably reacted with phosgene according to the interfacial process or with diaryl carbonates, preferably diphenyl carbonate, according to the melt process to polycarbonate.
  • phosgene phosgene according to the interfacial process
  • diaryl carbonates preferably diphenyl carbonate
  • the vacuum is 163 mbar in the sump and 129 mbar in the head.
  • Over 95% of the water of reaction introduced into the column is condensed at the top, the rest remaining in the bottom product.
  • the top product contains 5% by weight of phenol and 5% by weight of acetone, based on the top product.
  • anisole and methanol as well as acetone's own condensation products such as.
  • the BPA originating from this process is suitable for the production of polycarbonate using both the phase interface and the transesterification (melt) process.

Abstract

Die vorliegende Anmeldung betrifft ein Verfahren zur Herstellung von Bisphenol A, bei dem das durch sauer katalysierte Umsetzung von Phenol und Aceton erhaltene Reaktionsgemisch destillativ vom während der Reaktion gebildeten Wasser befreit wird, wobei ein Großteil des nicht reagierten Acetons im Reaktionsgemisch verbleibt.

Description

Ent ässerung von Kreislaufströmen bei der Herstellung von Bisphenol A
Die vorliegende Anmeldung betrifft ein Verfahren zur Herstellung von Bisphenol A, bei dem das durch sauer katalysierte Umsetzung von Phenol und Aceton erhaltene Reaktionsgemisch destillativ vom während der Reaktion gebildeten Wasser befreit wird, wobei ein Großteil des nicht reagierten Acetons im Reaktionsgemisch verbleibt.
Bisphenole als Kondensationsprodukte von Phenolen und Carbonylverbindungen sind Ausgangsstoffe oder Zwischenprodukte zur Herstellung einer Vielzahl kommerzieller Produkte. Von beson- , derer technischer Bedeutung ist das Kondensationsprodukt aus der Reaktion zwischen Phenol und Aceton, 2,2-Bis(4-hydroxyphenyl)propan (Bisphenol A, BPA). BPA dient als Ausgangstoff zur . Herstellung verschiedenartiger polymerer Werkstoffe wie beispielsweise Polyarylate, Polyether- imide, Polysulfone und modifizierter Phenol-Formaldehydharze. Bevorzugte Anwendungsgebiete liegen in der Herstellung von Epoxyharzen und Polycarbonaten.
Technisch relevante Herstellmethoden für BPA sind bekannt und beruhen auf der säurekatalysierten Umsetzung von Phenol mit Aceton, wobei bevorzugt ein Phenol-Aceton-Verhältnis von größer 5 : 1 in der Reaktion eingestellt wird. Als saure Katalysatoren können homogene wie auch heterogene Brönsted- oder Lewissäuren genutzt werden, so beispielsweise starke Mineralsäuren wie Salz- oder Schwefelsäure. Bevorzugt kommen gelförmige oder makroporöse sulfonierte vernetzte Polystyrolharze (saure Ionentauscher) zum Einsatz. Als Vernetzer wird normalerweise Divinylbenzol eingesetzt, aber auch andere wie Divinylbiphenyl können Verwendung finden. Neben dem Katalysator kann ein Cokatalysator zum Einsatz kommen. Hierbei handelt es sich üblicherweise um Thiole, die mindestens eine SH-Funktion tragen. Der Cokatalysator kann sowohl homogen in der Reaktionslösung gelöst als auch, bei den sauren Ionentauschern, auf dem Katalysator selber fixiert sein. Homogene Cokatalysatoren sind beispielsweise Mercaptopro- pionsäure, Schwefelwasserstoff, Alkylsulfide wie beispielsweise Ethylsulfid und ähnliche Verbindungen. Fixierte Cokatalysatoren sind Aminoalkylthiole und Pyridylalkylthiole, die ionisch an den Katalysator gebunden sind, wobei die SH-Funktion geschützt sein kann und erst während oder nach Fixierung auf den Katalysator freigesetzt wird. Ebenso kann der Cokatalysator kovalent als Alkyl- oder Arylthiol an den Katalysator gebunden sein.
