WO2023279437A1 - 一种滑体钻孔外多传感器布设装置及布设方法 - Google Patents

一种滑体钻孔外多传感器布设装置及布设方法 Download PDF

Info

Publication number
WO2023279437A1
WO2023279437A1 PCT/CN2021/107494 CN2021107494W WO2023279437A1 WO 2023279437 A1 WO2023279437 A1 WO 2023279437A1 CN 2021107494 W CN2021107494 W CN 2021107494W WO 2023279437 A1 WO2023279437 A1 WO 2023279437A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
linkage mechanism
jacking
outside
sensor
Prior art date
Application number
PCT/CN2021/107494
Other languages
English (en)
French (fr)
Inventor
唐辉明
张永权
张俊荣
李长冬
胡新丽
邹宗兴
龚文平
Original Assignee
中国地质大学(武汉)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国地质大学(武汉) filed Critical 中国地质大学(武汉)
Priority to US17/401,338 priority Critical patent/US11572781B2/en
Publication of WO2023279437A1 publication Critical patent/WO2023279437A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/16Elements for restraining, or preventing the movement of, parts, e.g. for zeroising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/30Supports specially adapted for an instrument; Supports specially adapted for a set of instruments

Definitions

  • the invention relates to the technical field of geological disaster monitoring and prevention, in particular to a multi-sensor layout device and a layout method outside a sliding body borehole.
  • Landslide geological disaster is a kind of relatively common geological disaster, which poses a serious threat to people's life and property. Among them, large-scale landslides accounting for 70% are important factors that cause heavy casualties and social impact.
  • the construction of a professional monitoring and early warning system for landslide geological disasters is an important means to scientifically and proactively prevent geological disasters and reduce casualties and property losses caused by geological disasters.
  • the advancement of science and technology promotes the development of monitoring technology corresponding to various monitoring objects, which can provide monitoring personnel with certain early warning information before the occurrence of landslide geological disasters, so that engineering measures can be taken early for emergency treatment of landslides, avoiding human and financial losses. consequences of loss.
  • embodiments of the present invention provide a device and method for laying out multiple sensors outside a borehole of a sliding body.
  • An embodiment of the present invention provides a multi-sensor layout device outside the borehole of the sliding body, including:
  • the monitoring body is used for lowering into the borehole, and includes a plurality of casings, a plurality of linkage mechanisms and sensors.
  • the casings extend upward and downward, and a plurality of the casings are arranged at intervals in the upper and lower directions, and two adjacent The casings are connected by a plurality of linkage mechanisms, and the plurality of linkage mechanisms are arranged at intervals in the circumferential direction of the casing;
  • the linkage mechanism includes two brackets, and the two brackets pass through the first A pin is hinged to form a hinge, and the upper and lower ends of the linkage mechanism are respectively hinged with the two adjacent sleeves through the second pin, the sensor is fixed on the linkage mechanism, and the linkage mechanism It has an initial state extending vertically, and a protruding state in which the hinge portion protrudes outward and is located outside the casing;
  • the monitoring body deployment system includes a deployment probe, and the deployment probe is used to be lowered to a position opposite to the linkage mechanism in the casing, including a driving mechanism and a plurality of jacking parts, and the jacking part and the linkage mechanism One-to-one correspondence, the jacking part is connected to the driving mechanism, and the driving mechanism drives the jacking part to move toward the direction of the linkage mechanism, so as to push the hinge part from the initial state to the jacking part. Stretch state;
  • the pressing device is used to apply downward pressure to the top of the casing at the top, so as to reduce the distance between adjacent casings and push the hinged part into the side wall of the borehole.
  • the position corresponding to the sleeve and the linkage mechanism is provided with a notch with openings on both sides, the notch has a first opening and a second opening, the first opening faces the adjacent sleeve, so The second opening faces the outside of the casing, the bracket and the notch are hinged through the second pin, and when the linkage mechanism is in the initial state, the bracket is located in the first opening, and the bracket is located in the first opening. When the link mechanism is in the extended state, the bracket is located in the first opening and the second opening.
  • a locking mechanism is also included, and the locking mechanism includes a thin plate and an eccentric wheel;
  • the end of the thin plate away from the first opening is fixed in the gap, the thin plate is fixed with an annular boss, the inner side of the annular boss is provided with inner gear teeth, and the annular boss is located on the second pin shaft periphery; the position where the bracket is opposite to the annular boss is provided with a protrusion, and the outer side of the protrusion is provided with outer gear teeth meshing with the inner gear teeth, and the inner diameter of the annular boss is larger than the The outer diameter of the protrusion is large, and the protrusion is located in the annular boss;
  • a through hole is formed on the inner wall of the casing opposite to the notch, the eccentric wheel is rotatably mounted on the inner side of the casing, and the eccentric part of the eccentric wheel is located in the through hole against the thin plate , the inner gear teeth are meshed with the outer gear teeth, a handle is fixed on the side of the eccentric wheel away from the thin plate, and the handle is arranged horizontally and located in the casing;
  • a push block is provided at the position where the deployment probe is opposite to the handle. When the deployment probe moves upward, the push block interferes with the handle and pushes the handle upward to rotate the eccentric wheel, thereby making the The eccentric portion is away from the thin plate.
  • the locking mechanism also includes a partition, and the thin plate is provided with two, which are respectively located on both sides of the bracket, and the inner wall of the sleeve is fixed with a base, and the base is opposite to the through hole.
  • the eccentric wheel is mounted on the base through a third pin shaft, the partition is located in the through hole, and is located between the base and the thin plate, and the side of the partition facing the thin plate is in contact with the thin plate. The two sheets are offset against each other.
  • wedge-shaped bodies are fixed on the opposite sides of the two thin plates, and the wedge-shaped bodies are opposed to the side walls of the notch, and wedge-shaped blocks are provided at positions opposite to the two wedge-shaped bodies on the separator,
  • the tooth mouth of the wedge body matches the tooth mouth of the wedge block, and there is a gap between the wedge block and the side wall of the notch.
  • the deployment probe includes a casing, and the casing is circumferentially provided with a plurality of accommodation grooves extending radially along the sleeve, and the accommodation grooves are set in one-to-one correspondence with the linkage mechanism, and the The notch of the receiving groove faces the linkage mechanism, and the push block is fixed on the housing;
  • One end of the jacking part is located in the receiving groove and is connected to the receiving tank through a compression spring, the other end is located outside the housing, and the end of the jacking part is located outside the housing and inside the sleeve The walls are against each other, and the compression spring is in a compressed state.
  • the compression spring pushes the linkage mechanism outward due to the elastic recovery effect, so that the hinge part is outward.
  • a plurality of the compression springs constitute the driving mechanism.
  • one end of the jacking portion outside the housing is fan-shaped in cross section.
  • the outer end of the jacking portion is embedded with a ball, and the ball is against the inner wall of the casing.
  • a monitoring system is also included, and the monitoring system includes a concrete pier, a communication device and a solar power supply module, the concrete pier is built on a stable ground beside the borehole, and the communication device and the solar power supply module are fixed on the concrete pier
  • the communication device is electrically connected to the sensor to realize the collection, preprocessing and transmission of monitoring data
  • the solar power supply module is electrically connected to the communication device and the sensor to realize continuous power supply during the monitoring process .
  • Embodiments of the present invention also provide a layout method, and it is characterized in that, based on the multi-sensor layout device outside the borehole of the sliding body as described above, it includes the following steps:
  • S1 Determine the monitoring position after surveying the surface of the sliding body, construct the drilling hole at the predetermined position, lower the monitoring body into the drilling hole, and the linkage mechanism is in the initial state;
