EP1656206B1 - Düsenanordnung zur erzeugung ebener sprühfelder - Google Patents

Düsenanordnung zur erzeugung ebener sprühfelder Download PDF

Info

Publication number
EP1656206B1
EP1656206B1 EP04738538A EP04738538A EP1656206B1 EP 1656206 B1 EP1656206 B1 EP 1656206B1 EP 04738538 A EP04738538 A EP 04738538A EP 04738538 A EP04738538 A EP 04738538A EP 1656206 B1 EP1656206 B1 EP 1656206B1
Authority
EP
European Patent Office
Prior art keywords
spray
nozzles
another
assembly according
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04738538A
Other languages
English (en)
French (fr)
Other versions
EP1656206A1 (de
Inventor
Axel Kretzschmar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1656206A1 publication Critical patent/EP1656206A1/de
Application granted granted Critical
Publication of EP1656206B1 publication Critical patent/EP1656206B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0278Arrangement or mounting of spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/60Arrangements for mounting, supporting or holding spraying apparatus
    • B05B15/65Mounting arrangements for fluid connection of the spraying apparatus or its outlets to flow conduits
    • B05B15/658Mounting arrangements for fluid connection of the spraying apparatus or its outlets to flow conduits the spraying apparatus or its outlet axis being perpendicular to the flow conduit