Bei der Umsetzung von Phenol mit Aceton in Gegenwart saurer Katalysatoren entsteht eine Produktmischung, die neben nicht umgesetztem Phenol und gegebenenfalls Aceton in erster Linie BPA und Wasser enthält. Daneben treten in geringen Mengen typische Nebenprodukte der Kondensationsreaktion auf, so beispielsweise 2-(4-Hydroxyphenyl)-2-(2-hydroxyphenyl)propan (o,p-BPA), substituierte Indane, Hydroxyphenyl-indanole, Hydroxyphenyl-chromane, substituierte Xanthene und höher kondensierte Verbindungen mit drei oder mehr Phenylringen im Mole- külgerüst. Außerdem können sich durch Eigenkon'densation des Acetons und Reaktion mit ' Verunreinigungen in den Rohstoffen weitere Nebenkomponenten' wie Anisol, Mesityloxid, Mesitylen und Diacetonalkohol bilden.
Die Reaktion wird aus wirtschaftlichen und technischen Gründen meist so gefahren, dass kein hundertprozentiger Umsatz des Acetons erreicht wird und im Reaktorablauf noch 0,1 - 0,6 Gew.-% . Aceton enthalten sind.
Die genannten Nebenprodukte wie Wasser, aber auch die nicht umgesetzten Einsatzstoffe Phenol und Aceton beeinträchtigen die Eignung von BPA zur Herstellung von Polymeren und müssen durch geeignete Verfahren abgetrennt werden. Insbesondere zur Herstellung von Polycarbonat werden hohe Reinheitsanforderungen an den Rohstoff BPA gestellt.
Eine Aufarbeitungs- und Reinigungsmethode von BPA erfolgt durch Abtrennung von BPA aus der Reaktionsmischung in Form eines etwa äquimolaren kristallinen . Addukts mit Phenol durch Abkühlen der Reaktionsmischung unter Auskristallisieren des BPA-Phenol-Addukts in einer Suspensionskristallisation. Die BPA-Phenol-Adduktkristalle werden anschließend durch eine geeignete Apparatur zur Fest-Flüssigtrennung wie Drehfilter oder Zentrifugen von der Flüssigphase abgetrennt und der weiteren Reinigung zugeführt.
So erhaltene Adduktkristalle weisen typischerweise ein Reinheit von > 99 Gew.-% BPA bezogen auf die Summe aus BPA und den Nebenkomponenten bei einem Phenolanteil von ca. 40 Gew.-% auf. Durch Waschen mit geeigneten Lösungen, die typischerweise eine oder mehrere Kompo- nenten aus der Gruppe Aceton, Wasser, Phenol, BPA und Nebenkomponenten enthalten, können die Adduktkristalle von oberflächlich anhaftenden Verunreinigungen befreit werden.
Der bei der Fest-Flüssigtrennüng anfallende Flüssigstrom (Mutterlauge) enthält Phenol, BPA, bei der Reaktion entstandenes Wasser, nicht umgesetztes Aceton und ist angereichert an den bei der BPA-Herstellung typischerweise anfallenden Nebenkomponenten. Dieser Mutterlaugenstrom wird üblicherweise in die Reaktionseinheit zurückgeführt. Um die katalytische Aktivität der sauren Ionentauscher aufrecht zu erhalten, wird zuvor entstandenes Wasser durch Destillation entfernt, wobei auch gegebenenfalls noch vorhandenes Aceton aus der Mutterlauge entfernt wird. Der so erhaltene entwässerte Reaktionsstrom