  • S2 will arrange the lower part of the probe to the position opposite to the link mechanism, and use the driving device to drive the jacking part from the initial state to the jacking state, so that the hinge part is located outside the casing;
  • the beneficial effect brought by the technical solution provided by the embodiments of the present invention is: the work of laying out the integrated sensor in the borehole is transferred to the outside of the ground borehole, and a new laying method is provided.
  • the static jacking method reduces the disturbance of the monitoring environment, and the range outside the hole can be selected by selecting a bracket with a suitable length.
  • the monitoring range is controllable and the adaptability is higher than before.
  • the arrangement of sensors outside the hole can better approach the original underground environment and measure more accurate underground multi-field information of landslides.
  • Fig. 1 is a structural schematic diagram of an embodiment of a multi-sensor arrangement device outside a sliding body borehole provided by the present invention
  • Fig. 2 is a sectional view of the monitoring body (connection rod mechanism is located in the jacking state) in Fig. 1;
  • Fig. 3 is a schematic structural diagram of the arrangement of probes in Fig. 1;
  • Fig. 4 is a schematic structural view of the shell and the jacking part in Fig. 3;
  • Fig. 5 is a schematic structural view of the end of the casing in Fig. 1;
  • Fig. 6 is a cross-sectional view of the end of the casing in Fig. 1;
  • Fig. 7 is a schematic flowchart of an embodiment of a layout method provided by the present invention.
  • monitoring body 100 monitoring body layout system 200, pressing equipment 300, drilling 400, sliding body 500, bushing 1, guide groove 1a, cable 1b, gap 1c, first opening 1d, second opening 1e , through hole 1f, link mechanism 2, bracket 2a, first pin shaft 2b, hinge part 2c, second pin shaft 2d, sensor 3, jacking part 4, compression spring 4a, ball 4b, housing 5, accommodation groove 5a, shell 5b, central column 5c, upper limit plate 5d, lower limit plate 5e, pull ring 6, pull rope 7, counterweight body 8, winch 9, control device 10, power supply 11, thin plate 12, eccentric wheel 13, handle 13a , eccentric part 13b, annular boss 14, push block 15, partition plate 16, connecting plate 17, base 18, third pin shaft 19, wedge body 20, wedge block 21, cover plate 22, concrete pier 23, communication device 24 , Solar power supply module 25.
  • an embodiment of the present invention provides a multi-sensor deployment device outside the borehole of a sliding body, including a monitoring body 100 , a monitoring body deployment system 200 and a pressing device 300 .
  • the monitoring body 100 is used to be lowered into the borehole 400, and includes a plurality of sleeve pipes 1, a plurality of linkage mechanisms 2 and sensors 3, the sleeve pipes 1 extend up and down, and a plurality of the sleeve pipes 1 are arranged at intervals in the vertical direction, and two adjacent sleeve pipes 1 are connected by a plurality of linkage mechanisms 2, and the plurality of linkage mechanisms 2 are arranged at intervals in the circumferential direction of the sleeve pipe 1.
  • the link mechanism 2 includes two brackets 2a, and the two brackets 2a are hinged by the first pin shaft 2b to form a hinge part 2c.
  • the sensor 3 is fixed on the link mechanism 2 through the second pin shaft 2d, the link mechanism 2 has an initial state extending vertically, and the hinge part 2c protrudes outward and is located at the The extended state of the outer side of casing 1.
  • the two brackets 2a are flat and made of metal, which is easy to squeeze and wedge into the rock and soil mass on the side wall of the borehole 400.
  • the outer wall of the casing 1 is provided with a guide groove 1a extending up and down, the upper end of the guide groove 1a runs through the upper end of the casing 1, and the cable 1b is buried in the guide groove 1a, and sealed with glue, the cable 1b is buried in the sensor hole
  • the integrated sensor 3 is electrically connected, so that functions such as power supply, control, and signal transmission can be realized.
  • the monitoring body deployment system 200 includes a traction mechanism and a deployment probe, and the deployment probe is used to be lowered to a position opposite to the linkage mechanism 2 in the casing 1, including a driving mechanism and a plurality of jacking parts 4, and the jacking part 4 and the link mechanism 2 are provided in one-to-one correspondence, the jacking part 4 is connected with the driving mechanism, and the driving mechanism drives the jacking part 4 to move toward the direction of the link mechanism 2, so as to Push the hinge part 2c from the initial state to the extended state.
  • the pressing device 300 is used to apply downward pressure on the top end of the casing 1 located at the top, so as to reduce the distance between adjacent casings 1 and push the hinged part 2c into the side of the borehole 400 intramural.
  • the pressing device 300 is a static pile driver.
  • the position corresponding to the sleeve 1 and the link mechanism 2 is provided with a notch 1c with openings on both sides, the notch 1c has a first opening 1d and a second opening 1e, and the first opening 1d faces the adjacent In the sleeve 1, the second opening 1e is facing the outside of the sleeve 1. It can be understood that in the gap 1c at the upper end of the sleeve 1, the first opening 1d faces upwards, and in the gap 1c at the lower end of the sleeve 1, the first The opening 1d is provided facing downward.
  • the bracket 2a is hinged to the notch 1c through the second pin shaft 2d.
  • the bracket 2a When the linkage mechanism 2 is in the initial state, the bracket 2a is located in the first opening 1d, and the linkage mechanism 2 is located in the first opening 1d. In the extended state, the bracket 2a is located in the first opening 1d and the second opening 1e. The link mechanism 2 is located in the notch 1c, and the pressing device 300 applies downward pressure to make two adjacent bushings 1 meet, while avoiding damage to the link mechanism 2 due to excessive pressure.
  • the driving mechanism can be a hydraulic cylinder.
  • the deployment probe includes a housing 5, and the housing 5 is provided with a plurality of accommodation grooves 5a extending radially along the sleeve 1 in the circumferential direction.
  • the groove 5a is provided in one-to-one correspondence with the linkage mechanism 2, and the notch of the accommodation groove 5a faces the linkage mechanism 2.
  • the accommodation groove 5a is located at the same height, and is uniform in the circumferential direction of the casing 1. interval setting.
  • One end of the jacking portion 4 is located in the accommodation groove 5a and is connected to the accommodation groove 5a through a compression spring 4a, the other end is located outside the housing 5, and the jacking portion 4 is located in the housing 5
  • the outer end is in contact with the inner wall of the casing 1, and the compression spring 4a is in a compressed state.
  • the compression spring 4a When the deployment probe moves upward to a position opposite to the linkage mechanism 2, the compression spring 4a is compressed due to elastic recovery.
  • the spring 4a pushes the link mechanism 2 outwards, so that the hinged part 2c protrudes outwards to a protruding state, and a plurality of the compression springs 4a constitute the driving mechanism.
  • the compression spring 4a has a high fatigue limit, so as to have the ability to resist fatigue damage under long-time work and ensure high reliability.
  • the housing 5 includes a hollow casing 5b, a center column 5c is fixed at the center of the casing 5b, and a plurality of spaced perforations are provided on the circumference of the casing 5b, and one end of the jacking part 4 passes through the center column 5c.
  • the compression spring 4a is connected, and the other end is located outside the shell 5b.
  • the jacking part 4 can move along the side wall of the perforation, which can reduce the weight of the deployment probe and facilitate the traction of the deployment probe.
  • the upper and lower sides of the compression spring 4a are provided with an upper limit plate 5d and a lower limit plate 5e, and the upper limit plate 5d and the lower limit plate 5e are connected with the inner side wall of the housing 5b and the center column 5c to play a role in the movement of the jacking part 4.
  • the central column 5c, the upper limit plate 5d, and the lower limit plate 5e form the accommodating groove 5a.
  • One end of the jacking portion 4 outside the housing 5 is fan-shaped in cross section, which increases the contact area between the jacking portion 4 and the linkage mechanism 2 .
  • the outer end of the jacking part 4 is embedded with a ball 4b, and the ball 4b is in contact with the inner wall of the casing 1 to reduce the friction between the jacking part 4 and the inner wall of the casing 1, ensuring that the jacking part 4. While contacting and squeezing the inner wall of the casing 1, the layout probe can still move up and down freely.
  • a pull ring 6 is welded on the top of the casing 5, and a pull rope 7 is tied to the pull ring 6, and the pull rope 7 is used to pull the deployment probe to move up and down in the casing 1.
  • a counterweight 8 is provided at the bottom of the housing 5, and the counterweight 8 is made of stainless steel or other metal materials with anti-rust treatment, and is used to keep the vertical state during the process of laying the probe and being lowered into the borehole 400 .
