EP1681090B1 - Dispositif et procédé de mélange d'un courant de fluide dans un conduit - Google Patents

Dispositif et procédé de mélange d'un courant de fluide dans un conduit Download PDF

Info

Publication number
EP1681090B1
EP1681090B1 EP05000811A EP05000811A EP1681090B1 EP 1681090 B1 EP1681090 B1 EP 1681090B1 EP 05000811 A EP05000811 A EP 05000811A EP 05000811 A EP05000811 A EP 05000811A EP 1681090 B1 EP1681090 B1 EP 1681090B1
Authority
EP
European Patent Office
Prior art keywords
mixer
mixing device
row
flow direction
main flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05000811A
Other languages
German (de)
English (en)
Other versions
EP1681090A1 (fr
Inventor
Hans Prof. Dr. Ruscheweyh
Stefan Leser
Michael Kaatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balcke Duerr GmbH
Original Assignee
Balcke Duerr GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Balcke Duerr GmbH filed Critical Balcke Duerr GmbH
Priority to ES05000811T priority Critical patent/ES2285577T3/es
Priority to AT05000811T priority patent/ATE363335T1/de
Priority to PL05000811T priority patent/PL1681090T3/pl
Priority to EP05000811A priority patent/EP1681090B1/fr
Priority to DE502005000780T priority patent/DE502005000780D1/de
Priority to US11/168,656 priority patent/US8066424B2/en
Priority to TW094130603A priority patent/TWI315215B/zh
Priority to CNB2005101056236A priority patent/CN100479908C/zh
Priority to CA2711423A priority patent/CA2711423C/fr
Priority to CA2532609A priority patent/CA2532609C/fr
Priority to RU2006101280/15A priority patent/RU2347605C2/ru
Priority to KR1020060004845A priority patent/KR100739523B1/ko
Priority to JP2006009213A priority patent/JP4758768B2/ja
Publication of EP1681090A1 publication Critical patent/EP1681090A1/fr
Priority to HK06110478.4A priority patent/HK1088270A1/xx
Application granted granted Critical
Publication of EP1681090B1 publication Critical patent/EP1681090B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K3/00Baths; Douches; Appurtenances therefor
    • A47K3/02Baths
    • A47K3/022Baths specially adapted for particular use, e.g. for washing the feet, for bathing in sitting position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3132Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3132Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices
    • B01F25/31322Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices used simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • B01F25/43161Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod composed of consecutive sections of flat pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431973Mounted on a support member extending transversally through the mixing tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/93Arrangements, nature or configuration of flow guiding elements
    • B01F2025/931Flow guiding elements surrounding feed openings, e.g. jet nozzles