wird um Phenol und Aceton ergänzt und in die Reaktionseinheit zurückgeführt. Alternativ können auch vor Durchführung der Suspensionskristallisation des BPA-Phenol-Addukts Wasser und Aceton destillativ entfernt werden. Bei den genannten Destillationsschritten kann auch eine Teilmenge des in der Reaktionslösung vorhandenen Phenols destillativ abgetrennt werden. EP-A- 1 162 188 beschreibt eine solche destillative Abtrennung des Reaktionswassers und des nicht abreagierten Acetons. Bei einer derartigen Kreislauffahrweise tritt als Problem auf, dass Nebenprodukte der BPA- Herstellung im Kreislaufstrom angereichert werden und zur Desaktivierung des Katalysatorsystem sowie zu schlechteren Produktqualitäten fuhren. Um eine übermäßige Anreicherung von Nebenkomponenten im Kreis laufstrom zu vermeiden, wird eine Teilmenge des Kreislaufstroms - gegebenenfalls nach teilweiser oder vollständiger destillativer Rückgewinnung von Phenol - aus der Prozesskette als sogenanntes BPA-Harz ausgeschleust..
Außerdem hat es sich als vorteilhaft erwiesen einen Teil oder die Gesamtmenge des Kreislaufstroms nach der Fest-Flüssigtrennung und vor oder nach der Abtrennung von Wasser und Rest- aceton über eine mit saurem Ionentauscher befüllte Umlagerungseinheit zu fuhren. Diese Einheit wird im allgemeinen bei höheren Temperaturen betrieben als die Reaktionsemheit. In dieser Umlagerungseinheit werden unter den vorherrschenden Bedingungen einige der im Kreislaufstrom vorhandenen Nebenkomponenten der BPA-Herstellung zu BPA isomerisiert, so dass die Gesamtausbeute an BPA erhöht werden kann.
Die im Anschluss an die oben beschriebene Suspensionskristallisation der Reaktionslösüng und Fest-Flüssigtrennung erhaltenen BPA-Phenol-Adduktkristalle werden weitergehenden Reinigungsschritten zugeführt, wobei die Abtrennung von Phenol und gegebenenfalls die Verringerung der Konzentration an Nebenkomponenten erzielt wird.
■ So können die BPA-Phenol-Adduktkristalle aus Phenol, organischen Lösungsmitteln, Wasser oder Mischungen der genannten Lösungsmitteln, die gegebenenfalls noch BPA und/oder seine Isomere enthalten, durch eine Suspensionskristallisation umkristallisiert werden. Hierbei kann durch die Wahl geeigneter Lösungsmittel auch das in den Adduktkristallen vorhandene Phenol ganz oder teilweise abgetrennt werden. Das gegebenenfalls nach der Umkristallisation im BPA verbleibende Phenol wird anschließend durch geeignete destillative, desorptive oder extraktive Methoden gänzlich abgetrennt. Alternativ kann das Phenol auch durch Ausschmelzverfahren aus den BPA-Phenol-Addukt- kristallen entfernt werden. Das BPA unterliegt aber bei diesen Verfahren thermischen Belastungen, was zu unerwünschten Spaltungen von BPA führt.
Nach der Phenolabtrennung erhält man eine Bisphenol A-Schmelze, welche ohne vorherige Verfestigung für die Herstellung von Polycarbonat nach dem Umesterungsverfahren (Schmelze- polycarbonat) verwendet werden kann. Die Bisphenol A-Schmelze kann aber auch durch bekannte Verfahren, wie z.B. nach dem Prillverfahren oder durch Abschuppung, für den Verkauf oder die Weiterverwertung verfestigt werden. Ferner kann die Schmelze in Natronlauge gelöst werden und im Polycarbonatverfahren nach dem Phasengrenzflächeverfahren eingesetzt werden. Gegebenen- falls kann das von Phenol befreite Bisphenol A vor der weiteren Verarbeitung noch einem Aufreinigungsschritt wie beispielsweise einer Schmelzekristallisation, einer Destillation und/oder einer Urnkristallisation aus Phenol, Wasser oder einem organischen Lösungsmittel wie beispielsweise Toluol oder Mischungen dieser Stoffe unterzogen werden.
