EP1663791B1 - Procede et dispositif d'etiquetage - Google Patents

Procede et dispositif d'etiquetage Download PDF

Info

Publication number
EP1663791B1
EP1663791B1 EP04764782A EP04764782A EP1663791B1 EP 1663791 B1 EP1663791 B1 EP 1663791B1 EP 04764782 A EP04764782 A EP 04764782A EP 04764782 A EP04764782 A EP 04764782A EP 1663791 B1 EP1663791 B1 EP 1663791B1
Authority
EP
European Patent Office
Prior art keywords
label
label web
movement
phase
profile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04764782A
Other languages
German (de)
English (en)
Other versions
EP1663791A2 (fr
Inventor
Roger Thiel
Thomas Osswald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Herma GmbH
Original Assignee
Herma GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34441806&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1663791(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Herma GmbH filed Critical Herma GmbH
Publication of EP1663791A2 publication Critical patent/EP1663791A2/fr
Application granted granted Critical
Publication of EP1663791B1 publication Critical patent/EP1663791B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65CLABELLING OR TAGGING MACHINES, APPARATUS, OR PROCESSES
    • B65C9/00Details of labelling machines or apparatus
    • B65C9/40Controls; Safety devices
    • B65C9/42Label feed control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1082Partial cutting bonded sandwich [e.g., grooving or incising]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1084Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing of continuous or running length bonded web
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/17Surface bonding means and/or assemblymeans with work feeding or handling means
    • Y10T156/1702For plural parts or plural areas of single part
    • Y10T156/1744Means bringing discrete articles into assembled relationship
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/17Surface bonding means and/or assemblymeans with work feeding or handling means
    • Y10T156/1702For plural parts or plural areas of single part
    • Y10T156/1744Means bringing discrete articles into assembled relationship
    • Y10T156/1768Means simultaneously conveying plural articles from a single source and serially presenting them to an assembly station

