EP1680799B1 - Mikrowellenröhre mit geringer störstrahlung - Google Patents

Mikrowellenröhre mit geringer störstrahlung Download PDF

Info

Publication number
EP1680799B1
EP1680799B1 EP04741472A EP04741472A EP1680799B1 EP 1680799 B1 EP1680799 B1 EP 1680799B1 EP 04741472 A EP04741472 A EP 04741472A EP 04741472 A EP04741472 A EP 04741472A EP 1680799 B1 EP1680799 B1 EP 1680799B1
Authority
EP
European Patent Office
Prior art keywords
tube
microwave
collector
radial waveguide
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04741472A
Other languages
English (en)
French (fr)
Other versions
EP1680799A2 (de
Inventor
Claude THALES Intellectual Property BEARZATTO
Jean-Luc THALES Intellectual Property PIQUET
Daniel THALES Intellectual Property PLARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1680799A2 publication Critical patent/EP1680799A2/de
Application granted granted Critical
Publication of EP1680799B1 publication Critical patent/EP1680799B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/36Coupling devices having distributed capacitance and inductance, structurally associated with the tube, for introducing or removing wave energy
    • H01J23/54Filtering devices preventing unwanted frequencies or modes to be coupled to, or out of, the interaction circuit; Prevention of high frequency leakage in the environment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/16Circuit elements, having distributed capacitance and inductance, structurally associated with the tube and interacting with the discharge

