WO2004105957A1 - Düsenanordnung zur erzeugung ebener sprühfelder - Google Patents

Düsenanordnung zur erzeugung ebener sprühfelder Download PDF

Info

Publication number
WO2004105957A1
WO2004105957A1 PCT/DE2004/001068 DE2004001068W WO2004105957A1 WO 2004105957 A1 WO2004105957 A1 WO 2004105957A1 DE 2004001068 W DE2004001068 W DE 2004001068W WO 2004105957 A1 WO2004105957 A1 WO 2004105957A1
Authority
WO
WIPO (PCT)
Prior art keywords
spray
nozzles
arrangement according
nozzle
water mist
Prior art date
Application number
PCT/DE2004/001068
Other languages
English (en)
French (fr)
Inventor
Axel Kretzschmar
Original Assignee
Axel Kretzschmar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Axel Kretzschmar filed Critical Axel Kretzschmar
Priority to EP04738538A priority Critical patent/EP1656206B1/de
Priority to DE502004002919T priority patent/DE502004002919D1/de
Publication of WO2004105957A1 publication Critical patent/WO2004105957A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0278Arrangement or mounting of spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/60Arrangements for mounting, supporting or holding spraying apparatus
    • B05B15/65Mounting arrangements for fluid connection of the spraying apparatus or its outlets to flow conduits
    • B05B15/658Mounting arrangements for fluid connection of the spraying apparatus or its outlets to flow conduits the spraying apparatus or its outlet axis being perpendicular to the flow conduit