Definitions

  • the invention is based on an arrangement for generating planar spray fields, as they are generated by linear or planar spray nozzles, according to the preamble of claim 1.
  • Such an arrangement is known from DE 2741305.
  • the spray fields in both horizontal and vertical extent for a variety of applications, such. As cooling, cleaning, humidifying, sprinkling, among other things, generated.
  • An essential requirement of flat spray fields is a closed and uniform application of the surface.
  • Lechler examples of nozzle arrangements are shown (Edition 2000, p. 13).
  • a nozzle spacing is recommended which ensures an overlap of the beam width of 1/3 to 1/4.
  • the nozzles should also be aligned at an angle of approx. 5 to 15 ° to the pipe longitudinal axis.
  • full cone and hollow cone nozzles can be dispensed with the inclination, but in the area of the impact of the rays on the Surface also an overlap of the circular surfaces of the loading by about 1/3 to 1/4 recommended.
  • the particle density determined by the number of water mist nozzles and their volume flows was set to 2 l / m 3 * min -1 in the example given.
  • a corresponding arrangement is shown in DE 100 19 537 A1.
  • the mist-generating outlet devices are attached along spray arches, which are arranged over the entire length of the room and / or its escape routes behind one another and transverse to the direction of escape, the clearance space of the room and / or its escape routes. While falling, however, increases through Accumulation of spray particles their volume and weight so that they sink faster. The larger the spray particles become, the less effective they become for flue gas cooling and washing.
  • the nozzle assembly according to the invention with the characterizing features of the main claim has the advantage that the entire effective spray field, whether located in the horizontal or vertical plane, the necessary for effective smoke, heat and pollutant binding homogeneity in terms of concentration and uniform distribution of water mist droplets , This means that there is always the same amount of water droplets of approximately the same size per unit area of the spray field plane.
  • the use of nozzles with lower throughput also saves spray liquid.
  • connection systems can be used.
  • the technical implementation of the arrangement according to the invention ie the dimensioning and the determination of the radial and axial Deflection of the nozzles takes place in each case according to the requirements of the space in which the planar spray field is to be generated.
  • the principle of the invention will be set forth here. This is to arrange a plurality of nozzles side by side in a nebulizing module, but spray because of their different spray angle and their different radial and axial deflection not line-like, but spatially and thus different from the nebulizer module to the desired spray field.
  • the axial deflection causes a slight displacement of the spray surfaces, a quasi-gapped teeth of the spray surfaces.
  • Spray angle, throughput and radial and axial deflection are chosen so that this contact is in a plane, the so-called. Spray field level.
  • spray angle, throughput and radial and axial deflection are chosen so that this contact is in a plane, the so-called. Spray field level.
  • the different size of the spray angle juxtaposed nozzles is required so that the spray cone does not hinder each other before reaching this level.
  • the differently long paths to be covered by the different radial and axial deflections of the nozzles from the spray droplets to this level are compensated by correspondingly different spray angles.
  • the smallest spray angle must have those nozzles that provide the spray field at the furthest removed from the pipe system areas.
  • nebulization modules with one and the same nozzle arrangement are to be arranged next to each other or one above the other. Their distance is then to be chosen so that the outer spray cone in the spray level at least touch each other.
  • the spray surfaces of the one nebulizing module which are slightly offset relative to one another, fit seamlessly onto the spray surfaces of the adjacent nebulization module which are offset in the same way.
  • the angular difference of the radial displacement of adjacent nozzles 15 ° to 45 °. This range for the radial angular difference of adjacent nozzles has proven to be practicable, these differences in angle from nozzle to nozzle can also be different sizes.
  • hollow cone nozzles are used.
  • the angular difference of the axial deflection of adjacent nozzles between 1 ° and 10 ° has been found to be sufficiently suitable.
  • a cylindrical filter is arranged in the or the misting modules. This prevents the entry of dirt particles into the nozzles and thus their blockage.
  • the cylindrical design of the filter also prevents clogging of the nebulizing module or the entire pipe system, since it does not hinder their axial passage direction.
  • a liquid medium leading pipe sections In the ceiling area of the tunnel, the pipe sections consist of so-called water mist modules, which have outlet openings for the medium.
  • the individual water mist modules are connected directly or via short pipe parts. 1 shows such a water mist module 1 in the horizontal installation position of a spray arch for producing a vertical spray field.
  • a spatial coordinate system xyz is drawn in for orientation, which is intended to identify the position of the water mist module 1 to a traffic tunnel, not shown.
  • x the width extension of the traffic tunnel to the horizontal axis of the module 1 whose longitudinal axis is therefore parallel, with y its expansion in height and z its longitudinal extent, ie the course of the road was characterized.
  • the water mist module 1 has with its outlet openings substantially opposite to the z-direction directed water mist nozzles 2 to 5, which are arranged with the radial spray angles ⁇ and axial spray angles ⁇ on the water mist module 1 mentioned in Table 1, wherein the values for the spray angle ⁇ and ⁇ on a horizontal arrangement of the Refer to water mist module 1.
  • the radial spray angle ⁇ in the yz plane and the axial spray angles ⁇ in the xz plane are respectively measured from the positive z axis.
  • Table 1 Spray angle ⁇ and ⁇ of the water mist nozzles water mist Radial spray angle ⁇ in ° Axial spray angle ⁇ in ° 3 193 185 5 219 165 2 229 195 4 237 175
  • the water mist nozzle 2 produces a water mist cone 6, the water mist nozzle 3 a water mist cone 7, the water mist nozzle 4, If the water mist module 1 is pressurized with water, the cross-sectional areas of the water mist cones 6 to 9 form in a plane approximately 3.0 m from their exit points from the water mist nozzles 2 to 5, measured in FIG negative z-direction, a vertical plane spray field 10, as shown in FIG. 2 can be seen.
  • the spray diameter of all water mist cones 6 to 9 is the same size at this point and is about 1.70 m, which corresponds to a spray area of 2.35 m 2 .
  • the spray width ie the actual length of the spray cone from its exit point to this level, can be seen from column 3 of Table 2.
  • minor overlaps of water mist cones 6 to 9 must be accepted.
  • the volume flow of the water mist nozzles 2 to 5 with decreasing spray angle ⁇ is lower. In this example, the volume flow decreases by half each.
  • approximately 42 1 / min of water are required per water mist module 1 in order to achieve a range of 3.00 m with an impact width of 1.50 m.
  • the water module 1 is rotated 90 degrees down the x-axis.
  • the radial or axial position of the water mist nozzles 2 to 5 to each other remain, but the radial spray angle ⁇ in the above-mentioned measurement rule by the rotation by 90 ° greater value accepts.
  • the water mist nozzles 2 to 5 used have the same spray angle ⁇ as in the arrangement for the vertical plane spray field, only the volume flow is the same size for all water mist nozzles 2 to 5 and in the present example 10.5 l / min. If the water mist module 1 arranged in this way is then pressurized with water, a horizontal planar spray field results, which likewise has spray surfaces of equal size per water mist nozzle 2 to 5 and a constant droplet spectrum and a constant droplet density.
  • the water mist modules 1 can also be used in the vertical guidance of spray arches. However, they do not necessarily have to produce even spray fields in this area. Their function here is essentially the sealing of the area between the vertical water mist curtain and the side walls of the traffic tunnel, so that no smoke and no pollutants can pass through.

Landscapes

  • Nozzles (AREA)