Die Mutterlauge muss vor Rückführung in die Reaktion entwässert werden, da aufgrund des thermodynamischen Gleichgewichts das Reaktionswasser die Reaktion von Phenol und Aceton zu Bisphenol A stark unterdrücken und somit den Reaktionsumsatz verringern würde. Auf der anderen Seite sollte das nicht umgesetzte Restaceton in der Reaktionslösung verbleiben, da es ansonsten aufwendig aus Nebenströmen isoliert und in die Reaktion zurückgeführt werden müsste, um Rohstoffverluste aus wirtschaftlichen Gründen gering zu halten
Die Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur Herstellung von Bisphenol A zur Verfügung zu stellen., mit dem das Reaktionswasser aus der Reaktionsiösung öder aus der Mutterlauge, die aus der Kristallisation und Filtration stammt, entfernt werden kann, wobei das nicht umgesetzte Restaceton dabei weitestgehend in der Reaktionslösung verbleibt.
Es wurde nun gefunden, dass diese Aufgabe durch eine destillative Abtrennung des Reaktionswassers aus der Reaktionslösung in einer Vakuumdestillation gelöst werden kann. ,
Die Erfindung betrifft ein Verfahren zur Herstellung von Bisphenol A, bei dem
a) Phenol und Aceton in Gegenwart eines sauren Katalysators zu einem Reaktionsgemisch enthaltend Bisphenol A umgesetzt werden und danach
b) aus dem Reaktionsgemisch Wasser destillativ abgetrennt wird, wobei die eingesetzte Destillationskolonne bei einer Sumpftemperatur von 100 bis 150°C und einer Kopftemperatur von -20 bis 80°C betrieben wird und wobei der absolute Druck am Kopf der Kolonne 50 bis 300 mbar und im Sumpf der Kolonne 100 bis 300 mbar beträgt und
c) vor oder nach der Destillation in Schritt b) aus dem Reaktionsgemisch ein Bisphenol A-Phenol-Addukt durch Kristallisation und Filtration abgetrennt wird.
Der Erfindung liegt die Erkenntnis zugrunde, dass bei der destillativen Aufarbeitung des Reaktionsgemisches in einer Vakuumdestillation zur Wasserabtrennung das Wasser fast quantitativ, das heißt zu mehr als 95 %, abgetrennt werden kann. Gleichzeitig verbleiben bei dieser Vakuumdestillation bevorzugt aber mehr als 80 % des in die Destillation eingetragenen, nicht umgesetzten Acetons im Sumpfprodukt. Das Sumpfprodukt enthält darüber hinaus bevorzugt zwischen 0,01 und 0,2 Gew.-% an Wasser (bezogen auf das Sumpfprodukt). Dazu wird die eingesetzte Destillationskolonne mit einer Sumpftemperatur von 100 bis 150°C, bevorzugt 110 bis 140°C, besonders bevorzugt 125 bis 135°C und einer Kopftemperatur von 20 bis 80°C, bevorzugt 30 bis 70°C, besonders bevorzugt 50 bis 60°C betrieben. Das Vakuum im Kopf der Kolonne beträgt 50 bis 300mbar, bevorzugt 80 bis 200mbar, besonders bevorzugt 100 bis 150mbar. Das Sumpfvakuum beträgt 100 bis 300mbar5 bevorzugt 120 bis 250mbar, besonders bevorzugt 150 bis 200mbar. Als Trennverfahren zum Lösen der gestellten Aufgabe können solche dem Fachmann bekannte Destillationseinrichtungen eingesetzt werden, die Einbauten wie beispielsweise Füllkörper und/oder Packungen und/oder Böden enthalten.