Definitions

  • the invention relates to a mixing device, comprising a flow channel and a plurality of mixer disks, which generate fluid in a leading edge vortex, which flows through the flow channel in a main flow direction.
  • the mixer disks are arranged in rows of mixer disks along row axes extending essentially transversely to the main flow direction, and the mixer disks of the respective mixer disk row are angled in the same direction with respect to the main flow direction of the fluid.
  • the invention relates to a mixing method for mixing a fluid flowing in a main flow direction through a flow channel, in which the flow of the fluid is mixed by a leading edge vortex system.
  • Such mixing devices and mixing methods are used in industrial plants, power plants, chemical plants, roasting plants and similar plants in order to mix or mix the fluid streams occurring there.
  • mixing of the flue gases must be carried out in order to achieve uniform utilization and effective operation of the cleaning systems.
  • a mixing device developed in this context by the Applicant and disclosed in DE 4325968 A1 is the so-called static mixer in which thin mixer disks can be arranged freely circulating in a flow channel.
  • the mixer discs are inclined in an acute, also referred to as angle of attack, angle to the flow.
  • angle of attack angle to the flow.
  • On the back side facing away from the flow of these mixer disks then creates a particularly stable leading edge vortex system. It consists essentially of two oppositely directed from the freely flowing around the front and side edges inwardly rotating and in the main flow direction conically widening vertebrae.
  • transverse mixers which, based on the principle of action of the static mixer, the temperature distribution, the chemical composition in the flue gases and also the dust distribution, e.g. equalize the fly ash.
  • a plurality of vortex induction disks are arranged along a row axis in a mixer disk row. The row axis of this mixer disk row runs essentially transversely to the main flow direction.
  • mixers For further homogenization of the flow, mixers have already been proposed by the applicant in EP 1170054 A1, in which a plurality of such mixer disk rows are arranged one behind the other in the flow direction.
  • the second row has a minimum distance from the first row of mixer discs, which aligns with the vortex formation of the first row. So far, the second row of mixer disks has been arranged behind the first row in such a way that the mixing vortices of the second series of mixer disks supplement and amplify the vortices of the first mixer disk row.
  • first fluid are mixed behind the or the transverse mixer Admixing device installed.
  • This admixing device conveys the material to be mixed, referred to below as secondary fluid, directly into the vortex system that captures the material and mixes it intensively with the main stream.
  • the material to be mixed may be gaseous, mist-like (aerosol) or a pulverized solid.
  • the known admixing devices can be narrow injection gratings with numerous nozzles, with which the additives are finely distributed to the primary fluid. These nozzle grilles are installed in front of any mixers at a minimum distance. The minimum distance is chosen so large that the injected secondary fluid in the hot primary fluid evaporates as completely as possible until it hits the mixer, otherwise corrosion and erosion phenomena occur on the mixers.
  • the invention is therefore based on the object to provide a mixing device and a mixing method, having a further optimized efficiency.
  • a mixer according to claim 1 characterized in that the mixer disk rows are arranged in a common flow channel section whose length corresponds to the maximum length of the largest mixer disk row in the main flow direction and the mixer disk rows are arranged side by side based on the main flow direction, the mixer disks adjacent Mixer disk rows are angled alternately in a positive and a negative angle of attack relative to the main flow direction, and in a mixing method according to claim 29, characterized in that at least two counter-aligned front edge vortex systems are generated by such a mixer in a common flow channel section.
  • These mixer disks produce in a fluid flowing through the flow channel in a main flow direction the leading edge vortices described above and are arranged along row axes in rows of mixer disks, the mixer disk rows extending essentially transversely to the main flow direction.
  • the mixer disks of the respective mixer disk row are in turn arranged in the same direction with respect to the main flow direction of the fluid. They thus extend substantially in the same direction, but they need not necessarily be aligned parallel to each other, but may have slight deviations or differences in their angles of attack.
  • these mixer disk rows are arranged next to one another in a common flow channel section.
  • the mixer disk rows are therefore not mounted as usual in the main flow direction one behind the other in a minimum distance, but contrary to all common arrangement rules in one and the same flow channel section.
  • the mixer disk rows thus extend, in particular, over a section length of the flow channel extending in the main flow direction, which results from the maximum length expansion of the largest mixer disk row.
  • the other adjacent rows of mixer disks then extend either over the same or a smaller length and lie at least substantially within this flow channel section defined by the longest row of mixer disks.
  • the maximum longitudinal extent is to be understood as the length which, in the main flow direction, consists of the foremost edge of the foremost part and the rearmost edge of the rearmost part of the mixing device results.
  • the leading edge is thus usually the leading edge of the frontmost mixer disc and the rearmost edge usually referred to as the trailing edge trailing edge of the last mixer disc.
  • the mixer disks of adjacent mixer disk rows are angled alternately in a positive and in a negative angle of attack relative to the main flow direction.
  • This arrangement of the mixer disk rows divides the flow alternately into a, with respect to the main flow direction, in a positive and negative direction deflected flow component.
  • the mixer discs create not only a vortexed crossflow through the leading edge vortex systems on their backs but also the simultaneous deflection of the flow at their front sides, also a rotating global flow transverse to the main flow direction.
  • the entire fluid flow is rotated over the entire cross sectional width of the channel in rotation about the channel longitudinal axis , So there is a global spin in the flow, which allows a particularly effective mixing of the fluid.
  • the invention has the advantage that even temperature strands and temperature imbalances are mixed.
  • the mixing of the fluid is due to this special staggering or stratification of the flow much more efficient than in the rear single chain of the known transverse mixers. It has been found that the interpenetrating leading edge vortex systems of the mixing device according to the invention do not interfere in a negative way. In addition, the mixing device according to the invention requires very little space, since the individual mixer disk rows are not arranged one behind the other in a minimum distance from each other to ensure the specific efficiencies of the individual mixer disk rows. Because of the often tight space, especially in the mostly very heavily installed large systems, this compact design of the mixing device according to the invention is a further advantage.
  • the mixer disk rows are arranged one above the other.
  • the mixer disk rows thus continue to run side by side, but are aligned rotated by 90 ° and in other words extend both in the horizontal direction.
  • the series axes of adjacent mixer disk rows extend in spaced-apart planes extending essentially parallel to the main flow direction. Then, the series axes are so arranged that they do not intersect, but cross in the plan view to each other.
  • orientation angles is meant the angle meant between the series axis and the main flow direction.
  • the main flow direction results in a known manner essentially from the course of the channel walls before, in and behind the mixing device. It is usually in the longitudinally extending centroid of the channel cross-section.
  • the series axes are each arranged in spaced-apart planes which extend substantially parallel to the main flow direction. They expediently pass through the centers of gravity of the individual mixer disks. Alternatively, however, a row axis can also connect the forwardmost point of the respective mixer disk row in the flow direction or other points suitable for the uniform alignment of a plurality of different mixer disks. For example, different lengths of mixer discs can all be aligned at their leading edges, then the row axis passes through the respective leading edges.
  • the series axes are arranged inclined in their planes with respect to the main flow direction at an orientation angle of 75 ° to 90 ° and / or from -75 ° to -90 °.
  • both series axes can have a negative or positive orientation angle or alternatively a positive and a negative angle.
  • the series axes run parallel to each other. This results in a particularly uniform flow course, in particular downstream of the mixer disk rows.
  • the mixer disk rows are arranged symmetrically to each other. This may be point or axis symmetry with respect to the flow channel center of gravity or the main flow direction.
  • At least one row of mixer disks has a curved row axis.
  • the curved row axis may have a constant radius of curvature in the case of a circular arc portion. It can also be expedient to have a variable curvature profile, which is parabolic in particular. In such a course of curvature, a part of the mixer disk row axis runs almost parallel to the main flow direction, while the majority extends transversely to the main flow direction.
  • the angle of attack of the mixer discs are selected to be larger with decreasing curvature of the row axis.
  • the mixing device preferably has a first row axis with a first curvature profile and a second row axis with a curvature profile, the second curvature profile corresponding to the mirroring of the first curvature profile.
  • the curvature course is mirrored on the gravity axis of the flow channel.
  • the mixer disk rows preferably each have the same number of mixer disks. It is also advantageous if all mixer disks of a mixer disk series have the same shape. So you can produce the mixer disks in mass production low. Also, the alignment of the mixer discs on site is very easy, since the same mixer discs can be aligned and mounted the same.
  • the mixer disks of a mixer disk row are arranged partially overlapping with respect to the main flow direction.
  • the mixer disks of such an overlapping row of mixer disks then overlap.
  • the rear mixer disk thus stands in the flow shadow of the mixer disk arranged in front of it.
  • the overlap of the individual mixer disks varies in a mixer disk row. It is expedient here if the overlap of the individual mixer disks increases with less curvature or inclination of the row axis relative to the main flow direction.
  • At least one mixer disk has a triangular shape.
  • a triangular shape is understood to mean, above all, a thin disk with a triangular base.
  • at least one mixer disk can have a roundish, in particular a circular, elliptical or oval shape.
  • a mixing device according to the invention has at least one mixer disk which has a trapezoidal shape. Then the narrower side is the side of the mixer disk facing the flow. The leading edge vortex generating leading edge is then an angular "U” with flared legs, while it is a "V” in a triangular disk and a circular arc portion in a disk.