Description

    Stand der Technik
  • Die Erfindung geht aus von einer Anordnung zur Erzeugung ebener Sprühfelder, wie sie von linear oder flächig angeordneten Sprühdüsen erzeugt werden, nach dem Oberbegriff des Anspruchs 1. Eine Derartige Anordnung ist aus DE 2741305 bekannt. Dabei werden die Sprühfelder sowohl in horizontaler als auch in vertikaler Ausdehnung für die verschiedensten Anwendungen, wie z. B. Kühlen, Reinigen, Befeuchten, Beregnen u. a., erzeugt. Ein wesentliches Erfordernis von ebenen Sprühfeldern ist eine geschlossene und gleichmäßige Beaufschlagung der Fläche. In einem Katalogblatt des Düsenherstellers Lechler sind Beispiele für Düsenanordnungen gezeigt (Edition 2000, S. 13). Bei einer linearen Anordnung von Flachstrahl- und auch Zungendüsen zur Erzeugung eines horizontalen Sprühfeldes wird ein Düsenabstand empfohlen, der eine Überlappung der Strahlenbreite von 1/3 bis 1/4 gewährleistet. Um eine gegenseitige Störung der Strahlen zu vermeiden, sollten die Düsen außerdem um ca. 5 bis 15° schräg zur Rohrlängsachse ausgerichtet sein. Bei Vollkegel- und Hohlkegeldüsen kann auf die Schrägstellung verzichtet werden, jedoch wird im Bereich des Auftreffens der Strahlen auf die Fläche ebenfalls eine Überlappung der Kreisflächen der Beaufschlagung um ca. 1/3 bis 1/4 empfohlen.
  • Die vielseitigen Anwendungsgebiete von Schlickdüsen sind in dem Prospektblatt 08.01 der Firma gezeigt. Auch wenn als ein Anwendungsgebiet der Brandschutz (Bild 11) genannt ist, so wird aus den Darstellungen allerdings deutlich, dass sich diese Düsen in der Regel verhältnismäßig dicht an dem zu beaufschlagenden Objekt befinden, d. h. dass ihr charakteristisches Sprühbild, also Rechteck, Kreisfläche, o. a., beim Auftreffen auf die Fläche weitestgehend noch erhalten ist.
  • Bei bestimmten Anwendungen kann jedoch dieser kurze Abstand nicht gewährleistet werden. Das ist immer dann der Fall, wenn der Bereich zwischen Düsen und zu beaufschlagender Fläche ein Durchgangs- oder Durchfahrtsbereich ist, was vor allem auf den Brandschutz von Räumen, Gebäuden, Parkhäusern, unteririschen Verkehrsanlagen u. a. zutrifft. Das Problem liegt hier darin, dass die Rohrleitungssysteme, an denen sich die Düsen befinden, im Decken- und Wandbereich der Räume, Gebäude oder Verkehrsanlagen angeordnet sind und die Löschmittelteilchen bis zu der Stelle, an der sie wirksam werden sollen, mitunter mehrere Meter zurücklegen müssen. Beim Austritt des Wassers wird noch ein kegelförmiges Sprühfeld erzeugt. Auf der Strecke bis zum Boden hat es sich jedoch unter dem Einfluss der Schwerkraft in ein vertikales zylindrisches Sprühfeld verändert, das die gewünschte Wirkung nicht mehr oder nur noch unzureichend besitzt. Eine Anwendung von Sprühdüsen zur Tragwerkskühlung im Brandfall ist in der DE 100 30 971 A1 beschrieben. Um den hohen Aufwand der Löschwasserversorgung zu reduzieren, müssen die oberhalb des oder am Tragwerk installierten Düsen einen zumindest über die gesamte Tragwerkshöhe, günstiger aber noch bis zum Fuß des Tragwerkes, wirkungsvoll kühlenden Wassernebelschleier gewährleisten.
  • Weitaus komplizierter verhält es sich bei jenen Brandschutzanordnungen, die nicht in erster Linie zur Brandbekämpfung, also zum Löschen von Bränden, sondern zur Reduzierung von Rauch-, Wärme- und Schadstoffbelastung im Fall eines Brandes oder einer Havarie und damit zur Sicherung der Flucht und Rettung aus gefährdeten Räumen, beispielsweise unterirdischen Verkehrsanlagen, vorgesehen sind. In der DE 195 14 923 C2 ist ein Verfahren zur Sicherung der Flucht und Rettung unter Rauch-, Wärme- und Schadstoffbelastung aus Räumen mit langen Fluchtwegen beschrieben, bei dem in dem Raum ein Wassernebel niedriger Austritts- und Ausbreitungsgeschwindigkeit erzeugt wird. Die Teilchendichte muss die für die Rauch-, Wärme- und Schadstoffbindung erforderliche Konzentration besitzen. Die Teilchengröße des Wassernebels muss so eingestellt sein, dass die Wasserteilchen langsam von ihrem Austrittspunkt absinken. Ein optimaler Tröpfchendurchmesser, bei dem der Nebel noch atembar bleibt, liegt im Bereich zwischen 10 und 100 µm. Die durch die Anzahl der Wassernebeldüsen und deren Volumenströme bestimmte Teilchendichte wurde in dem angeführten Beispiel auf 2 l/m3 * min-1 eingestellt. Eine dementsprechende Anordnung ist in der DE 100 19 537 A1 gezeigt. Hier sind die Nebel erzeugenden Austrittsvorrichtungen entlang von Sprühbögen befestigt, die über die gesamte Länge des Raumes und/oder seiner Fluchtwege hintereinander und quer zur Fluchtrichtung, dem Lichtraumprofil des Raumes und/oder seiner Fluchtwege folgend, angeordnet sind. Während des Fallens vergrößert sich allerdings durch Zusammenlagerung von Sprühteilchen ihr Volumen und Gewicht, so dass sie schneller sinken. Je größer die Sprühteilchen werden, desto unwirksamer werden sie für die Rauchgaskühlung und -wäsche.
