EP1662225A1 - Bohrloch-Streckenmesssonde - Google Patents

Bohrloch-Streckenmesssonde Download PDF

Info

Publication number
EP1662225A1
EP1662225A1 EP05024153A EP05024153A EP1662225A1 EP 1662225 A1 EP1662225 A1 EP 1662225A1 EP 05024153 A EP05024153 A EP 05024153A EP 05024153 A EP05024153 A EP 05024153A EP 1662225 A1 EP1662225 A1 EP 1662225A1
Authority
EP
European Patent Office
Prior art keywords
borehole
probe
measuring
holding elements
measuring probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05024153A
Other languages
English (en)
French (fr)
Other versions
EP1662225B1 (de
Inventor
Franz Glötzl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gloetzl Gesellschaft fuer Baumesstechnik mbH
Original Assignee
Gloetzl Gesellschaft fuer Baumesstechnik mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gloetzl Gesellschaft fuer Baumesstechnik mbH filed Critical Gloetzl Gesellschaft fuer Baumesstechnik mbH
Publication of EP1662225A1 publication Critical patent/EP1662225A1/de
Application granted granted Critical
Publication of EP1662225B1 publication Critical patent/EP1662225B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0026Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
    • E21D21/0046Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts formed by a plurality of elements arranged longitudinally