  • the traction mechanism includes a winch 9 , a control device 10 and a power supply 11 .
  • the hoist 9 is connected to the pull ring 6 of the probe arrangement through the stay rope 7, and is used for lowering and pulling up the probe during the laying stage.
  • the power supply 11 is electrically connected with the control device 10 and the pressing device 300, and is mainly used for power supply of each device.
  • the control device 10 controls the working speed, frequency, etc. of the winch 9 .
  • the monitoring body 100 also includes a locking mechanism, and the locking mechanism includes a thin plate 12 and an eccentric wheel 13 .
  • the thin plate 12 is made of metal, and the end of the thin plate 12 away from the first opening 1d is fixed in the gap 1c.
  • An annular boss 14 is fixed on the thin plate 12, and an inner wheel is arranged on the inner side of the annular boss 14. Teeth, the annular boss 14 is located on the periphery of the second pin shaft 2d, the thin plate 12 can be located below the second pin shaft 2d, and can also extend above the second pin shaft 2d, the thin plate 12 corresponds to the second pin shaft 2d The position is provided with an escape hole.
  • the position of the bracket 2a opposite to the annular boss 14 is provided with a protrusion, and the outer side of the protrusion is provided with outer gear teeth meshed with the inner gear teeth, and the inner diameter of the annular boss 14 is larger than the The outer diameter of the protrusion is large, and the protrusion is located in the annular boss 14 .
  • the inner side wall of the sleeve 1 opposite to the notch 1c is provided with a through hole 1f
  • the eccentric wheel 13 is rotatably mounted on the inner side of the sleeve 1
  • the eccentric part 13b of the eccentric wheel 13 is located on the
  • the thin plate 12 is pressed against the through hole 1f so that the inner gear teeth mesh with the outer gear teeth.
  • a handle 13a is fixed on the side of the eccentric wheel 13 away from the thin plate 12.
  • the handle 13a is arranged horizontally and Located in the casing 1.
  • a push block 15 is provided at the position where the probe arrangement is opposite to the handle 13a.
  • the push block 15 is fixed on the housing 5.
  • the push block 15 Interfering with the handle 13 a, pushing the handle 13 a upwards rotates the eccentric wheel 13 , thereby moving the eccentric portion 13 b away from the thin plate 12 .
  • the eccentric wheel 13 supports the thin plate 12, so that the inner gear teeth of the annular boss 14 on the thin plate 12 mesh with the raised outer gear teeth on the bracket 2a, which can prevent the bracket 2a from rotating to the inside of the casing 1 and lock it, which is convenient
  • the casing 1 is lowered into the borehole 400 .
  • the locking mechanism also includes a partition 16.
  • the bottoms of the two thin plates 12 can be connected by a connecting plate 17, and the connecting plate 17 is fixed in the gap within 1c.
  • the inner side wall of the casing 1 is fixed with a base 18, the base 18 is opposite to the through hole 1f, the eccentric wheel 13 is mounted on the base 18 through a third pin shaft 19, and the partition 16 is located at the In the through hole 1f, and between the base 18 and the thin plate 12, the side of the partition plate 16 facing the thin plate 12 is against the two thin plates 12, and the eccentric wheel 13 is against the partition plate 16 That is, the thin plate 12 can be resisted, and the situation that the eccentric wheel 13 cannot correspond to the thin plate 12 can be avoided.
  • a wedge-shaped body 20 is fixed on the opposite sides of the two thin plates 12, and the wedge-shaped body 20 abuts against the side wall of the notch 1c.
  • Wedge block 21, the tooth mouth of described wedge body 20 is matched with the tooth mouth of described wedge block 21, and there is a gap between described wedge block 21 and the side wall of the notch 1c, and two wedge bodies 20 can face the partition 16 plays a position-limiting role, and reduces the distance between dividing plate 16 and eccentric wheel 13 simultaneously, facilitates the installation of eccentric wheel 13.
  • the width of the through hole 1f along the circumferential direction of the sleeve 1 is larger than that of the notch 1c, and the two side walls of the through hole 1f in the circumferential direction of the sleeve 1 are respectively located on both sides of the notch 1c. Both ends of the partition 16 in the circumferential direction of the casing 1 are respectively located on both sides of the notch 1c.
  • the eccentric portion 13b of the eccentric wheel 13 presses the partition 16 so that the wedge block 21 on the partition 16 presses the wedge 20, and the wedge 20 is pressed.
  • the thin plate 12 is driven to be pressed.
  • the annular boss 14 on the inner side of the thin plate 12 squeezes the protrusion on the bracket 2a, so that the inner gear teeth of the annular boss 14 mesh with the raised outer gear teeth, thereby locking the bracket 2a. die.
  • the handle 13a When the probe is arranged to pass the position of the handle 13a, after the push block 15 interferes with the handle 13a to lift it up, the handle 13a is rotated so that the eccentric part 13b of the eccentric wheel 13 is far away from the partition 16, and the partition 16 is no longer squeezed. Then the wedge-shaped block 21 on the partition 16 no longer squeezes the wedge-shaped body 20, and the annular boss 14 inside the thin plate 12 is loosened from the protrusion on the bracket 2a, so that the bracket 2a can rotate freely.
  • the top of the casing 1 is provided with a cover plate 22 , which is used to cover the top of the casing 1 after the casing 1 is laid, so as to prevent foreign matter from falling in and destroying the monitoring environment in the borehole 400 .
  • the present invention also includes a monitoring system, which includes a concrete pier 23 , a communication device 24 , and a solar power supply module 25 .
  • the concrete pier 23 is built on the stable ground beside the borehole 400, and is mainly used for fixing related monitoring equipment.
  • the communication device 24 and the solar power supply module 25 are fixed on the concrete pier 23, the communication device 24 is electrically connected to various integrated sensors 3 arranged in the borehole 400 through the cable 1b, and the communication device 24 It can be sent to a mobile monitoring terminal or network via GPRS to facilitate monitoring by monitoring personnel at any time, so as to realize the collection, preprocessing and transmission of monitoring data.
  • the solar power supply module 25 is electrically connected with the communication device 24 and various integrated sensors 3 arranged in the borehole 400 to realize continuous power supply during the monitoring process.
  • the monitoring position is determined after the surface survey of the sliding body 500, the drilling 400 is constructed at the predetermined position, and the monitoring body 100 is lowered into the drilling 400.
  • the link mechanism 2 is in the initial state. Specifically, the layout probe is preset at the inner bottom of the casing 1, pulled by the stay rope 7 of the hoist 9, lowered into the borehole 400 along with the casing 1, and the lowering of the monitoring body 100 is completed.
  • the hoist 9 is used to pull the pull rope 7 to lift up the deployment probe, and the jacking part 4 of the deployment probe is pressed into contact with the inner wall of the casing 1 under the action of the compression spring 4a and slides upward.
  • the push block 15 first passes through the lower bracket 2a in the link mechanism 2, and the push block 15 interferes with the handle 13a on the eccentric wheel 13, and pushes the handle 13a to rotate the eccentric wheel 13, so that The protrusion on the lower bracket 2a is loosened from the corresponding annular boss 14; the layout probe continues to slide upwards, passing through the upper bracket 2a in the linkage mechanism 2, the push block 15 interferes with the handle 13a on the eccentric wheel 13, And push the handle 13a to rotate the eccentric wheel 13, so that the protrusion on the lower bracket 2a is released from the corresponding annular boss 14, thereby completing the unlocking.
  • the jacking part 4 where the probe is arranged is opposite to the link mechanism 2. Due to the action of the compression spring 4a, the jacking part 4 pushes the link mechanism 2 outwards, so that the link mechanism 2 is located at the hinge part 2c and pushes outwards. extended state.
  • the cable 1b in the guide groove 1a is electrically connected with the communication device 24 and the solar power supply module 25, and the cover plate 22 is sealed with the top of the casing 1 to realize the monitoring of the deep part of the sliding body 500.
  • the technical solution provided by the present invention transfers the layout work of the integrated sensor 3 in the borehole 400 to outside the ground borehole 400, providing a new method of layout.
  • the static jacking method reduces the disturbance of the monitoring environment, and the range outside the hole can be selected by selecting the bracket 2a of a suitable length.
  • the monitoring range is controllable and the adaptability is higher than before.
  • the arrangement of the sensors 3 outside the hole can better approach the original underground environment and measure more accurate multi-field information of the landslide underground.