  • At least one mixer disk has at least one bend in its surfaces which have been flown on.
  • This kink should not be too pronounced, so that even with kink still a relatively flat surface of the mixer disk is maintained.
  • the surface is then suitably kinked in the flow direction to the rear. The pointed side of the bend is thus facing the flow. Also, in this sense, several kinks can bend the surface in the direction of flow.
  • an admixing device with at least one outlet opening for a secondary fluid is arranged in the same flow section of the flow channel in which the mixer disk rows extend. Unlike in the prior art so far, therefore, a combination of several transverse mixers is made with a Zumischvorraumen in the same channel section. It has been shown that the flow resistance of the mixing device according to the invention is less than the sum of the individual flow resistance of the respective mixer rows and the admixing device. To further reduce the flow resistance, the admixing device can also be used for fastening the mixer discs.
  • At least one outlet pipe is arranged between two adjacent rows of mixer disks in which the at least one outlet opening is located.
  • the secondary fluid flows through this outlet tube and is injected into the primary fluid via the at least one outlet opening.
  • the outlet pipe of the admixing device should be exactly adapted to the geometry of the mixer disk row and expediently run as parallel as possible to the row axes in the region of the front edges of the mixer disks.
  • this development has the advantage that the secondary fluid mixed into the primary fluid is distributed particularly finely and evenly downstream through the leading edge vortices of the individual mixer disks.
  • this arrangement eliminates the problems of corrosion and erosion described in the introduction, in particular when the injection takes place on the leeward side of the mixer disks.
  • each mixer disk is assigned at least one outlet opening of the admixing device. This means that at least one outlet opening of the admixing device in the area of each individual Mixer disk and there is arranged as far forward in the area of the leading edge. This results in a particularly fine distribution of the secondary fluid in the flow of the first fluid.
  • each mixer disk is assigned its own outlet pipe of the admixing device. Then, each mixer disk can be fastened in the flow channel in a particularly simple manner. For this purpose, the mixer disk is screwed to the respective outlet pipe, welded or fastened in another suitable manner.
  • the mixing method according to the invention is characterized in that at least two oppositely directed front edge vortex systems are generated in a common flow channel section.
  • the leading edge vortex systems which in each case consist of pairs of opposing and inwardly twisting leading edge vertebrae, are thus aligned alternately, once in the positive and in the negative angle, to the main flow direction.
  • a global flow rotating in the main flow direction is generated in the same flow channel section in which the leading edge vortex systems are generated, together with the two opposing leading edge vortex systems.
  • a further increased mixing of the fluid flows results.
  • at least one additional secondary fluid is added to the first fluid in the generation of the opposing leading edge vortex systems.
  • the mixing of the fluid thus takes place simultaneously with the admixing of the secondary fluid. This leads, as already explained above in connection with the mixing device, to a further increase in the efficiency of the mixing process according to the invention.
  • the first embodiment of the mixing device 1 according to the invention shown in FIGS. 1, 2, 3 and 4 is arranged in a rectangular flow channel 2 and has eight mixer disks 3 with a triangular base surface.
  • the flow channel 2 is flowed through by a fluid P in the main flow direction 4.
  • the main flow direction runs in the direction of the channel longitudinal axis in the x direction and transversely thereto, the channel width in the direction of the y-axis and the channel height in the z-direction.
  • the mixer disks 3 are angled relative to the main flow direction 4 at an angle ⁇ ⁇ .
  • they produce leading edge vortices 5, which spread out in a cone shape widening transversely to the main flow direction 4 downstream.
  • the leading edge vertebrae 5 behind each mixer plate 3 form a leading edge eddy system 14, which is two eddies 5 rotating counter to the center of the mixer plates 3, which are very stable and strong.
  • the mixer disks 3 are arranged one above the other along two rows of axles 6, 7 in mixer disk rows 8, 9.
  • the mixer disk rows 8, 9 are thus located in a common flow channel section 10, wherein both mixer disk rows 8, 9 are the same length.
  • the mixer disks 3 of the mixer disk row 8 located below the mixer disk row 9 are angled in a positive angle ⁇ relative to the main flow direction 4.
  • the positive angle ⁇ is meant a positive angle in the mathematical sense, ie an angle rotating counter-clockwise.
  • the mixer disks 3 of the mixer disk row 9 lying above are accordingly arranged at a negative angle ⁇ with respect to the main flow direction 4.
  • the row axes 6, 7 of the adjacent mixer disk rows 8, 9 again run parallel to one another and transversely to the main flow direction 4. Therefore, in FIG. 4, the row axis 6 of the lower mixer disk row 8 is covered by the row axis 7 of the upper mixer disk row 9.
  • the orientation angle ⁇ of the two series axes 6, 7 is exactly 90 °.
  • the series axes 6, 7 therefore lie in two planes spanned in the x and y directions with different z coordinates which extend parallel to the main flow direction 4, the series axes 6, 7 extending only in the y direction, ie both the same x Have coordinate.
  • the mixer disks 3 are each attached in a rotationally fixed manner to a mounting tube 11 in such a way that they overlap with respect to the main flow direction 4. As can be seen in FIG. 2, the mixer disks 3 all have the same shape and each overlap in the y-direction by an equal dimension y .
  • the overlaps ü y in the lower mixer disk row 8 are the same size as the overlaps in the mixer disk row 9.
  • Leading edge vortex systems 14 are simultaneously formed on the leeward side of the mixer disks 3 remote from the flow. These leading edge vortex systems 14 are located behind each mixer disk 3. They are not shown behind each mixer disk 3 in FIGS. 1 to 9 merely for reasons of clarity.
  • the leading edge vortex systems 14 of the lower mixer disk row 8, in the drawing to the left and the upper mixer disk row 9 each extend to the right.
  • the lower leading edge vortex systems 14 extend in the negative y direction
  • the upper leading edge vortex systems 14 of the mixer disc row 9 extend in the positive y direction.
  • the mixer disks 3 thus deflect the flow with their front side facing the flow and at the same time generate swirls on their side facing away from the flow. So they have a deflecting and vortex generating effect.
  • FIGS. 5, 6, 7 and 8 show a second exemplary embodiment of the mixing device 1 according to the invention. This differs mainly in the orientation of the mixer disk rows 8, 9 of the first embodiment.
  • the mixer disk axes 6, 7 run alternately in a positive or negative orientation angle ⁇ , so that in the plan view of FIG. 8, a crossing arrangement of the mixer disk rows 8, 9 results.
  • the two mixer disk rows 8, 9 are arranged symmetrically to the channel longitudinal axis, so that the row axes 6, 7 intersect in the middle of the channel.
  • the angles ⁇ are in the present case about 80 °.
  • the fastening tubes 11 of the mixer disks 3 form the admixing device 29 for the secondary fluid S.
  • the fastening pipes 11 are traversed by the secondary fluid S.
  • the channel-side ends of the fastening tubes 11 thus form the outlet openings 30 of the admixing device 29.
  • the fastening tubes 11 are also the outlet tubes 31 of the admixing device 29.
  • This admixing device 29 thus has as many outlet tubes 31 and outlet apertures 30 as mixer discs 3.
  • the mounting tubes 11 thus serve both the attachment of the individual mixer discs 3 in Flow channel 2 as well as the guidance and admixture of a secondary fluid S in the flow of the first fluid P.
  • the row axes 6, 7 are parabolically curved.
  • the upper row axis 7 has its more curved portion on the left side of the flow channel 2 and the lower row axis 6 has its more curved portion on the right side of the flow channel 2.
  • the mixer disks 3 are arranged along each row axis 6, 7 such that the angle of attack ⁇ increases from the more curved portion to the less curved portion of a row axis 6, 7.
  • the distance between the individual mixer disks in each mixer disk row 6, 7 is selected so that the overlap Ü y decreases with increasing curvature of the row axis 6, 7.
  • the mixer disks 3 are arranged along the row axes 6, 7 symmetrical to the main flow direction 4, which runs in the channel center in the x direction in this embodiment.
  • the superimposed row axes 6, 7 thus intersect in the plan view of FIG. 9 in the middle of the flow channel 2.
  • FIGS. 10 to 17 Various embodiments of mixer disks 3 are shown in FIGS. 10 to 17.
  • the mixer disk 3 shown in FIG. 10 is a disk with a circular base area.
  • the disk shown in Fig. 11 has an elliptical base.
  • the disk shown in FIG. 12 is likewise a roundish mixer disk, which, however, has a flattened trailing edge 17.
  • the mixer disk 3 is to be arranged in the flow such that the rounded front edge 18 is directed counter to the flow and the flattened trailing edge 17 faces away from the flow.
  • the mixer disk 3 shown in Fig. 13 has a trapezoidal base surface, wherein the narrower front side 19 of the flow is directed against and the wider trailing edge 20 faces away from the flow.
  • the mixer disk 3 shown in FIG. 13 is thus flowed around from left to right just like the mixer disk 3 shown in FIG.
  • FIGS. 14 and 15 Another embodiment of a trapezoidal mixer disk 3 is shown in FIGS. 14 and 15.
  • the mixer disk 3 has a kink 21 which extends in the flow direction in the middle of the base surface of the mixer disk 3.
  • the kink 21 extends, as can be seen in Fig. 15, so that the flow-facing side 22 of the mixer disk 3 drops slightly in the flow direction to the rear, while the top of the mixer disk 3 facing away from the flow is hollow.
  • This shaping leads to a reinforcement of the leading edge vortices and to a mechanical stabilization of the mixer disk 3.
  • FIGS. 16 and 17 show a further embodiment of a mixer disk 3 which has a triangular base surface in plan view but also has two creases 21 and 24 which extend radially from the tip 25 to the trailing edge 26, so that the Increase widths of the folded sides 27 and 28 in the flow direction.
  • Fig. 17 the indicated in Fig. 16 section B-B is shown, in which one recognizes the two angled position of the sides 27 and 28.
  • the mixer disk 3 shown in Figs. 16 and 17 is aligned in the flow just like the mixer disk shown in Figs.
  • the flowed surface 22 of the mixer disk 3 is thus angled at its side edges relative to the flow, while the center is straight.
  • the upstream side facing away from the flow 23 of the mixer disk 3 is thus again formed hollow.
  • the fourth exemplary embodiment of a mixing device illustrated in FIG. 18 differs from the first exemplary embodiment illustrated in FIG. 1 in that the mixer disks 3 'have an elliptical base surface, as illustrated in FIG. 11. Incidentally, the structure corresponds to the example shown in FIG.