Definitions

  • the invention is based on an arrangement for generating flat spray fields, such as those produced by linear or flat spray nozzles, according to the preamble of the main claim.
  • the spray fields are in both horizontal and vertical dimensions for a wide variety of applications, such as. B. cooling, cleaning, moistening, sprinkling, etc. generated.
  • An essential requirement of flat spray fields is a closed and even application of the area. Examples of nozzle arrangements are shown in a catalog sheet from the nozzle manufacturer Lechler (Edition 2000, p. 13). In the case of a linear arrangement of flat jet and also tongue nozzles for generating a horizontal spray field, a nozzle spacing is recommended which ensures an overlap of the jet width of 1/3 to 1/4.
  • the nozzles should also be aligned at an angle of approx. 5 to 15 ° to the pipe longitudinal axis.
  • the inclination can be dispensed with, but in the area where the jets strike, Surface also an overlap of the circular areas of the application by approx. 1/3 to 1/4 is recommended.
  • DE 195 14 923 C2 describes a method for securing escape and rescue from smoke, heat and pollutants from rooms with long escape routes, in which a water mist with a low exit and propagation speed is generated in the room.
  • the particle density must have the concentration required to bind smoke, heat and pollutants.
  • the particle size of the water mist must be set so that the water particles slowly sink from their point of exit.
  • An optimal droplet diameter at which the mist remains breathable is in the range between 10 and 100 ⁇ m.
  • the particle density determined by the number of water mist nozzles and their volume flows was set to 2 l / m 3 * min -1 in the example given.
  • a corresponding arrangement is shown in DE 100 19 537 AI.
  • the mist-producing outlet devices are attached along spray arches, which are arranged one behind the other over the entire length of the room and / or its escape routes and transversely to the direction of escape, following the clearance profile of the room and / or its escape routes.
  • spray arches which are arranged one behind the other over the entire length of the room and / or its escape routes and transversely to the direction of escape, following the clearance profile of the room and / or its escape routes.
  • increases by Storage of spray particles their volume and weight so that they sink faster. The larger the spray particles become, the more ineffective they become for flue gas cooling and scrubbing.
  • the nozzle arrangement according to the invention with the characterizing features of the main claim has the advantage that the entire effective spray field, regardless of whether it is located in a horizontal or vertical plane, has the homogeneity necessary for effective smoke, heat and pollutant binding
  • the technical implementation of the arrangement according to the invention ie the dimensioning and the determination of the radial and axial
  • the nozzles are deflected according to the requirements of the room in which the flat spray field is to be generated.
  • This consists in arranging several nozzles next to one another in a nebulization module, which, however, due to their different spray angle and their different radial and axial deflection, do not spray in a line-like manner, but spatially and thus from the nebulization module to the desired spray field to a different extent.
  • the axial deflection causes a slight displacement of the spray surfaces, quasi a toothing of the spray surfaces applied to a gap.
  • the individual spray cones begin to touch one another at a certain distance from their outlet openings.
  • the spray angle, throughput and radial and axial deflection are chosen so that this contact lies in one plane, the so-called spray field plane.
  • the above-mentioned prevail in this level. favorable conditions with regard to the homogeneity of the necessary for effective smoke, heat and pollutant binding
  • Spray droplets The different sizes of the spray angles of nozzles arranged next to one another is necessary so that the spray cones do not interfere with one another before this level is reached.
  • the different lengths of travel due to the different radial and axial deflection of the nozzles from the spray droplets to this level are compensated for by correspondingly different spray angles.
  • the smallest spray angle must have those nozzles that supply the spray field in the areas furthest away from the pipe system.
  • all nozzles spray with the same intensity, ie that the same amount is sprayed on per unit area sprayed in one time unit.
  • the angle difference of the radial deflection of adjacent nozzles is 15 ° to 45 °. This area for the radial angle difference between adjacent nozzles has proven to be practical, although these angular differences can vary in size from nozzle to nozzle.
  • hollow cone nozzles are used.
  • the angle difference of the axial deflection of adjacent nozzles between 1 ° and 10 ° has proven to be sufficiently suitable.
  • a cylindrical filter is arranged in the nebulization module or modules. This prevents dirt particles from entering the nozzles and thereby blocking them.
  • the cylindrical design of the filter also prevents the nebulizing module or the entire pipe system from becoming blocked, since it does not hinder their axial direction of passage.
  • Fig. 1 is a nebulization module with four nozzles and Fig. 2 is a schematic representation of the flat spray field generated by the nebulization module shown in Fig. 1.
  • a spray arch installed following the clearance profile of a traffic tunnel
  • such a spray arch has pipe sections rising vertically up to the ceiling of the tunnel, rising slightly below the ceiling, via horizontal to slightly falling pipe sections which also run vertically on the opposite wall and carry a liquid medium.
  • the pipe sections consist of so-called water mist modules that have outlet openings for the medium.
  • the individual water mist modules are connected directly or via short pipe sections.
  • Fig. 1 shows such a water mist module 1 in the horizontal installation position of a spray arc for generating a vertical spray field.
  • a spatial coordinate system xyz is drawn on its right end face, which is intended to identify the position of the water mist module 1 in relation to a traffic tunnel (not shown).
  • x the width extension of the traffic tunnel, to which the longitudinal axis of the water mist module 1 is parallel when the water fog module 1 is arranged horizontally, with y its extension in height and with z its length extension, i.e. the course of the roadway.
  • the water mist module 1 with its outlet openings, has water mist nozzles 2 to 5 directed essentially opposite to the z direction, which are arranged on the water mist module 1 with the radial spray angles ⁇ and axial spray angles ß mentioned in Table 1, the values for the spray angles ⁇ and ß on a horizontal arrangement of the Obtain water mist module 1.
  • the radial spray angle ⁇ in the yz plane and the axial spray angle ß in the xz plane are each measured from the positive z axis.
  • the realization of a vertical, flat spray pattern also includes a special spray angle ⁇ and an adapted volume flow. Both are listed in Table 2 for the present example. This table also lists the characteristics of a vertical planar spray pattern generated with these parameters, in fact only the values of an imaginary plane of the throwing parabola of the water mist emerging from the water mist nozzles 2 to 5, 3.0 m away from the water mist module 1 ,
  • the water mist nozzle 2 generates a water mist cone 6, the water mist nozzle 3 a water mist cone 7, the water mist nozzle 4, a water mist cone 8 and the water mist nozzle 5 a water mist cone 9.
  • the cross-sectional areas of the water mist cones 6 to 9 form in a plane approximately 3.0 m from their exit points from the water mist nozzles 2 to 5, measured in negative z direction, a vertical, flat spray field 10, as can be seen from FIG. 2.
  • the spray diameter of all water mist cones 6 to 9 is the same size at this point and is approximately 1.70 m, which corresponds to a spray area of 2.35 m 2 in each case. This is achieved by the different parameters of the water mist nozzles 2 to 5 mentioned in Table 2.
  • the spray distance i.e. the actual length of the spray cone from its exit point to this level, is shown in column 3 of table 2. So that there are no gaps in the spray field, slight overlaps of the water mist cones 6 to 9 have to be accepted.
  • the volume flow of the water mist nozzles 2 to 5 becomes smaller with a falling spray angle ⁇ . In this example, the volume flow is reduced by half.
  • approx. 42 1 / min of water are required per water mist module 1 in order to achieve a range of 3.00 m with an effective width of 1.50 m.
  • the water module 1 For the generation of a horizontal spray field, the water module 1 is rotated downward about the x-axis by 90 °. The radial or axial position of the water mist nozzles 2 to 5 with respect to one another is retained, but the radial spray angle ⁇ in the above measurement rule is 90 ° greater due to the rotation accepts.
  • the water mist nozzles 2 to 5 used have the same spray angle ⁇ as in the arrangement for the vertical planar spray field, only the volume flow is the same for all water mist nozzles 2 to 5 and is 10.5 1 / min in the present example. If the water mist module 1 thus arranged is placed under water pressure, a horizontal, flat spray field is created which also has spray surfaces of the same size per water mist nozzle 2 to 5 and a constant droplet spectrum and a constant droplet density.
  • water mist modules 1 can also be used in the vertical guidance of spray arches. However, they do not necessarily have to generate even spray fields in this area. Their main function here is to seal the area between the vertical water mist curtain and the side walls of the traffic tunnel so that no smoke and no pollutants can get through here.