Abstract

本发明提供一种滑体钻孔外多传感器布设装置及布设方法,套管沿上下向延伸,相邻两个套管之间通过多个连杆机构连接;连杆机构包括两个支架,两个支架通过第一销轴铰接形成铰接部,连杆机构上下两端分别与相邻两个套管通过第二销轴铰接,连杆机构上固定有传感器,连杆机构具有沿竖向延伸的初始状态、和铰接部向外顶伸位于套管外侧的顶伸状态;驱动机构驱动顶进部朝向连杆机构的方向移动,以将铰接部由初始状态顶入至顶伸状态;下压设备用于对位于最顶部的套管顶端施加向下的压力,使铰接部顶入钻孔侧壁内。本发明提出的技术方案的有益效果是:将钻孔内的集成传感器布设工作转移到地面钻孔外,通过增加布设机械的选择性,操作简单,自动化程度高。

Description

一种滑体钻孔外多传感器布设装置及布设方法 技术领域
本发明涉及地质灾害监测与防治技术领域,尤其涉及一种滑体钻孔外多传感器布设装置及布设方法。
背景技术
滑坡地质灾害是一类较常见的地质灾害,对群众生命财产构成严重威胁,其中,占70%的大型滑坡是造成重大人员伤亡和社会影响重要因素。滑坡地质灾害的专业监测与预警系统建设是科学主动防范地质灾害、减少地质灾害造成人员伤亡和财产损失的重要手段。科学技术的进步推动着各类监测对象对应的监测技术的发展,能够在滑坡地质灾害出现之前为监测人员提供一定的预警信息,从而可以提早采取工程措施对滑体进行应急处置,避免了人财损失的后果。
近些年,针对“滑坡多场演化与致灾机理”的关键科学问题,为实现应力场、重力场、渗流场和位移场等多场信息特征参数的综合监测,构建滑坡多场演化过程综合监测的新体系,亟需解决多场信息特征变量联合自动监测的技术问题。解决变形、应力、温度、水文等多参数的实时自动化监测中传感器布设与类型分散、信息利用率低、精度低、融合度低等问题。尽管基于此,“一孔多测”的监测理念被提出并被工程地质学家重视,通过布设探头将相关集成传感器布设入孔外土体成为一个重要技术路线,但面对狭小空间,布设探头的布设精度以及布设强度能否应对实际地下情况尚不明确。因此,将集成传感器布设手段转移到孔外地表不失为一个新的重要思路。基于此,发展一套高效可靠的滑坡深部“一孔多测”的多地质信 息监测技术具有重要意义。
发明内容
有鉴于此,为解决上述问题,本发明的实施例提供了一种滑体钻孔外多传感器布设装置及布设方法。
本发明的实施例提供一种滑体钻孔外多传感器布设装置,包括:
监测体,用于下放至钻孔中,包括多个套管、多个连杆机构和传感器,所述套管沿上下向延伸,多个所述套管在上下向间隔设置,相邻两个所述套管之间通过多个所述连杆机构连接,多个所述连杆机构在所述套管周向上间隔设置;所述连杆机构包括两个支架,两个所述支架通过第一销轴铰接形成铰接部,所述连杆机构上下两端分别与相邻两个所述套管通过第二销轴铰接,所述连杆机构上固定有所述传感器,所述连杆机构具有沿竖向延伸的初始状态、和所述铰接部向外顶伸位于所述套管外侧的顶伸状态;
监测体布设系统,包括布设探头,所述布设探头用于下放至套管内与所述连杆机构相对的位置,包括驱动机构和多个顶进部,所述顶进部和所述连杆机构一一对应设置,所述顶进部和所述驱动机构连接,所述驱动机构驱动所述顶进部朝向所述连杆机构的方向移动,以将所述铰接部由初始状态顶入至顶伸状态;
下压设备,用于对位于最顶部的所述套管顶端施加向下的压力,以减小相邻所述套管之间的距离,使所述铰接部顶入钻孔侧壁内。
进一步地,所述套管与所述连杆机构对应的位置开设有两侧开口的缺口,所述缺口具有第一开口和第二开口,所述第一开口朝向相邻所述套管,所述第二开口朝向所述套管外侧,所述支架与所述缺口通过所述第二销轴铰接,所述连杆机构位于初始状态时,所述支架位于所述第一开口内,所述连杆机构位于顶伸状态时,所述支架位于所述第一开口和第二开口内。
进一步地,还包括锁止机构,所述锁止机构包括薄板和偏心轮;
所述薄板远离所述第一开口的一端固定于所述缺口内,所述薄板上固定有环形凸台,所述环形凸台内侧设有内轮齿,所述环形凸台位于所述第二销轴外围;所述支架与所述环形凸台相对的位置凸设有凸起,所述凸起外侧设有与所述内轮齿相啮合的外轮齿,所述环形凸台的内径比所述凸起外径大,所述凸起位于所述环形凸台内;
所述套管内侧壁与所述缺口相对的侧壁贯穿设有通孔,所述偏心轮转动安装于所述套管内侧,所述偏心轮的偏心部位于所述通孔内抵住所述薄板,使所述内轮齿与所述外轮齿相啮合,所述偏心轮远离所述薄板的一侧固定有把手,所述把手沿水平设置且位于所述套管内;
所述布设探头与所述把手相对的位置设有推块,所述布设探头向上移动时,所述推块与所述把手干涉,向上推动所述把手使所述偏心轮转动,从而使所述偏心部远离所述薄板。
进一步地,所述锁止机构还包括隔板,所述薄板设有两个,分别位于所述支架两侧,所述套管内侧壁固定有底座,所述底座与所述通孔相对,所述偏心轮通过第三销轴安装于所述底座上,所述隔板位于所述通孔内,且位于所述底座和所述薄板之间,所述隔板面向所述薄板的一侧与两个所述薄板相抵。
进一步地,两个所述薄板背对的一侧均固定有楔形体,所述楔形体与所述缺口侧壁相抵,所述隔板与两个所述楔形体相对的位置设有楔形块,所述楔形体的齿口和所述楔形块的齿口相配合,所述楔形块与所述缺口侧壁之间具有间隙。
进一步地,所述布设探头包括壳体,所述壳体周向开设有多个沿所述套管径向延伸的容纳槽,所述容纳槽与所述连杆机构一一对应设置,所述容纳槽的槽口朝向所述连杆机构,所述推块固定于所述壳体上;
所述顶进部一端位于所述容纳槽内、且与所述容纳槽通过压缩弹簧连接,另一端位于所述壳体外,所述顶进部位于所述壳体外的一端与所述套 管内侧壁相抵,所述压缩弹簧处于压缩状态,所述布设探头向上移动至与所述连杆机构相对的位置时,压缩弹簧由于弹性恢复作用,压缩弹簧向外推动连杆机构,使铰接部向外顶伸至顶伸状态,多个所述压缩弹簧构成所述驱动机构。
进一步地,所述顶进部位于所述壳体外的一端在横截面上呈扇形设置。
进一步地,所述顶进部外端嵌设有滚珠,所述滚珠与所述套管内侧壁相抵。
进一步地,还包括监测系统,所述监测系统包括混凝土墩、通讯装置和太阳能供电模块,所述混凝土墩建造于钻孔旁的稳定地面,所述通讯装置和太阳能供电模块固定于所述混凝土墩上,所述通讯装置与所述传感器电连接,实现监测数据的收集、预处理与传输,所述太阳能供电模块与所述通讯装置、所述传感器电连接,实现监测过程中的持续性电力供应。
本发明的实施例还提供一种布设方法,且特征在于,基于如上所述的滑体钻孔外多传感器布设装置,包括以下步骤:
S1在滑体表面勘测后确定监测位置,于预定位置施工钻孔,将监测体下放到钻孔中,连杆机构位于初始状态;
S2将布设探头下方至与连杆机构相对的位置,利用驱动装置驱动顶进部由初始状态顶伸至顶伸状态,使铰接部位于套管外;
S3通过下压设备对位于最顶部的套管顶端施加向下的压力,连杆机构的铰接部继续向外顶伸,直至相邻两个套管相互靠近、连接;此时,固定在支架侧壁内的多种集成传感器被静力挤压嵌入到孔周岩土体中。