Claims (31)

  1. Dispositif de mélange (1), comportant un canal d'écoulement (2) et une pluralité de disques mélangeurs (3) qui produisent dans un fluide (P) circulant dans le canal d'écoulement (2) dans un sens d'écoulement principal (4) un tourbillon (5) sur le bord d'attaque, les disques mélangeurs (3) étant disposés en rangées (8, 9) de disques mélangeurs le long d'axes (6, 7) de rangées orientés sensiblement transversalement par rapport au sens d'écoulement principal (4), et les disques mélangeurs (3) de la rangée (8, 9) de disques mélangeurs respective étant inclinés dans le même sens par rapport au sens d'écoulement principal (4) du fluide et se chevauchant en partie par rapport au sens d'écoulement principal (4),
    caractérisé en ce
    que les rangées (8, 9) de disques mélangeurs sont disposées dans un même tronçon (10) du canal d'écoulement dont la longueur est égale à la longueur maximale de la rangée (8, 9) de disques mélangeurs la plus longue dans lé sens d'écoulement principal et que les rangées (8, 9) de disques mélangeurs sont disposées côte à côte par rapport au sens d'écoulement principal (4), les disques mélangeurs (3) de rangées (8, 9) de disques mélangeurs voisines étant inclinés en alternance selon un angle d'incidence positif et selon un angle d'incidence négatif (α) par rapport au sens d'écoulement principal (4).
  2. Dispositif de mélange selon la revendication 1,
    caractérisé en ce
    que les rangées (8, 9) de disques mélangeurs sont superposées.
  3. Dispositif de mélange selon l'une quelconque des revendications 1 ou 2,
    caractérisé en ce
    que les axes (6, 7) des rangées (8, 9) de disques mélangeurs voisines sont inclinés en alternance selon un angle d'incidence positif et selon un angle d'incidence négatif (β) par rapport au sens d'écoulement principal (4).
  4. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    que les axes (6, 7) des rangées (8, 9) de disques mélangeurs voisines sont disposés dans des plans distants les uns des autres et s'étendant sensiblement parallèlement au sens d'écoulement principal (4).
  5. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    que, dans leurs plans, les axes (6, 7) des rangées sont inclinés selon un angle d'orientation (β) compris entre 75° et 90° et/ou entre -75° et -90° par rapport au sens d'écoulement principal (4).
  6. Dispositif de mélange selon l'une quelconque des revendications précédentes 1 à 4,
    caractérisé en ce
    que les axes (6, 7) des rangées (8, 9) de disques mélangeurs voisines s'étendent parallèlement entre eux.
  7. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    que les rangées (8, 9) de disques mélangeurs sont disposées symétriquement entre elles.
  8. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    qu'au moins une rangée (8, 9) de disques mélangeurs comporte un axe (6, 7) de rangée incurvé.
  9. Dispositif de mélange selon la revendication 8,
    caractérisé en ce
    qu'au moins une rangée (8, 9) de disques mélangeurs comporte un axe de rangée incurvé à courbure variable.
  10. Dispositif de mélange selon l'une quelconque des revendications 8 ou 9,
    caractérisé en ce
    que la courbure est parabolique.
  11. Dispositif de mélange selon l'une quelconque des revendications 8 à 10,
    caractérisé en ce
    que l'angle d'incidence (α) des disques mélangeurs (3) augmente à mesure que diminue la courbure de l'axe (6, 7) de rangée.
  12. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    que toutes les rangées (8, 9) de disques mélangeurs ont la même courbure.
  13. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    qu'un premier axe (6) de rangée comporte une première courbure et qu'un deuxième axe (7) de rangée comporte une deuxième courbure, la deuxième courbure étant le miroir de la première courbure.
  14. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    que les rangées (8, 9) de disques mélangeurs comportent chacune le même nombre de disques mélangeurs (3).
  15. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    que tous les disques mélangeurs (3) d'une rangée (8, 9) de disques mélangeurs ont la même forme.
  16. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    que le chevauchement (üy) des différents disques mélangeurs (3) dans une rangée (8, 9) de disques mélangeurs varie.
  17. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    que le chevauchement (üy) des différents disques mélangeurs (3) augmente à mesure que diminue la courbure ou l'inclinaison de l'axe (6, 7) de rangée par rapport au sens d'écoulement principal (4).
  18. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    qu'au moins un disque mélangeur (3) a la forme d'un triangle.
  19. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    qu'au moins un disque mélangeur (3) a une forme arrondie, notamment une forme circulaire, elliptique ou ovale.
  20. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    qu'au moins un disque mélangeur (3) arrondi est aplati sur sa face (17) détournée du sens d'écoulement principal (4).
  21. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    qu'au moins un disque mélangeur (3) a la forme d'un trapèze.
  22. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    qu'au moins un disque mélangeur (3) comporte un coude (21, 24) dans sa surface d'attaque (22).
  23. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    qu'un dispositif d'alimentation (29) avec au moins une ouverture de sortie (30) d'un fluide secondaire (S) est disposé dans le même tronçon (10) d'écoulement du canal d'écoulement (2) dans lequel s'étendent les rangées (8, 9) de disques mélangeurs.
  24. Dispositif de mélange selon la revendication 23,
    caractérisé en ce
    que les disques mélangeurs (3) sont montés sur le dispositif d'alimentation (29).
  25. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    qu'au moins un tube de sortie (31) comportant au moins une ouverture de sortie (30) du fluide secondaire (S) est interposé entre deux rangées (8, 9) de disques mélangeurs voisines.
  26. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    qu'au moins un tube de sortie (31) comportant au moins une ouverture de sortie (30) du fluide secondaire (S) est disposé parallèlement à chaque rangée (8, 9) de disques mélangeurs.
  27. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    qu'à chaque disque mélangeur (3) est associée au moins une ouverture de sortie (30) du dispositif d'alimentation (29).
  28. Dispositif de mélange selon l'une quelconque des revendications précédentes,
    caractérisé en ce
    qu'à chaque disque mélangeur (3) est associé un tube de sortie (31) du dispositif d'alimentation (29) qui lui est propre.
  29. Procédé de mélangeage d'un fluide (P) circulant dans un canal d'écoulement (2) dans un sens d'écoulement principal (4) dans lequel le flux de fluide (P) est mélangé par plusieurs systèmes de formation de tourbillons sur les bords d'attaque (14)
    caractérisé en ce
    qu'au moins deux systèmes de formation de tourbillons sur les bords d'attaque (14) orientés dans des sens contraires sont produits dans un même tronçon de canal d'écoulement (10) par un dispositif selon l'une quelconque des revendications précédentes.
  30. Procédé de mélangeage selon la revendication 29,
    caractérisé en ce
    que, dans le flux du fluide (P) dans le tronçon de canal d'écoulement (10), une turbulence est générée par les deux systèmes de formation de tourbillons sur les bords d'attaque (14) orientés dans des sens contraires, cette turbulence produisant un flux global (12) tournant autour du sens d'écoulement principal (4).
  31. Procédé de mélangeage selon la revendication 29 ou 30,
    caractérisé en ce
    que, en même temps que les systèmes de formation de tourbillons sur les bords d'attaque (14) sont réalisés, on rajoute au fluide (P) au moins un autre fluide secondaire (S) à la hauteur des rangées (8, 9) de disques
EP05000811A 2005-01-17 2005-01-17 Dispositif et procédé de mélange d'un courant de fluide dans un conduit Active EP1681090B1 (fr)

Priority Applications (14)

Application Number Priority Date Filing Date Title
ES05000811T ES2285577T3 (es) 2005-01-17 2005-01-17 Dispositivo y procedimiento para el mezclado de un fluido que circula en una direccion de circulacion.
AT05000811T ATE363335T1 (de) 2005-01-17 2005-01-17 Vorrichtung und verfahren zum mischen eines fluidstroms in einem strömungskanal
PL05000811T PL1681090T3 (pl) 2005-01-17 2005-01-17 Urządzenie i sposób mieszania strumienia płynu w kanale przepływowym
EP05000811A EP1681090B1 (fr) 2005-01-17 2005-01-17 Dispositif et procédé de mélange d'un courant de fluide dans un conduit
DE502005000780T DE502005000780D1 (de) 2005-01-17 2005-01-17 Vorrichtung und Verfahren zum Mischen eines Fluidstroms in einem Strömungskanal
US11/168,656 US8066424B2 (en) 2005-01-17 2005-06-29 Mixing device
TW094130603A TWI315215B (en) 2005-01-17 2005-09-06 Mixer and mixing method
CNB2005101056236A CN100479908C (zh) 2005-01-17 2005-09-28 混合器和混合方法
CA2711423A CA2711423C (fr) 2005-01-17 2006-01-11 Melangeur et methode de melange
CA2532609A CA2532609C (fr) 2005-01-17 2006-01-11 Melangeur et methode de melange
RU2006101280/15A RU2347605C2 (ru) 2005-01-17 2006-01-16 Смесительное устройство и способ смешивания текучей среды
KR1020060004845A KR100739523B1 (ko) 2005-01-17 2006-01-17 믹서 및 믹싱 방법
JP2006009213A JP4758768B2 (ja) 2005-01-17 2006-01-17 ミキサー及びミキシング方法
HK06110478.4A HK1088270A1 (en) 2005-01-17 2006-09-20 Mixer and mixing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05000811A EP1681090B1 (fr) 2005-01-17 2005-01-17 Dispositif et procédé de mélange d'un courant de fluide dans un conduit

Publications (2)

Publication Number Publication Date
EP1681090A1 EP1681090A1 (fr) 2006-07-19
EP1681090B1 true EP1681090B1 (fr) 2007-05-30

Family

ID=34933324

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05000811A Active EP1681090B1 (fr) 2005-01-17 2005-01-17 Dispositif et procédé de mélange d'un courant de fluide dans un conduit

Country Status (13)

Country Link
US (1) US8066424B2 (fr)
EP (1) EP1681090B1 (fr)
JP (1) JP4758768B2 (fr)
KR (1) KR100739523B1 (fr)
CN (1) CN100479908C (fr)
AT (1) ATE363335T1 (fr)
CA (2) CA2532609C (fr)
DE (1) DE502005000780D1 (fr)
ES (1) ES2285577T3 (fr)
HK (1) HK1088270A1 (fr)
PL (1) PL1681090T3 (fr)
RU (1) RU2347605C2 (fr)
TW (1) TWI315215B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017002811A1 (de) 2017-03-22 2018-09-27 Balcke-Dürr GmbH Strömungskanal mit einer Mischvorrichtung

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10330023A1 (de) * 2002-07-20 2004-02-05 Alstom (Switzerland) Ltd. Wirbelgenerator mit kontrollierter Nachlaufströmung
DE102005059971A1 (de) * 2005-12-15 2007-06-21 Fisia Babcock Environment Gmbh Vorrichtung zum Vermischen eines Fluids mit einem großen Gasmengenstrom, insbesondere zum Einbringen eines Reduktionsmittels in ein Stickoxide enthaltendes Rauchgas
DE102006004069A1 (de) * 2006-01-28 2007-09-06 Fisia Babcock Environment Gmbh Verfahren und Vorrichtung zum Vermischen eines Fluids mit einem großen Gasmengenstrom
CA2715186C (fr) 2008-03-28 2016-09-06 Exxonmobil Upstream Research Company Production d'electricite a faible emission et systemes et procedes de recuperation d'hydrocarbures
WO2009121008A2 (fr) 2008-03-28 2009-10-01 Exxonmobil Upstream Research Company Systèmes et procédés de production d’énergie à faible taux d’émission et de récupération d’hydrocarbure
AT506577B1 (de) * 2008-06-26 2009-10-15 Gruber & Co Group Gmbh Statische mischvorrichtung
CN102177326B (zh) 2008-10-14 2014-05-07 埃克森美孚上游研究公司 控制燃烧产物的方法与装置
JP5523807B2 (ja) * 2009-08-05 2014-06-18 三菱重工業株式会社 排ガス処理装置
EA023673B1 (ru) 2009-11-12 2016-06-30 Эксонмобил Апстрим Рисерч Компани Система и способ для низкоэмиссионного производства электроэнергии и извлечения углеводородов
US8317390B2 (en) * 2010-02-03 2012-11-27 Babcock & Wilcox Power Generation Group, Inc. Stepped down gas mixing device
IT1399461B1 (it) * 2010-04-13 2013-04-19 Unitech Textile Machinery Spa Ramosa.
MY160833A (en) 2010-07-02 2017-03-31 Exxonmobil Upstream Res Co Stoichiometric combustion of enriched air with exhaust gas recirculation
CA2801499C (fr) 2010-07-02 2017-01-03 Exxonmobil Upstream Research Company Systemes et procedes de production d'electricite a faible taux d'emission
MX341981B (es) 2010-07-02 2016-09-08 Exxonmobil Upstream Res Company * Combustion estequiometrica con recirculacion de gas de escape y enfriador de contacto directo.
AU2011271633B2 (en) 2010-07-02 2015-06-11 Exxonmobil Upstream Research Company Low emission triple-cycle power generation systems and methods
TWI563165B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Power generation system and method for generating power
TWI593872B (zh) 2011-03-22 2017-08-01 艾克頌美孚上游研究公司 整合系統及產生動力之方法
TWI564474B (zh) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
US10086694B2 (en) 2011-09-16 2018-10-02 Gaseous Fuel Systems, Corp. Modification of an industrial vehicle to include a containment area and mounting assembly for an alternate fuel
US9738154B2 (en) 2011-10-17 2017-08-22 Gaseous Fuel Systems, Corp. Vehicle mounting assembly for a fuel supply
US8501131B2 (en) 2011-12-15 2013-08-06 General Electric Company Method and apparatus to inject reagent in SNCR/SCR emission system for boiler
CN104428490B (zh) 2011-12-20 2018-06-05 埃克森美孚上游研究公司 提高的煤层甲烷生产
ES2619945T3 (es) 2012-01-25 2017-06-27 General Electric Technology Gmbh Disposición de mezcla de gas
US9353682B2 (en) 2012-04-12 2016-05-31 General Electric Company Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation
US10273880B2 (en) 2012-04-26 2019-04-30 General Electric Company System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine
US9784185B2 (en) 2012-04-26 2017-10-10 General Electric Company System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine
DE102012008732A1 (de) * 2012-05-04 2013-11-07 Xylem Water Solutions Herford GmbH Mischvorrichtung für UV-Wasserbehandlungsanlagen mit offenem Kanal
US9599070B2 (en) 2012-11-02 2017-03-21 General Electric Company System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system
US9574496B2 (en) 2012-12-28 2017-02-21 General Electric Company System and method for a turbine combustor
US10161312B2 (en) 2012-11-02 2018-12-25 General Electric Company System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system
US9869279B2 (en) 2012-11-02 2018-01-16 General Electric Company System and method for a multi-wall turbine combustor
US9708977B2 (en) 2012-12-28 2017-07-18 General Electric Company System and method for reheat in gas turbine with exhaust gas recirculation
US10107495B2 (en) 2012-11-02 2018-10-23 General Electric Company Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent
US9803865B2 (en) 2012-12-28 2017-10-31 General Electric Company System and method for a turbine combustor
US10215412B2 (en) 2012-11-02 2019-02-26 General Electric Company System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
US9631815B2 (en) 2012-12-28 2017-04-25 General Electric Company System and method for a turbine combustor
US9611756B2 (en) 2012-11-02 2017-04-04 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
CN103041743A (zh) * 2012-12-27 2013-04-17 镇江市港南电子有限公司 一种用于搅拌硅片研磨液的搅拌叶
US10208677B2 (en) 2012-12-31 2019-02-19 General Electric Company Gas turbine load control system
US9581081B2 (en) 2013-01-13 2017-02-28 General Electric Company System and method for protecting components in a gas turbine engine with exhaust gas recirculation
US9696066B1 (en) 2013-01-21 2017-07-04 Jason E. Green Bi-fuel refrigeration system and method of retrofitting
US9512759B2 (en) 2013-02-06 2016-12-06 General Electric Company System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation
TW201502356A (zh) 2013-02-21 2015-01-16 Exxonmobil Upstream Res Co 氣渦輪機排氣中氧之減少
US9938861B2 (en) 2013-02-21 2018-04-10 Exxonmobil Upstream Research Company Fuel combusting method
WO2014133406A1 (fr) 2013-02-28 2014-09-04 General Electric Company Système et procédé pour une chambre de combustion de turbine
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
AU2014226413B2 (en) 2013-03-08 2016-04-28 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
US9618261B2 (en) 2013-03-08 2017-04-11 Exxonmobil Upstream Research Company Power generation and LNG production
US20140250945A1 (en) 2013-03-08 2014-09-11 Richard A. Huntington Carbon Dioxide Recovery
US9617914B2 (en) 2013-06-28 2017-04-11 General Electric Company Systems and methods for monitoring gas turbine systems having exhaust gas recirculation
TWI654368B (zh) 2013-06-28 2019-03-21 美商艾克頌美孚上游研究公司 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體
US9835089B2 (en) 2013-06-28 2017-12-05 General Electric Company System and method for a fuel nozzle
US9631542B2 (en) 2013-06-28 2017-04-25 General Electric Company System and method for exhausting combustion gases from gas turbine engines
US9845744B2 (en) 2013-07-22 2017-12-19 Gaseous Fuel Systems, Corp. Fuel mixture system and assembly
US9587510B2 (en) 2013-07-30 2017-03-07 General Electric Company System and method for a gas turbine engine sensor
US9903588B2 (en) 2013-07-30 2018-02-27 General Electric Company System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation
US9951658B2 (en) 2013-07-31 2018-04-24 General Electric Company System and method for an oxidant heating system
US10030588B2 (en) 2013-12-04 2018-07-24 General Electric Company Gas turbine combustor diagnostic system and method
US9752458B2 (en) 2013-12-04 2017-09-05 General Electric Company System and method for a gas turbine engine
US10227920B2 (en) 2014-01-15 2019-03-12 General Electric Company Gas turbine oxidant separation system
US9915200B2 (en) 2014-01-21 2018-03-13 General Electric Company System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation
US9863267B2 (en) 2014-01-21 2018-01-09 General Electric Company System and method of control for a gas turbine engine
US10079564B2 (en) 2014-01-27 2018-09-18 General Electric Company System and method for a stoichiometric exhaust gas recirculation gas turbine system
US10047633B2 (en) 2014-05-16 2018-08-14 General Electric Company Bearing housing
US9885290B2 (en) 2014-06-30 2018-02-06 General Electric Company Erosion suppression system and method in an exhaust gas recirculation gas turbine system
US10060359B2 (en) 2014-06-30 2018-08-28 General Electric Company Method and system for combustion control for gas turbine system with exhaust gas recirculation
US10655542B2 (en) 2014-06-30 2020-05-19 General Electric Company Method and system for startup of gas turbine system drive trains with exhaust gas recirculation
CN104096477B (zh) * 2014-07-09 2015-12-02 华中科技大学 一种用于选择性催化还原烟气脱硝系统的静态混合器
US9931929B2 (en) 2014-10-22 2018-04-03 Jason Green Modification of an industrial vehicle to include a hybrid fuel assembly and system
US9869247B2 (en) 2014-12-31 2018-01-16 General Electric Company Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation
US9819292B2 (en) 2014-12-31 2017-11-14 General Electric Company Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine
US9885318B2 (en) * 2015-01-07 2018-02-06 Jason E Green Mixing assembly
US10788212B2 (en) 2015-01-12 2020-09-29 General Electric Company System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation
US10316746B2 (en) 2015-02-04 2019-06-11 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10253690B2 (en) 2015-02-04 2019-04-09 General Electric Company Turbine system with exhaust gas recirculation, separation and extraction
US10094566B2 (en) 2015-02-04 2018-10-09 General Electric Company Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation
US10267270B2 (en) 2015-02-06 2019-04-23 General Electric Company Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation
US10145269B2 (en) 2015-03-04 2018-12-04 General Electric Company System and method for cooling discharge flow
US10480792B2 (en) 2015-03-06 2019-11-19 General Electric Company Fuel staging in a gas turbine engine
JP6484891B2 (ja) * 2015-09-30 2019-03-20 ヤンマー株式会社 排気浄化装置
ES2767024B2 (es) * 2018-12-14 2021-09-17 Univ Sevilla Dispositivo generador de vortices en canales o conductos

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1701164A (en) * 1925-02-13 1929-02-05 Gilchrist & Company Mixing apparatus and process
SU663593A1 (ru) * 1977-09-07 1979-05-28 Ленинградский Зональный Научно-Исследовательский И Проектный Институт Экспериментального И Типового Проектирования Жилых И Общественных Зданий Смеситель
DE2911873C2 (de) * 1979-03-26 1982-08-19 Balcke-Dürr AG, 4030 Ratingen Kühlturm
DE3043239C2 (de) * 1980-11-15 1985-11-28 Balcke-Dürr AG, 4030 Ratingen Verfahren und Vorrichtung zum Vermischen mindestens zweier fluider Teilströme
DE8219268U1 (de) * 1982-07-06 1982-10-07 Balcke-Dürr AG, 4030 Ratingen Vorrichtung zur vergleichmaessigung der stroemung
DE4123161A1 (de) * 1991-07-12 1993-01-14 Siemens Ag Statischer mischer
EP0526393B1 (fr) * 1991-07-30 1996-08-28 Sulzer Chemtech AG dispositif d'immixtion
DE4211031A1 (de) * 1992-04-02 1993-10-07 Siemens Ag Vorrichtung zum Vermischen von zwei Massenströmen
DE4325968C2 (de) * 1993-08-03 1997-04-10 Balcke Duerr Ag Vorrichtung zum Kühlen von Gasen und gegebenenfalls Trocknen von dem Gas zugegebenen Feststoffteilchen
US6015229A (en) * 1997-09-19 2000-01-18 Calgon Carbon Corporation Method and apparatus for improved mixing in fluids
US5947599A (en) 1998-11-25 1999-09-07 Funk; James E. Continuous high intensity disperser with agitator disks
EP1170054B1 (fr) * 2000-06-19 2003-01-29 Balcke-Dürr GmbH Mélangeur pour mélanger des gaz et d'autres liquides newtoniens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017002811A1 (de) 2017-03-22 2018-09-27 Balcke-Dürr GmbH Strömungskanal mit einer Mischvorrichtung

Also Published As

Publication number Publication date
RU2006101280A (ru) 2007-08-10
US8066424B2 (en) 2011-11-29
ES2285577T3 (es) 2007-11-16
RU2347605C2 (ru) 2009-02-27
CA2711423A1 (fr) 2006-07-17
JP4758768B2 (ja) 2011-08-31
JP2006198615A (ja) 2006-08-03
CA2711423C (fr) 2013-01-08
PL1681090T3 (pl) 2007-10-31
US20060158961A1 (en) 2006-07-20
KR20060083902A (ko) 2006-07-21
KR100739523B1 (ko) 2007-07-13
HK1088270A1 (en) 2006-11-03
TW200626225A (en) 2006-08-01
TWI315215B (en) 2009-10-01
ATE363335T1 (de) 2007-06-15
CN100479908C (zh) 2009-04-22
CA2532609C (fr) 2010-09-14
DE502005000780D1 (de) 2007-07-12
CN1806903A (zh) 2006-07-26
EP1681090A1 (fr) 2006-07-19
CA2532609A1 (fr) 2006-07-17

Similar Documents

Publication Publication Date Title
EP1681090B1 (fr) Dispositif et procédé de mélange d'un courant de fluide dans un conduit
EP0619133B1 (fr) Chambre de mélanges
DE19820992C2 (de) Vorrichtung zur Durchmischung eines einen Kanal durchströmenden Gasstromes und Verfahren unter Verwendung der Vorrichtung
DE102006055036B4 (de) Mischelement sowie Abgasanlage für eine Verbrennungskraftmaschine
EP0526393B1 (fr) dispositif d'immixtion
EP1757778B1 (fr) Conduit d'échappement d'une turbine à gaz et méthode pour mélanger le gaz d'échappement
DE60006341T2 (de) Statischer mischer
DE102004045923A1 (de) Strömungskanal für einen Wärmeübertrager und Wärmeübertrager mit derartigen Strömungskanälen
DE112013004008T5 (de) Verfahren zum Mischen eines Abgasstroms
DE102005059971A1 (de) Vorrichtung zum Vermischen eines Fluids mit einem großen Gasmengenstrom, insbesondere zum Einbringen eines Reduktionsmittels in ein Stickoxide enthaltendes Rauchgas
EP1604742B1 (fr) Administration de gaz pour filtre électrostatique et filtre électrostatique
EP0776689B1 (fr) Dispositif de mélange
DE112014002091T5 (de) Wärmetauscher
EP1166861A1 (fr) Mélangeur pour mélanger au moins deux courants de gaz ou d'autres liquides newtoniens
EP1651335B1 (fr) Systeme de melange
EP0751820B1 (fr) Systeme combine d'amenee et de melange
EP3696383B1 (fr) Mélangeur
DE19539923C1 (de) Vorrichtung in einem ein Primärfluid führenden Kanal
EP1540662A2 (fr) Distanceur
CH702279B1 (de) Statischer Mischer.
DE19742295A1 (de) Verfahren sowie Vorrichtung zur Vergleichmäßigung einer Rohrströmung
DE2253542A1 (de) Verfahren und anordnung zum erniedrigen des dynamischen druckes der verbrennungsluft an einem in den brennerkopf von oelfeuerungsaggregaten fuehrenden turbulator
DE102014112004A1 (de) Mischereinrichtung
DE102008028625B4 (de) Verfahren zum Vermischen eines Abgasstromes
DE10324886B4 (de) Mischelement und statischer Mischer mit einer Anzahl derartiger Mischelemente

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005000780

Country of ref document: DE

Date of ref document: 20070712

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070711

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BALCKE-DUERR GMBH

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070830

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070402119

Country of ref document: GR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: BALCKE-DUERR GMBH

Effective date: 20070808

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2285577

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071030

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070530

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071201

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005000780

Country of ref document: DE

Owner name: HOWDEN ROTHEMUEHLE GMBH, DE

Free format text: FORMER OWNER: BALCKE-DUERR GMBH, 46049 OBERHAUSEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005000780

Country of ref document: DE

Representative=s name: LANG & TOMERIUS PATENTANWALTSPARTNERSCHAFT MBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005000780

Country of ref document: DE

Owner name: BALCKE-DUERR ROTHEMUEHLE GMBH, DE

Free format text: FORMER OWNER: BALCKE-DUERR GMBH, 46049 OBERHAUSEN, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: BALCKE-DUERR ROTHEMUEHLE GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: BALCKE-DUERR GMBH

Effective date: 20191205

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20191212 AND 20191218

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: BALCKE-DUERR ROTHEMUEHLE GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION; FORMER OWNER NAME: BALCKE-DUERR GMBH

Effective date: 20191029

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: BALCKE-DUERR ROTHEMUEHLE GMBH

Effective date: 20200204

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502005000780

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0005060000

Ipc: B01F0025400000

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: HOWDEN ROTHEMUEHLE GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: BALCKE-DUERR ROTHEMUEHLE GMBH

Effective date: 20230102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005000780

Country of ref document: DE

Owner name: HOWDEN ROTHEMUEHLE GMBH, DE

Free format text: FORMER OWNER: BALCKE-DUERR ROTHEMUEHLE GMBH, 57462 OLPE, DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: HOWDEN ROTHEMUEHLE GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: BALCKE-DUERR ROTHEMUEHLE GMBH

Effective date: 20221226

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: HOWDEN ROTHEMUEHLE GMBH

Effective date: 20230227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230106

Year of fee payment: 19

Ref country code: ES

Payment date: 20230201

Year of fee payment: 19

Ref country code: CZ

Payment date: 20230103

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230117

Year of fee payment: 19

Ref country code: PL

Payment date: 20230102

Year of fee payment: 19

Ref country code: IT

Payment date: 20230120

Year of fee payment: 19

Ref country code: BE

Payment date: 20230127

Year of fee payment: 19

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005000780

Country of ref document: DE

Representative=s name: MURGITROYD GERMANY PATENTANWALTSGESELLSCHAFT M, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240126

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240126

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240201

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240105

Year of fee payment: 20

Ref country code: DE

Payment date: 20240129

Year of fee payment: 20

Ref country code: CZ

Payment date: 20240105

Year of fee payment: 20

Ref country code: GB

Payment date: 20240129

Year of fee payment: 20