Definitions

  • the invention relates to a method for moving a label strip and an arrangement for moving a label strip according to the preamble of claim 18 and as known from the US 4,294,644 A ,
  • Known methods for moving a label tape operate in the manner of a controller, i. one uses a label sensor, which is mounted at a certain point of a labeling, preferably very close to the point where the labels are donated. This position is determined empirically by the adjuster of the machine. If a label comes to this sensor, this generates a pulse, which is then used to turn off the drive.
  • this object is achieved by the method according to claim 1.
  • the target position at which the movement is to be completed redefined with the engine running. This happens e.g. in that at the given location a defined residual path, also known as the overtravel, is entered as the target position in the controller.
  • This residual path is usually defined by the user, e.g. 13 mm from a certain physical feature of a label or carrier tape, for example, from an edge, a hole, a marker, etc.
  • the label tape then moves after passing through the predetermined location still 13 mm and stops after these 13 mm, and this distance from 13 mm, the label is kept unchanged after the label.
  • the object is achieved by an arrangement according to claim 18.
  • Such an arrangement allows - by the exact specification of the residual path - even then a very precise labeling, if by fluctuations in production, change in humidity, etc. the label division varies slightly.
  • Fig.1 shows a plan view of a label tape 20
  • Fig. 2 shows this band in side view.
  • the dimensions in height direction are extremely exaggerated to allow a better understanding of the invention.
  • the label tape 20 has in Fig. 2 Below a carrier tape 22, usually made of paper, on his in Fig. 2 upper side with a Descosiven layer 24, usually made of silicone, is provided. On the layer 24 25 self-adhesive labels 26 are adhered by means of a pressure-sensitive adhesive layer. These have a label length EL, which can be between a few millimeters and hundreds of millimeters. It is obvious that the labeling performance of short labels may be higher than that of long labels.
  • the direction of movement of the label tape 20 is denoted by 29, and the front in the direction of movement label edges 27. Since label tape 20 and carrier tape 22 - are identical except for the presence or absence of labels 26, hereinafter the expression "the band 20 / 22 "used.
  • a gap 28 which is formed in the manufacture by peeling off a so-called "web” of label material, which is why the width of the gap 28 is also referred to as web width SB.
  • SB usually has a value between 1 and 10 mm.
  • the label web 20 to a dispensing edge 30, also called release edge pulls there solves a label 26 of the carrier web 22 and can be taken over eg by a suction plate and transferred to a box to be labeled.
  • the detached label can also be applied directly to an article P ( Fig. 3 ) are applied, as is known in the art.
  • Fig. 3 shows a preferred embodiment of a labeling device 40 according to the invention.
  • This has a table 42 with the dispensing edge 30.
  • the dispensing edge 30 may optionally also be movable, see. the European patent 0248375 HERMA GmbH.
  • the label tape 20 is pulled in the manner shown to the dispensing edge 30 and deflected there.
  • the foremost label 26 is detached from the carrier tape 22 and taken over, for example by a (not shown) suction plate or donated directly in the so-called incidental to a passing article P, which is to be labeled.
  • the suction plate is used to transfer the sucked label on a fixed object, for example, a can, a carton, or the like.
  • a label sensor 44 whose function it is, when, for example, during the movement of the label strip 20, a leading edge 27 (FIG. Fig. 2 ) of a label 26 passes the sensor 44 to generate a signal which triggers an interrupt, the function of which follows at Fig. 12 is described.
  • This can be any suitable sensor, for example an optical sensor, or an electrically or mechanically operating sensor, as is known to the person skilled in the art.
  • a labeling unit 46 is attached.
  • a (described below) computer 116 for controlling the labeling process
  • an electronically commutated internal rotor motor 80 (FIG. Fig. 4 ) with a very low axial moment of inertia, the entire power supply, EMC filter, and commutation electronics, as described in detail below.
  • the labeling unit 46 can be connected directly to the mains via a mains cable 48 and requires no further switch cabinets or the like, which greatly simplifies installation and application.
  • a supply roll 52 is hinged to the device 46 with label strip 20 rotatable.
  • the latter is guided by the supply roll 52 via a deflection roller 54 and a pendulum arm 56.
  • the latter has a low-curvature guide surface 58 and has the function of absorbing impacts in the label tape 20 which are unavoidable because of the high achievable tape speeds of over 100 m / min.
  • the unwinding roller 52 can also be driven by a (not shown) electric motor whose speed is controlled by the position of the pendulum arm 56. This facilitates the regulation.
  • a loop can be provided between the supply roll 52 and a band brake 60, where the label tape, for example by a Vacuum, and by means of an optical loop query, is kept at a predetermined length, so that it is supplied to the band brake 60 with a constant tensile stress.
  • This solution is particularly suitable for belt speeds greater than 80 m / min.
  • Corresponding "loop pre-rollers" are offered by HERMA GmbH.
  • the label tape 20 runs to a band brake 60, the function of which is to keep the band 20 between this brake 60 and the release edge 30, and all the way to the transport roller 62 in a tensioned state.
  • the band brake 60 generally acts as a damping for the control system used. From the brake 60, the label tape 20 passes over the table 42 to the detaching edge 30, where in operation the labels 26 are successively detached one by one, and the carrier tape 22 (without the labels 26) passes under the table 42 to a transport roller 62, which of the Motor 80 via a gear 83 ( Fig. 17 ) is driven.
  • the carrier tape 22 is pressed by a pressure roller 64 against the transport roller 62 in order to transmit all movements of the transport roller 62 to the carrier tape 22.
  • the carrier tape 22 runs to a pendulum lever 66, which serves to compensate for shocks in the carrier tape 22, and from the pendulum lever 66 it continues to a carrier tape take-up roller 68, which in turn is attached via a support arm 70 on the device 46 and together forms a compact unit with this.
  • the take-up roller 68 can be driven by a separate motor, which is not shown.
  • a product detection sensor 72 which is connected via a line 74 to the device 46 and which provides a start pulse when a product P moves past this sensor 72. This start pulse then triggers a labeling process, as is known in the art.
  • Fig. 4 shows a preferred embodiment of the basic structure of the electrical part of the labeling device 46.
  • This uses a three-stranded, electronically commutated internal rotor motor 80, which is coupled to an encoder 82 for generating position signals. From these position signals, for example, 10,000 pulses per revolution can be derived.
  • the motor 80 drives the roller 62 of the Fig. 3 via a gear 83, the in Fig. 17 and 18 is shown.
  • One revolution of the motor 80 corresponds in the embodiment about a transport path of the belt 22 of 50 mm.
  • the motor 80 has a commutation controller 84, here with an IGBT power amplifier 86, which is also in Fig. 19 is shown, driver stages 88 and a control via Optocoupler 90, to obtain a galvanic isolation from the low voltage part. This is necessary because the motor 80 preferably operates with a relatively high operating voltage (rectified voltage of the local AC or three-phase network).
  • the control of the commutation at start in the usual way via (not shown) Hall sensors, which are installed in the encoder 82. Via a line 91, the commutation controller 84 is supplied in a known manner, a PWM signal, in particular for current limiting.
  • the motor 80 is powered from an AC or three-phase network 92 with energy. This is done to avoid EMC interference through a line filter and distribution board 94. This has as usual fuses 96, inductors (inductors) 98, and capacitors 100. At the output 102 of the board 94 is a DC link 106 via a rectifier arrangement 104th connected, the smoothing capacitors 108 and a short circuit detection 110 are assigned.
  • the DC link 106 feeds the motor 80 via the final stage 86 (in the form of a three-phase full bridge, often referred to as an inverter - "PWM Inverter").
  • the voltage across it depends on the voltage on the network 92, e.g. between 85 and 265 V AC, or in a DC range of 120 to 375 V. Further, the voltage at the motor 80 is dependent on a PWM signal which is generated by a DSP 116 and supplied via a line 91.
  • the current in two of the three phases of the motor 80 is detected via current transformers 112, 114, amplified to a desired level via two operational amplifiers 113, 115, and supplied to the digital signal processing assembly 116, preferably a 16-bit digital signal processor (DSP). , eg Type 2407, in which a motor control and a single-axis positioning system are integrated. Because of its high processing speed of e.g. 40 MIPS allows this DSP 116 in the context of the invention, a particularly high labeling accuracy at high Etikettier als, but of course other processors are used in the invention.
  • DSP digital signal processor
  • the DSP 116 is also supplied with the output pulses of the encoder 82 via a RS 485 module 118 and a CPLD member 120, whereby a position and a speed control are possible.
  • the CPLD member 120 (complex programmable logic device) is used here for decoding the serial signals from the encoder 82.
  • a current control and - limitation are possible, which is a startup of the motor 80 with a start ramp predetermined slope ⁇ 1, as well as a braking operation with a predetermined ramp steepness ⁇ 2, so given braking torque.
  • the DSP 116 delivers the signals for the commutation controller 84, as well as the PWM signals at the Line 91.
  • the DSP 116 resides on its own board 124, which also houses an I / O interface 126, a temperature sensing sensor 128 on the board 124, an EEPROM 130 for storing a program (possibly modifiable), a RAM 132 as Intermediate memory for arithmetic operations, and a reset IC 134 are located.
  • the latter serves to supply a defined signal level to the reset input of the DSP 116 when the power supply is switched on and off, thereby ensuring safe booting (starting up) and shutdown of the DSP 116.
  • a communication module 136 which serves for the connection between the DSP 116 and the outside world. This is connected to the DSP 116 via the I / O interface 126. It has a QEP interface 138 for connection to an external master encoder 140, e.g. in the labeling of bottles controls both the movement of the bottles as well as the synchronous operation of the labeling 46 at the same time.