本发明的实施例提供的技术方案带来的有益效果是:将钻孔内的集成传感器布设工作转移到地面钻孔外,提供了一种布设的新方法。相比已有的相关技术,通过增加布设机械的选择性,使得不同监测环境的布设均可以找到较好的解决方案,操作简单,自动化程度高。静力顶入的方式减小了监测环境的扰动,可以通过选择合适长度的支架的方式选择孔外布设的 范围,监测范围可控,适应性相比以往更高。孔外传感器布设的方式,可以更好的贴近原始的地下环境,测得更准确的滑坡地下多场信息。通过将通电、通信线缆集成到套管侧壁外部的排线中,并与多集成传感器连接后连接地面监测系统,可靠性高,不易被破坏。
附图说明
图1是本发明提供的滑体钻孔外多传感器布设装置一实施例的结构示意图;
图2是图1中监测体(连杆机构位于顶伸状态)的剖面图;
图3是图1中布设探头的结构示意图;
图4是图3中外壳和顶进部的结构示意图;
图5是图1中套管端部的结构示意图;
图6是图1中套管端部的剖视图;
图7是本发明提供的布设方法一实施例的流程示意图。
图中:监测体100、监测体布设系统200、下压设备300、钻孔400、滑体500、套管1、导槽1a、排线1b、缺口1c、第一开口1d、第二开口1e、通孔1f、连杆机构2、支架2a、第一销轴2b、铰接部2c、第二销轴2d、传感器3、顶进部4、压缩弹簧4a、滚珠4b、壳体5、容纳槽5a、外壳5b、中心柱5c、上限位板5d、下限位板5e、拉环6、拉绳7、配重体8、卷扬机9、控制装置10、电源11、薄板12、偏心轮13、把手13a、偏心部13b、环形凸台14、推块15、隔板16、连接板17、底座18、第三销轴19、楔形体20、楔形块21、盖板22、混凝土墩23、通讯装置24、太阳能供电模块25。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本 发明实施方式作进一步地描述。
请参见图1至图6,本发明的实施例提供一种滑体钻孔外多传感器布设装置,包括监测体100、监测体布设系统200和下压设备300。
请参见图1,监测体100用于下放至钻孔400中,包括多个套管1、多个连杆机构2和传感器3,所述套管1沿上下向延伸,多个所述套管1在上下向间隔设置,相邻两个所述套管1之间通过多个所述连杆机构2连接,多个所述连杆机构2在所述套管1周向上间隔设置。所述连杆机构2包括两个支架2a,两个所述支架2a通过第一销轴2b铰接形成铰接部2c,所述连杆机构2上下两端分别与相邻两个所述套管1通过第二销轴2d铰接,所述连杆机构2上固定有所述传感器3,所述连杆机构2具有沿竖向延伸的初始状态、和所述铰接部2c向外顶伸位于所述套管1外侧的顶伸状态。
两个支架2a呈扁平状,为金属材质,便于挤压锲入钻孔400侧壁岩土体,侧壁开有传感器埋孔,所述传感器埋孔内部依据监测需要固定有多种集成传感器3。
套管1外侧壁设有沿上下向延伸的导槽1a,导槽1a上端贯穿套管1上端,导槽1a内埋设有排线1b,并封胶密封处理,排线1b与传感器埋孔内的集成传感器3电连接,从而可以借此实现通电、控制、信号传输等功能。
监测体布设系统200包括牵引机构和布设探头,所述布设探头用于下放至套管1内与所述连杆机构2相对的位置,包括驱动机构和多个顶进部4,所述顶进部4和所述连杆机构2一一对应设置,所述顶进部4和所述驱动机构连接,所述驱动机构驱动所述顶进部4朝向所述连杆机构2的方向移动,以将所述铰接部2c由初始状态顶入至顶伸状态。
下压设备300用于对位于最顶部的所述套管1顶端施加向下的压力,以减小相邻所述套管1之间的距离,使所述铰接部2c顶入钻孔400侧壁内。本实施例中,下压设备300为静力压桩机。
所述套管1与所述连杆机构2对应的位置开设有两侧开口的缺口1c, 所述缺口1c具有第一开口1d和第二开口1e,所述第一开口1d朝向相邻所述套管1,所述第二开口1e朝向所述套管1外侧,可理解的,套管1上端的缺口1c中,第一开口1d朝上设置,套管1下端的缺口1c中,第一开口1d朝下设置。所述支架2a与所述缺口1c通过所述第二销轴2d铰接,所述连杆机构2位于初始状态时,所述支架2a位于所述第一开口1d内,所述连杆机构2位于顶伸状态时,所述支架2a位于所述第一开口1d和第二开口1e内。连杆机构2位于缺口1c内,下压设备300向下施加压力,可使得相邻两个套管1相接,同时可避免施加压力过大对连杆机构2造成损坏。
驱动机构只要能向连杆机构2施加向外的推力即可,驱动机构可以是液压气缸,顶进部4与液压气缸的活塞杆固定连接,活塞杆朝连杆机构2的方向伸缩。本实施例中,请参见图3至图6,所述布设探头包括壳体5,所述壳体5周向开设有多个沿所述套管1径向延伸的容纳槽5a,所述容纳槽5a与所述连杆机构2一一对应设置,所述容纳槽5a的槽口朝向所述连杆机构2,本实施例中,容纳槽5a位于同一高度,且在套管1周向上均匀间隔设置。
所述顶进部4一端位于所述容纳槽5a内、且与所述容纳槽5a通过压缩弹簧4a连接,另一端位于所述壳体5外,所述顶进部4位于所述壳体5外的一端与所述套管1内侧壁相抵,所述压缩弹簧4a处于压缩状态,所述布设探头向上移动至与所述连杆机构2相对的位置时,压缩弹簧4a由于弹性恢复作用,压缩弹簧4a向外推动连杆机构2,使铰接部2c向外顶伸至顶伸状态,多个所述压缩弹簧4a构成所述驱动机构。压缩弹簧4a具备较高的疲劳极限,以具备在长时间工作下具有抗疲劳损伤的能力,保证高可靠度。
具体的,所述壳体5包括呈中空设置的外壳5b,外壳5b内中心位置固定有中心柱5c,外壳5b周向上开设有多个间隔设置的穿孔,顶进部4一端与中心柱5c通过压缩弹簧4a连接,另一端位于外壳5b外,顶进部4可沿着穿孔侧壁移动,可减小布设探头的重量,便于对布设探头进行牵引。进 一步的,压缩弹簧4a上下侧设有上限位板5d和下限位板5e,上限位板5d、下限位板5e均与外壳5b内侧壁和中心柱5c连接,以对顶进部4的移动起到导向作用,中心柱5c、上限位板5d、下限位板5e形成所述容纳槽5a。
所述顶进部4位于所述壳体5外的一端在横截面上呈扇形设置,增大顶进部4与连杆机构2的接触面积。所述顶进部4外端嵌设有滚珠4b,所述滚珠4b与所述套管1内侧壁相抵,减小顶进部4和套管1内侧壁之间的摩擦力,保证顶进部4在接触、挤压套管1内壁的同时,布设探头依然可以自由地上下移动。
进一步地,壳体5顶部焊接有拉环6,拉环6上系有拉绳7,拉绳7用于拉动布设探头在套管1内上下移动。壳体5底部设有配重体8,配重体8为不锈钢或其他防锈蚀处理金属材质,用于布设探头被下放钻孔400内过程中始终保持垂直状态。
请参见图1,牵引机构包括卷扬机9、控制装置10和电源11。卷扬机9通过拉绳7与布设探头的拉环6连接,用于布设阶段布设探头的下放与上拉。电源11与控制装置10、下压设备300电连接,主要用于各设备的供电。所述控制装置10控制卷扬机9的工作速度、频率等。