Das bei der Destillation erhaltene Sumpfprodukt eignet sich gegebenenfalls nach Abtrennung der Bisphenol A-Phenol- Adduktkristalle durch eine Suspensionskristallisation für den Wiedereinsatz in der Reaktion nach Ergänzung der verbrauchten Komponenten Phenol und Aceton sowie gegebenenfalls Cokatalysator,. wobei das verbrauchte Phenol ganz oder zum Teil auch vor der Destillation schon ergänzt werden kann. Ein weiterer Vorteil des erfindungsgemäßen Verfahrens ist, dass Abbauverbindungen des schwefelhaltigen Cokatalysators wie z.B. Mercaptopropionsäure und des sulfonsauren Ionenaustauschers ebenfalls über Kopf mit dem Reaktionswasser abgetrennt werden und bei einer Rückführung des Sumpfprodukts in die Reaktion somit nicht in der Reaktion und vor allem bei der späteren Abtrennung des Bisphenol A stören. Ebenso lassen sich dabei Verunreinigungen aus den eingesetzten Rohstoffen wie Methanol sowie bei der Bisphenol A- Herstellung entstehende Nebenprodukte wie Anisol aus Methanol und Phenol sowie die aus der Eigenkondensation des Acetons entstehenden Verbindungen wie beispielsweise Mesitylen, Mesityloxid und Diacetonalkohol wenigstens zum Teil, bevorzugt aber zu mindestens 5.0%, über Kopf abtrennen. Bei Verwendung von Mercaptopropionsäure als Cokatalysator verbleibt der Cokatalysator dabei in dem Sumpfprodukt. Nur der zersetzte und der durch die Ausspeisung aus dem Kreislauf verlorene Anteil muss ergänzt werden, um die Reaktion mit einem konstanten Gehalt an Cokatalysator zu fahren. ' ■
Das nach dem erfindungsgemäßen Verfahren hergestellte Bisphenol A wird bevorzugt mit Phosgen nach dem Phasengrenzflächenverfahren oder mit Diarylcarbonaten, bevorzugt Diphenylcarbonat, nach dem Schmelzeverfahren zu Polycarbonat umgesetzt. Beispiel 1
An einem sulfonsauren Ionenaustauscher werden 4 Gew.-% Aceton mit 96 Gew.-% Mutterlauge (6 Gew.-% Isomere, 7 Gew.-% Bisphenol A, .0,05 Gew.-% Wasser, 300ppm Mercaptopropionsäure und ca. 83 Gew.-% Phenol) zu Bisphenol A umgesetzt. Dabei fällt eine Reaktionsmischung an enthaltend 1 Gew.-% Reaktionswasser und 0,3 Gew.-% unreagiertes Aceton. Nach Auskristallisation und Abtrennung der Bisphenol A-Phenol-Adduktkristalle wird die verbleibende Mutterlauge einer Vakuumdestillation zugeführt. Die Sumpftemperatur beträgt 130°C, die Kopftemperatur beträgt 54°C. Das Vakuum beträgt im Sumpf 163 mbar, im Kopf 129 mbar. Dabei wird am Kopf über 95% des in die Kolonne eingetragenen Reaktionswassers kondensiert, der Rest verbleibt im Sumpfprodukt. Im Kopfprodukt finden sich neben dem Wasser 5 Gew.-% Phenol und 5 Gew.-% Aceton bezogen auf das Kopfprodukt. Daneben werden Anisol und Methanol sowie Acetoneigen- kondensationsprodukte wie z. B. Mesitylen und Diacetonalkohol im Kopfprodukt detektiert. Ein stark schwefliger Geruch zeigt an, dass Abbauprodukte des Ionenaustauschers und der Mercaptopropionsäure ebenfalls aus der Mutterlauge entfernt werden. Im Sumpf verbleiben 0,27 Gew.-% Aceton und 0,05 Gew.-% Wasser bezogen auf das Sumpfprodukt in der Mutterlauge, welche wieder mit Aceton auf 4 Gew.-% und Phenol auf 83 Gew.-% sowie mit Mercaptopropionsäure auf 300 ppm angereichert und erneut in die Reaktion gefahren wird. Das aus diesem Prozess stammende BPA ist nach Waschen der Mischkristalle und Abtrennung des Phenols für die Herstellung von Polycarbonat sowohl nach dem Phasengrenzfläche- als auch nach dem Umesterungs- (Schmelze-) Verfahren geeignet.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Bisphenol A, bei dem a) Phenol und Aceton in Gegenwart eines sauren Katalysators zu einem Reaktionsgemisch enthaltend Bisphenol A umgesetzt werden und danach
•5 b) aus dem Reaktionsgemisch Wasser destillativ abgetrennt wird, wobei die eingesetzte Destillationskolonne bei einer Sumpftemperatur von 100 bis 150°C und einer Kopftemperatur von 20 bis 80°C betrieben wird und wobei der absolute Druck am Kopf der Kolonne 50 bis 300 mbar und im Sumpf der Kolonne 100 bis 300 mbar beträgt und 0 c) vor oder nach der Destillation in Schritt b) aus dem Reaktionsgemisch ein Bisphenol A-Phenol-Addukt durch Kristallisation und Filtration abgetrennt wird.
2. Verfahren nach Anspruch 1, bei dem als saurer Katalysator in Schritt a) ein sulfonsaurer Ionenaustauscher gegebenenfalls in Verbindung mit einem Cokatalysator eingesetzt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, bei dem das in Schritt b) erhaltene 5 Sumpfprodukt gegebenenfalls nach Abtrennung des Bisphenol A-Phenol-Addukts in Schritt c) in die Reaktion in Schritt a) zurückgeführt wird.
4. Verfahren nach Anspruch 3, bei dem das Sumpfprodukt mit Aceton, Phenol und gegebenenfalls mit Cokatalysator angereichert wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem in Schritt b) mindestens 95 % des in0 die Destillation eingetragenen Wassers destillativ abgetrennt wird.
.
6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem das in Schritt b) erhaltene Sumpfprodukt mindestens 80 % des in die Destillation eingetragenen Acetons enthält.
7. Verfahren nach einem der Ansprüche 1 bis 5, bei dem das in . Schritt b) erhaltene Sumpfprodukt mindestens 80 % des in die Destillation eingetragenen Acetons und 5 zwischen 0,01 und 0,2 Gew.-% Wasser bezogen auf das Sύmpfprodukt enthält.
8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem das in Schritt b) erhaltene Sumpfprodukt höchstens 50 % der in die Destillation eingetragenen Verunreinigungen Methanol, Anisol und der Eigenkondensationsprodukte des Acetons enthält.
9. Verfahren nach einem der Ansprüche 2 bis 8, bei dem in Schritt b) schwefelhaltige Abbauprodukte des sulfonsauren .Ionenaustauschers - und/oder des schwefelhaltigen Cokatalysators über Kopf abdestilliert werden.
10. Verfahren zur Herstellung von Polycarbonat, bei dem Bisphenol A nach einem der Ansprüche 1 bis 9 hergestellt wird und danach mit Phosgen nach dem Phasengrenzflächenverfahren oder mit Diphenylcarbonat nach dem Schmelzeverfahren zu Polycarbonat umgesetzt wird.
EP05701121A 2004-02-05 2005-01-22 Entwässerung von kreislaufströmen bei der herstellung von bisphenol a Withdrawn EP1713753A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004005726A DE102004005726A1 (de) 2004-02-05 2004-02-05 Entwässerung von Kreislaufströmen bei der Herstellung von Bisphenol A
PCT/EP2005/000616 WO2005075397A1 (de) 2004-02-05 2005-01-22 Entwässerung von kreislaufströmen bei der herstellung von bisphenol a

Publications (1)

Publication Number Publication Date
EP1713753A1 true EP1713753A1 (de) 2006-10-25

Family

ID=34801629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05701121A Withdrawn EP1713753A1 (de) 2004-02-05 2005-01-22 Entwässerung von kreislaufströmen bei der herstellung von bisphenol a

Country Status (9)

Country Link
US (1) US7078573B2 (de)
EP (1) EP1713753A1 (de)
JP (1) JP2007520503A (de)
KR (1) KR20060132895A (de)
CN (1) CN1914142B (de)
DE (1) DE102004005726A1 (de)
RU (1) RU2392261C2 (de)
TW (1) TW200604157A (de)
WO (1) WO2005075397A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9290618B2 (en) 2011-08-05 2016-03-22 Sabic Global Technologies B.V. Polycarbonate compositions having enhanced optical properties, methods of making and articles comprising the polycarbonate compositions
US8962117B2 (en) 2011-10-27 2015-02-24 Sabic Global Technologies B.V. Process for producing bisphenol A with reduced sulfur content, polycarbonate made from the bisphenol A, and containers formed from the polycarbonate
CN104205376B (zh) 2012-02-03 2018-04-27 沙特基础全球技术有限公司 发光二极管器件及用于生产其的包括转换材料化学的方法
CN105206732B (zh) 2012-02-29 2018-11-09 沙特基础全球技术有限公司 塑料模制器件和发光器件
EP2819981B1 (de) 2012-02-29 2016-12-21 SABIC Global Technologies B.V. Polycarbonat aus bisphenol a mit niedrigem schwefelgehalt und mit umwandlungsmaterialchemie sowie daraus hergestellte artikel
US9346949B2 (en) 2013-02-12 2016-05-24 Sabic Global Technologies B.V. High reflectance polycarbonate
WO2014066784A1 (en) 2012-10-25 2014-05-01 Sabic Innovative Plastics Ip B.V. Light emitting diode devices, method of manufacture, uses thereof
WO2014186548A1 (en) 2013-05-16 2014-11-20 Sabic Innovative Plastics Ip B.V. Branched polycarbonate compositions having conversion material chemistry and articles thereof
CN105408408B (zh) 2013-05-29 2018-05-04 沙特基础全球技术有限公司 颜色稳定的热塑性组合物
US9772086B2 (en) 2013-05-29 2017-09-26 Sabic Innovative Plastics Ip B.V. Illuminating devices with color stable thermoplastic light transmitting articles
DE102016116078B3 (de) 2016-08-29 2018-01-04 Epc Engineering Consulting Gmbh Verfahren zur Herstellung eines Polycarbonats unter Einsatz einer Strippvorrichtung
KR20220050899A (ko) 2019-08-27 2022-04-25 코베스트로 인텔렉쳐 프로퍼티 게엠베하 운트 콤파니 카게 히드록시아세톤의 존재 하에 비스페놀 a (bpa)를 제조하는 방법
CN116867760A (zh) 2021-02-23 2023-10-10 科思创德国股份有限公司 在异丙苯存在下制备双酚a(bpa)的方法
CN116867761A (zh) 2021-02-23 2023-10-10 科思创德国股份有限公司 在2-甲基苯并呋喃存在下制备双酚a(bpa)的方法
WO2022179901A1 (en) 2021-02-23 2022-09-01 Covestro Deutschland Ag Process for preparing bisphenol a (bpa) in the presence of at least two impurities
CN116888092A (zh) 2021-02-23 2023-10-13 科思创德国股份有限公司 在苯乙酮存在下制备双酚a(bpa)的方法
KR20230149814A (ko) 2021-02-23 2023-10-27 코베스트로 도이칠란트 아게 알파-메틸스티렌의 존재 하에 비스페놀 a (bpa)를 제조하는방법
JP2024508774A (ja) 2021-02-23 2024-02-28 コベストロ、ドイチュラント、アクチエンゲゼルシャフト ベンゼンの存在下でビスフェノールa(bpa)を作製するプロセス
WO2023280514A1 (en) 2021-07-05 2023-01-12 Sabic Global Technologies B.V. Method for the manufacture of bisphenol a

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01211544A (ja) * 1988-02-19 1989-08-24 Mitsui Toatsu Chem Inc ビスフェノールaの製造方法
US4994594A (en) * 1988-02-29 1991-02-19 General Electric Company Oligomeric carbonate chainstoppers
EP0720976B2 (de) * 1994-12-09 2005-05-18 The Dow Chemical Company Verfahren zur Herstellung eines Addukts aus einem Bisphenol mit einer Phenol-Verbindung
DE19529855A1 (de) * 1995-08-14 1997-02-20 Bayer Ag Verfahren zur Reinigung von Bisphenol
JP4093655B2 (ja) * 1998-10-22 2008-06-04 出光興産株式会社 ビスフェノールaの製造法
DE19954311A1 (de) * 1999-11-11 2001-05-17 Bayer Ag Bisphenol-Herstellung
DE19954786A1 (de) * 1999-11-15 2001-05-17 Bayer Ag Schmelzkristallisation
JP2001199919A (ja) 2000-01-18 2001-07-24 Idemitsu Petrochem Co Ltd ビスフェノールaの製造方法
JP4080710B2 (ja) * 2000-09-26 2008-04-23 三菱化学株式会社 芳香族ポリカーボネートの製造方法
JP2003055286A (ja) * 2001-08-06 2003-02-26 Idemitsu Petrochem Co Ltd ビスフェノールaの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005075397A1 *

Also Published As

Publication number Publication date
DE102004005726A1 (de) 2005-08-25
RU2392261C2 (ru) 2010-06-20
CN1914142A (zh) 2007-02-14
CN1914142B (zh) 2010-05-26
WO2005075397A1 (de) 2005-08-18
RU2006131516A (ru) 2008-03-10
US20050177007A1 (en) 2005-08-11
TW200604157A (en) 2006-02-01
KR20060132895A (ko) 2006-12-22
US7078573B2 (en) 2006-07-18
JP2007520503A (ja) 2007-07-26

Similar Documents

Publication Publication Date Title
EP1713753A1 (de) Entwässerung von kreislaufströmen bei der herstellung von bisphenol a
EP1713752A1 (de) Herstellung von bisphenol a mit verringerter isomerenbildung
EP1728777B1 (de) Verfahren zur Herstellung von 2,2-bis(4-hydroxyphenyl)Propan (Bisphenol A)
EP1713751A1 (de) Herstellung von bisphenol a mit verringertem schwefelgehalt
EP1944284B1 (de) Kristallisationsverfahren zur Herstellung von Bisphenol A
EP1268379B9 (de) Verfahren zur herstellung von bisphenolen
EP1765752B1 (de) Verfahren zur abtrennung von phenol aus phenolhaltigen strömen aus der herstellung von bisphenol a
EP1272449B1 (de) Stoffgemisch enthaltend bisphenol a
DE10135012A1 (de) Verfahren zur Herstellung von Bisphenolen
DE19954311A1 (de) Bisphenol-Herstellung
EP1567469B1 (de) Verfahren zur reinigung von bisphenol-a
WO2001040155A1 (de) Inbetriebnahmeverfahren eines herstellungsverfahrens von 2,2-bis (4-hydroxyphenyl)propan
DE69416147T3 (de) Verfahren zur Herstellung eines Addukts aus einem Bisphenol mit einer Phenol-Verbindung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060905

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE ES NL PT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NEUMANN, RAINER

Inventor name: BLASCHKE, ULRICH

Inventor name: WESTERNACHER, STEFAN

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): BE ES NL PT

17Q First examination report despatched

Effective date: 20100630

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110802