Definitions

  • the invention relates to a borehole distance measuring probe for insertion into a measuring tube, which is introduced into a borehole or attached to a building and at predetermined intervals defined measuring marks, with an upper probe head and a lower probe head, which are mounted variable in their mutual distance and each having holding elements, which are engageable at the measuring marks with the measuring tube, with at least one displacement sensor, by means of which the mutual distance of the holding elements can be detected, and with an evaluation device by means of which the recorded measured values can be evaluated.
  • borehole distance measuring probes which are retracted at regular time intervals in a measuring tube which is arranged in a borehole or attached to a building.
  • the measuring tube has, at predetermined axial distances of, for example, one meter precisely defined measuring marks whose mutual distance is measured and recorded by means of the borehole distance measuring probe.
  • the borehole track probe has an upper probe head and a lower probe head which are adjustable in their mutual distance.
  • a measuring device in the form of one or more transducers, the mutual distance of the probe heads can be determined exactly.
  • the measuring tube is composed of a plurality of individual, preferably similar measuring tube parts, each having a relatively small length of about one meter and are connected to each other via pipe sleeves.
  • a measuring mark is formed in the form of a plurality of radially inwardly pointing projections, which are distributed discontinuously over the circumference, so that passages are formed between the projections.
  • the probe heads each have radially outwardly projecting holding elements, which are also distributed discontinuously over the circumference. Depending on the rotational position of the probe head, the holding elements can either pass the measuring mark at the passages or engage under the projections of the measuring mark in a form-fitting manner.
  • the borehole distance measuring probe is lowered down to a desired depth into the measuring tube on a linkage, wherein the probe heads pass the measuring marks at their passages. Subsequently, a rotational force is applied via the linkage to the borehole distance measuring probe and thus to its probe heads, whereby they are pivoted by a predetermined angle, for example 45 °, so that the holding elements of the probe heads are arranged below the projections of the measuring marks. Then the borehole distance measuring probe is raised until the holding elements of the lower probe head from below come into contact with the projections of the associated measuring mark. Upon further lifting of the downhole probe, the upper probe head will move relative to the lower probe head until its support members engage the protrusions of the associated gauge from below.
  • the measuring position is reached, in which the distance between the two probe heads is detected by means of the displacement transducer and the evaluation unit is supplied.
  • a comparison of the measured values obtained with the measured values from an earlier measurement at exactly the same measuring marks gives information on whether the measuring marks have shifted in the meantime.
  • the borehole distance measuring probe is pivoted back by means of the linkage, so that the holding elements can pass through the passages of the measuring mark, and then by the length of a Lifted measuring tube part, whereupon a similar measurement is performed on the two other consecutive measurement marks. This procedure is repeated until the measuring tube is measured in a predetermined section and in particular over its entire length.
  • the invention has for its object to provide a borehole distance measuring probe of the type mentioned, with which the measuring tube can be measured in a simple and cost-effective manner.
  • the holding elements are adjustable perpendicular to the longitudinal direction of the borehole distance measuring probe and radially to the measuring tube adjustable and under the action of a spring radially outward against the inner wall of the measuring tube.
  • the basic idea is to not engage the probe heads with the measuring tube in a form-fitting manner at the measuring points, but instead to position the probe heads at the measuring points by a spring force, ie. to reach frictionally.
  • the holding elements are tensioned by means of spring force outwards against the inner wall of the measuring tube and can engage there undercuts or measuring stops formed at the measuring points, as long as the holding force determined by the spring force is not overcome by a larger pull-off force.
  • the essential advantage of this embodiment is that the probe heads need not assume a predetermined rotational or pivotal position in the measuring tube for their positioning at the measuring points, so that it is possible to dispense with the use of a torsionally rigid rod.
  • the borehole distance measuring probe can be lowered into the measuring tube, for example, on a cable or cable and pulled up in it.
  • the device-technical effort is much lower and also the implementation of the measurement of the measuring tube can be achieved in a much shorter time.
  • a forced centering of the borehole distance measuring probe within the measuring tube is ensured by the radial adjustability of the holding elements and their resilient mounting, which is particularly useful for carrying out further measurements with the probe, such as inclination measurements within the measuring tube.
  • the borehole distance measuring probe is lowered, for example, on a cable or cable under its own weight in the measuring tube until the probe heads are each arranged below those measuring marks whose distance is to be measured below. Subsequently the borehole distance measuring probe is raised slowly and carefully in the measuring tube. When the spring-loaded holding elements of the lower probe head reach the assigned measuring mark, they engage in the undercuts or depressions formed there. The spring force of the holding elements of the lower probe head is dimensioned so that the engagement with the measuring mark of the measuring tube is maintained when the borehole distance measuring probe is further raised in the following.
  • the borehole distance measuring probe In order to disengage the holding elements of the probe heads from their engagement with the measuring marks, the borehole distance measuring probe is either pulled jerkily upwards, so that the holding force of the holding elements is overcome by the dynamic effects of this pulling movement. Alternatively, it is also possible to first lower the borehole distance measuring probe as a result of its own weight by a small amount in the measuring tube and then to pull it upwards relatively quickly with increased tensile force, so that the dynamic effects occurring prevent the probe heads from becoming blocked Holding elements can set at the associated measuring points.
  • each probe head has a plurality of retaining elements distributed over the circumference of the borehole distance measuring probe.
  • each probe head has at least two essentially diametrally opposed holding elements.
  • each retaining element has its own spring, with which it is stretched radially outward against the inner wall of the measuring tube.
  • each probe head has only one corresponding spring, so that the holding elements of each probe head are under the action of a common spring.
  • the upper spring force F O Due to the increased design of the upper spring force F O on the one hand ensures that additional unscheduled dynamic loads that are introduced when using the borehole distance measuring probe by the user via the cable or cable in the upper part of the borehole distance measuring probe in this can be reliably absorbed and do not cause the retaining elements to pop out of their support at the measuring points.
  • the increased upper spring force Fo it is possible to pull the borehole length measuring probe with sufficient force against the stops of the upper measuring point, after previously the holding elements of the lower probe head are already engaged at the lower measuring point, without There is a risk that the upper probe head will be pulled beyond the upper measuring point.
  • each holding element has a toggle lever formed by two articulated linkage parts and an engagement member mounted thereon.
  • the toggle lever or the two linkage parts form a joint triangle pointing radially outward with the tip, on the outer hinge point of which the engagement part is arranged, which is preferably a roller which can roll on the inner wall of the measuring tube.
  • the two radially inner base hinge points of the toggle lever are adjustable relative to one another in the longitudinal direction of the measuring tube, resulting in a radial mobility of the outer hinge point and thus the engagement part.
  • one of the inboard base hinge points is fixedly attached to the downhole probe, while the other base hinge point is under the action of a spring biasing it towards the other base hinge point and thus the engagement member radially outwardly against the inner wall of the meter tube stressed.
  • the toggle lever forms a substantially lying in a vertical sectional plane of the measuring tube triangle with an upper and a lower linkage part.
  • the two linkage parts have a different length and are arranged at different angles relative to the longitudinal axis of the borehole distance measuring probe and thus of the measuring tube. Due to the geometric configuration and arrangement of the toggle lever, different spring forces to be overcome for lowering and pulling up the borehole distance measuring probe in the measuring tube can be achieved.
  • the lengths of the linkage parts and / or the angles are in a mutual ratio of about 1: 2.
  • the longer linkage member which is at a shallower angle relative to the longitudinal axis of the wellbore track probe than the shorter linkage member, is disposed on the side facing the bottom of the wellbore track probe. In this way, it is ensured that when lowering or lowering the borehole distance measuring probe in the measuring tube due to the present leverage ratios, only relatively small spring forces of the holding elements are to be overcome, while raising or raising the borehole distance measuring probe due to the upper, relatively steep employee , Short linkage parts are to overcome greater spring forces of the holding elements.
  • the borehole track probe may be conventionally equipped with tilt sensors for vertical and / or horizontal tilt measurement.
  • a temperature sensor can be arranged in the borehole distance measuring probe in order to be able to take into account temperature influences on the mutual distance of the measuring points in the evaluation of the measurement results.
  • a measuring tube torsion can be detected by the lower probe head is rotatably mounted with its holding elements relative to the upper probe head in a range of ⁇ 5 °.
  • the holding elements of the probe heads it is necessary for the holding elements of the probe heads to assume a predetermined position in the circumferential direction of the measuring tube, which can be achieved, for example, by providing at least one linear tube extending over the length of the measuring tube Groove is formed.
  • Fig. 1 shows the basic structure of a measuring tube 1, in which the borehole distance measuring probe according to the invention is used.
  • the measuring tube 1 consists of a plurality of measuring tube 2, 3 and 4 arranged coaxially in series, wherein successive Meßrohrmaschine are each firmly connected to each other by means of an au- ⁇ en departmenten pipe sleeve 5. in the In the region of each tube sleeve 5, a lower undercut 3a or 4a is respectively formed on the measuring tube parts 2, 3 and 4, which represents a measuring mark.
  • the measuring tube parts 2, 3 and 4 all have a relatively short, equal length of, for example, a little less than one meter, so that the lower undercuts or measuring marks 3a, 4a of successive measuring tube parts have a predetermined defined distance of preferably one meter.
  • Fig. 2 shows the lower end of the measuring tube 1, which is closed by means of an end cap 6.
  • a borehole distance measuring probe 10 is arranged, which has an elongate, in the axial direction of the borehole distance measuring probe 10 and the measuring tube 1 extending housing 11, at the upper end of an upper probe head 19 is arranged.
  • the upper probe head 19 has two diametrically opposed support members 20a, 20b which are substantially perpendicular to the direction of measurement, i. are adjustable to the longitudinal direction of the measuring tube 1 and under the action of an upper spring 21 are radially outwardly clamped against the inner wall of the measuring tube 1.
  • the borehole distance measuring probe 10 is connected via a fastening 23 to a cable 22 which leads to the upper end of the measuring tube 1 at the earth's surface and over which the borehole distance measuring probe 10 in the measuring tube 1 can be lowered and raised.
  • the cable 22 serves as a data line for the transmission of measurement data to an external evaluation device.
  • a lower probe head 12 is provided which basically has the same structure as the upper probe head 19 and also has two diametrically opposite holding elements 17a and 17b, which are adjustable substantially perpendicular to the measuring direction and radially to the measuring tube 1 and under the action of a lower spring 18 are radially outwardly clamped against the inner wall of the measuring tube 1.
  • the lower probe head 12 is connected via a running inside the housing 11 rod 13 with a transducer 14 and can be moved together with this relative to the housing 11 and thus relative to the upper probe head 19 axially, as is schematically indicated by a bellows 16 , Between the displacement transducer 14 and the housing 11, a return spring 15 is arranged, which acts on the position transducer in an initial position.
  • Fig. 3 shows a schematic representation of the structure of the holding elements, wherein for example the holding member 17a is shown, but the other holding elements 17b, 20a and 20b have basically the same structure.
  • the holding element 17a comprises a toggle lever 24, which is formed by two articulated linkage parts 25 and 26, and an engagement part 27 in the form of a roller.
  • the two linkage parts 25 and 26 lie in a longitudinal plane extending in the longitudinal direction of the borehole distance measuring probe 10 and are held at their respective radially inner ends via a base joint 25a and 26a on the lower probe head 12 and at its radially outer hinge point 28 hinged together , Wherein also the engagement part 27 is attached to the radially outer hinge point 28.
  • the two linkage parts 25 and 26 have a different length and are oriented at different angles relative to the longitudinal axis L of the borehole distance measuring probe.
  • the upper, shorter linkage member 25 is held immovably to the lower probe head 12 with its inner base hinge point 25a and extends approximately at an angle of 35 ° to 45 ° relative to the longitudinal axis L.
  • the lower, longer linkage member 26 is guided at its inner base hinge point 26 a axially displaceable on the lower probe head 12 and biased by the lower spring 18 (see FIG. 2) in the direction of the base hinge point 25 a of the other linkage parts 25, as shown by Arrow F U is indicated, which represents the force exerted by the lower spring 18 lower spring force.
  • the lower linkage member 26 is about twice as long as the upper linkage member 25 and extends at a substantially shallow angle in the range of 15 ° to 25 ° relative to the longitudinal axis L.
  • the holding parts 20a and 20b of the upper probe head 19 mounted in the same way are also stretched radially outwards against the inner wall of the measuring tube 1 by the force F O of the upper spring 21, the two spring forces F U and F O, however, being different.
  • the spring force of the return spring 15 of the displacement transducer 14 substantially corresponds to the spring force F U of the lower spring and is thus also lower than the spring force F O of the upper spring.
  • the Bohroch-Streckenmesssonde 10 is first released as a result of their own weight in the measuring tube 1 until the lower probe head 12 is located well below the lower measurement mark M u and the upper probe head 19 well below the upper measurement mark M o . This condition is shown in FIG.
  • the distance between the holding elements of the lower probe head 12 and the holding elements of the lower probe head 19 is slightly less than the lowest expected mutual distance of the measuring marks M u and M o .
  • the holding elements of the lower probe head first snap into the circumferential recess near the lower measuring point M u and undercut the undercuts or measuring stops as shown in FIG. 5 is.
  • the holding elements of the upper probe head 19 have not yet reached the upper measuring mark M o , as is also apparent from FIG. 5.
  • Measuring stops come into contact.
  • the relative movement between the lower probe head 12 and the upper probe head 19 also leads to a relative movement between the transducer 14 and the housing 11 under tension of the return spring 15, as shown in Fig. 6.
  • the said relative movement can be detected by means of the displacement transducer 14, so that it is possible to ascertain exactly how far the two measuring marks M u and M o are from each other.
  • the measured values are forwarded via the cable 22 to an evaluation device positioned above ground.
  • the borehole distance measuring probe 10 is moved downwards by a short distance by releasing the cable 22 and then pulled up abruptly, whereby the two probe heads 12 and 19 receive the associated measuring mark M 0 or M u each happen due to the dynamic loads and thus the starting position for the measurement of the next higher measurement marks is reached, whereupon a measurement is performed in the illustrated manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Structural Engineering (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