  • Die Erfindung und ihre Vorteile
  • Die erfindungsgemäße Düsenanordnung mit den kennzeichnenden Merkmalen des Hauptanspruches hat demgegenüber den Vorteil, dass das gesamte wirksame Sprühfeld, egal ob in horizontaler oder vertikaler Ebene gelegen, die für eine effektive Rauch-, Wärme- und Schadstoffbindung notwendige Homogenität hinsichtlich Konzentration sowie gleichmäßiger Verteilung der Wassernebeltröpfchen aufweist. Das bedeutet, dass sich pro Flächeneinheit der Sprühfeldebene immer die gleiche Menge an Wassertröpfchen annähernd gleicher Größe befindet. Damit ist es nunmehr auch ausreichend, das Rohrleitungssystem nur in ausgewählten Bereichen der Räume zu installieren, wodurch der Material- und Installationsaufwand wesentlich verringert wird. Durch den Einsatz von Düsen mit geringerem Durchsatz wird darüber hinaus auch Sprühflüssigkeit eingespart. Der Installationsaufwand vor Ort reduziert sich auch dadurch, dass die Anordnung der Düsen in Vernebelungsmodulen vorgefertigt werden kann, die dann vor Ort nur noch zu dem den Erfordernissen des Raumes entsprechenden Rohrsystem aneinandergereiht werden müssen. Zur Verbindung der einzelnen Vernebelungsmodule sind an sich bekannte Verbindungssysteme verwendbar.
  • Die technische Umsetzung der erfindungsgemäßen Anordnung d. h. die Dimensionierung sowie die Festlegung der radialen und axialen Auslenkung der Düsen erfolgt jeweils nach den Erfordernissen des Raumes, in dem das ebene Sprühfeld erzeugt werden soll. Insofern soll hier nur das Prinzip der Erfindung dargelegt werden. Dieses besteht darin, mehrere Düsen nebeneinander in einem Vernebelungsmodul anzuordnen, die jedoch aufgrund ihres unterschiedlichen Sprühwinkels sowie ihrer unterschiedlichen radialen und axiale Auslenkung nicht linienartig, sondern räumlich und somit von dem Vernebelungsmodul bis zu dem gewünschten Sprühfeld unterschiedlich weit sprühen. Die axiale Auslenkung bewirkt dabei eine leichte Versetzung der Sprühflächen, quasi eine auf Lücke angelegte Verzahnung der Sprühflächen.
  • In einer bestimmten Entfernung von ihren Austrittsöffnungen beginnen sich die einzelnen Sprühkegel untereinander zu berühren. Sprühwinkel, Durchsatz sowie radial und axiale Auslenkung werden so gewählt, dass diese Berührung in einer Ebene, der sog. Sprühfeldebene, liegt. In dieser Ebene herrschen die o. g. günstigen Bedingungen hinsichtlich der für eine effektive Rauch-, Wärme- und Schadstoffbindung notwendigen Homogenität der Sprühnebeltröpfchen. Die unterschiedliche Größe der Sprühwinkel nebeneinander angeordneter Düsen ist erforderlich, damit sich die Sprühkegel nicht schon vor Erreichen dieser Ebene gegenseitig behindern. Die aufgrund der unterschiedlichen radialen und axialen Auslenkung der Düsen von den Sprühnebeltröpfchen bis zu dieser Ebene zurückzulegenden unterschiedlich langen Wege werden durch entsprechend unterschiedliche Sprühwinkel ausgeglichen. Den kleinsten Sprühwinkel müssen jene Düsen aufweisen, die das Sprühfeld an den am weitesten von dem Rohrsystem entfernten Bereichen versorgen.
  • Bei der. Erzeugung eines gleichmäßigen horizontalen Sprühfeldes sprühen alle Düsen mit gleicher Intensität, d. h. dass je besprühter Flächeneinheit in einer Zeiteinheit gleiche Mengen aufgesprüht werden.
  • Für die Erzeugung vertikaler Sprühfelder muss als weitere Störgröße die Schwerkraft berücksichtigt werden. Neben der unterschiedlichen radialen und axialen Auslenkung der Düsen sowie ihrer abwechselnd großen und kleinen Austrittswinkel kommt hier noch der Durchsatz als zusätzliche Komponente hinzu. Die den oberen Bereich des vertikalen Sprühfeldes versorgenden Düsen müssen einen weitaus größeren Durchsatz besitzen als die Düsen, die die unteren Bereiche des Sprühfeldes versorgen. Letztere müssen lediglich das kleine Tropfenspektrum ergänzen, was durch Zusammenlagerung von aufeinandergetroffenen Tröpfchen auf dem Weg nach unten verlorengegangen ist.