Definitions

  • the invention relates to microwave tubes including klystrons or TOP (traveling wave tubes).
  • the figure 1 represents a simplified diagram of a microwave electron tube essentially comprising three main subassemblies an electron gun 12, a microwave structure 14 and a collector 16.
  • the electron gun 12 comprises a cathode 18 generating an electron beam 20 in the microwave structure 14 where the interaction occurs between the electron beam 20 and an electromagnetic wave created in the microwave structure. More precisely, the electron beam transfers part of its energy to the electromagnetic wave.
  • the collector 16 thermally dissipates the kinetic energy of the electrons of the beam 20 remaining after interaction with the electromagnetic wave.
  • the electrons emitted by the cathode are accelerated under a voltage Vo applied between cathode and the anode of the tube and are characterized by a current la.
  • the microwave structure is composed of resonant cavities and sliding tubes in the case of klystrons and a helix or coupled cavities in the case of a TOP.
  • the microwave structure of the TOP comprises an input window 22, on the side of the barrel of the tube, for injecting the power to be amplified Pe into the structure and an output window 24, on the side of the collector, to extract the amplified output power Ps. .
  • These input and output windows are dielectric devices, often alumina, which transmit, almost without losses, in the operating frequency band of the tube, the input microwave power Pe, inward of structure, and the output power Ps, to the outside of the structure, as appropriate, while the inside of the vacuum tube insulator (residual pressure ⁇ 10 -7 Torr) to the outside atmosphere.
  • a magnetic circuit 40 (see figure 1 ) surrounding the microwave structure 14 comprising an electromagnet or permanent magnets associated with polar parts for driving the magnetic flux at the electron beam 20 which, thus, is focused that is to say maintained at a small diameter and substantially constant.
  • This magnetic circuit is external to the vacuum chamber of the tube except sometimes some polar parts.
  • An ion pump 42 indicated on the figure 1 , serves to maintain the vacuum inside the tube; it is not always necessary.
  • the collector 16 is a hollow cylinder, as indicated in figure 1 .
  • the electrons of the beam bombard the inner walls 44 of the collector 16, which heat up.
  • the heat is then discharged through the outer walls of the collector which are cooled according to the power densities considered by forced air, by circulation of water, by radiation.
  • the collector is at the potential of the body of the structure 14 of the tube, that is to say of the mass, the cathode being at potential-Vo.
  • the collector 16 can be directly attached to the body 14 as indicated in FIG. figure 1 .
  • the collector can also be electrically isolated from the body, but connected to the body by an external electrical connection.
  • the figure 2 shows a partial view of a TOP having a microwave structure 50 having coupled cavities 52 and a manifold 58 attached to the microwave structure 50 electrically isolated from the body of the tube, and in particular an upper pole piece 60, by a directory insulator 62
  • the collector is isolated from the body by the insulator 62 for example ceramic, often alumina (see figure 2 ).
  • the figures 3a and 3b schematically represent the electrical connections of different tube elements of the figure 1 , with the Al 70 power supplies. It is the body of the tube which, generally, is directly connected to the mass M or to the ground, and this for practical reasons, because it is connected naturally to the external installation by the guides. of input and output waves, often by the armature of the electromagnet, and sometimes by the tuning systems of the cavities, thermal probes.
  • the hydraulic connections of the collector when they exist, must then be sufficiently insulating to force the current Icoll not to borrow them as a return path to the + pole of the power supply, via the mass.
  • this 60-collector body isolation 58 appears, from the microwave point of view, as a true radial line, itself composed of several lines of different impedances Z1, Z2, ... Zi in series.
  • the figure 4 shows a detail view of the space Gd of connection between a body 80 and the collector 82 of a microwave tube.
  • This space is presented as a series of impedance lines Z1, Z2, Z3 in series between the inside and the outside of the tube.
  • the value of these impedances is related to the geometrical characteristics (h, d %) of the lines and the presence or absence of ceramic insulator ( ⁇ o, ⁇ ).
  • the presence of electromagnetic energy at the manifold inlet may be due to leakage from the exit cavity (or propeller), although the sliding tube connecting it to the collector is at the cutoff at the operating frequency F and, generally, at 2.F. But this tube is often too short thus allowing transmission by evanescent mode.
  • This electromagnetic energy can also come from one of the many resonances of the collector excited at F, 2.F ... by the electron beam, still a little modulated.
  • the radial guide can bring back to the level of the electron beam a Zed impedance sufficient for the beam, still a little modulated, to yield microwave energy, at a low level, not negligible, which is then radiated outwards via the radial guide between body and collector.
  • the specifications often impose a very low level of microwave leakage, for example Pr ⁇ 0.1 mw / cm 2 at 10 cm from any outside surface of the tube.
  • the problem is therefore to minimize the parasitic radiated power Pr, which comes from the inlet of the collector via the body / collector isolation, similar to a radial guide.
  • the invention proposes a microwave tube comprising an electron gun generating an electron beam in a cylindrical microwave structure of the tube, the microwave structure providing at an output a microwave wave, an electron collector of the beam comprising at least one electrode being mechanically connected to the microwave structure by a dielectric, the mechanical connection forming a radial wave propagation guide parasitic microwave radiation of the tube, characterized in that that, in order to attenuate the spurious radiation of the tube, the radial guide comprises at least one quarter-wave microwave trap having, at least the operating frequency F of the tube, an open circuit for the microwave wave propagating in said guide radial propagation of parasitic radiation.
  • ⁇ / 4 traps at the radial guide appearing in the mechanical connection between the body of the tube containing the microwave structure and the collector.
  • These guides are those used, for example, on the connecting flanges of the waveguides or in the mounting of antennas or detector crystals.
  • the radial guide comprises a microwave trap at the operating frequency F of the tube having a collinear cylindrical groove with the axis of revolution ZZ 'of the tube opening into said radial connecting guide of the tube. body with the manifold of the tube.
  • the radial guide comprises another microwave trap at the frequency 2.F having another collinear cylindrical groove with the axis of revolution ZZ 'of the tube opening into said radial guide. connecting the body with the tube collector.
  • collectors depressed depressed collectors in English
  • collectors in English is mainly applied to the TOP cooled by air or radiation. It allows a significant increase in efficiency by reducing the power dissipated, equal to Vo.lo without depressed collector, as we have seen previously.
  • the proposed invention applies to all types of collectors, in particular between the different electrodes of the "depressed” type collectors, comprising a plurality of mechanically connected electrodes, each connection between two consecutive electrodes forming a radial guide for propagating microwave radiation.
  • parasites (Pr) of the tube in addition to the microwave trap between the body and a first electrode, and to attenuate the spurious radiation of the tube, the radial guide between two consecutive electrodes comprises at least one microwave quarter-wave trap having, at least the operating frequency F of the tube, an open circuit for the microwave wave is propagating in said radial guide propagation parasitic radiation.
  • Pr parasites
  • the following presentation will refer to a collector "not depressed", that is to say, standard, for the sake of simplification of the presentation.
  • the figure 5a represents a simplified partial sectional view, along a plane passing through the axis ZZ 'of revolution of the microwave structure of the tube, of the connection zone between a body 90 and a collector 92 of a microwave tube.
  • the collector 92 is mechanically connected to the body of the tube containing the microwave structure by an insulator 94.
  • the electron beam 20 at the output of the microwave structure penetrates, along the axis ZZ ', through an opening 95 in the collector and then dissipates thermally by striking the inner walls 96 of the collector (lines el).
  • the space Gd between the body 90 and the collector 92 behaves, as has been said previously, as a line or radial radial guide.
  • This space is presented in the figure 5a as a toric shape volume of very small thickness between a face 100 of the body and a face 102 of the collector spaced apart by the insulator 94.
  • the figure 5b shows a first realization of a microwave trap of a microwave tube according to the invention.
  • the wavelength ⁇ g in the radial guide depends on the portion of the guide considered, and in particular, the radial abscissa r with respect to the axis ZZ 'of the tube.
  • the widths of the guides represented respectively by the width Ed of the groove, (distance ab on the figure 5b ) and the thickness Eg of the radial guide (distance bc) are infinitely small in front of the lengths of these same guides: the position of the open circuit "brought back" (infinite impedance) is then poorly defined, and the electromagnetic waves can then cross partially the trap thanks to the local presence of higher order modes. Therefore, the Ed and Eg widths should be as small as possible to have the best possible blocking of the parasitic radiated power
  • the electron beam is modulated not only at the operating frequency F of the tube but also, to a lesser extent, at 2.F and beyond, it being understood that at 3.F, 4.F ... this modulation is completely negligible.
  • any power at 2.F frequency will also be blocked and can not radiate outside the tube.
  • the voltage Ved may be such that it reflects electrons to the microwave structure then producing parasitic modulations and oscillations.
  • This length d1 or “ce” in the figure 5b is such that the open circuit at the groove 104 in “cb” is reduced to the level of the inlet of the guide, in "de” in a short circuit.
  • the base of the collector 92 is machined, so as to create one or more "quarter-wave" grooves or traps that bring fictitious open circuits across the radial guide formed by the isolation body 90 collector 92.
  • These circuits fictional openers prevent much of the power to pass from the inside of the tube to the outside and therefore blocks any parasitic radiation.
  • the figures 6 and 7 show respectively partial views of the connection zone between the body 110 and the collector 112 of a tube without microwave traps and the same tube connection zone made according to the invention comprising two traps having two grooves 114, 116 respectively for the frequencies F and 2.F.
  • This is usually vacuum, but the grooves can also be filled with reduced dielectric constant dielectric, ⁇ r (> 1).
  • FIG. figure 5d we can place the insulation 62 of the figure 2 or the insulation 94 of the figure 5b , ie the insulation connecting the body to the collector (or connecting two electrodes of an isolated collector), closer to the axis ZZ ', so that one or more grooves are no longer under empty, as in the case of figure 5b but in the air.
  • the dielectric constant of the air being practically that of the vacuum, this arrangement does not change the invention, but is a technological variant.
  • the figure 8a shows a mounting for measuring the radiated parasitic power in the connection zone between the body and the collector of a tube according to the invention.
  • the assembly comprises a body 120 and a collector 122 separated by an insulator 124.
  • the collector comprises a first groove 126 for the operating frequency F of the tube and a second groove 128 for the frequency 2.F, the grooves being coaxial with the axis ZZ 'of the tube.
  • the inner diameters of the body 120 and the collector 122 have a diameter D of 33 mm.
  • the distance Dcc separating the body from the collector is 5 mm.
  • depth P2 7.65 mm.
  • a microwave signal Pe is injected by an emitter 130 at the axis ZZ 'of the tube, into the collector body coupling zone, a probe 132 is placed outside the tube at the connection zone to measure the radiated parasitic power Pr.
  • the figure 8c shows the same measurements with the same tube the figure 8a tube, the manifold having a single groove 126 for trapping the frequency F.
  • the invention in addition to the significant attenuation of parasitic radiation, has the advantage of easy disassembly of the body collector of the tube, which is not the case of the embodiments of the tubes of the state of the art using insulating resins to mechanically fasten the collector to the body of the tube at the output of the microwave structure.

Landscapes

  • Microwave Tubes (AREA)
  • Particle Accelerators (AREA)

Claims (9)

  1. Höchstfrequenzröhre, die eine Elektronenkanone (12) aufweist, die einen Elektronenstrahl (20) in einer zylindrischen Höchstfrequenzstruktur (14, 50) der Röhre erzeugt, wobei die Höchstfrequenzstruktur an einem Ausgang eine Höchstfrequenzwelle liefert, wobei ein Kollektor (16, 58, 82, 92) von Elektronen des Strahls mindestens eine Elektrode aufweist, die mechanische mit der Höchstfrequenzstruktur über ein Dielektrikum (62, 94) verbunden ist, wobei die mechanische Verbindung eine radiale Ausbreitungsführung von störenden Höchstfrequenzstrahlungen (Pr) der Röhre bildet, dadurch gekennzeichnet, dass zum Dämpfen der Störstrahlungen der Röhre die radiale Führung mindestens eine Viertelwellen-Höchstfrequenzfalle aufweist, die mindestens auf der Betriebsfrequenz F der Röhre einen offenen Schaltkreis für die Höchstfrequenzwelle aufweist, die sich in der radialen Führung zur Ausbreitung von Störstrahlungen ausbreitet.
  2. Höchstfrequenzröhre nach Anspruch 1, dadurch gekennzeichnet, dass sie eine Höchstfrequenzfalle auf der Betriebsfrequenz F der Röhre aufweist, die eine zylindrische Rille (104, 114) kolinear zur Drehachse ZZ' der Röhre hat, die in der radialen Führung zur Verbindung des Körpers (90) mit dem Kollektor (92) der Röhre mündet.
  3. Höchstfrequenzröhre nach Anspruch 2, dadurch gekennzeichnet, dass sie eine weitere Höchstfrequenzfalle auf der Frequenz 2.F aufweist, die eine weitere zylindrische Rille (108, 116) kolinear mit der Drehachse ZZ' der Röhre hat, die in der radialen Verbindungsführung des Körpers mit dem Kollektor der Röhre mündet.
  4. Höchstfrequenzröhre nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Kollektor (96) eine Rille (104, 114) von Kreisform um die Achse ZZ' mit rechteckigem Querschnitt und einer Tiefe gleich λ/4 aufweist, wobei die Rille mit einer Seite in die radiale Führung (Gd) mündet, wobei λ = c/F die Wellenlänge auf der Betriebsfrequenz F der Röhre ist, wobei die Rille in einem Abstand d1 von der Stelle mündet, wo die radiale Führung auf der Seite der inneren Öffnung (95) des Kollektors (92) mündet, derart, dass: d 1 = λg / 4 + k λg / 2
    Figure imgb0008
    - wobei λg die Wellenlänge in der radialen Führung ist
    - k eine Zahl ungleich Null oder eine ganze Zahl ist
    - c die Lichtgeschwindigkeit im betrachteten Medium ist.
  5. Höchstfrequenzröhre nach Anspruch 2, dadurch gekennzeichnet, dass der Kollektor (92) eine zweite Rille (108, 116) von Kreisform um die Achse ZZ' mit rechteckigem Querschnitt und einer tiefe gleich λ/8 aufweist, die auf einer Seite der Nut in die radiale Führung mündet, wobei die zweite Rille sich in einem Abstand d2 von der Stelle d befindet, wo die radiale Führung auf der Seite der inneren Öffnung (95) des Kollektors (92) mündet, derart, dass: d 2 = λʹg / 4 + . λʹg / 2 ,
    Figure imgb0009
    mit k' einer ganzen Zahl,
    wobei λ'g die Wellenlänge in der radialen Führung (Gd) auf der Frequenz 2.F ist.
  6. Höchstfrequenzröhre nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die Führung in Höhe ihres Eingangs in "ed" eine Impedanz Null oder von sehr geringem Wert (Ved # 0) hat.