Eine Bohrloch-Streckenmesssonde (10) zum Einführen in ein Mess-rohr (1), das in ein Bohrloch eingebracht oder an einem Bauwerk angebracht ist und in vorbestimmten Abständen definierte Messmarken (3a,4a) aufweist, besitzt einen oberen Sondenkopf (19) und einen unteren Sondenkopf (12), die in ihrem gegenseitigen Abstand veränderbar gelagert sind und jeweils Halteelemente (17a,17b,20a,20b) aufweisen, die an den Messmarken (3a,4a) mit dem Messrohr (1) in Eingriff bringbar sind. Darüber hinaus ist zumindest ein Wegaufnehmer (14) vorgesehen, mittels dessen der gegenseitige Abstand der Halteelemente (17a,17b,20a,20b) erfassbar ist. Mittels einer Auswerteeinheit können die aufgenommenen Messwerte ausgewertet werden. Dabei ist vorgesehen, dass die Halteelemente (17a,17b,20a,20b), im Wesentlichen senkrecht zur Längsrichtung der Bohrloch-Streckenmesssonde und radial zum Messrohr (1) verstellbar und unter Wirkung einer Feder (18,21) radial nach außen gegen die Innenwandung des Messrohres (1) spannbar sind.

Description

  • Die Erfindung betrifft eine Bohrloch-Streckenmesssonde zum Einführen in ein Messrohr, das in ein Bohrloch eingebracht oder an einem Bauwerk angebracht ist und in vorbestimmten Abständen definierte Messmarken aufweist, mit einem oberen Sondenkopf und einem unteren Sondenkopf, die in ihrem gegenseitigen Abstand veränderbar gelagert sind und jeweils Halteelemente aufweisen, die an den Messmarken mit dem Messrohr in Eingriff bringbar sind, mit zumindest einem Wegaufnehmer, mittels dessen der gegenseitige Abstand der Halteelemente erfassbar ist, und mit einer Auswerteeinrichtung, mittels der die aufgenommenen Messwerte auswertbar sind.
  • In vielen geotechnischen Bereichen ist es notwendig und sinnvoll, die Bewegungen des Erdbodens, eines Bauwerks oder eines Gebirges zu überwachen. Es kann sich dabei um die Überwachung von Bauwerken, z.B. eines Tunnels oder einer Staumauer, oder auch um die Erkennung und Überwachung potentieller Bergsturzgebiete oder um die Untersuchung des Quellverhaltens eines Gebirges handeln.
  • Für die geotechnische Deformationsmessung sind sogenannte Bohrloch-Streckenmesssonden bekannt, die in regelmäßigen zeitlichen Abständen in ein Messrohr eingefahren werden, das in einem Bohrloch angeordnet oder an einem Bauwerk angebracht ist. Das Messrohr weist in vorbestimmten axialen Abständen von beispielsweise einem Meter genau definierte Messmarken auf, deren gegenseitiger Abstand mittels der Bohrloch-Streckenmesssonde gemessen und erfasst wird.
  • Im Folgenden soll beispielhaft davon ausgegangen werden, dass das Bohrloch im Wesentlichen vertikal verläuft und die Bohrloch-Streckenmesssonde von oben in das ebenfalls vertikale Messrohr eingefahren wird. Die in dieser Beschreibung verwendeten Begriffe "oben" und "unten" beziehen sich auf diese Ausgestaltung.
  • Die Bohrloch-Streckenmesssonde weist einen oberen Sondenkopf und einen unteren Sondenkopf auf, die in ihrem gegenseitigen Abstand verstellbar sind. Mittels einer Messeinrichtung in Form eines oder mehrerer Wegaufnehmer läßt sich der gegenseitige Abstand der Sondenköpfe exakt ermitteln.
  • Das Messrohr wird aus einer Vielzahl von einzelnen, vorzugsweise gleichartigen Messrohrteilen zusammengesetzt, die jeweils eine relativ geringe Länge von ca. einem Meter aufweisen und über Rohrmuffen miteinander verbunden sind. Im Bereich jeder Rohrmuffe ist eine Messmarke in Form mehrerer radial nach innen weisender Vorsprünge ausgebildet, die diskontinuierlich über den Umfang verteilt sind, so dass zwischen den Vorsprüngen Durchlässe gebildet sind.
  • Die Sondenköpfe weisen jeweils radial nach außen hervorstehende Halteelemente auf, die ebenfalls diskontinuierlich über den Umfang verteilt sind. Je nach Drehlage des Sondenkopfes können die Halteelemente entweder die Messmarke an den Durchlässen passieren oder die Vorsprünge der Messmarke formschlüssig untergreifen.
  • Zur Durchführung einer Messung wird die Bohrloch-Streckenmesssonde an einem Gestänge bis in eine gewünschte Tiefe in das Messrohr hinabgelassen, wobei die Sondenköpfe die Messmarken jeweils an deren Durchlässe passieren. Anschließend wird über das Gestänge eine Drehkraft auf die Bohrloch-Streckenmesssonde und somit auf deren Sondenköpfe aufgebracht, wodurch diese um einen vorbestimmten Winkel, beispielsweise 45°, so geschwenkt werden, dass die Halteelemente der Sondenköpfe unterhalb der Vorsprünge der Messmarken angeordnet sind. Dann wird die Bohrloch-Streckenmesssonde angehoben, bis die Halteelemente des unteren Sondenkopfes von unten mit den Vorsprüngen der zugeordneten Messmarke in Anlage treten. Bei einem weiteren Anheben der Bohrloch-Streckenmesssonde führt der obere Sondenkopf eine Relativbewegung zu dem unteren Sondenkopf auf, bis seine Halteelemente von unten mit den Vorsprüngen der zugeordneten Messmarke in Anlage treten. Somit ist die Messposition erreicht, in der der Abstand zwischen den beiden Sondenköpfen mittels des Wegaufnehmers erfasst und der Auswerteeinheit zugeführt wird. Ein Vergleich der gewonnenen Messwerte mit den Messwerten aus einer früheren Messung an exakt den gleichen Messmarken gibt Auskunft darüber, ob sich die Messmarken in der Zwischenzeit verschoben haben.
  • Nach Beendigung der geschilderten Messung wird die Bohrloch-Streckenmesssonde mittels des Gestänges wieder zurückgeschwenkt, so dass die Halteelemente die Durchlässe der Messmarke passieren können, und dann um die Länge eines Messrohrteils angehoben, woraufhin eine gleichartige Messung an den beiden weiteren aufeinanderfolgenden Messmarken durchgeführt wird. Dieses Vorgehen wird wiederholt, bis das Messrohr in einem vorgegebenen Abschnitt und insbesondere über seine gesamte Länge vermessen ist.
  • Die Durchführung einer Messung mit einer Bohrloch-Streckenmesssonde der genannten Art ist sehr arbeits- und zeitaufwendig. Bereits das Herablassen der Bohrloch-Streckenmesssonde in das Messrohr benötigt eine relativ lange Zeit, da man dazu ein Gestänge benötigt, mit dem auf die Bohrloch-Streckenmesssonde ein Drehmoment bzw. eine Drehkraft aufgebracht werden kann, um die Sondenköpfe in genannter Weise zu verdrehen. Der Zusammenbau eines entsprechenden Gestänges aus einzelnen Gestängeteilen benötigt relativ viel Zeit und die Handhabung der Bohrloch-Streckenmesssonde wird dadurch wesentlich erschwert. Darüber hinaus muss die Bohrloch-Streckenmesssonde immer eine vorbestimmte Dreh-Ausrichtung in dem Messrohr besitzen, um sie in dem Messrohr absenken oder anheben zu können. Dies ist verfahrenstechnisch ungünstig.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Bohrloch-Streckenmesssonde der genannten Art zu schaffen, mit der sich das Messrohr in einfacher und kostengünstiger Weise vermessen läst.