进一步的,请参见图5和图6,监测体100还包括锁止机构,所述锁止机构包括薄板12和偏心轮13。薄板12为金属材质,所述薄板12远离所述第一开口1d的一端固定于所述缺口1c内,所述薄板12上固定有环形凸台14,所述环形凸台14内侧设有内轮齿,所述环形凸台14位于所述第二销轴2d外围,薄板12可位于第二销轴2d下方,也可延伸至第二销轴2d上方,薄板12与第二销轴2d对应的位置开设有让位孔。所述支架2a与所述环形凸台14相对的位置凸设有凸起,所述凸起外侧设有与所述内轮齿相啮合的外轮齿,所述环形凸台14的内径比所述凸起外径大,所述凸起位于所述环形凸台14内。
所述套管1内侧壁与所述缺口1c相对的侧壁贯穿设有通孔1f,所述偏 心轮13转动安装于所述套管1内侧,所述偏心轮13的偏心部13b位于所述通孔1f内抵住所述薄板12,使所述内轮齿与所述外轮齿相啮合,所述偏心轮13远离所述薄板12的一侧固定有把手13a,所述把手13a沿水平设置且位于所述套管1内。
所述布设探头与所述把手13a相对的位置设有推块15,本实施例中,所述推块15固定于所述壳体5上,所述布设探头向上移动时,所述推块15与所述把手13a干涉,向上推动所述把手13a使所述偏心轮13转动,从而使所述偏心部13b远离所述薄板12。偏心轮13将薄板12抵住,使得薄板12上环形凸台14的内轮齿与支架2a上凸起的外轮齿相啮合,可防止支架2a转动至套管1内侧,将其锁死,便于将套管1下放至钻孔400内。利用推块15推动把手13a使偏心轮13转动,使偏心轮13的偏心部13b远离薄板12,所述薄板12内侧的环形凸台14与支架2a上的凸起松开,使得支架2a可以自由转动,再利用驱动机构驱动顶进部4朝连杆机构2移动,可确保连杆机构2的铰接部2c向外顶伸至套管1外。
进一步地,所述锁止机构还包括隔板16,所述薄板12设有两个,分别位于所述支架2a两侧,两个薄板12底部可通过连接板17连接,连接板17固定于缺口1c内。所述套管1内侧壁固定有底座18,所述底座18与所述通孔1f相对,所述偏心轮13通过第三销轴19安装于所述底座18上,所述隔板16位于所述通孔1f内,且位于所述底座18和所述薄板12之间,所述隔板16面向所述薄板12的一侧与两个所述薄板12相抵,偏心轮13抵住隔板16即可抵住薄板12,可避免偏心轮13与薄板12对应不上的情况。
两个所述薄板12背对的一侧均固定有楔形体20,所述楔形体20与所述缺口1c侧壁相抵,所述隔板16与两个所述楔形体20相对的位置设有楔形块21,所述楔形体20的齿口和所述楔形块21的齿口相配合,所述楔形块21与所述缺口1c侧壁之间具有间隙,两个楔形体20可对隔板16起到限位作用,同时减小隔板16与偏心轮13之间的距离,便于偏心轮13的安 装。所述通孔1f沿所述套管1周向上的宽度比所述缺口1c大,所述通孔1f在所述套管1周向上的两侧壁分别位于所述缺口1c两侧,所述隔板16在所述套管1周向上的两端分别位于所述缺口1c两侧。
当所述把手13a朝向套管1内侧位于水平状态时,所述偏心轮13的偏心部13b挤压隔板16使得隔板16上的楔形块21挤压楔形体20,所述楔形体20受压后带动薄板12受压,此时薄板12内侧的环形凸台14挤压支架2a上的凸起,使环形凸台14的内轮齿与凸起的外轮齿相啮合,从而将支架2a锁死。当布设探头经过把手13a位置,推块15与把手13a干涉将其顶起后,使把手13a转动,使偏心轮13的偏心部13b远离隔板16,此时隔板16不再受挤压,则隔板16上的楔形块21不再挤压楔形体20,所述薄板12内侧的环形凸台14与支架2a上的凸起松开,使得支架2a可以自由转动。
套管1顶部设有盖板22,用于套管1布设好之后封盖套管1顶部,以防止异物跌入,破坏钻孔400内监测环境。
为实现孔外多地质信息监测,本发明还包括监测系统,监测系统包括混凝土墩23、通讯装置24、太阳能供电模块25。所述混凝土墩23建造于钻孔400旁的稳定地面,主要用于相关监测设备的固定。所述通讯装置24和太阳能供电模块25固定于所述混凝土墩23上,所述通讯装置24通过所述排线1b与钻孔400内布设的多种集成传感器3电连接,所述通讯装置24可以通过GPRS发送至移动监测终端或者网络以方便监测人员随时监控,从而实现监测数据的收集、预处理与传输。所述太阳能供电模块25与所述通讯装置24、钻孔400内布设的多种集成传感器3电连接,实现监测过程中的持续性电力供应。
请参见图7,基于上述滑体钻孔外多传感器布设装置和监测系统,在滑体500表面勘测后确定监测位置,于预定位置施工钻孔400,将监测体100下放到钻孔400中,连杆机构2位于初始状态。具体的,将布设探头预置在套管1内底部,通过卷扬机9的拉绳7牵引,随着套管1一同下放到钻 孔400中,并完成监测体100的下放工作。
将布设探头下方至与连杆机构2相对的位置,利用驱动装置驱动顶进部4由初始状态顶伸至顶伸状态,使铰接部2c位于套管1外。具体地,利用卷扬机9牵引拉绳7,向上提升布设探头,布设探头的顶进部4在压缩弹簧4a作用下与套管1内壁挤压接触并向上滑动。在布设探头向上滑动的过程中,推块15首先经过连杆机构2中位于下方的支架2a,推块15与偏心轮13上的把手13a干涉,并推动把手13a使偏心轮13转动,使得位于下方的支架2a上的凸起与与其对应的环形凸台14松开;布设探头继续向上滑动,经过连杆机构2中位于上方的支架2a,推块15与偏心轮13上的把手13a干涉,并推动把手13a使偏心轮13转动,使得位于下方的支架2a上的凸起与与其对应的环形凸台14松开,从而将解锁完成。解锁完成后,布设探头的顶进部4与连杆机构2相对,由于压缩弹簧4a的作用,顶进部4将连杆机构2向外顶,使连杆机构2位于铰接部2c向外顶伸的顶伸状态。
将布设探头拉出钻孔400后,通过下压设备300对位于最顶部的套管1顶端施加向下的压力,连杆机构2的铰接部2c继续向外顶伸,直至相邻两个套管1相互靠近、连接。此时,固定在支架2a侧壁内的多种集成传感器3被静力挤压嵌入到孔周岩土体中。
将导槽1a内的排线1b与通讯装置24、太阳能供电模块25电连接,将盖板22封盖与套管1顶部,实现对滑体500深部的监测。
本发明提供的技术方案,将钻孔400内的集成传感器3布设工作转移到地面钻孔400外,提供了一种布设的新方法。相比已有的相关技术,通过增加布设机械的选择性,使得不同监测环境的布设均可以找到较好的解决方案,操作简单,自动化程度高。静力顶入的方式减小了监测环境的扰动,可以通过选择合适长度的支架2a的方式选择孔外布设的范围,监测范围可控,适应性相比以往更高。孔外传感器3布设的方式,可以更好的贴近原始的地下环境,测得更准确的滑坡地下多场信息。通过将通电、通信 线缆集成到套管1侧壁外部的排线1b中,并与多集成传感器3连接后连接地面监测系统,可靠性高,不易被破坏。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种滑体钻孔外多传感器布设装置,其特征在于,包括:
    监测体,用于下放至钻孔中,包括多个套管、多个连杆机构和传感器,所述套管沿上下向延伸,多个所述套管在上下向间隔设置,相邻两个所述套管之间通过多个所述连杆机构连接,多个所述连杆机构在所述套管周向上间隔设置;所述连杆机构包括两个支架,两个所述支架通过第一销轴铰接形成铰接部,所述连杆机构上下两端分别与相邻两个所述套管通过第二销轴铰接,所述连杆机构上固定有所述传感器,所述连杆机构具有沿竖向延伸的初始状态、和所述铰接部向外顶伸位于所述套管外侧的顶伸状态;
    监测体布设系统,包括布设探头,所述布设探头用于下放至套管内与所述连杆机构相对的位置,包括驱动机构和多个顶进部,所述顶进部和所述连杆机构一一对应设置,所述顶进部和所述驱动机构连接,所述驱动机构驱动所述顶进部朝向所述连杆机构的方向移动,以将所述铰接部由初始状态顶入至顶伸状态;
    下压设备,用于对位于最顶部的所述套管顶端施加向下的压力,以减小相邻所述套管之间的距离,使所述铰接部顶入钻孔侧壁内。
  2. 如权利要求1所述的滑体钻孔外多传感器布设装置,其特征在于,所述套管与所述连杆机构对应的位置开设有两侧开口的缺口,所述缺口具有第一开口和第二开口,所述第一开口朝向相邻所述套管,所述第二开口朝向所述套管外侧,所述支架与所述缺口通过所述第二销轴铰接,所述连杆机构位于初始状态时,所述支架位于所述第一开口内,所述连杆机构位于顶伸状态时,所述支架位于所述第一开口和第二开口内。
  3. 如权利要求2所述的滑体钻孔外多传感器布设装置,其特征在于,还包括锁止机构,所述锁止机构包括薄板和偏心轮;
    所述薄板远离所述第一开口的一端固定于所述缺口内,所述薄板上固 定有环形凸台,所述环形凸台内侧设有内轮齿,所述环形凸台位于所述第二销轴外围;所述支架与所述环形凸台相对的位置凸设有凸起,所述凸起外侧设有与所述内轮齿相啮合的外轮齿,所述环形凸台的内径比所述凸起外径大,所述凸起位于所述环形凸台内;
    所述套管内侧壁与所述缺口相对的侧壁贯穿设有通孔,所述偏心轮转动安装于所述套管内侧,所述偏心轮的偏心部位于所述通孔内抵住所述薄板,使所述内轮齿与所述外轮齿相啮合,所述偏心轮远离所述薄板的一侧固定有把手,所述把手沿水平设置且位于所述套管内;
    所述布设探头与所述把手相对的位置设有推块,所述布设探头向上移动时,所述推块与所述把手干涉,向上推动所述把手使所述偏心轮转动,从而使所述偏心部远离所述薄板。
  4. 如权利要求3所述的滑体钻孔外多传感器布设装置,其特征在于,所述锁止机构还包括隔板,所述薄板设有两个,分别位于所述支架两侧,所述套管内侧壁固定有底座,所述底座与所述通孔相对,所述偏心轮通过第三销轴安装于所述底座上,所述隔板位于所述通孔内,且位于所述底座和所述薄板之间,所述隔板面向所述薄板的一侧与两个所述薄板相抵。
  5. 如权利要求4所述的滑体钻孔外多传感器布设装置,其特征在于,两个所述薄板背对的一侧均固定有楔形体,所述楔形体与所述缺口侧壁相抵,所述隔板与两个所述楔形体相对的位置设有楔形块,所述楔形体的齿口和所述楔形块的齿口相配合,所述楔形块与所述缺口侧壁之间具有间隙。
  6. 如权利要求3所述的滑体钻孔外多传感器布设装置,其特征在于,所述布设探头包括壳体,所述壳体周向开设有多个沿所述套管径向延伸的容纳槽,所述容纳槽与所述连杆机构一一对应设置,所述容纳槽的槽口朝向所述连杆机构,所述推块固定于所述壳体上;
    所述顶进部一端位于所述容纳槽内、且与所述容纳槽通过压缩弹簧连接,另一端位于所述壳体外,所述顶进部位于所述壳体外的一端与所述套 管内侧壁相抵,所述压缩弹簧处于压缩状态,所述布设探头向上移动至与所述连杆机构相对的位置时,压缩弹簧由于弹性恢复作用,压缩弹簧向外推动连杆机构,使铰接部向外顶伸至顶伸状态,多个所述压缩弹簧构成所述驱动机构。
  7. 如权利要求6所述的滑体钻孔外多传感器布设装置,其特征在于,所述顶进部位于所述壳体外的一端在横截面上呈扇形设置。
  8. 如权利要求6所述的滑体钻孔外多传感器布设装置,其特征在于,所述顶进部外端嵌设有滚珠,所述滚珠与所述套管内侧壁相抵。
  9. 如权利要求1所述的滑体钻孔外多传感器布设装置,其特征在于,还包括监测系统,所述监测系统包括混凝土墩、通讯装置和太阳能供电模块,所述混凝土墩建造于钻孔旁的稳定地面,所述通讯装置和太阳能供电模块固定于所述混凝土墩上,所述通讯装置与所述传感器电连接,实现监测数据的收集、预处理与传输,所述太阳能供电模块与所述通讯装置、所述传感器电连接,实现监测过程中的持续性电力供应。
  10. 一种布设方法,且特征在于,基于如权利要求1至9任一所述的滑体钻孔外多传感器布设装置,包括以下步骤:
    S1在滑体表面勘测后确定监测位置,于预定位置施工钻孔,将监测体下放到钻孔中,连杆机构位于初始状态;
    S2将布设探头下方至与连杆机构相对的位置,利用驱动装置驱动顶进部由初始状态顶伸至顶伸状态,使铰接部位于套管外;
    S3通过下压设备对位于最顶部的套管顶端施加向下的压力,连杆机构的铰接部继续向外顶伸,直至相邻两个套管相互靠近、连接;此时,固定在支架侧壁内的多种集成传感器被静力挤压嵌入到孔周岩土体中。
PCT/CN2021/107494 2021-07-06 2021-07-21 一种滑体钻孔外多传感器布设装置及布设方法 WO2023279437A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/401,338 US11572781B2 (en) 2021-07-06 2021-08-13 Arrangement device for multiple sensors outside borehole of sliding mass and arrangement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110762362.4A CN113566881B (zh) 2021-07-06 2021-07-06 一种滑体钻孔外多传感器布设装置及布设方法
CN202110762362.4 2021-07-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/401,338 Continuation US11572781B2 (en) 2021-07-06 2021-08-13 Arrangement device for multiple sensors outside borehole of sliding mass and arrangement method