  • the start sensor 72 has a dead time, which leads to different positions of the labels 26 when the speed of the product P is changed.
  • a start compensation of this dead time in the form of a path is calculated on the basis of a dead time to be entered and the current speed of the products P. This also works if there are several start signals and these have to be processed consecutively due to a long start delay. Then a corresponding compensation is calculated for each of these start signals so that the labels 26 are always applied to the products P at the same location.
  • the master encoder 140 preferably uses two tracks A and B, which are supplied to the profile generator 220 as input variables. From the sequence of these pulses, a signal for the direction of rotation of the motor 80 can be calculated in a known manner. Furthermore, a parameter "gear ratio" is generated, which can be positive or negative. From the frequency of the pulses, the information about the direction of rotation, as well as the parameter "gear ratio", a reference variable for the position control is generated, which reference variable is usually not constant, but changes in operation.
  • the reference size can be positive or negative for the following reason: There are labeling machines where the table 42 protrudes to the left as in Fig. 3 represented, so that the label tape 20 must be transported to the left. But there are also labeling, in which the table 42 projects to the right and thus the label tape 20 must be transported to the right. This is indicated by the sign (+ or -) of the reference size.
  • the incoming from the product recognition sensor 72 pulses are disabled to avoid driving the label tape 20 in the wrong direction.
  • the device 136 has an analog interface 142, to which potentiometers 144, 145, 147 can be connected, with which the user can adjust the speed of the labeling, the remaining distance (overrun) S2 (FIG. Fig. 5 to 7 ) and can set or fine-tune a start delay.
  • potentiometers are in Fig. 3 and 16 shown.
  • the device 136 has a serial RS 232 interface 146 for connection to a PC 148, an output interface 150 for connection to actuators (in particular pneumatic cylinders) 152, and an input interface 154 for connection to sensor devices 156, e.g.
  • a digital serial connection (not shown) to other devices of the same or similar type may also be provided, if so desired.
  • a block 160 is used to power the electronics.
  • the components which are surrounded by a dotted line 164, form the connection of the motor 80 to the outside.
  • the motor 80 is operated with a four-quadrant governor because it must be actively decelerated during a labeling operation, but with the possibility of reverse running inherent in a four-quadrant governor being suppressed, since a reverse drive need not occur in a labeling drive. (This would relieve the tension in the label tape and significantly disrupt the control processes.)
  • Fig. 3 . 17 and 19 show that the motor 80 is arranged in a tubular member 300, which is fixed to a housing wall 302 by means of screws 304, which also serve to attach the motor 80.
  • the component 300 is preferably an extruded aluminum profile, and it is on its in Fig. 19 left side by a solid lid 306 made of metal, eg aluminum, closed by means of screws 305 (FIG. Fig. 19 ) is attached to the part 300.
  • the lid 306 is a casting and serves as a heat sink and heat sink for a power module 81 that includes the final stage 86 and the intermediate circuit rectifier 104.
  • Fig. 19 shows more details.
  • the component 300 releases its heat partly to the housing wall 302, which also forms part of the (passive) cooling system.
  • the engine 80 in which a lot of heat is generated due to the high peak currents, this gives off to the part 300 and the housing wall 302. Naturally, the use of active cooling is not excluded.
  • the part 300 and its lid 306 together form a kind of cap 307, also referred to as "scoop", which receives the motor 80 and the essential part of its electronics.
  • the screed 307 acts not only as a dust-tight closed container for these parts, but also as a heat sink, which allows an extremely compact design, because external control cabinets can be omitted mostly. This also simplifies the installation, because you only have to set up the device 46 and connect to the network 92. It also facilitates explosion protection and protection against moisture, e.g. against cleaning fluid of high-pressure cleaner.
  • This design is advantageous because it succeeds to encapsulate the entire labeling device 46 in a liquid-tight manner, so that it can be used e.g. can be cleaned with a high-pressure cleaner.
  • such devices are preferably dustproof in order to reduce the risk of explosion and this is made very easy by the invention.
  • Fig. 5 to 7 show in a highly schematic representation processes during donation of a label 26v on a sucker 170, which is used in this variant, after donating the donated label to transfer to a stationary product P, for example, on a box, a package or the like.
  • FIGS. 5, 6 and 7 show schematically the same dispensing edge 30 and the same Label sensor 44.
  • the label tape 20 is pulled in the direction of the arrow 29 by the drive roller 62 driven by the motor 80. Since the drive roller 62 in a full revolution, the carrier tape 22, for example, transported by 50 mm forward, and since the transport path TW in a dispensing operation is often in the order of 10 to 200 mm, the processes described play mostly in the range of one to two revolutions the drive roller 62, which is connected via the gear 83 to the shaft of the motor 80, that is, the roller 62 is first accelerated according to a predetermined speed profile, then runs a bit at about a constant speed, for example, during 0.5 turns, and is then decelerated to zero according to a predetermined profile. For example, these processes may repeat 30 times within one second if thirty labels are dispensed within that second. These operations must be extremely precise, since the donated labels 26 must be placed precisely at the desired locations, with tolerances often in
  • Fig. 5 is the label tape 20 on the table 42 at rest. On it is a front label 26v and a rear label 26h.
  • the label sensor 44 is located on the label 26v at a location A that is a distance S2 from the leading edge 27 of the label 26v. After dispensing the label 26v, the label 26h must be under the label sensor 44, cf. Fig. 7 where it rests on a label A 'on the label 26h, which also has the distance S2 from the front edge 27 of the label 26h.
  • the point A ' should therefore correspond as exactly as possible to the point A, as the expert immediately understands.
  • the label tape 20 is transported in the direction of the arrow 29, whereby the front label 26v with its (in most cases) non-adhesive, upper side 26u is pushed onto the sucker 170 and sucked in by it.
  • this interrupt defines exactly one specific position of the front edge 27, and if one wishes to control the movement sequence in such a way that the motor 80 is stopped exactly when the label 26h has reached the label sensor 44 in its position A ', cf. Fig. 7 , must be between the leading edge 27 and this location A 'is the same distance S2 after each labeling operation, as in FIG Fig. 7 located.
  • a new destination information S2 is loaded into the computer 116.
  • This new destination information is more accurate than the one in the position according to Fig. 5 input destination information TW because TW is constantly subject to small fluctuations, which would cause the locations A, A ', etc. to "wander" to other locations on the labels 26 over time, ie the label would be offset.
  • an optical tag may be provided at a particular location on the label which is scanned in operation and then results in the described interrupt loading the value S2, or a hole can be punched in the label tape 20 and an interrupt triggered at that hole , Etc.
  • Another advantage is that the user can vary the path S2. This value determines the position of the points A, A 'on the labels 26 very accurately, i. you can change this position as you wish by changing S2, which will automatically change the location of the donated labels.
  • the labels 26 are manually removed, and the tape is inserted into the labeller.
  • the type of label is usually entered in the labeler, the data of which is stored in a format memory of the labeler (or can be stored) to allow easy conversion to other labels.
  • Speed V set Speed V set
  • Overrun (residual) S2 to Overrun (residual) S2 to
  • Start delay and when using the master encoder 140 for speed detection, the gear ratio (electronic gear).
  • the command is manually issued that the motor 80 is running, and this runs until the first label 26 reaches the sensor 44, and is decelerated to zero after passing the path S2.
  • Label length EL and label spacing SB are preferably continuously determined during operation and, if necessary, automatically corrected.
  • a key 99 (see FIG. Fig. 3 and 16 ), referred to as the "pre-load key”.
  • the labeling device can continue to work even if a label 26 on the label strip 20 is missing, because then no interrupt is generated by the sensor 44, but the computer in this Case with the size TW works, whereby the label tape 20 is stopped anyway in the vicinity of the positions A, A '. This is important because occasional labels may be missing due to production errors on a label tape. Also, splices in the label tape can lead to measurement errors. At a splice a second tape is glued to a first tape by means of a self-adhesive tape, and this self-adhesive tape increases by its presence the thickness of the label composite and therefore can lead to incorrect measurements.
  • the label strip is stopped every 42 mm so that all the labels in a printer are printed correctly and no labels can be labeled Item without a printed label leaves the labeling machine.
  • the label tape If it were possible for the label tape to continue running at a splice point and, for example, to stop again only after 84 mm, then a label would not be printed, but one could not avoid that this unprinted label subsequently being used for labeling. Especially when using a printer so is the This invention is of great advantage because it prevents objects from being labeled with unprinted labels.
  • Fig. 8 explains the invention with reference to a diagram in which for simplicity and as a donkey bridge the representation is to be thought that the label tape 20 is stationary and the label sensor 44 in the direction of an arrow 29 'from the left, namely a start position A, to the right to a Measuring position M and then moved to a target position A '.
  • the measuring position M corresponds in this embodiment preferably the front edge 27 of the label 26h, wherein, as already explained, other variants are possible.
  • Fig. 8 The representation after Fig. 8 is a special representation for movements and deviates strongly from the familiar.
  • the horizontal axis shows the time t
  • the lower part of the Fig. 8 shows the movement, but not in a linear scale.
  • V O.