  • Diese Aufgabe wird erfindungsgemäß mit einer Bohrloch-Streckenmesssonde mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst. Dabei ist vorgesehen, dass die Halteelemente im wesentlichen senkrecht zur Längsrichtung der Bohrloch-Streckenmesssonde und radial zum Messrohr verstellbar und unter Wirkung einer Feder radial nach außen gegen die Innenwandung des Messrohres spannbar sind.
  • Erfindungsgemäß wird von der Grundüberlegung ausgegangen, die Sondenköpfe an den Messpunkten nicht formschlüssig mit dem Messrohr in Eingriff zu bringen, sondern die Positionierung der Sondenköpfe an den Messpunkten durch eine Federkraft, d.h. kraftschlüssig zu erreichen. Die Halteelemente sind mittels Federkraft nach außen gegen die Innenwandung des Messrohres gespannt und können dort an den Messpunkten ausgebildete Hinterschneidungen oder Messanschläge untergreifen, solange die durch die Federkraft bestimmte Haltekraft nicht durch eine größere Abzugskraft überwunden wird. Der wesentliche Vorteil dieser Ausgestaltung besteht darin, dass die Sondenköpfe zu ihrer Positionierung an den Messpunkten keine vorbestimmte Dreh- oder Schwenkposition in dem Messrohr einnehmen müssen, so dass auf die Verwendung eines torsionssteifen Gestänges verzichtet werden kann. Statt dessen kann die Bohrloch-Streckenmesssonde beispielsweise an einem Seil oder Kabel in das Messrohr abgelassen und in diesem hinaufgezogen werden. Auf diese Weise ist einerseits der gerätetechnische Aufwand wesentlich geringer und auch die Durchführung der Vermessung des Messrohres läßt sich in wesentlich kürzerer Zeit erreichen. Darüber hinaus ist durch die radiale Verstellbarkeit der Halteelemente und durch deren federnde Lagerung eine zwangsweise Zentrierung der Bohrloch-Streckenmesssonde innerhalb des Messrohrs gewährleistet, was insbesondere für die Durchführung weiterer Messungen mit der Sonde, beispielsweise Neigungsmessungen, innerhalb des Messrohrs sinnvoll ist.
  • Zur Durchführung einer Messung wird die Bohrloch-Streckenmesssonde beispielsweise an einem Seil oder Kabel unter Eigengewicht in dem Messrohr hinabgelassen, bis die Sondenköpfe jeweils unterhalb derjenigen Messmarken angeordnet sind, deren Abstand im Folgenden vermessen werden soll. Anschließend wird die Bohrloch-Streckenmesssonde langsam und vorsichtig in dem Messrohr angehoben. Wenn die federbelasteten Halteelemente des unteren Sondenkopfes die zugeordnete Messmarke erreichen, rasten sie in die dort ausgebildeten Hinterschneidungen oder Vertiefungen ein. Die Federkraft der Halteelemente des unteren Sondenkopfes ist so bemessen, dass der Eingriff mit der Messmarke des Messrohres aufrechterhalten bleibt, wenn die Bohrloch-Streckenmesssonde im folgenden weiter angehoben wird. Dabei tritt eine Relativbewegung zwischen dem oberen und dem unteren Sondenkopf auf, bis auch die federbelasteten Halteelemente des oberen Sondenkopfes in die Hinterschneidungen oder Vertiefungen der zugeordneten Messmarke anschlagen oder einrasten. In diesem Zustand ist die Messposition erreicht und die mittels des Wegaufnehmers erfasste Relativbewegung zwischen den beiden Sondenköpfen wird an die Auswerteeinrichtung gegeben, in der der gegenseitige Abstand der Messmarken und dessen Vergleich mit früheren Messungen erfolgen kann.
  • Um die Halteelemente der Sondenköpfe aus ihrem Eingriff mit den Messmarken zu lösen, wird die Bohrloch-Streckenmesssonde entweder ruckartig nach oben gezogen, so dass die Haltekraft der Halteelemente durch die dynamischen Effekte dieser Zugbewegung überwunden wird. Alternativ ist es auch möglich, die Bohrloch-Streckenmesssonde zunächst in Folge ihres Eigengewichts um ein geringes Maß in dem Messrohr abzusenken und dann mit erhöhter Zugkraft relativ schnell nach oben zu ziehen, so dass die dabei auftretenden dynamischen Effekte verhindern, dass sich die Sondenköpfe mit ihren Halteelementen an den zugeordneten Messpunkten festsetzen können.
  • Vorzugsweise weist jeder Sondenkopf mehrere über den Umfang der Bohrloch-Streckenmesssonde verteilte Halteelemente auf.
  • In einer möglichen Ausgestaltung der Erfindung ist vorgesehen, dass jeder Sondenkopf zumindest zwei im wesentlichen diametral gegenüberliegend angeordnete Halteelemente besitzt.
  • Grundsätzlich ist es möglich, dass jedes Halteelement eine eigene Feder aufweist, mit der es radial nach außen gegen die Innenwandung des Messrohres gespannt wird. Vorzugsweise ist jedoch vorgesehen, dass jeder Sondenkopf nur eine entsprechende Feder aufweist, so dass die Halteelemente jedes Sondenkopfes unter Wirkung einer gemeinsamen Feder stehen.
  • Die Federkräfte, mit denen die Halteelemente des oberen Sondenkopfes und des unteren Sondenkopfes radial gegen die Innenwand des Messrohres gespannt werden, können gleich groß sein. In bevorzugter Ausgestaltung der Erfindung ist jedoch vorgesehen, dass die auf die Halteelemente des unteren Sondenkopfes einwirkende Federkraft FU geringer als die auf die Halteelemente des oberen Sondenkopfes einwirkende Federkraft Fo ist. Dabei hat es sich bewährt, wenn das Verhältnis V der beiden Federkräfte (V = FO/FU) im Bereich von 1,1 bis 2,0 und insbesondere im Bereich von 1,2 bis 1,6 liegt. Aufgrund der stärkeren Auslegung der oberen Federkraft FO ist einerseits sichergestellt, dass auch zusätzliche unplanmäßige dynamische Belastungen, die bei Gebrauch der Bohrloch-Streckenmesssonde vom Benutzer über das Seil oder Kabel im oberen Bereich der Bohrloch-Streckenmesssonde in diese eingeleitet werden, zuverlässig aufgenommen werden können und nicht dazu führen, dass die Halteelemente an den Messpunkten aus ihrer Halterung herausspringen. Darüber hinaus ist es aufgrund der erhöhten oberen Federkraft Fo möglich, die Bohrloch-Streckenmesssonde mit ausreichender Kraft gegen die Anschläge des oberen Messpunktes zu ziehen, nachdem vorher die Halteelemente des unteren Sondenkopfes bereits am unteren Messpunkt eingerastet sind, ohne dass die Gefahr besteht, dass der obere Sondenkopf über den oberen Messpunkt hinausgezogen wird.