  7. Höchstfrequenzröhre nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Kollektor vom Typ "abgesenkter Kollektor" ist, der mehrere mechanisch verbundene Elektroden aufweist, wobei jede Verbindung zwischen zwei aufeinanderfolgenden Elektroden eine radiale Führung der Ausbreitung von störenden Höchstfrequenzstrahlungen (Pr) der Röhre bildet, dadurch gekennzeichnet, dass zum Dämpfen der Störstrahlungen der Röhre die radiale Führung zwischen zwei aufeinanderfolgenden Elektroden mindestens eine Viertelwellen-Höchstfrequenzfalle aufweist, die auf mindestens der Betriebsfrequenz F der Röhre einen für die Höchstfrequenzwelle offen Schaltkreis, die sich in der radialen Führung zur Ausbreitung von Störstrahlungen ausbreitet.
  8. Höchstfrequenzröhre nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass die Rillen mit Dielektrikum einer reduzierten Dielektrikumskonstante εr(>1), λ, sowie die Länge der Rillen, die reduziert ist im Verhältnis der Quadratwurzel von εr bezüglich des Falls, in dem die Rillen in Vakuum sind.
  9. Höchstfrequenzröhre nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass eine oder mehrere Rillen in der Luft sind.
EP04741472A 2003-05-06 2004-04-16 Mikrowellenröhre mit geringer störstrahlung Expired - Lifetime EP1680799B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0305509A FR2854728B1 (fr) 2003-05-06 2003-05-06 Tube hyperfrequence a faible rayonnement parasite
PCT/EP2004/050557 WO2004100204A2 (fr) 2003-05-06 2004-04-16 Tube hyperfrequence a faible rayonnement parasite

Publications (2)

Publication Number Publication Date
EP1680799A2 EP1680799A2 (de) 2006-07-19
EP1680799B1 true EP1680799B1 (de) 2009-12-02

Family

ID=33306183

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04741472A Expired - Lifetime EP1680799B1 (de) 2003-05-06 2004-04-16 Mikrowellenröhre mit geringer störstrahlung

Country Status (5)

Country Link
US (1) US7459855B2 (de)
EP (1) EP1680799B1 (de)
JP (1) JP4499093B2 (de)
FR (1) FR2854728B1 (de)
WO (1) WO2004100204A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103021770A (zh) * 2011-09-22 2013-04-03 中国科学院电子学研究所 一种内反馈式太赫兹行波管振荡器
CN103311076A (zh) * 2013-05-08 2013-09-18 电子科技大学 一种行波再生反馈振荡系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2853644A (en) * 1956-07-30 1958-09-23 California Inst Res Found Traveling-wave tube
US3780336A (en) * 1972-08-24 1973-12-18 Varian Associates High power beam tube having depressed potential collector containing field-shaping probe
JPS52107762A (en) * 1976-03-08 1977-09-09 Nec Corp Straight beam microwave electronic tube
US4233539A (en) * 1979-03-05 1980-11-11 Varian Associates, Inc. Electron tube with reduced secondary emission
US4393332A (en) * 1980-09-05 1983-07-12 Varian Associates, Inc. Gyrotron transverse energy equalizer
JPS58114501A (ja) * 1981-12-26 1983-07-07 Toshiba Corp 高周波伝送路
FR2643507A1 (fr) * 1989-02-21 1990-08-24 Thomson Tubes Electroniques Canon a electrons a faisceau electronique module par un dispositif optique
JP2005093176A (ja) * 2003-09-16 2005-04-07 Nec Microwave Inc 進行波管

Also Published As

Publication number Publication date
US7459855B2 (en) 2008-12-02
WO2004100204A2 (fr) 2004-11-18
FR2854728A1 (fr) 2004-11-12
JP4499093B2 (ja) 2010-07-07
WO2004100204A3 (fr) 2008-07-03
US20070046384A1 (en) 2007-03-01
FR2854728B1 (fr) 2005-07-29
EP1680799A2 (de) 2006-07-19
JP2007527092A (ja) 2007-09-20

Similar Documents

Publication Publication Date Title
EP3171451B1 (de) Räumlicher leistungskombinator
EP0426972A1 (de) Ebene Antenne
EP0013242A1 (de) Generator für elektromagnetische Wellen sehr hoher Frequenz
EP0248689A1 (de) Mehrstrahlklystron
EP1095390B1 (de) Mehrstrahlelektronenröhre mit magnetischem strahlenbahnkorrekturfeld
EP0296007B1 (de) In Flüstergalerie-Modi angeregter Mikrowellenresonator
EP1680799B1 (de) Mikrowellenröhre mit geringer störstrahlung
FR2691286A1 (fr) Tube d'amplification haute fréquence à pièces polaires d'un seul tenant pour des ondes millimétriques et son procédé de fabrication.
US20210159040A1 (en) THz Vacuum Electronic Devices With Micro-Fabricated Electromagnetic Circuits
EP0251830B1 (de) Mehrfachstrahl-Lasertron
FR2813995A1 (fr) Coupleur directionnel, dispositif d'antenne et systeme de radar
EP0038249A1 (de) Mehrstufenkollektor mit erniedrigtem Potential für eine Mikrowellenröhre
EP1466343B1 (de) Elektronenröhre mit einer vereinfachten kollektoranordnung
EP0128798B1 (de) Abstimmbare selektive Einrichtung mit magnetostatischen Volumenwellen
FR2694447A1 (fr) Canon à électrons pour fournir des électrons groupés en impulsions courtes.
EP0122186B1 (de) Mikrowellenerzeuger
FR2472850A1 (fr) Procede de realisation par soudage de guide d'ondes pour transmission de puissances radioelectriques elevees
FR2691287A1 (fr) Nouveau circuit de sortie à interaction étendue pour un klystron relativiste large bande.
EP1251544B1 (de) Mirkowellenverstärker-Elektronenröhre mit miniaturisierter Eingangssteckanordnung und Verfahren zur Herstellung
FR2789800A1 (fr) Generateur radiofrequence de tres grande puissance
EP4036954A2 (de) Wanderfeldröhre
FR2688342A1 (fr) Tube electronique hyperfrequence.
EP2743962A2 (de) Hyperfrequenzwellengenerator und entsprechendes Wellenerzeugungsverfahren
FR2668297A1 (fr) Collecteur pour tube hyperfrequence et tube hyperfrequence comportant un tel collecteur.
FR2810788A1 (fr) Tube hyperfrequence de puissance a large bande

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051201

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

RIC1 Information provided on ipc code assigned before grant

Ipc: H01J 23/16 20060101ALI20080804BHEP

Ipc: H01J 23/54 20060101AFI20080804BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100325

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100903

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110416