  • the points A, M and A 'thus represent once certain points, the sensor 44 reaches in his - imaginary - movement from left to right, and on the other hand, they represent on the time axis, the times at which the sensor 44, these points A, M and A 'reached during his movement.
  • a surface 179 is intended to be the component of path S2 adjustable by the operator of the device. The operator can only change this part.
  • a subsequent area 181 represents a reserve in the event that the Labeling speed is increased, see. Fig. 10 ,
  • the surface 181 is adjoined on the right by a surface 185.
  • surface F184 lies under ramp 184.
  • the area under ramp 176 is designated F176.
  • the path S2soll corresponds to the area which is in Fig. 8 is graphically highlighted, that is, the sum of the areas 179, 181, 185 and F184, and with a change in the velocity V soll , the boundaries of these areas must be redefined by the DSP 116 so that their sum remains constant.
  • the profile S f (t) is given to the position controller 273 in the form of small steps, for example every 100 ⁇ s.
  • a command zBlauten "At the end of the next 100 ⁇ s, the label tape should have reached the position of 13.2 mm.”
  • the target position Z in the profile generator 220 which represents a variable, is corrected, so that the position controller 273 then receives correspondingly corrected values, as already described in detail.
  • the profile V f (t) is used to perform a labeling cycle as in Fig. 8 to create.
  • the increase of the speed V begins with a predetermined gradient ⁇ 1, namely the same as the travel curve in the profile generator PG 220 (FIG. Fig. 13 ) is stored.
  • a predetermined gradient ⁇ 1 namely the same as the travel curve in the profile generator PG 220 (FIG. Fig. 13 ) is stored.
  • the speed V increases until a speed V soll is reached, which can be specified by the user via an actuator, which is symbolized by an arrow 178.
  • the velocity V to determine the operating speed of the labeler. You can z. B. between 80 and 160 m / min. A value of 120 m / min corresponds to 2 m / s, and then per second about 10 to 30 labeling operations take place.
  • the label sensor 44 moves to the measuring position M, namely to the front edge 27 of the label 26h, and passing through this leading edge 27 causes a measurement interrupt at the point / time M.
  • the processor DSP 116 has reached a count S1ist corresponding to the actually traversed path S1.
  • the user-specified value S2 soll is added, which can also be referred to as the remaining path or the overrun path.
  • the value Z S ⁇ 1 is + S ⁇ 2 should is then used as a new target value Z (setpoint for the path up to point A ').
  • the Fig. 9 to 11 serve to explain the automatic adjustment of the profile by the profile generator 220 when the target speed V is changed.
  • Fig. 9 is a representation analog Fig. 8 , If the angles ⁇ 1 and ⁇ 2 are equal in magnitude, that is, the rising edge 176 has the same slope as the falling edge 184, the surface F184 (below the edge 184) complements the surface F176 (below the slope 176) into a rectangle, as symbolized by an arrow 183, and overall, in this simplified example, together with the rectangular area F180 (below the section 180), a rectangle with the height V soll and the length T is obtained, the length T is the time between leaving point A and reaching point 182 whose value on the time axis is designated 182 '.
  • This area corresponds to the dimension TW of Fig. 2 , ie the distance of the leading edges 27 of two consecutive labels 26th
  • the drive is set to a maximum speed Vmax, ie the rising edge 176 and the falling edge 184 are longer than in Fig. 9 ,
  • FIG 11 shows the analog case that the drive is set to the minimum speed Vmin.
  • the profile generator 220 calculates the profile that the set speed V soll , wherein the size T is calculated in the manner described prognostically.
  • the size T is usually only a fraction of a second because, for example, 30 labeling operations per second take place. This depends on the set speed V shall, as are indeed processed at low speed less labels per second.
  • a label 26 to be donated reaches the same speed as this item P has within a predetermined period of time so that the label will be "tacked” in place on that item, and subsequently the label is donated exactly with the speed of the passing product, so a good synchronization between product P and label 26 is ensured.
  • FIG. 12 is a flow chart showing the procedure of the routine CORR.Z (target correction) S200 which controls the speed profile of the motor 80.
  • step S202 it is checked whether a start signal from the sensor 72 (FIG. Fig. 3 ) is present. If not (N), the routine loops back to the beginning. If Yes (Y), the routine goes to step S204.
  • the values generated by profile generator 220 are based on stored value tables, and the profile generator calculates the motion profile therefrom.
  • the value Z corresponds to the sum (EL + SB) for the label tape 20 used in S204. (If necessary, one can also work with the multiple of (EL + SB) if no printer is provided on the labeler 46.)
  • the program goes to S210, where it is checked if the target position Z is reached.
  • step S206 If in S206 the answer is always no, for example because a label 26 is missing on the carrier tape 22 and consequently the label sensor 44 can not find a measuring point M and can not trigger an interrupt, the correction of the value Z does not take place in step S208 and the routine goes from S206 directly to S210, ie it continues to work with the target size Z from S204 and also checks in S210 whether Z is reached. If no, the routine also goes back to S206. If yes, go back to S202 and there will be one new start signal awaited.
  • the label tape 20 is nevertheless stopped at about the point A ', if in S204 the target size Z has been set to the sum (EL + SB) according to equation (1). This is especially important when the individual labels 26 are printed in the labeling, as in Fig. 16 is shown because in many cases, the carrier tape 22 must stand still for the pressure. If a label is missing, the stationary carrier tape 22 is printed in this case.
  • the routine S200 can contain plausibility checks, for example, for the value S2 will as described depending on the application.
  • Fig. 13 shows the associated control arrangement 218.
  • the profile generator PG which generates a velocity profile after input of data 222 (start command, slopes ⁇ 1, ⁇ 2, TW, V soll , etc), such as in Fig. 8 illustrated and explained.
  • the PG 220 is thus supplied with a target position Z, which at start can correspond to the value TW in accordance with equation (1), or possibly even a multiple of TW, if no printer 280 (FIG. Fig. 16 ) is provided.
  • the PG 220 At its output 221, the PG 220 generates a target path S to which a PI position control loop S-CTL 226 is supplied to a target actual value comparator 224th
  • the comparator 224 is supplied as a current size of the actual distance traveled by the label tape 20 path S ist , which is obtained by counting pulses 82 supplied by the encoder 82 in a counter 228. (The counter 228 may reside in the DSP 116.)
  • the value S is also supplied to a calculator 230.
  • Fig. 13 indicates that the encoder 82 in this example has a total of six outputs labeled A, A /, B, B /, X and X /. These are connected to a logical switching element 227, and their signals are evaluated there and processed into logic signals A1, B1 and X1, which in turn are fed to a converter 229, which from an output 231, a rotational position signal ⁇ is generated, the rotational position of Motors 80 displays. This signal is needed for the generation of a space vector.
  • the information from three Hall sensors is transmitted as a serial signal, which indicates the instantaneous position of the permanent magnetic rotor in the motor 80 even at a standstill.
  • the motor 80 runs in the embodiment in operation as so-called.
  • Sine motor ie as a three-phase motor with sinusoidal stator currents.
  • these sinusoidal currents can not be generated directly after switching on because they have a require very exact detection of the rotor position, which is not possible at standstill.
  • coarse information about the rotor position is available via the X-channel, so that the motor 80 can start in a mode as a brushless motor 80, for which a rough rotor position information is sufficient.
  • the motor 80 As soon as the motor 80 rotates sufficiently fast, it is switched to operation as a sine motor, because then the rotor position can be measured with a very fine resolution.
  • the signals A1 and B1 are supplied to a QEP unit 233 which is integrated into the DSP 116.
  • This increases the resolution of the encoder 82 by a factor of 4, that is, when the encoder 82 z. B. per revolution provides 2,500 pulses, one obtains at the output of the QEP unit 233 a number of 10,000 pulses per revolution. This gives a higher resolution and consequently a higher accuracy of the system. Of course, in some cases lower accuracy will suffice.
  • a speed signal n is obtained in the form of pulses 83 whose frequency is proportional to the instantaneous speed of the motor 80.
  • the pulses 83 are integrated in an integrator (counter) 228, so that at its output 237 a path signal S is obtained, which corresponds to the path traveled by the label tape 20 path.
  • Fig. 14 shows the different signals.
  • the signals A and A / are generated by a first signal track, the signals B and B / by a 90 ° el. Offset signal track.
  • the speed signal n is , as in Fig. 14 represented by differentiating the edges of the signals A /, B / generated.
  • the signal A1 corresponds to the signal A
  • the signal B1 corresponds to the signal B.
  • the phase shift between the signals A and B results in the direction of rotation of the motor 80, as is known to those skilled in the art.
  • the output of the comparator 234 is applied to a digital PI speed controller 238, at the output of which a control value is obtained, to which in an adder 240 the output of an FF-element 242 for the acceleration and an FF-element 244 for the speed V soll is added become.
  • FF Feed Forward
  • the element 244 receives its input signal from a differentiator 270, which serves to differentiate the setpoint positions supplied by the profile generator 220 at its output 223 in time, ie to form a speed setpoint dS soll / dt, and this Value is multiplied in member 244 by an empirically determined predetermined factor and supplied to adder 240 as an input.
  • the member 242 receives its input signal from a differentiator 271, which serves to differentiate the speed setpoint calculated in the member 270 again after the time, that is to calculate a target value for the acceleration, and this target acceleration is in Member 242 multiplied by an empirically determined predetermined factor and then also supplied to the adder 240 as an input variable. The member 242 thus multiplies the size obtained from the members 270, 271 and supplies it to the member 240.
  • control loop is thus intervened in a predictive manner, which increases the dynamics of the controller 218 and its accuracy in positioning the labels 26. This will be included below Fig. 20 explained in detail.