  • Die radial verstellbare Lagerung der Halteelemente wird vorzugweise dadurch erreicht, dass jedes Halteelement einen von zwei gelenkig gelagerten Gestängeteilen gebildeten Kniehebel und ein daran gelagertes Eingriffsteil aufweist. Der Kniehebel bzw. die beiden Gestängeteile bilden ein mit der Spitze radial nach außen weisendes Gelenk-Dreieck, an dessen außenliegendem Gelenkpunkt das Eingriffsteil angeordnet ist, bei dem es sich vorzugsweise um eine Rolle handelt, die an der Innenwandung des Messrohres abrollen kann. Die beiden radial innenliegenden Basis-Gelenkpunkte des Kniehebel sind relativ zueinander in Längsrichtung des Messrohres verstellbar, wodurch sich eine radiale Beweglichkeit des außenliegenden Gelenkpunktes und somit des Eingriffsteils ergibt. Vorzugsweise ist einer der innenliegenden Basis-Gelenkpunkte an der Bohrloch-Streckenmesssonde fest angebracht, während der andere Basis-Gelenkpunkt unter Wirkung einer Feder steht, die ihn in Richtung des anderen Basis-Gelenkpunktes beaufschlagt und somit das Eingriffsteil radial nach außen gegen die Innenwandung des Messrohres spannt.
  • Der Kniehebel bildet ein im wesentlichen in einer vertikalen Schnittebene des Messrohres liegendes Dreieck mit einem oberen und einem untern Gestängeteil. Vorzugsweise besitzen die beiden Gestängeteile eine unterschiedliche Länge und sind in unterschiedlichen Winkelen relativ zur Längsachse der Bohrloch-Streckenmesssonde und somit des Messrohres angeordnet. Durch die geometrische Ausgestaltung und Anordnung des Kniehebels lassen sich für das Absenken und das Heraufziehen der Bohrloch-Streckenmesssonde in dem Messrohr unterschiedliche zu überwindende Federkräfte erreichen. In bevorzugter Ausgestaltung der Erfindung ist vorgesehen, dass die Längen der Gestängeteile und/oder die Winkel in einem gegenseitigen Verhältnis von etwa 1:2 stehen.
  • Das längere Gestängeteil, das in einem geringeren bzw. flacheren Winkel relativ zur Längsachse der Bohrloch-Streckenmesssonde als das kürzere Gestängeteil verläuft, ist auf der dem unteren Ende der Bohrloch-Streckenmesssonde zugewandten Seite angeordnet. Auf diese Weise ist gewährleistet, dass beim Herablassen bzw. Absenken der Bohrloch-Streckenmesssonde in dem Messrohr aufgrund der vorliegenden Hebelverhältnisse nur relativ geringe Federkräfte der Halteelemente zu überwinden sind, während beim Anheben bzw. Heraufziehen der Bohrloch-Streckenmesssonde aufgrund des oberen, relativ steil angestellten, kurzen Gestängeteils größere Federkräfte der Halteelemente zu überwinden sind.
  • Die Bohrloch-Streckenmesssonde kann in an sich bekannter mit Neigungssensoren für die vertikale und/oder horizontale Neigungsmessung ausgerüstet sein. Des weiteren kann in die Bohrloch-Streckenmesssonde ein Temperatursensor angeordnet sein, um Temperatureinflüsse auf den gegenseitigen Abstand der Messpunkte bei der Auswertung der Messergebnisse berücksichtigen zu können. Zusätzlich oder alternativ dazu kann auch eine Messrohr-Torsion erfasst werden, indem der untere Sondenkopf mit seinen Halteelementen relativ zu dem oberen Sondenkopf in einem Bereich von ± 5° drehbar gelagert ist. Für die Erfassung der Messrohr-Torsion und einer Messrohr-Neigung ist es notwendig, dass die Halteelemente der Sondenköpfe eine vorbestimmte Position in Umfangsrichtung des Messrohres einnehmen, was sich beispielsweise dadurch erreichen läßt, dass im Messrohr zumindest eine sich über die Länge des Messrohres erstreckende lineare Nut ausgebildet ist.
  • Weitere Einzelheiten und Merkmale der Erfindung sind aus der folgenden Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung ersichtlich. Es zeigen:
  • Fig. 1
    einen ausschnittweisen Vertikalschnitt durch ein Messrohr,
    Fig. 2
    das untere Ende des Messrohres mit eingefahrener Bohrloch-Streckenmesssonde,
    Fig. 3
    eine schematische Darstellung der Kniehebel-Lagerung der Halteelemente,
    Fig. 4
    die Bohrloch-Streckenmesssonde zu beginn eines Messvorgangs,
    Fig. 5
    die Bohrloch-Streckenmesssonde gemäß Fig. 4 nach Erreichen der unteren Messmarke,
    Fig. 6
    die Bohrloch-Streckenmesssonde gemäß Fig. 5 nach erfassen auch der oberen Messmarke und
    Fig. 7
    die Bohrloch-Streckenmesssonde gemäß Fig. 6 nach Beendigung der Messung und während des Verfahrens zu weiteren Messmarken.
  • Fig. 1 zeigt den grundsätzlichen Aufbau eines Messrohres 1, in dem die erfindungsgemäße Bohrloch-Streckenmesssonde zur Anwendung kommt. Das Messrohr 1 besteht aus mehreren koaxial in Reihe angeordneten Messrohrteilen 2, 3 und 4, wobei aufeinanderfolgende Messrohrteile jeweils mittels einer au-βenseitigen Rohrmuffe 5 miteinander fest verbunden sind. Im Bereich jeder Rohrmuffe 5 ist an den Messrohrteilen 2, 3 und 4 jeweils eine untere Hinterschneidung 3a bzw. 4a gebildet, die eine Messmarke darstellt. Die Messrohrteile 2, 3 und 4 besitzen alle eine relativ kurze, gleiche Länge von beispielsweise etwas weniger als einem Meter, so dass die unteren Hinterschneidungen bzw. Messmarken 3a, 4a aufeinander folgender Messrohrteile einen vorbestimmten definierten Abstand von vorzugsweise einem Meter aufweisen. Fig. 2 zeigt das untere Ende des Messrohres 1, das mittels einer Endkappe 6 verschlossen ist.
  • In dem Messrohr 1 ist eine Bohrloch-Streckenmesssonde 10 angeordnet, die ein längliches, sich in Axialrichtung der Bohrloch-Streckenmesssonde 10 und des Messrohres 1 erstreckendes Gehäuse 11 aufweist, an dessen oberem Ende ein oberer Sondenkopf 19 angeordnet ist. Der obere Sondenkopf 19 besitzt zwei diametral gegenüberliegend angeordnete Halteelemente 20a, 20b, die im wesentlichen senkrecht zur Messrichtung, d.h. zur Längsrichtung des Messrohres 1 verstellbar sind und unter Wirkung einer oberen Feder 21 radial nach außen gegen die Innenwandung des Messrohres 1 gespannt sind.
  • Oberhalb des oberen Sondenkopfes 19 ist die Bohrloch-Streckenmesssonde 10 über eine Befestigung 23 an ein Kabel 22 angeschlossen, das bis zum oberen Ende des Messrohres 1 an der Erdoberfläche führt und über das die Bohrloch-Streckenmessonde 10 im Messrohr 1 abgesenkt und angehoben werden kann. Darüber hinaus dient das Kabel 22 als Datenleitung zur Übermittlung von Messdaten an eine externe Auswerteeinrichtung.