  • Müssen größere Flächen mit Sprühnebel versehen werden, beispielsweise zur Staubbindung in großen Hallen oder Beregnung bzw. Befeuchtung großer Flächen, sind mehrere Vernebelungsmodule mit ein und derselben Düsenanordnung nebeneinander oder auch übereinander anzuordnen. Ihr Abstand ist dann so zu wählen, dass sich die äußeren Sprühkegel in der Sprühebene zumindest gegenseitig berühren. Dabei fügen sich die in der Sprühebene des einen Vernebelungsmoduls leicht versetzt zueinander entstehenden Sprühflächen nahtlos an die in gleicher Weise versetzt entstehenden Sprühflächen des angrenzenden Vernebelungsmoduls an.
    Nach einer vorteilhaften Ausgestaltung der Erfindung beträgt die Winkeldifferenz der radialen Auslenkung benachbarter Düsen 15° bis 45°. Dieser Bereich für die radiale Winkeldifferenz benachbarter Düsen hat sich als praktikabel erwiesen, wobei diese Winkeldifferenzen von Düse zu Düse auch unterschiedlich groß sein kann.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung werden Hohlkegeldüsen verwendet.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung hat sich die Winkeldifferenz der axialen Auslenkung benachbarter Düsen zwischen 1° und 10° als ausreichend geeignet erwiesen.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist in dem bzw. den Vernebelungsmodulen ein zylindrischer Filter angeordnet. Dieser verhindert den Eintritt von Schmutzpartikeln in die Düsen und dadurch deren Verstopfung. Die zylindrische Gestaltung des Filters verhindert außerdem ein Verstopfen des Vernebelungsmoduls bzw. des gesamten Rohrsystems, da es deren axiale Durchtrittsrichtung nicht behindert.
  • Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung sind der nachfolgenden Beispielbeschreibung, der Zeichnung und den Ansprüchen entnehmbar.
  • Zeichnung
  • Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und im Folgenden näher beschrieben. Hierbei zeigen
  • Fig. 1
    einen Vernebelungsmodul mit vier Düsen und
    Fig. 2
    eine schematische Darstellung des durch das in Fig. 1 gezeigte Vernebelungsmodul erzeugten ebenen Sprühfeldes.
  • Ausgehend von einem dem Lichtraumprofil eines Verkehrstunnels folgend installierten Sprühbogens weist ein derartiger Sprühbogen bis zur Decke des Tunnels senkrecht aufsteigende, unterhalb der Decke leicht ansteigend, über waagerecht bis leicht abfallend verlaufende und auf der gegenüberliegenden Wand ebenfalls senkrecht verlaufende, ein flüssiges Medium führende Rohrabschnitte auf. Im Deckenbereich des Tunnels bestehen die Rohrabschnitte aus sog. Wassernebelmodulen, die Austrittsöffnungen für das Medium aufweisen. Je nach geometrischen Verhältnissen der Räumlichkeit, im vorliegenden Beispiel der Breite und Höhe des Verkehrstunnels, sind die einzelnen Wassernebelmodule direkt oder über kurze Rohrteile miteinander verbunden. Fig. 1 zeigt ein derartiges Wassernebelmodul 1 in horizontaler Einbaulage eines Sprühbogens zur Erzeugung eines vertikalen Sprühfeldes. An seiner rechten Stirnfläche ist zur Orientierung ein räumliches Koordinatensystem x y z eingezeichnet, das die Lage des Wassernebelmoduls 1 zu einem nicht dargestellten Verkehrstunnel kennzeichnen soll. Mit x wurde die Breitenausdehnung des Verkehrstunnels, zu der bei waagerechter Anordnung des Wassernebelmoduls 1 dessen Längsachse demnach parallel verläuft, mit y seine Ausdehnung in der Höhe und mit z seine Längenausdehnung, also der Verlauf der Fahrbahn gekennzeichnet. Das Wassernebelmodul 1 weist mit ihren Austrittsöffnungen im wesentlichen entgegengesetzt zur z-Richtung gerichtete Wassernebeldüsen 2 bis 5 auf, die mit den in der Tabelle 1 genannten radialen Sprühwinkeln γ und axialen Sprühwinkeln β an dem Wassernebelmodul 1 angeordnet sind, wobei sich die Werte für die Sprühwinkel γ und β auf eine waagerechte Anordnung des Wassernebelmoduls 1 beziehen. Dabei wird der radiale Sprühwinkel γ in der y-z-Ebene und der axiale Sprühwinkeln β in der x-z-Eben jeweils von der positiven z-Achse aus gemessen. Tabelle 1: Sprühwinkel γ und β der Wassernebeldüsen
    Wassernebeldüse Radialer Sprühwinkel γ in ° Axialer Sprühwinkel β in°
    3 193 185
    5 219 165
    2 229 195
    4 237 175
  • Zur Realisierung eines vertikalen ebenen Sprühbildes gehören neben der besonderen Ausrichtung der Wassernebeldüsen 2 bis 5 auch ein spezieller Sprühwinkel δ sowie ein angepasster Volumenstrom. Beide sind für das vorliegende Beispiel in der Tabelle 2 aufgeführt. In dieser Tabelle sind darüber hinaus auch die Charakteristika eines mit diesen Parametern erzeugten vertikalen ebenen Sprühbildes aufgelistet, wobei hier tatsächlich nur die Werte einer 3,0 m von dem Wassernebelmodul 1 entfernten gedachten Ebene der Wurfparabel des aus den Wassernebeldüsen 2 bis 5 austretenden Wassernebels angegeben sind. Tabelle 2: Charakteristik der Wassermebeldüsen
    Wassernebeldüse Wassernebelkegel Sprühweite in m Sprüh Ø in m Sprühfläche in m2 Sprühwinkel δ in ° Volumenstrom In 1/min
    3 7 3,1 1,73 2,35 30,0 33,6
    5 9 3,8 1,73 2,35 19,5 16,8
    2 6 4,8 1,73 2,35 13,1 8,4
    4 8 5,8 1,73 2,35 12,5 4,3
  • Schematisch ist dieser Sachverhalt auch in Fig. 2 dargestellt. Die Wassernebeldüse 2 erzeugt einen Wassernebelkegel 6, die Wassernebeldüse 3 einen Wassernebelkegel 7, die Wassernebeldüse 4, einen Wassernebelkegel 8 und die Wassernebeldüse 5 einen Wassernebelkegel 9. Wird das Wassernebelmodul 1 unter Wasserdruck gesetzt, bilden die Querschnittsflächen der Wassernebelkegel 6 bis 9 in einer ca. 3,0 m von ihren Austrittsstellen aus den Wassernebeldüsen 2 bis 5 entfernt liegenden Ebene, gemessen in negativer z-Richtung, ein vertikales ebenes Sprühfeld 10, wie aus Fig. 2 zu erkennen ist. Der Sprühdurchmesser aller Wassernebelkegel 6 bis 9 ist an dieser Stelle gleich groß und beträgt ca. 1, 70 m, was einer Sprühfläche von jeweils 2,35 m2 entspricht. Dies wird durch die unterschiedlichen in Tabelle 2 genannten Parameter der Wassernebeldüsen 2 bis 5 erreicht. Die Sprühweite, also die tatsächliche Länge des Sprühkegels von seiner Austrittsstelle bis zu dieser Ebene, ist aus Spalte 3 der Tabelle 2 ersichtlich. Damit keine Lücken im Sprühfeld entstehen, müssen geringfügige Überlappungen der Wassernebelkegel 6 bis 9 in Kauf genommen werden. Um im Sprühfeld 10 ein gleichbleibendes Tropfenspektrum und eine gleichbleibende Tröpfchendichte zu erzeugen, wird der Volumenstrom der Wassernebeldüsen 2 bis 5 mit fallendem Sprühwinkel δ geringer. In diesem Beispiel verringert sich der Volumenstrom jeweils um die Hälfte. Zur Erzeugung eines vertikalen ebenen Sprühfeldes bei Verkehrstunnelhöhen von 5,50 m werden pro Wassernebelmodul 1 ca. 42 1/min Wasser benötigt, um eine Reichweite von 3,00 m bei einer Wirkungsbreite von 1,50 m zu erreichen.
  • Für die Erzeugung eines horizontalen Sprühfeldes wird das Wassermodul 1 um die x-Achse um 90° nach unten gedreht. Die radiale bzw. axiale Stellung der Wassernebeldüsen 2 bis 5 zueinander bleiben erhalten, wobei jedoch der radiale Sprühwinkel γ bei der o. g. Messvorschrift durch die Drehung einen um 90° größeren Wert annimmt. Die verwendeten Wassernebeldüsen 2 bis 5 besitzen die gleichen Sprühwinkel δ wie bei der Anordnung für das vertikale ebene Sprühfeld, lediglich der Volumenstrom ist für alle Wassernebeldüsen 2 bis 5 gleich groß und beträgt im vorliegenden Beispiel 10,5 l/min. Wird nun das so angeordnete Wassernebelmodul 1 unter Wasserdruck gesetzt, entsteht ein horizontales ebenes Sprühfeld, das gleichfalls gleichgroße Sprühflächen je Wassernebeldüse 2 bis 5 und ein gleichbleibendes Tropfenspektrum und eine gleichbleibende Tröpfchendichte aufweist.
  • Selbstverständlich können die Wassernebelmodule 1 auch in der senkrechten Führung von Sprühbögen eingesetzt werden. Allerdings müssen sie in diesem Bereich nicht unbedingt ebene Sprühfelder erzeugen. Ihre Funktion besteht hier im wesentlichen in der Abdichtung des Bereiches zwischen dem vertikalen Wassernebelvorhang und den Seitenwänden des Verkehrstunnels, damit hier kein Rauch und keine Schadstoffe hindurch gelangen können.
  • Bezugszahlenliste
  • 1
    Wassernebelmodul
    2 bis 5
    Wassernebeldüsen
    6 bis 9
    Wassernebelkegel
    10
    Sprühfeld
    β
    axialer Sprühwinkel (Auslenkung der Wassernebeldüse)
    γ
    radialer Sprühwinkel (Auslenkung der Wassernebeldüse)
    δ
    Sprühwinkel

Claims (9)

  1. Anordnung zur Erzeugung ebener Sprühfelder mittels an Rohrleitungen nebeneinander angeordneter Düsen, wobei
    - die das ebene Sprühfeld (10) oder Teile eines solchen erzeugenden Düsen (2, 3, 4, 5) in mindestens einem, einen Rohrleitungsabschnitt bildendes Vernebelungsmodul (1) nebeneinander angeordnet sind und
    - die Düsen (2, 3, 4, 5) unterschiedliche Sprühwinkel (δ) besitzen, dadurch gekennzeichnet dass
    - die Achsen der Düsen (2, 3, 4, 5) sowohl radial zur Rohrleitung unterschiedliche Auslenkungen (γ) als auch untereinander unterschiedliche axiale Auslenkungen (β) aufweisen, so dass sich die entstehenden Sprühkegel zumindest in der gewünschten, d. h. von der Rohrleitung in bestimmter Entfernung befindlichen Sprühfeldebene gegenseitig nicht oder nur unwesentlich behindern, wobei
    - - die Düse (4) mit dem kleinsten Sprühwinkel (δ) die größte radiale Auslenkung (γ)
    und die Düse (3) mit dem größten Sprühwinkel (δ) die kleinste radiale Auslenkung (γ) aufweist,
    - - die nebeneinander angeordneten Düsen (2, 3, 4, 5) abwechselnd einen großen und einen kleinen Sprühwinkel (δ) aufweisen und
    - - die axiale Auslenkung (β) nebeneinander angeordneter Düsen (2, 3, 4, 5) so gewählt ist, dass deren zugehörige Spruhflächen (6, 7, 8, 9) vertikal oder horizontal versetzt zueinander in der Sprühfeldebene (10) entstehen,
    und somit an allen Stellen des Sprühfeldes (10) nahezu die gleiche Töpfchengröße und Tröpfchendichte vorherrschen.
  2. Anordnung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass benachbarte Düsen (2, 3, 4, 5) zur Erzeugung eines horizontalen ebenen Sprühfeldes (10) den gleichen Durchsatz besitzen.
  3. Anordnung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass benachbarte Düsen (2, 3, 4, 5) zur Erzeugung eines vertikalen ebenen Sprühfeldes (10) einen unterschiedlichen Durchsatz besitzen.
  4. Anordnung nach Anspruch 3,
    dadurch gekennzeichnet,
    dass die Düse (4) mit dem kleinsten Sprühwinkel (δ) den geringsten und die Düse (3) mit dem größten Sprühwinkel (δ) den größten Volumenstrom hat.
  5. Anordnung nach Anspruch 1 bis 4,
    dadurch gekennzeichnet,
    dass mehrere Vernebelungsmodule (1) nebeneinander angeordnet sind.
  6. Anordnung nach Anspruch 1 bis 5,
    dadurch gekennzeichnet,
    dass die Winkeldifferenz der radialen Auslenkung (γ) benachbarter Düsen (2, 3, 4, 5) 15° bis 45° beträgt.
  7. Anordnung nach Anspruch 1 bis 6,
    dadurch gekennzeichnet,
    dass die Winkeldifferenz der axialen Auslenkung (β) benachbarter Düsen (2, 3, 4, 5) 5° bis 15° beträgt.
  8. Anordnung nach Anspruch 1 bis 7,
    dadurch gekennzeichnet,
    dass als Düsen (2, 3, 4, 5) Hohlkegeldüsen verwendet werden.
  9. Anordnung nach Anspruch 1 bis 8,
    dadurch gekennzeichnet,
    dass sich in dem Vernebelungsmodul (1) ein zylinderförmiger Filter befindet.
EP04738538A 2003-05-21 2004-05-19 Düsenanordnung zur erzeugung ebener sprühfelder Expired - Lifetime EP1656206B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10323356A DE10323356A1 (de) 2003-05-21 2003-05-21 Anordnung zur Erzeugung ebener Sprühfelder
PCT/DE2004/001068 WO2004105957A1 (de) 2003-05-21 2004-05-19 Düsenanordnung zur erzeugung ebener sprühfelder

Publications (2)

Publication Number Publication Date
EP1656206A1 EP1656206A1 (de) 2006-05-17
EP1656206B1 true EP1656206B1 (de) 2007-02-14

Family

ID=33441210

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04738538A Expired - Lifetime EP1656206B1 (de) 2003-05-21 2004-05-19 Düsenanordnung zur erzeugung ebener sprühfelder

Country Status (4)

Country Link
EP (1) EP1656206B1 (de)
AT (1) ATE353709T1 (de)
DE (2) DE10323356A1 (de)
WO (1) WO2004105957A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104437931A (zh) * 2013-09-17 2015-03-25 贵阳铝镁设计研究院有限公司 一种具有规律的接管分布的分配头

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005040708A1 (de) 2005-08-27 2007-03-22 Minimax Mobile Services Gmbh & Co.Kg Mobiler Feinsprühfeuerlöscher
GB0705050D0 (en) 2007-03-16 2007-04-25 Rolls Royce Plc Cooling arrangement
US10124348B2 (en) * 2015-07-30 2018-11-13 Mark A. Cowan Dual-headed paint spray wand
CN114467584B (zh) * 2022-02-14 2022-10-21 李新艳 一种基于林业种植病虫害防治的石灰涂层涂刷装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1924387U (de) * 1965-05-07 1965-09-23 Otto Koudelka Vorrichtung zum hohlkegelfoermigen verspruehen oder zerstaeuben von fluessigkeiten unter druck (hohlkegelduese).
US3698482A (en) * 1971-09-29 1972-10-17 Factory Mutual Res Corp Fire protection system utilizing high-capacity direct discharge nozzles
DE2741305A1 (de) * 1977-09-14 1979-03-22 Fuchs Fa Otto Vorrichtung zum loeschen von flaechenbraenden
US4582259A (en) * 1984-09-12 1986-04-15 Hobart Corporation Wash arm and method and apparatus for forming the same
DE8627384U1 (de) * 1986-10-14 1987-10-15 Schako Metallwarenfabrik Ferdinand Schad KG Zweigniederlassung Kolbingen, 7201 Kolbingen Lüftungsauslaß-Bausatz
DE4124131C2 (de) * 1991-07-20 1994-02-17 Bauer Schaum Chem Vorrichtung zur Abdeckung von Schüttungen
DE4403243B4 (de) * 1994-02-03 2005-12-15 Robert Breining Maschinen- & Fahrzeugbau Gmbh U. Co Spritzvorrichtung zum Aufspritzen von flüssigem bitumenförmigem Bindemittel
DE10145136A1 (de) * 2001-09-13 2003-04-10 Bahn Station & Service Ag Deut Verfahren und Anordnung zur Abschottung von Feuer und Rauch an baulichen Anlagen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104437931A (zh) * 2013-09-17 2015-03-25 贵阳铝镁设计研究院有限公司 一种具有规律的接管分布的分配头

Also Published As

Publication number Publication date
WO2004105957A1 (de) 2004-12-09
DE502004002919D1 (de) 2007-03-29
ATE353709T1 (de) 2007-03-15
EP1656206A1 (de) 2006-05-17
DE10323356A1 (de) 2004-12-09

Similar Documents

Publication Publication Date Title
EP1486642A2 (de) Entstauber mit Mehrstrahldüsen
DE3440901A1 (de) Anordnung zur feinzerstaeubung von fluessigkeiten
DE60024324T2 (de) Sprinkler
EP1656206B1 (de) Düsenanordnung zur erzeugung ebener sprühfelder
DE3045699A1 (de) Vorrichtung zur bekaempfung von staub
CH641062A5 (de) Zerstaeuberkopf an einer farbspritzpistole.
WO2007051437A1 (de) Verfahren und anordnung zur brandbekämpfung mit druckluftschaum
DE4417314A1 (de) Sprinklerdüse
DD233490A1 (de) Verfahren und vorrichtung zum aufbringen eines loeschmittels
DE102015201464A1 (de) Vorrichtung und Verfahren zum Beleimen von Partikeln
AT411571B (de) Anlage zur brandbekämpfung in einem tunnel, insbesondere einem strassentunnel
DE19514923C2 (de) Verfahren zur Sicherung der Flucht und Rettung unter Rauch- und Wärmebelastung
DE10019537C2 (de) Anordnung zur Sicherung der Flucht und Rettung unter Rauch-, Wärme- und Schadstoffbelastung
DE10231230B4 (de) Wassersprühnebel-System zur Brandort-Lokalisierung
WO2004105920A1 (de) Verfahren, anordnung und vorrichtung zur reinigung strömender gase
DE10037921A1 (de) Verfahren und Vorrichtung zur Brandbekämpfung in Tunnelbauwerken
DE10226751A1 (de) Lufttechnische Anlage als Schutzeinrichtung gegen Brandgas
DE29907779U1 (de) Vorrichtung zum Fernhalten von in einem Lackierraum erzeugten Lack-Overspray von einem Overspray-geschützten Raum
DE2341988C3 (de) Vorrichtung zur Erzeugung eines dichten Sprühnebels (Aerosols)
DE102004012967A1 (de) Entstauber mit Mehrstrahldüsen
DE1021312B (de) Verfahren zum Verhindern der Staubentwicklung in Bergwerksbetrieben
AT515048B1 (de) Vorrichtung zur optischen Anzeige einer Durchfahrsperre
DE10035881C1 (de) Nachverdunster für Luftbefeuchtungsanlagen
DE102005030023A1 (de) Verfahren und Einrichtung zur Erzeugung eines Wassernebels
DE869335C (de) Duese zur Zerstaeubung von Wasser od. dgl. mittels Pressluft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004002919

Country of ref document: DE

Date of ref document: 20070329

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070514

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070716

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070214

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: KRETZSCHMAR, AXEL

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

26N No opposition filed

Effective date: 20071115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070515

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070815

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100317

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004002919

Country of ref document: DE

Effective date: 20111201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111201