  • the end of the horizontal area 180 (FIG. Fig. 8 ), ie the point in time 182 ', is calculated in a predictive manner as described.
  • the predictive calculations result in an increase in the dynamics of the system, that is, they provide very good positioning and re-sharpening accuracy at high labeling speeds.
  • the output of gate 240 is applied to a limiter 250, and the setpoint at the output of limiter 250 serves as a current setpoint i soll for the q-axis.
  • the motor 80 also referred to as a permanent magnet excitation (PMSM) synchronous machine, operates in this embodiment with field-oriented control (vector control), with the field-forming current (“excitation current”) and the torque-forming current regulated separately.
  • PMSM permanent magnet excitation
  • vector control vector control
  • excitation current field-forming current
  • torque-forming current torque-forming current
  • d-component also called longitudinal component or field-forming component
  • q-component also called the transverse component
  • the output i soll at the output of the limiter 250 can be used as a setpoint for the transverse component. It is compared in a comparator 266 with a magnitude Iq, and the result of the comparison is supplied to a PI current regulator 268 .
  • the motor 80 Since the motor 80 has a permanent magnetic rotor whose magnetic flux is constant, the 0 value is given by a d component encoder 246 and fed to a comparator 258 whose negative input is supplied with a value for the current I d .
  • the motor 80 is thus regulated here so that the d-component has the value 0.
  • the motor 80 has three phases u, v, w in its stator winding, and has a permanent magnet inner rotor (not shown). At startup, as described, the motor 80 is controlled as a brushless motor by Hall sensors (or alternatively, by the sensorless principle), and after starting it runs as a three-phase synchronous motor with approximately sinusoidal currents.
  • inverter 86 in the form of a three-phase full bridge, eg with IGBT transistors or other controllable semiconductors.
  • the bridge 86 is controlled via the opto-couplers 90 and the gate drivers 88, cf. Fig. 4 ,
  • the currents I u and I v in two of the three leads u, v, w of the motor 80 are detected by the two current transformers 112, 114 and converted into digital signals in the DSP 116 in an A / D converter provided there. Then, they are supplied to a uvw-dq coordinate converter 256, as well as the signal ⁇ from the converter 229.
  • the converter 256 thereby generates by transformation the already mentioned d-axis current component I d and the q-axis current component Iq for the d and the q-axis, which serve as feedback quantities for the two current regulators 260 and 268, respectively.
  • the d-axis current component I d with a negative sign is supplied to the summer 258 whose positive input is supplied with the value 0.
  • the output of gate 258 is applied to digital PI current regulator 260, at the output thereof a signal U d is obtained, namely, a setpoint for the d-axis voltage U d , which is applied to a dq-uvw coordinate converter 262, which also is referred to as a "space vector modulator” or "space vector generator”.
  • the output i is the limiter 250 is the positive input of the summer 266 supplied to the negative input, the output signal Iq of the converter 256 is supplied.
  • the output of the comparator 266 is supplied to a PI current regulator 268 at the output of which a setpoint for the q-axis voltage Uq is obtained.
  • This value Uq is also supplied to the dq-uvw coordinate converter 262 which also receives the rotor position signal ⁇ actual and which generates from these input signals three signals U u , U v , U w for controlling the module 86 feeding the motor 80 that in the motor 80, a rotating rotating field is generated.
  • the modules 86, 256, 260, 262, 268 are hardware and software modules, respectively, that are familiar to those skilled in the electrical drive art. These are used eg in servo controls for the steering of motor vehicles and in frequency converters. In the embodiment, they are part of the DSP 116 part.
  • a measuring resistor (not shown). This allows in the member 110, a short-circuit detection and a ground fault detection for the protection of the module 86.
  • the component 110 switches off the driver 88 and outputs a corresponding signal to the DSP 116.
  • Fig. 15 shows the functions of the individual components of the controller 218: Denoted at 269 is the current regulator, which directly influences the sinusoidal currents I u , I v , I w in the motor 80.
  • the current controller 269 is part of a speed controller 271, on which, as shown, the target acceleration of the member 242 and the target speed n should act directly from the member 244.
  • a position controller which is supplied by the profile generator 220 directly to a target value S soll for the position of the label strip 20 and causes the motor 80 exactly at the desired point A 'comes to a standstill.
  • the member 230 is triggered by the tag sensor 44. If this at a label edge 27 (position M of Fig. 8 ) Generates a signal, this causes a measurement interrupt, and the value of S2 is to be at this point according to equation (2) to the achieved value S1 is added and used as the new target value Z, as already described in detail, so that the points A 'A' does not "migrate", so the labels 26 are not "offset", and you get a high labeling accuracy.
  • Fig. 16 shows a labeler 46 analogous to that described in Fig. 3 is shown, but on the table 42, a printer 280 of known type is installed. Therefore, the (adjustable) table 42 is extended longer, and the printer 280 is located - as an example - between the label sensor 44 and the dispensing edge 30. Equal or similar parts as in Fig. 3 are denoted by the same reference numerals as there and will not be described again.
  • the program can be modified so that the user Z size can only be set to [EL + SB]. This can be done by a corresponding input mask, in the type of labeling, label length and label spacing must be entered by the user and the setting of the target size Z is done according to these inputs after their plausibility has been checked. If a label 26 on the carrier tape 22 is missing at one location, the label tape 20 still stops, the carrier tape 22 is printed by the printer 280, and then there is a new transport and possibly a re-printing of the carrier tape, if a second label should be missing.
  • Figure 18 shows the housing part 302 of the device 46 of the Fig. 3 from the back (with the back wall removed), so seen in the direction of the arrow XVIII Fig. 17 ,
  • the housing part 302 has two openings 320, 322, which can be used for its mounting on a machine.
  • Fig. 17 also shows the location of processor 116 in part 300.
  • a pulley 326 eg, 14 teeth
  • a toothed belt 328 is mounted on which a pulley 326 (eg, 14 teeth) for a toothed belt 328 is mounted.
  • the latter passes via a tension pulley 330 to a pulley 332 (eg 32 teeth), which supports the roller 62 (FIG. Fig. 3 and 16 ) drives.
  • One revolution of the roller 62 thus corresponds to 32/14 revolutions of the motor shaft 324 in this example.
  • various boards are arranged, e.g. the circuit board 94 for the EMC filter, and three other boards 336, 338, 340 with electronic components.
  • a side dial 344 makes it possible to change the position of the label sensor 44.
  • Fig. 19 shows an enlarged sectional view of the free end of the scoop 307. It can be seen a portion of the motor 80, the encoder 82, and the board 84 with the power module 81 (inverter 86 and rectifier 104 for the supply of the intermediate circuit 106, see. Fig. 4 .)
  • the inverter 86 and the rectifier 104 are produced as a finished module 81, for example, by the company EUPEC.
  • the inverter 86 has, for example, six IGBT transistors.
  • This module 81 abuts against an inner wall 85 of the lid 306 with an end face 87, on which thermal paste 89 is provided, so that the heat from the module 81 merges into the lid 306 and from there into the tubular part 300, such as symbolically indicated by arrows 18.
  • an O-ring 303 is provided in a continuous groove 301 to liquid-tightly connect the parts 300, 306 together, which is important because of the cleaning with a high-pressure cleaner, as they are in many Operated.
  • the lid 306 is fastened to the tubular part 300 by means of screws 305.
  • the part 300 is liquid-tightly attached to the housing 302.
  • a plate 307 is provided inside the tubular part 300, and extending approximately perpendicular to its longitudinal axis. This is provided with pins 309, which engage in recesses 311 of the module 86, 104 in the manner shown.
  • the plate 307 with its pins 309 is replaced by springs 311 with a force of e.g. 150 N pressed toward the lid 306 and presses over its pin 309, the module 81 against the inner wall 85 of the lid 306, there to achieve a low heat transfer resistance.
  • the lower screw 305 is formed in two parts. As shown, its inner part 305i serves to guide the sheet 307 and the printed circuit board 84, which are both provided with corresponding recesses for this purpose.
  • Fig. 20 explains the operating principle of the position controller used 273.
  • the vertical axis shows the path traveled by the label tape 20 path S.
  • the horizontal axis shows the time t, wherein a labeling cycle z. B. can take 12 ms.
  • the label tape 20 stringent compliance with a prescribed movement pattern, otherwise a correct labeling of passing products ("in addition") would not be possible, ie it must be a very "stiff" position controller, exactly within a prescribed time the target speed V soll is reached and this target speed also during a prescribed period exactly, ie with very good synchronization, complies.
  • a location 300 e.g. Fig. 20
  • the profile generator 220 that in the next 500 microseconds the tape 20 must have continued to run by a distance increment ⁇ S of 1.4 mm and 302 (5.4 mm) must have reached (corresponding to a target speed of 2.8 m / s ).
  • the predetermined profile is "traversed", whereby it is achieved by the selected controller configuration with subordinate speed controller and subordinate current controller that the movement follows the given pattern very well.
  • the signals from the PI controller 226 constantly cause a position control, so that at the point A ', the tape speed zero is reached.
  • a digital position controller thus makes it very well possible to realize a predetermined path profile and, indirectly, a given velocity profile without causing an overshoot.
  • the magnitude of the steps .DELTA.t used by the regulator that is, the so-called cycle time, is usually shortest in current regulator 269 because the motor current can change fastest.
  • Fig. 20 is exemplified that the time period T (see. Fig. 9 to 11 ) can have the value TW / V soll . This corresponds to the example of Fig. 9 to 11 , Of course, in another profile, the time T can have a different value, as in Fig. 9 to 11 explained in detail.
  • the time 182 ' is recalculated.
  • Reference numerals 176, 180 and 184 in FIG Fig. 20 refer to the corresponding sections of the illustration Fig. 8 and are meant to compare the representations of Fig. 8 and Fig. 20 facilitate.

Landscapes

  • Labeling Devices (AREA)
  • Package Frames And Binding Bands (AREA)

Claims (41)

  1. Procédé pour déplacer une bande d'étiquettes (20), sur laquelle des étiquettes (26) de longueur prédéfinie (EL) sont disposées avec des espacements (SB) essentiellement uniformes, au moyen d'un moteur électrique (80), d'un régulateur de position (218, 273) associé à ce moteur et d'un capteur (44) pour détecter une position prédéfinie d'une étiquette (26) quand celle-ci est déplacée avec la bande d'étiquettes (20) par rapport au capteur (44), lequel procédé comprend les étapes suivantes :
    selon un profil de déplacement prédéfini, la bande d'étiquettes (20) est mise en mouvement à partir d'une position de départ (A), une première position cible (Z) étant prescrite au régulateur de position (218, 273) comme position finale du profil de déplacement de la bande d'étiquettes (20) ;
    si, pendant le déplacement de la bande d'étiquettes (20), une position prédéfinie (M) de la bande d'étiquettes (20) est détectée par le capteur (44), une position cible (Z) révisée, en relation temporelle étroite avec celle-ci, est prescrite au régulateur de position (218, 273), laquelle remplace la première position cible avant que cette première position cible soit atteinte.
  2. Procédé selon la revendication 1, dans lequel on prescrit au régulateur de position (218, 273) comme première position cible (Z) un déplacement d'une distance prédéfinie qui correspond approximativement à la valeur n * EL + SB ,
    Figure imgb0016
    EL étant la longueur d'une étiquette (26),
    SB l'espacement entre deux étiquettes (26) successives
    et n = 1,2,3,...
  3. Procédé selon la revendication 1 ou 2, dans lequel le profil de déplacement prédéfini présente une rampe de départ (176) de forme essentiellement prédéfinie, une phase de déplacement (180 ; 180') à une vitesse d'avance essentiellement constante (Vsoll) succédant à la rampe de départ, et une rampe d'arrêt (184) de forme essentiellement prédéfinie.
  4. Procédé selon la revendication 3, dans lequel la position prédéfinie (M) de la bande d'étiquettes (20) est détectée dans une plage temporelle (180') dans laquelle la bande d'étiquettes (20) est entraînée à la vitesse d'avance essentiellement uniforme (Vsoll).
  5. Procédé selon la revendication 3 ou 4, dans lequel la vitesse d'avance essentiellement constante est une vitesse d'avance régulée (Vsoll).
  6. Procédé selon la revendication 3 ou 4, dans lequel la vitesse d'avance essentiellement constante (Vsoll) est prescrite par un organe (140) qui commande le déplacement d'objets (P) à étiqueter.
  7. Procédé selon l'une des revendications précédentes, dans lequel on calcule à partir du profil de déplacement prédéfini une pluralité de valeurs de position (S ; fig. 20 : 300, 302, 304) de la bande d'étiquettes (20) et de valeurs de temps associées à ces valeurs de position à la manière de paires de valeurs,
    et on amène ces paires de valeurs au régulateur de position (273) successivement comme valeurs de consigne pour la régulation de position.
  8. Procédé selon l'une des revendications précédentes, qui comprend les étapes suivantes :
    on applique à la bande d'étiquettes (20) lors de son déplacement, au moyen du régulateur (218, 273) associé au moteur électrique (80), le profil de déplacement qui présente comme première phase une rampe de départ (176) de forme définie et comme deuxième phase une portion (180, 180') succédant à la rampe de départ (176) avec une vitesse essentiellement constante (Vsoll) ;
    à l'aide de données qui sont à la base du profil de déplacement prédéfini, on calcule un instant (182 ; 182') situé dans le futur pour le passage de la deuxième phase à une
    troisième phase ;
    à peu près à partir de cet instant (182 ; 182'), dans la troisième phase (184), la bande d'étiquettes (20) est freinée par le moteur (80) avec régulation de position de façon qu'elle atteigne la vitesse nulle essentiellement à la position cible (Z).
  9. Procédé selon la revendication 8, dans lequel le profil de déplacement appliqué est défini au moins par secteurs par un profil dans lequel, en fonction du temps, une suite de positions de consigne (S) de la bande d'étiquettes (20) est prescrite.
  10. Procédé selon la revendication 9, dans lequel, en cas de prescription d'une courbe de vitesse (Vsoll) modifiée dans la deuxième phase (180, 180'), une intégrale définie par un profil de vitesse est maintenue essentiellement constante.
  11. Procédé selon la revendication 10, dans lequel l'intégrale définie par le profil de vitesse total est maintenue essentiellement constante par nouveau calcul de l'instant situé dans le futur (182; 182').
  12. Procédé selon la revendication 10 ou 11, dans lequel, pendant la première phase, le profil de vitesse est défini par une accélération (δ1) essentiellement constante de la bande d'étiquettes (20).
  13. Procédé selon l'une des revendications 10 à 12, dans lequel, pendant la troisième phase, le profil de vitesse est défini par une décélération (δ2) essentiellement constante de la bande d'étiquettes.
  14. Procédé selon l'une des revendications 8 à 13, dans lequel, dans la troisième phase (184), un déplacement de la bande d'étiquettes (20) en sens inverse du sens (29) qui résulte d'un mouvement d'avance est au moins entravé.
  15. Procédé selon la revendication 14, dans lequel, dans la troisième phase (184), une rotation du moteur électrique (80) en sens inverse du sens de déplacement (29) que la bande d'étiquettes (20) suit lors d'un mouvement d'avance est au moins entravée.
  16. Procédé selon l'une des revendications précédentes, dans lequel le moteur électrique (80) est de type triphasé et démarré par une commutation à la manière d'un moteur sans collecteur puis commuté en commutation sinusoïdale.
  17. Procédé selon l'une des revendications précédentes, dans lequel le régulateur (218, 273) travaille avec un régulateur de courant secondaire (260, 268) à l'entrée duquel est amené un signal influencé par l'accélération de consigne pour, en cas de modifications de l'accélération de consigne, permettre une modification rapide du courant de moteur.
  18. Dispositif pour déplacer une bande d'étiquettes, sur laquelle des étiquettes (26) de longueur prédéfinie (EL) sont disposées avec des espacements (SB) essentiellement uniformes,
    lequel dispositif présente :
    un moteur électrique (80) ;
    un régulateur de position (218, 273) associé à ce moteur (80) ;
    un capteur (44) pour détecter une longueur prédéfinie (M) d'une étiquette (26) quand la bande d'étiquettes (20) est déplacée devant le capteur (44) ;
    un dispositif de commande qui, selon un profil de déplacement prédéfini, met en mouvement la bande d'étiquettes (20) à partir d'une position de départ (A),
    caractérisé en ce qu'une
    première position cible est prescrite au régulateur de position (218, 273) comme position finale du profil de déplacement de la bande d'étiquettes (20),
    et si, pendant le déplacement de la bande d'étiquettes (20), une position prédéfinie (M) de la bande d'étiquettes (20) est détectée par le capteur (44), le dispositif de commande prescrit, en relation temporelle étroite avec celle-ci, une position cible (Z) révisée au régulateur de position (218, 273) comme nouvelle grandeur cible, laquelle remplace la première position cible avant que cette première position cible soit atteinte.
  19. Dispositif selon la revendication 10, dans lequel on prescrit au régulateur de position (218, 273) comme première grandeur cible (Z) un déplacement d'une distance prédéfinie qui correspond approximativement à la valeur n * EL + SB ,
    Figure imgb0017
    EL étant la longueur d'une étiquette (26), SB l'espacement entre deux étiquettes (26) successives
    et n = 1, 2,3,...
  20. Dispositif selon la revendication 18 ou 19, dans lequel le profil de déplacement prédéfini présente une rampe de départ (176) de forme essentiellement prédéfinie,
    une phase de déplacement (180 ; 180') à une vitesse d'avance essentiellement constante (Vsoll) succédant à la rampe de départ
    et une rampe d'arrêt (184) de forme essentiellement prédéfinie.
  21. Dispositif selon les revendications 18 et 20, dans lequel la détermination de la position prédéfinie de la bande d'étiquettes (20) a lieu dans une plage temporelle (180') dans laquelle la bande d'étiquettes (20) est entraînée à la vitesse d'avance essentiellement uniforme (Vsoll).
  22. Dispositif selon la revendication 20 ou 21, dans lequel la vitesse d'avance essentiellement constante est une vitesse d'avance régulée (Vsoll).
  23. Dispositif selon la revendication 20 ou 21, dans lequel il est prévu un organe (140) qui commande le déplacement d'objets (P) à étiqueter,
    et dans lequel la vitesse d'avance essentiellement constante (Vsoll) est prescrite par cet organe (140).
  24. Dispositif selon l'une des revendications 18 à 23, dans lequel il est prévu un générateur de profils (220) qui, à partir du profil de déplacement prédéfini, calcule une pluralité de valeurs de position (S ; 300, 302, 304) de la bande d'étiquettes (20) et de valeurs de temps associées à ces valeurs de position à la manière de paires de valeurs, ces paires de valeurs servant de valeurs de consigne pour la régulation de position.
  25. Dispositif selon l'une des revendications 18 à 24, dans lequel le moteur électrique est réalisé sous forme de moteur triphasé à induit intérieur (80).
  26. Dispositif selon la revendication 25, dans lequel un dispositif de commutation et un dispositif (82) pour délivrer des signaux de position de rotor sont associés au moteur triphasé (80) pour le démarrage afin de démarrer le moteur (80) à la manière d'un moteur à courant continu sans collecteur.
  27. Dispositif selon la revendication 26, dans lequel un dispositif (256, 260, 262, 268) pour la commutation sinusoïdale, qui est activé après le démarrage du moteur (80), est associé au moteur triphasé (80).
  28. Dispositif selon l'une des revendications 18 à 27, dans lequel un résolveur qui délivre au moins 1 000 impulsions par tour de moteur est associé au moteur électrique (80).
  29. Dispositif selon l'une des revendications 18 à 28, dans lequel le régulateur (218, 273) présente un régulateur de courant secondaire (260, 268) pour le courant de moteur, à l'entrée duquel est amené un signal influencé par l'accélération de consigne pour, en cas de modifications de l'accélération de consigne, permettre une adaptation rapide du courant de moteur.
  30. Dispositif selon l'une des revendications 18 à 29, dans lequel le régulateur de position (218, 273) servant à la commande du mouvement du moteur électrique (80) et donc de la bande d'étiquettes (20) est réalisé à la manière d'un régulateur à quatre quadrants, et lequel régulateur de position (218, 273) est conçu pour appliquer à la bande d'étiquettes (20) un profil de déplacement qui présente
    - comme première phase une rampe de départ (176) dans laquelle la bande d'étiquettes (20) subit une accélération,
    - comme deuxième phase une portion (180, 180') (176) à une vitesse essentiellement uniforme (Vsoll) succédant à la rampe de départ et
    - comme troisième phase une portion (184) dans laquelle le moteur électrique (80) freine la bande d'étiquettes (20) avec régulation de position de façon qu'elle atteigne la vitesse nulle à peu près à la position cible (Z).
  31. Dispositif selon la revendication 30, dans lequel le régulateur de position (218, 273) est conçu pour, à l'aide de données qui sont à la base du profil de déplacement, calculer un instant de passage (182') situé dans le futur, à proximité temporelle duquel le régulateur de position (218, 273) provoque le passage de la deuxième phase (180, 180') à la troisième phase (184).
  32. Dispositif selon la revendication 30 ou 31, dans lequel le profil de déplacement appliqué est défini, au moins par secteurs, par un profil de vitesse dans lequel, en fonction du temps, une vitesse (V) respective définie de la bande d'étiquettes (20) est prescrite au moins approximativement.
  33. Dispositif selon la revendication 32, dans lequel le régulateur de position (218, 273) est conçu pour, en cas de modification de la vitesse (Vsoll) prescrite pour la deuxième phase (180, 180'), maintenir essentiellement constante l'intégrale définie par le profil de vitesse total.
  34. Dispositif selon la revendication 33, dans lequel le régulateur de position (218, 273) est conçu pour maintenir essentiellement constante l'intégrale définie par le profil de vitesse total par nouveau calcul de l'instant de passage (182').
  35. Dispositif selon la revendication 33 ou 34, dans lequel, pendant la première phase, le profil de vitesse est défini par une accélération (δ1) essentiellement constante de la bande d'étiquettes (20).
  36. Dispositif selon l'une des revendications 33 à 35, dans lequel, pendant la troisième phase, le profil de vitesse est défini par une décélération (δ2) essentiellement constante de la bande d'étiquettes (20).
  37. Dispositif selon l'une des revendications 30 à 36, dans lequel le régulateur de position (218, 273) est conçu pour, dans la troisième phase (184), au moins entraver un déplacement de la bande d'étiquettes (20) en sens inverse du sens qui résulte d'un mouvement d'avance.
  38. Dispositif selon la revendication 37, dans lequel le régulateur de position (218, 273) est conçu pour, dans la troisième phase (184), au moins entraver une rotation du moteur électrique (80) en sens inverse du sens de déplacement (29) que la bande d'étiquettes (20) suit lors d'un mouvement d'avance.
  39. Dispositif selon l'une des revendications 30 à 38, dans lequel le régulateur de position (218, 273) est conçu pour, à partir d'un profil de déplacement ou de vitesse prédéfini, calculer une pluralité de valeurs de position (S) de la bande d'étiquettes (20) et de valeurs de temps associées à ces valeurs de position (S) à la manière de paires de valeurs, lesquelles paires de valeurs peuvent être amenées au régulateur de position (273) pour la position de la bande d'étiquettes (20).
  40. Dispositif selon la revendication 39, dans lequel les paires de valeurs peuvent être amenées au régulateur de position (273) dans un ordre temporel prédéfini.
  41. Dispositif selon l'une des revendications 18 à 40, dans lequel on applique à la bande d'étiquettes (20) lors de son déplacement, au moyen du régulateur (218, 273), le profil de déplacement qui présente
    - comme première phase une rampe de départ (176) avec une accélération (δ1) définie,
    - comme deuxième phase une portion (180, 180') à une vitesse essentiellement constante (Vsoll) succédant à la rampe de départ,
    - et comme troisième phase une rampe de freinage (184) avec une décélération (δ2) essentiellement prédéfinie.
EP04764782A 2003-09-20 2004-09-03 Procede et dispositif d'etiquetage Active EP1663791B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10345340 2003-09-20
PCT/EP2004/009826 WO2005037654A2 (fr) 2003-09-20 2004-09-03 Procede et dispositif d'etiquetage

Publications (2)

Publication Number Publication Date
EP1663791A2 EP1663791A2 (fr) 2006-06-07
EP1663791B1 true EP1663791B1 (fr) 2008-07-16

Family

ID=34441806

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04764782A Active EP1663791B1 (fr) 2003-09-20 2004-09-03 Procede et dispositif d'etiquetage

Country Status (6)

Country Link
US (1) US8012279B2 (fr)
EP (1) EP1663791B1 (fr)
AT (1) ATE401251T1 (fr)
CA (1) CA2526584C (fr)
DE (1) DE502004007624D1 (fr)
WO (1) WO2005037654A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017113731A1 (de) 2017-06-21 2018-12-27 Herma Gmbh Aufwickelvorrichtung zum Aufwickeln eines Bands
DE102017215757A1 (de) 2017-09-07 2019-03-07 Krones Ag Verfahren zum Anfahren einer Referenz-Vorschubposition eines Etikettenbands und Vorrichtung zum Etikettieren von Behältern

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050160935A1 (en) * 2003-09-18 2005-07-28 William Armstrong Method for analysis of label positioning and printed image to identify and correct printing anomalies
US20070062636A1 (en) * 2005-03-01 2007-03-22 Peter Gustafsson Media gap detection by reflective florescence
US20080041303A1 (en) * 2006-08-16 2008-02-21 First Data Corporation Systems for Masking a Portion of an Envelope Near its Perimeter
US20080259111A1 (en) * 2007-04-20 2008-10-23 Intermec Ip Corp. Method and apparatus for registering and maintaining registration of a medium in a content applicator
US20120175040A1 (en) * 2009-07-21 2012-07-12 Crossley David W Label dispensing apparatus, label for use therein and method for dispensing a label
US9090370B2 (en) 2009-09-03 2015-07-28 Illinois Tool Works Inc. Rewind-reel driven label applicator
KR101211781B1 (ko) * 2009-12-23 2012-12-12 삼성에스디아이 주식회사 라벨 부착 장치
US10124922B2 (en) 2013-06-27 2018-11-13 Videojet Technologies, Inc. Labelling machine and method of controlling the speed of a label web
GB2519372B (en) * 2013-10-21 2020-06-03 Videojet Technologies Inc Machine and method of operation
CN105366141B (zh) * 2015-10-26 2018-03-02 京东方光科技有限公司 贴标装置
JP7046068B2 (ja) * 2019-03-29 2022-04-01 深▲せん▼市誠捷智能装備股▲ふん▼有限公司 セパレータ紙装置
JP7204204B2 (ja) * 2019-04-16 2023-01-16 北川工業株式会社 貼着装置
DE102019132710A1 (de) * 2019-12-02 2021-06-02 Espera-Werke Gmbh Verfahren für den Betrieb eines Etikettiersystems

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1232875B (de) * 1964-05-12 1967-01-19 Easco Leasing Corp Verfahren und Vorrichtung zur Entfernung der Papierunterlage von selbstklebenden Schildern od. dgl.
US4267004A (en) 1979-03-08 1981-05-12 Datafile Limited Label position sensor for labeller
US4294644A (en) * 1980-01-30 1981-10-13 Datafile Limited Servo motor control labeller
US4422376A (en) 1980-02-09 1983-12-27 Teraoka Seikosho Co., Ltd. Printing control apparatus for a label printer
US4544287A (en) 1980-02-09 1985-10-01 Teraoka Seikosho Co., Ltd. Printing control apparatus for a label printer, method of using the apparatus, and a label used in conjunction with the apparatus
US4298390A (en) 1980-08-13 1981-11-03 Corning Glass Works Fluorophosphate opal glasses
US4434911A (en) 1980-08-14 1984-03-06 Tokyo Electric Co., Ltd. Label feed control system
DE3103395A1 (de) 1981-02-02 1982-04-01 De Limon Fluhme GmbH & Co, 4000 Düsseldorf Spruehduese
DE3203162A1 (de) 1982-01-30 1983-08-11 schäfer-etiketten GmbH & Co, 7441 Wolfschlugen Verfahren und vorrichtung zum etikettieren von gegenstaenden
DE3215288A1 (de) 1982-04-22 1983-11-03 Bausch + Ströbel, Maschinenfabrik GmbH + Co, 7174 Ilshofen Etiketten-spendevorrichtung
JPS5984729A (ja) * 1982-10-30 1984-05-16 大阪シ−リング印刷株式会社 粘着ラベルの貼付装置
EP0109206A3 (fr) 1982-11-15 1985-08-21 Picker International, Inc. Procédé et appareil de tomographie à calculatrice
JPS59156773A (ja) * 1983-02-28 1984-09-06 Sato :Kk 連続札印字機の札移送装置
DE3439665A1 (de) * 1984-10-30 1986-05-07 Ebm Elektrobau Mulfingen Gmbh & Co, 7119 Mulfingen Kollektorloser gleichstrommotor
DE3618542A1 (de) 1986-06-03 1987-12-10 Hermann Gmbh Co Heinrich Verfahren und vorrichtung zum spenden von auf einem traegerband haftenden etiketten
GB2218541B (en) 1988-05-11 1993-04-21 Instance Ltd David J Method of and apparatus for producing labels
US5821724A (en) 1995-02-03 1998-10-13 Cms Gilbreth Packaging Systems Feedback limiter for closed loop motor controller
JPH07252021A (ja) 1994-03-17 1995-10-03 Tec Corp シート搬送装置
US5674335A (en) * 1995-01-06 1997-10-07 Aman; James A. Automated end labeler system
DE19522295C2 (de) 1995-06-20 2001-05-10 Pago Ag, Buchs Sg Verfahren und Vorrichtung zur Regelung der Zugspannung eines Etikettenbandes in einer Etikettiervorrichtung
US5803624A (en) * 1995-08-31 1998-09-08 Intermec Corporation Methods and apparatus for compensatng step distance in a stepping motor driven label printer
US5888343A (en) * 1995-09-05 1999-03-30 Fingerhut Corporation Labeling apparatus and method
BE1010780A6 (nl) * 1996-12-03 1999-01-05 Den Bergh Engineering Naamloze Etiketteermachine.
US6558490B2 (en) * 1997-10-06 2003-05-06 Smyth Companies, Inc. Method for applying labels to products
DE19841138A1 (de) 1998-05-05 1999-11-11 Elau Elektronik Automations Ag Verpackungsmaschine
US6601371B1 (en) 1998-05-05 2003-08-05 Erwin Fertig Packaging machine
US6118202A (en) * 1998-05-11 2000-09-12 Active Power, Inc. High-efficiency inductor-alternator
US6169481B1 (en) * 1999-04-12 2001-01-02 Rockwell Technologies, Llc Low cost material suitable for remote sensing
US6428639B1 (en) * 1999-07-19 2002-08-06 Krones, Inc. Computer controlled position slaved servo labeling system
US6563280B2 (en) 2000-03-06 2003-05-13 Whedco, Inc. Pulse based servo motor controlled labeler
US20020096264A1 (en) 2001-01-23 2002-07-25 Yang Sheng-Hui Label applying unit for a labeling machine and suitable for applying labels of different lengths
US7099719B2 (en) * 2002-06-19 2006-08-29 Rockwell Automation Technologies, Inc. Output cam system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017113731A1 (de) 2017-06-21 2018-12-27 Herma Gmbh Aufwickelvorrichtung zum Aufwickeln eines Bands
WO2018234015A1 (fr) 2017-06-21 2018-12-27 Herma Gmbh Dispositif d'enroulement conçu pour enrouler une bande
DE102017215757A1 (de) 2017-09-07 2019-03-07 Krones Ag Verfahren zum Anfahren einer Referenz-Vorschubposition eines Etikettenbands und Vorrichtung zum Etikettieren von Behältern
US10926909B2 (en) 2017-09-07 2021-02-23 Krones Ag Method for moving to a reference feed position of a label tape and device for labelling containers

Also Published As

Publication number Publication date
ATE401251T1 (de) 2008-08-15
US20060289106A1 (en) 2006-12-28
WO2005037654A3 (fr) 2005-09-01
CA2526584C (fr) 2012-01-03
WO2005037654A2 (fr) 2005-04-28
US8012279B2 (en) 2011-09-06
DE502004007624D1 (de) 2008-08-28
EP1663791A2 (fr) 2006-06-07
CA2526584A1 (fr) 2005-04-28

Similar Documents

Publication Publication Date Title
EP1663791B1 (fr) Procede et dispositif d'etiquetage
DE19623223C2 (de) Antrieb für eine Druckmaschine
DE4200477C2 (de) Regelungsvorrichtung zur Regelung des Ausgangsdrehmoments eines bürstenlosen Elektromotors
DE68908002T2 (de) Verfahren und Vorrichtung zum Herstellen von Etiketten.
DE3687349T2 (de) Verfahren und vorrichtung zur regelung des torsionsmoments eines servomotors.
DE102013109624A1 (de) Regelvorrichtung für Permanentmagnet-Synchronmotor, die eine irreversible Entmagnetisierung des Permanentmagneten verhindert und Regelsystem dafür
DE3701040C2 (fr)
DE10024120A1 (de) Rollenwechsler mit Motorbremse
EP1917565A2 (fr) Procede et dispositif pour commander et reguler des forces sur des presses servo-electriques
EP0161615B1 (fr) Méthode et dispositif pour définir le vecteur de flux d'une machine à champ tournant
DE19830133A1 (de) Steuersystem und Steuerverfahren für Motoren
EP1818744A1 (fr) Structure de régulation comprenant un modèle de torsion
DE19512963C2 (de) Vorrichtung zum Abziehen von Bändern
EP1699676B1 (fr) Procede de ralentissement d'un moteur electrique et mecanisme d'entrainement electrique
DE112019003804T5 (de) Elektrisches leistungsumsetzsystem und motorsteuerverfahren
EP0169476A2 (fr) Dispositif pour effectuer un changement de bobine
EP0223101B1 (fr) Dispositif de commande pour un moteur d'entraînement à courant continu à excitation séparée et procédé pour commander un moteur d'entraînement à courant continu d'une machine à imprimer
DE4031964C2 (fr)
DE69018597T2 (de) Herstellung von Messbändern.
EP0469177A1 (fr) Procédé et dispositif pour le redémarrage d'un moteur à induction
EP2375560A2 (fr) Dispositif d'entraînement pour l'utilisation dans un dispositif de laboratoire
DE4418997A1 (de) Regelsystem zur Regelung der Komponenten des Ständerstroms eines Drehstromantriebsmotors
DE102005050591B4 (de) Wechselstrom-Servotreiber
EP3086464A1 (fr) Procede destine au fonctionnement d'une machine electrique et entrainement
AT515163B1 (de) Verfahren zum Betrieb einer Bahnbearbeitungsmaschine mit fliegendem Rollenwechsel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060117

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060706

17Q First examination report despatched

Effective date: 20060706

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004007624

Country of ref document: DE

Date of ref document: 20080828

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081027

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081016

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

26 Opposition filed

Opponent name: BIZERBA GMBH & CO. KG

Effective date: 20090411

26 Opposition filed

Opponent name: AVERY DENNISON CORPORATION

Effective date: 20090416

Opponent name: PAGO INTERNATIONAL AG

Effective date: 20090416

Opponent name: BIZERBA GMBH & CO. KG

Effective date: 20090411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080903

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080716

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081017

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BIZERBA GMBH & CO. KG

Effective date: 20090411

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HERMA GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BIZERBA SE & CO. KG

Effective date: 20090411

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502004007624

Country of ref document: DE

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

R26 Opposition filed (corrected)

Opponent name: BIZERBA SE & CO. KG

Effective date: 20090411

27O Opposition rejected

Effective date: 20170213

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004007624

Country of ref document: DE

Representative=s name: RAIBLE, DEISSLER, LEHMANN PATENTANWAELTE PARTG, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004007624

Country of ref document: DE

Owner name: HERMA GMBH, DE

Free format text: FORMER OWNER: HERMA GMBH, 70327 STUTTGART, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004007624

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20190726

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190918

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004007624

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190924

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004007624

Country of ref document: DE

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502004007624

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 401251

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200903

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200903

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230919

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231117

Year of fee payment: 20