  • Am unteren Ende der Bohrloch-Streckenmesssonde 10 ist ein unterer Sondenkopf 12 vorgesehen, der vom Grundsatz her den gleichen Aufbau wie der obere Sondenkopf 19 besitzt und ebenfalls zwei diametral gegenüberliegend angeordnete Halteelemente 17a und 17b aufweist, die im Wesentlichen senkrecht zur Messrichtung und radial zum Messrohr 1 verstellbar sind und unter Wirkung einer unteren Feder 18 radial nach außen gegen die Innenwandung des Messrohres 1 gespannt sind.
  • Der untere Sondenkopf 12 ist über eine im Inneren des Gehäuses 11 verlaufende Stange 13 mit einem Wegaufnehmer 14 verbunden und kann zusammen mit diesem relativ zu dem Gehäuse 11 und somit relativ zum oberen Sondenkopf 19 axial bewegt werden, wie es durch einen Balg 16 schematisch angedeutet ist. Zwischen dem Wegaufnehmer 14 und dem Gehäuse 11 ist eine Rückstellfeder 15 angeordnet, die den Wegaufnehmer in eine Ausgangsstellung beaufschlagt.
  • Fig. 3 zeigt in schematischer Darstellung den Aufbau der Halteelemente, wobei beispielhaft das Halteelement 17a dargestellt ist, wobei jedoch die anderen Halteelemente 17b, 20a und 20b den grundsätzlich gleichen Aufbau besitzen.
  • Das Halteelement 17a umfasst einen Kniehebel 24, der von zwei gelenkig gelagerten Gestängeteilen 25 und 26 gebildet ist, sowie ein Eingriffsteil 27 in Form einer Rolle. Die beiden Gestängeteile 25 und 26 liegen in einer sich in Längsrichtung der Bohrloch-Streckenmesssonde 10 erstreckenden Vertikalebene und sind an ihrem jeweils radial innenliegenden Enden über ein Basisgelenk 25a bzw. 26a an dem unteren Sondenkopf 12 gehalten und an ihrem radial außenliegenden Gelenkpunkt 28 miteinander gelenkig verbunden, wobei auch das Eingriffsteil 27 an dem radial außenliegenden Gelenkpunkt 28 angebracht ist. Wie Fig. 3 zeigt, besitzen die beiden Gestängeteile 25 und 26 eine unterschiedliche Länge und sind in unterschiedlichem Winkel relativ zur Längsachse L der Bohrloch-Streckenmesssonde ausgerichtet.
  • Das obere, kürzere Gestängeteil 25 ist mit seinem inneren Basis-Gelenkpunkt 25a unverschieblich an dem unteren Sondenkopf 12 gehalten und erstreckt sich etwa in einem Winkel von 35° bis 45° relativ zur Längsachse L.
  • Das untere, längere Gestängeteil 26 ist an seinem inneren Basis-Gelenkpunkt 26a axial verschieblich am unteren Sondenkopf 12 geführt und mittels der unteren Feder 18 (siehe Fig. 2) in Richtung des Basis-Gelenkpunkts 25a des anderen Gestängeteile 25 vorbespannt, wie es durch den Pfeil FU angedeutet ist, der die von der unteren Feder 18 ausgeübte untere Federkraft darstellt. Das untere Gestängeteil 26 ist etwa doppelt so lang wie das obere Gestängeteil 25 und erstreckt sich in einem wesentlich flachen Winkel im Bereich von 15° bis 25° relativ zur Längsachse L.
  • In Folge der Federkraft FU wird der radial äußere Gelenkpunkt 28 des Kniehebels 24, an dem die beiden Gestängeteile 25 und 26 miteinander verbunden sind und an dem das rollenförmige Eingriffsteil 27 gelagert ist, radial nach außen gedrückt, und liegt somit unter Federspannung an der Innenwandung des Messrohres 1 an.
  • Die in gleichartiger Wiese gelagerten Halteteile 20a und 20b des oberen Sondenkopfes 19 sind durch die Kraft FO der oberen Feder 21 ebenfalls radial nach außen gegen die Innenwandung des Messrohres 1 gespannt, wobei die beiden Federkräfte FU bzw. FO jedoch unterschiedlich sind. Das Verhältnis V = FO/FU liegt im Bereich von 1,1 und 2,0 und insbesondere im Bereich von 1,2 bis 1,6. Die Federkraft der Rückstellfeder 15 des Wegaufnehmers 14 entspricht im Wesentliche der Federkraft FU der unteren Feder und ist somit ebenfalls geringer als die Federkraft FO der oberen Feder.
  • Anhand der Fig. 4 bis 7 wird im Folgenden die Durchführung einer Einzelmessung erläutert, mit der der Abstand zwischen einer unteren Messmarke Mu an der Unterseite eines Messrohrteils und einer oberen Messmarke Mo an der Unterseite des darüberliegende Messrohrteil ermittelt werden soll.
  • Die Bohroch-Streckenmesssonde 10 wird zunächst in Folge ihres Eigengewichts soweit in das Messrohr 1 abgelassen, bis der untere Sondenkopf 12 deutlich unterhalb der unteren Messmarke Mu und der obere Sondenkopf 19 deutlich unterhalb der oberen Messmarke Mo angeordnet ist. Dieser Zustand ist in Fig. 4 dargestellt.
  • Der Abstand zwischen den Halteelementen des unteren Sondenkopfs 12 und den Halteelementen des unteren Sondenkopfs 19 ist etwas geringer als der geringste zu erwartende gegenseitige Abstand der Messmarken Mu und Mo. Wenn die Bohrloch-Streckenmesssonde mittels des Kabels 22 langsam innerhalb des Messrohres hochgezogen wird, rasten zunächst die Halteelemente des unteren Sondenkopfes in die umlaufende Vertiefung nahe dem unteren Messpunkt Mu ein und untergreifen die dortigen Hinterschneidungen bzw. Messanschläge, wie es in Fig. 5 dargestellt ist. Die Halteelemente des oberen Sondenkopfs 19 haben die obere Messmarke Mo noch nicht erreicht, wie ebenfalls aus Fig. 5 hervorgeht.
  • Wenn auf die sich in der Position gemäß Fig. 5 befindliche Bohrloch-Streckenmesssonde 10 mittels des Kabels 22 eine weitere nach oben gerichtete Zugkraft ausgeübt wird, bleibt der unter Sondenkopf 12 aufgrund des Eingriffs seiner Halteelemente mit den Hinterschneidungen an der unteren Messmarke Mu stehen, während der obere Sondenkopf 19 zusammen mit dem Gehäuse 11 axial angehoben wird, bis auch die Halteelemente des oberen Sondenkopfs 19 die obere Messmarke Mo erreichen und mit den dortigen Hinterschneidungen bzw.
  • Messanschläge in Anlage treten. Die Relativbewegung zwischen dem unteren Sondenkopf 12 und dem oberen Sondenkopf 19 führt auch zu einer Relativbewegung zwischen dem Wegaufnehmer 14 und dem Gehäuse 11 unter Spannung der Rückstellfeder 15, wie es in Fig. 6 dargestellt ist. Die genannte Relativbewegung kann mittels des Wegaufnehmers 14 erfast werden, so dass sich genau feststellen läst, wie weit die beiden Messmarken Mu und Mo voneinander entfernt sind. Die Messwerte werden über das Kabel 22 an eine oberirdisch positionierte Auswerteeinrichtung weitergeleitet.
  • Nachdem die Messwerte aufgenommen wurden, wird die Bohrloch-Streckenmesssonde 10 durch Nachlassen des Kabels 22 um eine kurze Strecke nach unten verfahren und anschließend ruckartig bzw. zügig nach oben gezogen, wobei die beiden Sondenköpfe 12 und 19 die zugeordnete Messmarke M0 bzw. Mu jeweils aufgrund der dynamischen Belastungen passieren und somit die Ausgangsposition für die Messung der nächst höherliegenden Messmarken erreicht ist, woraufhin ein Messung in dargestellter Weise durchgeführt wird.