Publications (1)

Publication Number Publication Date
WO2023279437A1 true WO2023279437A1 (zh) 2023-01-12

Family

ID=78163771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107494 WO2023279437A1 (zh) 2021-07-06 2021-07-21 一种滑体钻孔外多传感器布设装置及布设方法

Country Status (2)

Country Link
CN (1) CN113566881B (zh)
WO (1) WO2023279437A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117328855A (zh) * 2023-10-31 2024-01-02 山东省地震工程研究院 一种野外钻探岩芯监测装置
CN117328855B (zh) * 2023-10-31 2024-04-26 山东省地震工程研究院 一种野外钻探岩芯监测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662225A1 (de) * 2004-11-30 2006-05-31 GLÖTZL GESELLSCHAFT FÜR BAUMESSTECHNIK mbH Bohrloch-Streckenmesssonde
CN102102510A (zh) * 2009-12-16 2011-06-22 通用电气公司 折叠式超声波井眼成像工具
CN205483052U (zh) * 2016-01-20 2016-08-17 中国矿业大学(北京) 一种胶结充填体固结过程及其稳定性监测多功能孔式装置
CN106546366A (zh) * 2016-10-09 2017-03-29 安徽理工大学 一种伞型深孔三向应力及位移综合测试装置
CN110567519A (zh) * 2019-08-30 2019-12-13 中国地质大学(武汉) 用于监测滑坡体深孔土体的压力、含水量的测量单元
CN110736498A (zh) * 2019-09-12 2020-01-31 中国地质大学(武汉) 一种滑体深部孔外多参数监测系统及监测方法
CN210862765U (zh) * 2019-09-17 2020-06-26 中国地质大学(武汉) 用于监测滑坡深孔的探爪贯入机构
CN112820074A (zh) * 2021-01-12 2021-05-18 焦昊 一种煤矿矿山地质灾害预警装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104457655B (zh) * 2014-11-27 2017-07-07 同济大学 一种用于软土地层的折叠叶片刀式多点位移计锚头
JP6502199B2 (ja) * 2015-07-15 2019-04-17 株式会社大阪防水建設社 孔経路測定方法
CN107121695B (zh) * 2017-06-23 2019-11-08 四川大学 液压式声学监测系统
CN109187226B (zh) * 2018-09-06 2021-05-28 中煤科工集团西安研究院有限公司 预钻式原位岩体组合式测量装置及测量方法
KR102119871B1 (ko) * 2018-11-27 2020-06-04 (주)에이에이티 독립 계측형 시추공 물리탐사 센서 운용 장치
CN110736422B (zh) * 2019-09-12 2020-09-29 中国地质大学(武汉) 一种预制磁场布设系统及变形状态响应方法
CN110940305B (zh) * 2020-02-20 2020-06-16 杭州鲁尔物联科技有限公司 一种滑坡位移监测系统
CN112067651B (zh) * 2020-08-10 2021-11-05 中国科学院空间应用工程与技术中心 一种驻留式外星体内部热流测量热探针以及测量方法
CN213456917U (zh) * 2020-08-20 2021-06-15 廊坊市思科农业技术有限公司 用于番茄种植的土壤墒情采集装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1662225A1 (de) * 2004-11-30 2006-05-31 GLÖTZL GESELLSCHAFT FÜR BAUMESSTECHNIK mbH Bohrloch-Streckenmesssonde
CN102102510A (zh) * 2009-12-16 2011-06-22 通用电气公司 折叠式超声波井眼成像工具
CN205483052U (zh) * 2016-01-20 2016-08-17 中国矿业大学(北京) 一种胶结充填体固结过程及其稳定性监测多功能孔式装置
CN106546366A (zh) * 2016-10-09 2017-03-29 安徽理工大学 一种伞型深孔三向应力及位移综合测试装置
CN110567519A (zh) * 2019-08-30 2019-12-13 中国地质大学(武汉) 用于监测滑坡体深孔土体的压力、含水量的测量单元
CN110736498A (zh) * 2019-09-12 2020-01-31 中国地质大学(武汉) 一种滑体深部孔外多参数监测系统及监测方法
CN210862765U (zh) * 2019-09-17 2020-06-26 中国地质大学(武汉) 用于监测滑坡深孔的探爪贯入机构
CN112820074A (zh) * 2021-01-12 2021-05-18 焦昊 一种煤矿矿山地质灾害预警装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117328855A (zh) * 2023-10-31 2024-01-02 山东省地震工程研究院 一种野外钻探岩芯监测装置
CN117328855B (zh) * 2023-10-31 2024-04-26 山东省地震工程研究院 一种野外钻探岩芯监测装置

Also Published As

Publication number Publication date
CN113566881A (zh) 2021-10-29
CN113566881B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
US3766991A (en) Electric power swivel and system for use in rotary well drilling
RU2378486C2 (ru) Способ и устройство для бурения и обслуживания подземных скважин
US11572781B2 (en) Arrangement device for multiple sensors outside borehole of sliding mass and arrangement method
US4476936A (en) Jacking mechanism supported by a wellhead
CN105181199B (zh) 一种地应力测试的旁孔应力解除法
WO2022236893A1 (zh) 一种滑坡深部多集成传感器布设设备及布设方法
CN114323972B (zh) 一种用于模拟深部巷道开挖的三维动静载试验系统及方法
NO333549B1 (no) Fremgangsmåte for ekspandering av en sandskjerm samt et apparat for utøvelse av fremgangsmåten
CN105182404A (zh) 滑坡模拟系统
US3845837A (en) Gravity force operated apparatuses for generation of longitudinal pulse data from the bottom of a well
WO2023279437A1 (zh) 一种滑体钻孔外多传感器布设装置及布设方法
CN106193000A (zh) 液压全回转套管钻机
CN103196686A (zh) 一种井下环空防喷器实验台架
CN108918287B (zh) 一种隧道蠕变模型试验装置及试验方法
CN115012819B (zh) 一种橡皮囊液压激振直推式钻进探测装置
CN113671152B (zh) 一种深部滑体多场信息监测装置及布设方法
CN104264679A (zh) 一种输电铁塔基础大口径水下灌注桩施工方法
CN114705126A (zh) 深部采空区光纤施工引导装置、工艺及全地层监测方法
CN114002076A (zh) 一种拉顶管施工的室内试验模拟装置及方法
Storteboom et al. Efficiency examined of hands-free Cone Penetration Testing using the SingleTwist™ with COSON
CN114876377B (zh) 大直径全断面挤扩灌注桩设备及施工工艺
CN218713086U (zh) 一种建筑基坑支护结构
CN116577015B (zh) 一种大坝安全监测渗压计
CN220226850U (zh) 一种钻孔内管线触探装置
CN216515778U (zh) 一种基桩检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE