EP1699734A1 - Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff - Google Patents
Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoffInfo
- Publication number
- EP1699734A1 EP1699734A1 EP04804265A EP04804265A EP1699734A1 EP 1699734 A1 EP1699734 A1 EP 1699734A1 EP 04804265 A EP04804265 A EP 04804265A EP 04804265 A EP04804265 A EP 04804265A EP 1699734 A1 EP1699734 A1 EP 1699734A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reactor
- thermoplates
- hydrogen chloride
- thermoplate
- chlorine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 239000007789 gas Substances 0.000 title claims abstract description 24
- 229910000041 hydrogen chloride Inorganic materials 0.000 title claims abstract description 24
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 title claims abstract description 24
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 239000000460 chlorine Substances 0.000 title claims abstract description 19
- 229910052801 chlorine Inorganic materials 0.000 title claims abstract description 19
- 230000003647 oxidation Effects 0.000 title claims abstract description 18
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title abstract description 16
- 239000003054 catalyst Substances 0.000 claims abstract description 48
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims description 14
- 238000012546 transfer Methods 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 10
- 239000012495 reaction gas Substances 0.000 claims description 9
- 230000002093 peripheral effect Effects 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 6
- 230000003197 catalytic effect Effects 0.000 claims description 6
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 claims description 5
- 239000005977 Ethylene Substances 0.000 claims description 4
- 238000003466 welding Methods 0.000 claims description 4
- 238000005660 chlorination reaction Methods 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 2
- 238000010926 purge Methods 0.000 claims description 2
- 239000000376 reactant Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 7
- 239000002184 metal Substances 0.000 abstract description 7
- 239000007787 solid Substances 0.000 abstract 2
- 239000001257 hydrogen Substances 0.000 abstract 1
- 229910052739 hydrogen Inorganic materials 0.000 abstract 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 23
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 239000012429 reaction media Substances 0.000 description 10
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 229910052707 ruthenium Inorganic materials 0.000 description 7
- 238000007138 Deacon process reaction Methods 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 239000002608 ionic liquid Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- -1 compounds titanium oxide Chemical class 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 4
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 3
- 230000006978 adaptation Effects 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 3
- 239000011949 solid catalyst Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 150000003303 ruthenium Chemical class 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- IYWJIYWFPADQAN-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;ruthenium Chemical class [Ru].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O IYWJIYWFPADQAN-LNTINUHCSA-N 0.000 description 1
- MHCVCKDNQYMGEX-UHFFFAOYSA-N 1,1'-biphenyl;phenoxybenzene Chemical group C1=CC=CC=C1C1=CC=CC=C1.C=1C=CC=CC=1OC1=CC=CC=C1 MHCVCKDNQYMGEX-UHFFFAOYSA-N 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-N 1H-imidazole Chemical compound C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ROZSPJBPUVWBHW-UHFFFAOYSA-N [Ru]=O Chemical class [Ru]=O ROZSPJBPUVWBHW-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- NQZFAUXPNWSLBI-UHFFFAOYSA-N carbon monoxide;ruthenium Chemical group [Ru].[Ru].[Ru].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] NQZFAUXPNWSLBI-UHFFFAOYSA-N 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0242—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
- B01J8/0257—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0242—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
- B01J8/025—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0285—Heating or cooling the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0446—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
- B01J8/0449—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
- B01J8/0453—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0496—Heating or cooling the reactor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/03—Preparation from chlorides
- C01B7/04—Preparation of chlorine from hydrogen chloride
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0093—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00115—Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
- B01J2208/0015—Plates; Cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00002—Chemical plants
- B01J2219/00018—Construction aspects
- B01J2219/0002—Plants assembled from modules joined together
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/10—Particular pattern of flow of the heat exchange media
- F28F2250/102—Particular pattern of flow of the heat exchange media with change of flow direction
Definitions
- the invention relates to a process for the production of chlorine by gas phase oxidation of hydrogen chloride in the presence of a fixed bed catalyst.
- the oxidation of hydrogen chloride to chlorine is an equilibrium reaction.
- the position of the equilibrium shifts with increasing temperature to the detriment of the desired end product.
- catalysts with the highest possible activity, which allow the reaction to proceed at a lower temperature.
- Such catalysts are in particular catalysts based on copper or based on ruthenium, for example, the supported catalysts described in DE-A 197 48 299 with the active material ruthenium oxide or ruthenium mixed oxide, wherein the content of ruthenium oxide 0.1 to 20 wt .-% and the average particle diameter of ruthenium oxide is 1.0 to 10.0 nm.
- ruthenium chloride catalysts containing at least one of the compounds titanium oxide and zirconium oxide, ruthenium-carbonyl complexes, ruthenium salts of inorganic acids, ruthenium-nitrosyl complexes, ruthenium-amine Complexes, ruthenium complexes of organic amines or ruthenium-acetylacetonate complexes.
- gold may also be included in the catalyst active composition.
- the ruthenium-containing catalyst is damaged, in particular by the formation of volatile ruthenium oxides.
- the hot spot problem should be reduced or avoided without or with a smaller gradation of catalyst activity or without dilution of the catalyst and the catalyst damage as a result of the hot spot formation.
- a process for the production of chlorine by gas phase oxidation of hydrogen chloride was found with a molecular oxygen-containing gas stream in the presence of a fixed bed catalyst, which is characterized in that one carries out the process in a reactor with spaced apart, arranged in the longitudinal direction of the reactor thermoplates from a heat transfer medium flows through, with supply and discharge devices for the heat transfer medium to the thermoplates and with gaps between thermoplates which are filled with the fixed bed catalyst and into which the hydrogen chloride and the molecular oxygen-containing gas stream are introduced.
- the reaction temperatures are usually in the range between 150 and 500 ° C and the reaction pressure between 1 and 25 bar. Since it is an equilibrium reaction, it is expedient to work at the lowest possible temperatures at which the catalyst still has sufficient activity. Furthermore, it is expedient to use oxygen in superstoichiometric amounts. For example, a two- to four-fold excess of oxygen is customary. Since no loss of selectivity is to be feared, it may be economically advantageous to work at relatively high pressure and, accordingly, at longer residence times than normal pressure.
- the catalytic hydrogen chloride oxidation may adiabatically or preferably isothermally or approximately isothermally, discontinuously, preferably continuously as a fixed bed process, at reactor temperatures of 180 to 500 ° C, preferably 200 to 400 ° C, more preferably 220 to 350 ° C and a pressure of 1 to 25 bar, preferably 1.2 to 20 bar, more preferably 1, 5 to 17 bar and in particular 2.0 to 15 bar are performed.
- DE-A 102 44 996 catalysts based on gold containing on a support 0.001 to 30 wt .-% gold, 0 to 3 wt .-% of one or more Erdalkalimetal- le, 0 to 3 wt .-% of one or more alkali metals, 0 to 10 wt .-% of one or more rare earth metals and 0 to 10 wt .-% of one or more other metals selected from the group consisting of ruthenium, palladium, Osmiumiridium, silver, copper and rhenium, each based on the total weight of the catalyst.
- a preferred embodiment consists in using a structured catalyst bed in which the catalyst activity increases in the flow direction.
- Such structuring of the catalyst bed can be done by different impregnation of the catalyst support with active material or by different dilution of the catalyst with an inert material.
- an inert material for example, rings, cylinders or balls of titanium dioxide, zirconium dioxide or their Gemi see alumina, steatite, ceramic, glass, graphite or stainless steel.
- the inert material should preferably have similar external dimensions.
- the area of the gaps between the thermoplates facing the supply of the gaseous reaction mixture can firstly, in particular to a length of 5 to 20%, preferably to a length between 5 and 10%, the total length of the gap with an inert material and only then with the catalyst be filled.
- Suitable shaped catalyst bodies are any desired forms, preference being given to tablets, rings, cylinders, stars, carriage wheels or spheres, with particular preference being given to rings, cylinders, star strands or extruded strands.
- suitable carrier materials are silicon dioxide, graphite, rutile or anatase titanium dioxide, zirconium dioxide, aluminum oxide or mixtures thereof, preferably titanium dioxide, zirconium dioxide, aluminum oxide or mixtures thereof, particularly preferably ⁇ - or ⁇ -aluminum oxide or mixtures thereof.
- the copper or ruthenium-supported catalysts can be obtained, for example, by impregnating the support material with aqueous solutions of CuCl 2 or RuCl 3 and optionally a promoter for doping, preferably in the form of their chlorides.
- the shaping of the catalyst can take place after or preferably before the impregnation of the support material.
- alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, more preferably magnesium, rare earth metals such Scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof.
- alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, more preferably magnesium, rare earth metals such Scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof.
- the shaped bodies can then be dried at temperatures of 100 to 400 ° C., preferably 100 to 300 ° C., for example under a nitrogen, argon or air atmosphere, and optionally calcined.
- the moldings are first dried at 100 to 150 ° C and then calcined at 200 to 400 ° C.
- the chlorine stream obtained in the process according to the invention after the Deacon process can advantageously be fed to an ethylene direct chlorination to give 1, 2-dichloroethane.
- This so-called direct chlorination of ethene with chlorine is in the DE-A 102 52 859, the disclosure content of which is hereby fully incorporated into the present patent application.
- ethene as an additional starting material directly into the reactor, in which the gas phase oxidation of hydrogen chloride is carried out with the molecular oxygen-containing gas stream, to give 1, 2-dichloroethane.
- the chlorine stream obtained according to the present invention after the Deacon process can also be supplied to a reaction with carbon monoxide to phosgene, provided that the hydrogen chloride used in the Deacon process has a sufficiently low bromine and lodgehalt.
- a method is described, for example, in DE-A 102 35 476, the disclosure content of which is hereby fully incorporated into the present patent application.
- the material used for the reactor is advantageously pure nickel or a nickel-based alloy. Preference is given to using nickel-based alloys Inconell 600 or Inconell 625.
- Inconell 600 contains about 80% nickel and about 15% chromium and iron.
- Inconell 625 contains predominantly nickel, 21% chromium, 9% molybdenum and a few percent niobium.
- HastelloyC-276 can also be used.
- thermoplates made of the above materials pure nickel or nickel-based alloys.
- thermoplates from stainless steel, for example with the material number 1.4541 or 1.4404, 1.4571 or 1.4406, 1.4539 but also 1.4547 or other alloyed steels.
- thermoplates arranged in the reactor.
- Thermoplates are plate-shaped heat exchangers, i. predominantly sheet-like structures which have an inner space with inlet and outlet lines with a small thickness in relation to the surface.
- the supply and discharge devices for the heat transfer medium are usually arranged at opposite ends of the heat exchange plates.
- a heat carrier are often water, but also Diphyl ® (mixture of 70 to 75 wt .-% diphenyl ether and 25 to 30 wt .-% diphenyl) are used, which also partially evaporate in a boiling process; it is also the use of other organic heat transfer medium with low vapor pressure and ionic liquids possible.
- ionic liquids as heat transfer medium is described in DE-A 103 16 418.
- Preferred are ionic liquids containing a sulfate, phosphate, borate or silicate anion.
- ionic liquids which contain a monovalent metal cation, in particular an alkali metal cation, and also a further cation, in particular an imidazolium cation.
- ionic liquids which contain as cation an imidazolium, pyridinium or phosphonium cation.
- thermoplates For plate-shaped heat exchangers, the terms heat exchanger plates, heat exchanger plates, thermoplates or thermal plates are used synonymously in addition to the term thermoplates.
- thermoplates or thermoplates is used in particular for heat exchanger plates whose individual, usually two, sheets are connected to each other by spot and / or seam welding and are often formed plastically using hydraulic pressure under cushioning.
- thermoplates is used herein in the sense of the above definition.
- thermoplates are arranged in the reactor parallel to each other.
- thermoplates For cylindrical reactors is also a radial arrangement of the thermoplates, leaving a central interior and a peripheral channel on the reactor walls, advantageous.
- the central interior which is suitably connected to supply and discharge means for the reaction medium to or from the interstices between the thermoplates, can basically any geometric shape, for example the shape of a polygon, in particular the shape of a triangle, a square, a preferably regular hexagon or a preferred regular octagon and also have a substantially circular shape.
- thermoplates in the longitudinal direction of the reactor extend substantially over the entire length of the cylindrical reactor with the exception of the reactor ends.
- the reaction medium is preferably conducted radially through the spaces between the thermoplates.
- the peripheral channel is preferably annular. It serves as a collection and / or distribution chamber for the reaction medium.
- the peripheral channel may be separated from the spaces between the thermoplates by a suitable retainer, preferably a cylindrical screen or a perforated plate; Similarly, a corresponding retaining device to separate the spaces between the thermal sheets from the central interior.
- a suitable retainer preferably a cylindrical screen or a perforated plate
- a corresponding retaining device to separate the spaces between the thermal sheets from the central interior.
- This embodiment is particularly suitable because a reaction is carried out using a fixed-bed catalyst, which is introduced into the interstices between the thermoplates and whose discharge is to be prevented with the reaction medium by appropriate choice of the openings in the retainer.
- the radial guidance of the reaction medium can be centrifugal and / or centripetal, wherein in the event that a single direction of the radial current flow is provided, the centrifugal guidance of the reaction medium is particularly advantageous.
- the radial flow of the reaction medium between the radially arranged thermoplates has the advantage of a low pressure loss. Since the hydrogen chloride oxidation proceeds with a decrease in volume, the pressure conditions in the case of centripetal guidance are particularly favorable due to the decreasing distances between the thermoplates inwardly.
- thermoplates The radial extent of all thermoplates is preferably the same; An adaptation of the thermoplates to the inner vessel wall of the reactor is thus not required, it can be used on the contrary plates of a single type of construction.
- the radial extent of the thermoplate plates is preferably in the range of 0.1 to 0.95 of the reactor radius, more preferably in the range of 0.3 to 0.9 of the reactor radius.
- thermoplates are formed substantially straight-sided. This does not mean that they are completely flat structures, on the contrary they can in particular be regularly bent, folded, kinked or wavy.
- the thermoplates are produced by known methods.
- Periodically profiled structural elements in particular corrugated plates, may be arranged in the thermoplates.
- Structural elements of this type are known as mixing elements in static mixers and are described, for example, in DE-A 19623051; in the present case, they serve, in particular, for optimizing the heat exchange.
- additional plates in the outer reactor region with less radial expansion compared to the other thermoplates preferably with a radial extension in the range of 0.1 to 0, 7, more preferably 0.2 to 0.5 of the radial extent of the remaining thermoplates.
- the additional plates can have the same dimensions with one another, but it is also possible to use two or more types of additional plates, the types of construction differing from each other by their radial extent and / or their length.
- thermoplates are preferably arranged symmetrically between the other thermoplates. They allow an improved adaptation to the temperature profile of the gas phase oxidation.
- a reactor which is composed of two or more, in particular removable reactor shots.
- each reactor shot is each equipped with a separate heat transfer circuit.
- the individual reactor shots can be assembled by means of flanges as required.
- the flow of the reaction medium between two successive reactor shots is preferably ensured by suitable baffles, which have a deflection and / or separation function. By a suitable choice of the number of baffles, a multiple deflection of the reaction medium can be achieved.
- thermoplates It is possible to design a multiple reactor reactor with a single heat exchange fluid circuit. Preferably, however, two or more separate heat exchange fluid circuits may be provided by the thermoplates. Thus, an improved adaptation to different heat exchange requirements can be achieved with the progress of the chemical reaction.
- the process may preferably be carried out in a reactor which is equipped with one or more cuboidal thermoplate modules, each of which is formed from two or more rectangular thermoplates arranged parallel to one another leaving one gap each.
- thermoplate modules Reactors with thermoplate modules are known, for example, in DE-A 103 33 866, the disclosure content of which is hereby fully incorporated into the present patent application.
- thermoplate modules are each formed from two or more rectangular, parallel to each other leaving a gap each arranged thermoplates.
- the material thickness of the sheets used for this purpose can be selected between 1 and 4 mm, 1, 5 and 3 mm, but also between 2 and 2.5 mm, or 2.5 mm.
- thermoplate In general, two rectangular sheets are connected at their longitudinal and end sides to form a thermoplate, wherein a seam seam or lateral welding or a combination of both is possible, so that the space in which the heat carrier is later, is tight on all sides.
- edge of the thermoplates on or already separated in the lateral seam of the longitudinal edge, so that the poor or not cooled edge region in which usually also catalyst is introduced, has the lowest possible geometric extent.
- the sheets are connected to each other by spot welding.
- An at least partial connection by straight or curved and circular roll seams is possible.
- the subdivision of the volume flowed through by the heat transfer medium in several separate areas by additional roll seams is possible.
- the width of the thermoplates is essentially limited in terms of manufacturing technology and can be between 100 and 2500 mm, or between 500 and 1500 mm.
- the length of the thermoplates depends on the reaction, in particular on the temperature profile of the reaction, and may be between 1000 and 7000 mm, or between 2000 and 6000 mm.
- thermoplates are parallel and spaced from each other, to form a thermoplate module arranged. This results in bay-like gaps between directly adjacent metal plates, which at the narrowest points of the plate spacing, for example, a width between 10 and 50 mm, preferably between 15 and 40 mm, more preferably between 18 and 30, in particular 20 mm.
- the gaps can be made with different widths, with narrower gap widths being selected in hotspot-endangered areas compared with the other areas.
- thermoplates of a thermoplate module e.g. For large panels, additional spacers are installed to prevent deformation, which can change plate spacing or position.
- portions of the sheets can be separated by, for example, circular roll seams from the flow area of the heat carrier to introduce there, for example, holes for fastening screws of the spacers in the plates can.
- thermoplate module The catalyst particle filled gaps of a thermoplate module can be sealed against each other, e.g. be tightly welded or have process side to each other connection.
- the plates are fixed in their position and at a distance.
- the spot welds of directly adjacent thermoplates may be opposite or offset from one another.
- thermoplate modules it may be necessary for the compactness of the overall apparatus. be advantageous to choose two types of modules with different edge length or different edge length ratio.
- thermoplate modules Preference is given to arrangements of 4, 7, 10 or 14 thermoplate modules, each having the same dimensions.
- the visible in the flow direction of a module can be square, but also rectangular with an aspect ratio of 1, 1 but also 1, 2.
- Particularly advantageous geometrical arrangements can be achieved if, as stated above, a number of 4, 7 or 14 thermoplate modules is selected.
- thermoplate modules should be individually interchangeable, for example in the case of leaks, deformations of the thermoplates or problems that affect the catalyst.
- thermoplate modules are arranged in each case a rectangular stabilization box.
- thermoplate module is advantageously held in position by a suitable guide, for example by the rectangular stabilization boxes, with laterally continuous wall or for example by an angle construction.
- the rectangular stabilization boxes of adjacent thermoplate modules are sealed against each other. This prevents a bypass flow of the reaction mixture between the individual thermoplate modules.
- thermoplate modules in a predominantly cylindrical reactor leaves relatively large free spaces at the edge of the cylindrical jacket wall. In this space between the thermoplate modules and the cylinder jacket of the reactor can be advantageous to introduce an inert gas.
- the block-shaped thermoplate modules can not only in cylindrical reactors, but also advantageous reactors with polygonal cross-sections, in particular with rectangular cross-sections, are installed.
- catalyst particles having equivalent particle diameters in the range from 2 to 8 mm are particularly suitable.
- the term equivalent particle diameter referred to in a known manner six times the ratio between the volume and surface of the particle.
- the process is particularly advantageous with an open-space velocity of the reaction gas mixture of up to 3.0 m / s, preferably in the range of 0.5 to 2.5 m / s, more preferably about 1.5 m / s.
- the process according to the invention is carried out in such a way that, when the reactor is started up at the reaction temperature, and also when the reactor is shut down, after the reaction has ended, the reactor is heated to temperatures above 150 ° C. at temperatures below 150 ° C. in the reactor Condensation point of the hydrochloric acid warmed inert purge gas, preferably nitrogen, passes.
- gases are understood to be inert which do not react with the process-inherent substances under the operating conditions of the process according to the invention. This special procedure when starting and stopping the reactor prevents corrosive damage to the reactor material.
- FIG. 1A shows a preferred embodiment of a reactor for the process according to the invention, cross-section, with a longitudinal section in FIG. 1B and a longitudinal section through a thermoplate in FIG. 1C, FIG.
- FIG. 2A shows a cross-sectional representation through a further preferred embodiment of a reactor for the method according to the invention, with a longitudinal section in FIG. 2B and a variant with a plurality of reaction shots in FIG. 2C,
- FIG. 3A shows a further preferred embodiment in cross section, with a longitudinal section through a thermoplate plate in FIG. 3B,
- FIG. 4A shows another embodiment of a reactor for the process according to the invention, with a longitudinal section in FIG. 4B and a variant with a plurality of reaction shots in FIG. 4C
- FIG. 5 shows an embodiment of a reactor for the method according to the invention, in longitudinal section
- FIG. 6 shows a further embodiment for two reactors connected in series
- FIGS. 7A to 7C show different arrangements of thermoplate modules, in cross section and FIGS.
- FIG. 8 shows a gap between thermoplate modules.
- FIG. 1A shows a section through a reactor 1 with thermoplates 2 arranged parallel to one another which leave gaps 5 between the thermoplates, the gaps 5 being filled with a solid catalyst.
- thermoplates 2 For the circulating through the thermoplates 2 heat transfer inlet and outlet lines 3 and 4 are provided.
- FIG. 1 B illustrates the formation of the thermoplates 2 and the arrangement of the inlet and outlet lines 3 and 4 in the reactor 1.
- a reaction gas guide from bottom to top; the reverse flow, from top to bottom, is equally possible.
- FIG. 1C shows a longitudinal section through a thermoplate plate 2. The representation also illustrates retention devices for the solid catalyst at both ends of the thermoplate plate 2.
- FIG. 2A shows a reactor 1 with radially arranged therein thermoplates 2, with columns 5 between the thermoplates 2, which are filled with the solid catalyst.
- a dummy body is arranged to ensure a substantially longitudinal flow for the reaction mixture through the reactor, as can be seen in particular from the longitudinal sectional view in Figure 2B, indicated by the arrows.
- FIG. 2C shows a variant of the apparatus shown in longitudinal section in FIG. 2B with a plurality of, for example, four reactor shots.
- FIG. 3A shows a cross section through a further embodiment of a reactor for the method according to the invention, without arranging a dummy body in the central interior space 6.
- R denotes the radius of the reactor and r the extent of each thermoplate plate in the direction of the reactor radius R.
- the longitudinal section Position through a thermoplate plate 2 in Figure 3B shows baffles 7 for the heat transfer medium.
- FIG. 4A shows a further embodiment with a peripheral channel 8 for collecting and forwarding the reaction gas mixture.
- the longitudinal section in FIG. 4B illustrates the flow profile for the reaction gas mixture, in particular also through the central inner space 6 and the peripheral channel 8.
- the longitudinal sectional view in FIG. 4C shows a further variant with a plurality of, for example, two successive reactor shots.
- FIG. 5 shows a reactor 1 with, for example, three reactor shots, each with thermoplate plates 2 and with inlet and outlet lines 3 and 4 for the heat carrier.
- the longitudinal section in Figure 6 shows two reactors 1 connected in series, each with thermoplates 2 and inlet and outlet lines 3 and 4 for the heat transfer medium.
- FIGS. 7A to 7C show arrangements of 4, one or 7 thermoplate modules 9 in each case in a cylindrical reactor 1, in cross-section
- thermoplates 2 and the intermediate gap 5 illustrate the formation of the thermoplates 2 and the intermediate gap 5, with fixed bed catalyst contained therein, with equivalent particle diameter d P. From the figure it can be seen that the width s of the gap 5 is the smallest distance between two directly adjacent thermoplates 2 is designated.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10361519A DE10361519A1 (de) | 2003-12-23 | 2003-12-23 | Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff |
PCT/EP2004/014671 WO2005063616A1 (de) | 2003-12-23 | 2004-12-23 | Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1699734A1 true EP1699734A1 (de) | 2006-09-13 |
Family
ID=34706654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04804265A Withdrawn EP1699734A1 (de) | 2003-12-23 | 2004-12-23 | Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff |
Country Status (7)
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004036695A1 (de) * | 2004-07-29 | 2006-03-23 | Deg Intense Technologies & Services Gmbh | Reaktor zur Durchführung von Reaktionen mit starker Wärmetönung und Druckaufkommen |
DE102007020140A1 (de) * | 2006-05-23 | 2007-11-29 | Bayer Materialscience Ag | Verfahren zur Herstellung von Chlor durch Gasphasenoxidation |
DE102006024515A1 (de) * | 2006-05-23 | 2007-11-29 | Bayer Materialscience Ag | Verfahren zur Chlorwasserstoff-Oxidation mit Sauerstoff |
EP2066583B1 (de) * | 2006-09-19 | 2010-11-24 | Basf Se | Verfahren zur herstellung von chlor in einem wirbelschichtreaktor |
US20100015034A1 (en) * | 2007-02-28 | 2010-01-21 | Albemarle Corporation | Processes for oxidizing hydrogen bromide to produce elemental bromine |
EP2170496A1 (de) * | 2007-07-13 | 2010-04-07 | Bayer Technology Services GmbH | Verfahren zur herstellung von chlor durch gasphasenoxidation |
EP2170495A1 (de) * | 2007-07-13 | 2010-04-07 | Bayer Technology Services GmbH | Verfahren zur herstellung von chlor durch vielstufige adiabatische gasphasenoxidation |
WO2009095221A1 (de) * | 2008-01-28 | 2009-08-06 | Freimut Joachim Marold | Mehrzügiges thermoblech und damit ausgestatteter wärmetauscher |
JP5593600B2 (ja) * | 2008-03-31 | 2014-09-24 | 三菱化学株式会社 | プレート式触媒層反応器、該プレート式触媒層反応器に触媒を充填する方法及び該プレート式触媒層反応器を用いた反応生成物の製造方法 |
JP5563744B2 (ja) * | 2008-03-31 | 2014-07-30 | 三菱化学株式会社 | プレート式反応器に温度測定装置を設置する方法、及びプレート式反応器 |
DE102008050975A1 (de) * | 2008-10-09 | 2010-04-15 | Bayer Technology Services Gmbh | Mehrstufiges Verfahren zur Herstellung von Chlor |
JP2010155188A (ja) * | 2008-12-26 | 2010-07-15 | Mitsubishi Chemicals Corp | プレート式反応器、それを用いる反応生成物の製造方法、及び触媒の充填方法 |
MX2011011873A (es) * | 2009-05-08 | 2011-12-08 | Southern Res Inst | Sistemas y metodos para reducir la emision de mercurio. |
EP2440490A1 (de) * | 2009-06-10 | 2012-04-18 | Basf Se | Verfahren zur chlorwasserstoffoxidation an einem katalysator mit geringer oberflächenrauhigkeit |
DE202011050657U1 (de) * | 2011-07-07 | 2012-10-09 | Deg Engineering Gmbh | Reaktor für die katalytische Umsetzung von Reaktionsmedien |
JP6559394B2 (ja) * | 2012-12-05 | 2019-08-14 | ミヨシ油脂株式会社 | 親水性室温イオン液体とその用途 |
JP6378475B2 (ja) * | 2012-12-05 | 2018-08-22 | ミヨシ油脂株式会社 | 親水性室温イオン液体とその用途 |
EP3212319A1 (en) * | 2014-10-30 | 2017-09-06 | SABIC Global Technologies B.V. | Reactor comprising radially placed cooling plates and methods of using same |
CN106922132A (zh) | 2014-10-31 | 2017-07-04 | 赛贝克环球科技公司 | 用于使反应的蜡产物与轻质气体产物分离的反应器 |
WO2017089935A1 (en) * | 2015-11-23 | 2017-06-01 | Sabic Global Technologies B.V. | Structural catalyst with internal heat transfer system for exothermic and endothermic reactions |
DE102015122129A1 (de) * | 2015-12-17 | 2017-06-22 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Reaktor zur Durchführung von exo- oder endothermen Reaktionen |
CN105776141B (zh) * | 2016-01-27 | 2018-03-09 | 烟台大学 | 一种氯化氢催化氧化制氯气新型固定床反应器 |
CN105967146A (zh) * | 2016-07-11 | 2016-09-28 | 南通星球石墨设备有限公司 | 一种盐酸合成炉气体分布石墨组件 |
CN106517095A (zh) * | 2016-09-27 | 2017-03-22 | 上海氯碱化工股份有限公司 | 制备氯气的方法 |
CN108096872A (zh) * | 2018-01-05 | 2018-06-01 | 浙江万享科技股份有限公司 | 一种板式结晶器 |
CN109806864B (zh) * | 2019-03-15 | 2022-03-15 | 西安近代化学研究所 | 一种氯化氢氧化制氯气的高稳定性催化剂 |
KR102562811B1 (ko) * | 2020-12-04 | 2023-08-02 | 이상국 | 방사 흐름형 반응기 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3807963A (en) * | 1972-03-09 | 1974-04-30 | J Smith | Reaction apparatus |
US3911843A (en) * | 1972-10-16 | 1975-10-14 | Tranter Mfg Inc | Method of making a plate-type heat exchange unit |
DE2949530A1 (de) * | 1979-12-08 | 1981-06-11 | Hoechst Ag, 6000 Frankfurt | Verfahren zur herstellung von 1,2-dichlorethan |
DE3024610A1 (de) * | 1980-06-28 | 1982-01-28 | Basf Ag, 6700 Ludwigshafen | Verfahren zur herstellung von 1,2-dichloraethan |
GB8330714D0 (en) * | 1982-12-24 | 1983-12-29 | Ici Plc | 1 2-dichloroethane |
ZA838830B (en) * | 1982-12-24 | 1984-08-29 | Ici Plc | Production of 1,2-dichloroethane |
ES2106387T3 (es) * | 1993-04-08 | 1997-11-01 | Elpatronic Ag | Procedimiento para soldar con rodillos costuras de depositos y maquina soldadora de costuras con rodillos y por resistencia para la puesta en practica del procedimiento. |
DE19533659A1 (de) * | 1995-09-12 | 1997-03-13 | Basf Ag | Verfahren zur Herstellung von Chlor aus Chlorwasserstoff |
WO2000043313A1 (fr) * | 1999-01-22 | 2000-07-27 | Sumitomo Chemical Company, Limited | Procede de fabrication du chlore |
EP1153653A1 (en) * | 2000-05-11 | 2001-11-14 | Methanol Casale S.A. | Reactor for exothermic or endothermic heterogeneous reactions |
EP1221339A1 (en) * | 2001-01-05 | 2002-07-10 | Methanol Casale S.A. | Catalytic reactor with heat exchanger for exothermic and endothermic heterogeneous chemical reactions |
-
2003
- 2003-12-23 DE DE10361519A patent/DE10361519A1/de not_active Withdrawn
-
2004
- 2004-12-23 KR KR1020067014777A patent/KR20060126736A/ko not_active Ceased
- 2004-12-23 CN CN2013103209122A patent/CN103420340A/zh active Pending
- 2004-12-23 CN CNA2004800389103A patent/CN1898152A/zh active Pending
- 2004-12-23 EP EP04804265A patent/EP1699734A1/de not_active Withdrawn
- 2004-12-23 WO PCT/EP2004/014671 patent/WO2005063616A1/de active Application Filing
- 2004-12-23 JP JP2006546076A patent/JP4805165B2/ja not_active Expired - Fee Related
- 2004-12-23 US US10/584,055 patent/US20080233043A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2005063616A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN1898152A (zh) | 2007-01-17 |
KR20060126736A (ko) | 2006-12-08 |
JP2007515372A (ja) | 2007-06-14 |
US20080233043A1 (en) | 2008-09-25 |
WO2005063616A1 (de) | 2005-07-14 |
JP4805165B2 (ja) | 2011-11-02 |
CN103420340A (zh) | 2013-12-04 |
DE10361519A1 (de) | 2005-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1699734A1 (de) | Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff | |
EP2027063B1 (de) | Verfahren zur herstellung von chlor durch gasphasenoxidation | |
EP1572582B1 (de) | Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff | |
EP1581457B1 (de) | Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff | |
EP2170496A1 (de) | Verfahren zur herstellung von chlor durch gasphasenoxidation | |
WO2009010168A1 (de) | Verfahren zur herstellung von chlor durch vielstufige adiabatische gasphasenoxidation | |
EP1699551A1 (de) | Verfahren zur herstellung von formaldehyd | |
DE102004006610A1 (de) | Reaktor und Verfahren zur Herstellung von Chlor aus HCI | |
EP1656322A1 (de) | Verfahren zur herstellung von chlor | |
WO2009039946A1 (de) | Reaktor und verfahren zu dessen herstellung | |
WO2006069694A1 (de) | Verfahren zur herstellung von phthalsäureanhydrid | |
WO2010040469A1 (de) | Mehrstufiges verfahren zur herstellung von chlor | |
WO2009143971A1 (de) | Verfahren zur herstellung von phosgen | |
WO2007104436A1 (de) | Verfahren und vorrichtung zur herstellung von chlor durch gasphasenoxidation in einem gekühlten wandreaktor | |
EP3862317A1 (de) | Verfahren und reaktor zur herstellung von phosgen | |
DE102007033106A1 (de) | Verfahren zur Herstellung von Chlor durch Gasphasenoxidation | |
DE102007033107A1 (de) | Verfahren zur Herstellung von Chlor durch vielstufige adiabatische Gasphasenoxidation | |
EP1801088A1 (de) | Oxychlorierungsverfahren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060724 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BASF SE |
|
17Q | First examination report despatched |
Effective date: 20120627 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150701 |