Claims (11)

  1. Bohrloch-Streckenmesssonde (10) zum Einführen in ein Messrohr (1), das in ein Bohrloch eingebracht oder an einem Bauwerk angebracht ist und in vorbestimmten Abständen definierte Messmarken (3a, 4a) aufweist, mit einem oberen Sondenkopf (19) und einem unteren Sondenkopf (12), die in ihrem gegenseitigen Abstand veränderbar gelagert sind und jeweils Halteelemente (17a, 17b, 20a, 20b) aufweisen, die an den Messmarken (3a, 4a) mit dem Messrohr (1) in Eingriff bringbar sind, mit zumindest einem Wegaufnehmer (14), mittels dessen der gegenseitige Abstand der Halteelemente (17a, 17b, 20a, 20b) erfassbar ist, und mit einer Auswerteeinrichtung, mittels der die aufgenommen Messwerte auswertbar sind, dadurch gekennzeichnet, dass die Halteelemente (17a, 17b, 20a, 20b) im wesentlichen senkrecht zur Längsrichtung der Bohrloch-Streckenmesssonde und radial zum Messrohr (1) verstellbar und unter Wirkung einer Feder (18, 21) radial nach außen gegen die Innenwandung des Messrohrs (1) spannbar sind.
  2. Bohrloch-Streckenmesssonde nach Anspruch 1, dadurch gekennzeichnet, dass jeder Sondenkopf (12, 19) zumindest zwei im wesentlichen diametral gegenüberliegend angeordnete Haltelemente (17a, 17b, 20a, 20b) aufweist.
  3. Bohrloch-Streckenmesssonde nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Halteelemente (17a, 17b, 20a, 20b) jedes Sondenkopf (12, 19) unter Wirkung einer gemeinsamen Feder (18, 21) stehen.
  4. Bohrloch-Streckenmesssonde nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die auf die Halteelemente (17a, 17b) des unteren Sondenkopfs (12) einwirkende Federkraft FU geringer als die auf die Halteelemente (20a, 20b) des oberen Sondenkopfs (19) einwirkende Federkraft Fo ist.
  5. Bohrloch-Streckenmesssonde nach Anspruch 4, dadurch gekennzeichnet, dass ein Federkraft-Verhältnis V = FO/FU im Bereich von 1,1 bis 2,0 und insbesondere im Bereich von 1,2 bis 1,6 liegt.
  6. Bohrloch-Streckenmesssonde nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass jedes Halteelement (17a, 17b, 20a, 20b) einen von zwei gelenkig gelagerten Gestängeteilen (25, 26) gebildeten Kniehebel (24) und ein daran gelagertes Eingriffsteil (27) aufweist.
  7. Bohrloch-Streckenmesssonde nach Anspruch 6, dadurch gekennzeichnet, dass das Eingriffsteil (27) von einer Rolle gebildet ist.
  8. Bohrloch-Streckenmesssonde nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Gestängeteile (25, 26) unterschiedliche Längen aufweisen und in unterschiedlichen Winkeln relativ zur Längsachse L der Bohrloch-Streckenmesssonde (10) angeordnet sind.
  9. Bohrloch-Streckenmesssonde nach Anspruch 8, dadurch gekennzeichnet, dass die Längen der Gestängeteile (25, 26) in einem gegenseitigem Verhältnis von etwa 1:2 stehen.
  10. Bohrloch-Streckenmesssonde nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die Winkel in einem gegenseitigem Verhältnis von etwa 1:2 stehen.
  11. Bohrloch-Streckenmesssonde nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das längere Gestängeteil (26), das in einem geringeren Winkel relativ zur Längsachse L der Bohrloch-Streckenmessonde (10) verläuft, auf der dem unteren Ende der Bohrloch-Streckenmesssonde (10) zugewandten Seite angeordnet ist.
EP05024153A 2004-11-30 2005-11-05 Bohrloch-Streckenmesssonde Not-in-force EP1662225B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004057642A DE102004057642A1 (de) 2004-11-30 2004-11-30 Bohrloch-Streckenmesssonde

Publications (2)

Publication Number Publication Date
EP1662225A1 true EP1662225A1 (de) 2006-05-31
EP1662225B1 EP1662225B1 (de) 2007-03-21

Family

ID=35871033

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05024153A Not-in-force EP1662225B1 (de) 2004-11-30 2005-11-05 Bohrloch-Streckenmesssonde

Country Status (4)

Country Link
EP (1) EP1662225B1 (de)
AT (1) ATE357645T1 (de)
DE (2) DE102004057642A1 (de)
ES (1) ES2284118T3 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2331216A1 (es) * 2007-03-21 2009-12-23 Universidad De Oviedo Dispositivo para la medida de deformaciones en el interior del terreno.
ITGE20110046A1 (it) * 2011-04-18 2012-10-19 C S G Srl Perfezionamenti tecnici nei dispositivi per il monitoraggio di parametri geotecnici, geologici-strutturali, idrogeologici e geofisici di terreni, rocce e strutture in genere
CN106285633A (zh) * 2016-10-26 2017-01-04 贵州盘江精煤股份有限公司 一种钻孔通孔测定装置及其测定方法
CN110454230A (zh) * 2019-08-30 2019-11-15 武汉科技大学 一种矿山巷道顶板离层的实时监测和预警装置
CN111473769A (zh) * 2020-05-27 2020-07-31 中铁第四勘察设计院集团有限公司 一种岩土沉降测量探头、探头组件、装置和测量方法
CN113367726A (zh) * 2021-06-16 2021-09-10 中国人民解放军陆军军医大学第二附属医院 一种具有多功能探头支架的b超机
CN113883977A (zh) * 2019-12-10 2022-01-04 四川中鼎爆破工程有限公司 一种爆破施工中的孔洞探测装置及测量方法
WO2023279437A1 (zh) * 2021-07-06 2023-01-12 中国地质大学(武汉) 一种滑体钻孔外多传感器布设装置及布设方法
US20230008447A1 (en) * 2021-07-06 2023-01-12 China University Of Geosciences (Wuhan) Arrangement device for multiple sensors outside borehole of sliding mass and arrangement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327590A (en) * 1978-12-21 1982-05-04 Gesellschaft Zur Forderung Der Forschung An Der Eidgenossischen Technischen Hochschule Method and apparatus for determining shifts at terrain and in structures
US4739652A (en) * 1985-01-24 1988-04-26 Gesellschaft zur Forderung der industrieorientierten Forschung an den Schweizerischen Hochschulen und weitern Institutionen Method of, and tubing and support apparatus for, arranging a tubing assembly for measuring purposes
EP0487872A1 (de) * 1990-11-26 1992-06-03 Kovari, Kalman, Prof. Dr. Verfahren und Messanordnung zur Bestimmmung von Verschiebungen in einem festen Medium
US5355950A (en) * 1991-05-25 1994-10-18 Klaas Zwart Centraliser
FR2766230A1 (fr) * 1997-07-16 1999-01-22 Francis Bayle Dispositif d'ancrage d'un element allonge au fond d'un forage
JP2004316117A (ja) * 2003-04-11 2004-11-11 Nagatomo Shigeki 切羽前方地山変位の測定装置及び測定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906170C2 (de) * 1979-02-17 1983-04-07 Glötzl, Gesellschaft für Baumeßtechnik mbH, 7512 Rheinstetten Extensometer für die Fels- und Bodenmechanik
DE3211822A1 (de) * 1982-03-31 1983-10-13 Glötzl, Gesellschaft für Baumeßtechnik mbH, 7512 Rheinstetten Extensometer
DD251198A1 (de) * 1986-07-18 1987-11-04 Kali Veb K Sonde zur messung der gebirgsaufblaetterung um bergmaennische hohlraeume
US5511429A (en) * 1993-12-08 1996-04-30 Obayashi Corporation Method and system for measuring three-dimensional displacement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327590A (en) * 1978-12-21 1982-05-04 Gesellschaft Zur Forderung Der Forschung An Der Eidgenossischen Technischen Hochschule Method and apparatus for determining shifts at terrain and in structures
US4739652A (en) * 1985-01-24 1988-04-26 Gesellschaft zur Forderung der industrieorientierten Forschung an den Schweizerischen Hochschulen und weitern Institutionen Method of, and tubing and support apparatus for, arranging a tubing assembly for measuring purposes
EP0487872A1 (de) * 1990-11-26 1992-06-03 Kovari, Kalman, Prof. Dr. Verfahren und Messanordnung zur Bestimmmung von Verschiebungen in einem festen Medium
US5355950A (en) * 1991-05-25 1994-10-18 Klaas Zwart Centraliser
FR2766230A1 (fr) * 1997-07-16 1999-01-22 Francis Bayle Dispositif d'ancrage d'un element allonge au fond d'un forage
JP2004316117A (ja) * 2003-04-11 2004-11-11 Nagatomo Shigeki 切羽前方地山変位の測定装置及び測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12 5 December 2003 (2003-12-05) *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2331216A1 (es) * 2007-03-21 2009-12-23 Universidad De Oviedo Dispositivo para la medida de deformaciones en el interior del terreno.
ITGE20110046A1 (it) * 2011-04-18 2012-10-19 C S G Srl Perfezionamenti tecnici nei dispositivi per il monitoraggio di parametri geotecnici, geologici-strutturali, idrogeologici e geofisici di terreni, rocce e strutture in genere
EP2527538A1 (de) * 2011-04-18 2012-11-28 C.S.G. S.R.L. Vorrichtung zur Ermittlung von Bodenkennwerten.
CN106285633A (zh) * 2016-10-26 2017-01-04 贵州盘江精煤股份有限公司 一种钻孔通孔测定装置及其测定方法
CN110454230A (zh) * 2019-08-30 2019-11-15 武汉科技大学 一种矿山巷道顶板离层的实时监测和预警装置
CN110454230B (zh) * 2019-08-30 2024-02-23 武汉科技大学 一种矿山巷道顶板离层的实时监测和预警装置
CN113883977B (zh) * 2019-12-10 2023-03-21 四川中鼎爆破工程有限公司 一种爆破施工中的孔洞探测装置及测量方法
CN113883977A (zh) * 2019-12-10 2022-01-04 四川中鼎爆破工程有限公司 一种爆破施工中的孔洞探测装置及测量方法
CN111473769A (zh) * 2020-05-27 2020-07-31 中铁第四勘察设计院集团有限公司 一种岩土沉降测量探头、探头组件、装置和测量方法
CN111473769B (zh) * 2020-05-27 2024-06-07 中铁第四勘察设计院集团有限公司 一种岩土沉降测量探头、探头组件、装置和测量方法
CN113367726A (zh) * 2021-06-16 2021-09-10 中国人民解放军陆军军医大学第二附属医院 一种具有多功能探头支架的b超机
CN113367726B (zh) * 2021-06-16 2022-08-30 中国人民解放军陆军军医大学第二附属医院 一种具有多功能探头支架的b超机
US11572781B2 (en) * 2021-07-06 2023-02-07 China University Of Geosciences (Wuhan) Arrangement device for multiple sensors outside borehole of sliding mass and arrangement method
US20230008447A1 (en) * 2021-07-06 2023-01-12 China University Of Geosciences (Wuhan) Arrangement device for multiple sensors outside borehole of sliding mass and arrangement method
WO2023279437A1 (zh) * 2021-07-06 2023-01-12 中国地质大学(武汉) 一种滑体钻孔外多传感器布设装置及布设方法

Also Published As

Publication number Publication date
DE102004057642A1 (de) 2006-06-01
ES2284118T3 (es) 2007-11-01
ATE357645T1 (de) 2007-04-15
EP1662225B1 (de) 2007-03-21
DE502005000501D1 (de) 2007-05-03

Similar Documents

Publication Publication Date Title
EP1662225B1 (de) Bohrloch-Streckenmesssonde
DE3751150T2 (de) Bohrlochmesswerkzeug.
DE2529552A1 (de) Vorrichtung zum messen der auf ein drehteil ausgeuebten radialbelastung
DE102006007144B4 (de) Pfahlhubkissen
DE2920886C2 (de) Verfahren und Vorrichtung zum Bestimmen von Verschiebungen im Boden, im Fels, in Bauwerken und dergleichen
DE3001634A1 (de) Innenmesslehre
EP0394617B1 (de) Messvorrichtung zur Ermittlung des Betonierdruckes
EP3124740B1 (de) Bohrgerät und verfahren zum erstellen einer bohrung von einer schwimmenden plattform
DE2516803A1 (de) Zugkraftfuehlvorrichtung fuer zugmaschinen
DE2906155C3 (de) Support mit zwei Trägern und einer Gleitführung
EP0188798A2 (de) Verfahren zur Montage einer Verrohrung für Messzwecke
DE19812524A1 (de) Verfahren und Vorrichtung zum Positionieren von Wellrohrschläuchen
DE69217537T2 (de) Penetrometerkopf mit Gehäuse, und seine Anwendung
DE60302313T2 (de) Verfahren und Einrichtung zum Messen der Tragfähigkeit eines in den Boden durch Schwingung eingeführten Objektes
DE3103264A1 (de) Strassenschieber
DE10064187C1 (de) Vorrichtung zum Messen des Durchmessers von im Boden mittels eines Düsenstrahlverfahrens hergestellten Stütz- oder Wandelementen
DE10214345B4 (de) Verfahren sowie Vorrichtung zur Bestimmung des Verlaufs eines Bohrlochs
DE2649524A1 (de) Teleskopartige vorrichtung
DE1448398B2 (de) Bohrungsmeßgerat
DE4440550A1 (de) Einrichtung und Verfahren zum Einbringen einer Erdsonde in ein Bohrloch
DE4302469C2 (de) Vorrichtung zum Vermessen der Orientierung von Bohrlöchern und Schlitzen im Baugrund
DE102008011294B3 (de) Markise mit Sensoranordnung zur Erfassung von Wind- und Wasserlasten
DE2844765A1 (de) Vorrichtung zum messen der winkelabweichung des endes eines bohrgestaenges
DE10104434C2 (de) Markise
CH689561A5 (de) Penetrations-Verfahren zum Ermitteln der Konsistenz eines Untergrundes.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060804

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005000501

Country of ref document: DE

Date of ref document: 20070503

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070821

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070321

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2284118

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

26N No opposition filed

Effective date: 20071227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070622

BERE Be: lapsed

Owner name: GLOTZL G.- FUR BAUMESSTECHNIK MBH

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071105

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070321

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070922

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101112

Year of fee payment: 6

Ref country code: FR

Payment date: 20101213

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101124

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20101123

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111105

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 357645

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111105

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20141120

Year of fee payment: 10

Ref country code: DE

Payment date: 20141121

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005000501

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601