Landscapes

  • Nozzles (AREA)

Abstract

Die Erfindung geht aus von einer Anordnung zur Erzeugung ebener Sprühfelder. Erfindungsgemäß sind die Düsen (2, 3, 4, 5) in mindestens einem, einen Rohrleitungsabschnitt bildenden Vernebelungsmodul (1) nebeneinander angeordnet und besitzen unterschiedliche Sprühwinkel (8). Ferner sind sie sowohl radial zur Rohrleitung als auch untereinander in unterschiedlichen Winkelpositionen angeordnet, derart, dass sich pro Flächeneinheit der Sprühfeldebene immer die gleiche Menge an Wassertröpfchen annähernd gleicher Größe befindet.

Description

DUSENANORDNUNG ZUR ERZEUGUNG EBENER SPRUHFELDER
Stand der Technik
Die Erfindung geht aus von einer Anordnung zur Erzeugung ebener Sprühfelder, wie sie von linear oder flächig angeordneten Sprühdüsen erzeugt werden, nach der Gattung des Hauptanspruches. Dabei werden die Sprühfelder sowohl in horizontaler als auch in vertikaler Ausdehnung für die verschiedensten Anwendungen, wie z. B. Kühlen, Reinigen, Befeuchten, Beregnen u. a., erzeugt. Ein wesentliches Erfordernis von ebenen Sprühfeldern ist eine geschlossene und gleichmäßige Beaufschlagung der Fläche. In einem Katalogblatt des Düsenherstellers Lechler sind Beispiele für Düsenanordnungen gezeigt (Edition 2000, S. 13). Bei einer linearen Anordnung von Flachstrahl- und auch Zungendüsen zur Erzeugung eines horizontalen Sprühfeldes wird ein Düsenabstand empfohlen, der eine Überlappung der Strahlenbreite von 1/3 bis 1/4 gewährleistet. Um eine gegenseitige Störung der Strahlen zu vermeiden, sollten die Düsen außerdem um ca. 5 bis 15° schräg zur Rohrlängsachse ausgerichtet sein. Bei Vollkegel- und Hohlkegeldüsen kann auf die Schrägstellung verzichtet werden, jedoch wird im Bereich des Auftreffens der Strahlen auf die Fläche ebenfalls eine Überlappung der Kreisflächen der Beaufschlagung um ca. 1/3 bis 1/4 empfohlen.
Die vielseitigen Anwendungsgebiete von Schlickdüsen sind in dem Prospektblatt 08.01 der Firma gezeigt. Auch wenn als ein Anwendungsgebiet der Brandschutz (Bild 11) genannt ist, so wird aus den Darstellungen allerdings deutlich, dass sich diese Düsen in der Regel verhältnismäßig dicht an dem zu beaufschlagenden Objekt befinden, d. h. dass ihr charakteristisches Sprühbild, also Rechteck, Kreisfläche, o. a., beim Auftreffen auf die Fläche weitestgehend noch erhalten ist.
Bei bestimmten Anwendungen kann jedoch dieser kurze Abstand nicht gewährleistet werden. Das ist immer dann der Fall, wenn der Bereich zwischen Düsen und zu beaufschlagender Fläche ein Durchgangsoder Durchfahrtsbereich ist, was vor allem auf den Brandschutz von Räumen, Gebäuden, Parkhäusern, unteririschen Verkehrsanlagen u. a. zutrifft. Das Problem liegt hier darin, dass die Rohrleitungssysteme, an denen sich die Düsen befinden, im Decken- und Wandbereich der Räume, Gebäude oder Verkehrsanlagen angeordnet sind und die Löschmittelteilchen bis zu der Stelle, an der sie wirksam werden sollen, mitunter mehrere Meter zurücklegen müssen. Beim Austritt des Wassers wird noch ein kegelförmiges Sprühfeld erzeugt. Auf der Strecke bis zum Boden hat es sich jedoch unter dem Einfluss der Schwerkraft in ein vertikales zylindrisches Sprühfeld verändert, das die gewünschte Wirkung nicht mehr oder nur noch unzureichend besitzt. Eine Anwendung von Sprühdüsen zur Tragwerkskühlung im Brandfall ist in der DE 100 30 971 AI beschrieben. Um den hohen Aufwand der Löschwasserversorgung zu reduzieren, müssen die oberhalb des oder am Tragwerk installierten Düsen einen zumindest über die gesamte Tragwerkshöhe, günstiger aber noch bis zum Fuß des Tragwerkes, wirkungsvoll kühlenden Wassernebelschleier gewährleisten .
Weitaus komplizierter verhält es sich bei jenen Brandschutzanordnungen, die nicht in erster Linie zur Brandbekämpfung, also zum Löschen von Bränden, sondern zur Reduzierung von Rauch-, Wärme- und Schadstoffbelastung im Fall eines Brandes oder einer Havarie und damit zur Sicherung der Flucht und Rettung aus gefährdeten Räumen, beispielsweise unterirdischen Verkehrsanlagen, vorgesehen sind. In der DE 195 14 923 C2 ist ein Verfahren zur Sicherung der Flucht und Rettung unter Rauch-, Wärme- und Schadstoffbelastung aus Räumen mit langen Fluchtwegen beschrieben, bei dem in dem Raum ein Wassernebel niedriger Austritts- und Ausbreitungsgeschwindigkeit erzeugt wird. Die Teilchendichte muss die für die Rauch-, Wärme- und Schadstoffbindung erforderliche Konzentration besitzen. Die Teilchengröße des Wassernebels muss so eingestellt sein, dass die Wasserteilchen langsam von ihrem Austrittspunkt absinken. Ein optimaler Tröpfchendurchmesser, bei dem der Nebel noch atembar bleibt, liegt im Bereich zwischen 10 und 100 μm. Die durch die Anzahl der Wassernebeldüsen und deren Volumenströme bestimmte Teilchendichte wurde in dem angeführten Beispiel auf 2 1/m3 * min-1 eingestellt. Eine dementsprechende Anordnung ist in der DE 100 19 537 AI gezeigt. Hier sind die Nebel erzeugenden Austrittsvorrichtungen entlang von Sprühbögen befestigt, die über die gesamte Länge des Raumes und/ oder seiner Fluchtwege hintereinander und quer zur Fluchtrichtung, dem Lichtraumprofil des Raumes und /oder seiner Fluchtwege folgend, angeordnet sind. Während des Fallens vergrößert sich allerdings durch Zusammenlagerung von Sprühteilchen ihr Volumen und Gewicht, so dass sie schneller sinken. Je größer die Sprühteilchen werden, desto unwirksamer werden sie für die Rauchgaskühlung und -wasche.
Die Erfindung und ihre Vorteile
Die erfindungsgemäße Düsenanordnung mit den kennzeichnenden Merkmalen des Hauptanspruches hat demgegenüber den Vorteil, dass das gesamte wirksame Sprühfeld, egal ob in horizontaler oder vertikaler Ebene gelegen, die für eine effektive Rauch-, Wärme- und Schadstoffbindung notwendige Homogenität hinsichtlich
Konzentration sowie gleichmäßiger Verteilung der
Wassernebeltröpfchen aufweist. Das bedeutet, dass sich pro Flächeneinheit der Sprühfeldebene immer die gleiche Menge an Wassertröpfchen annähernd gleicher Größe befindet. Damit ist es nunmehr auch ausreichend, das Rohrleitungssystem nur in ausgewählten Bereichen der Räume zu installieren, wodurch der Material- und Installationsaufwand wesentlich verringert wird. Durch den Einsatz von Düsen mit geringerem Durchsatz wird darüber hinaus auch Sprühflüssigkeit eingespart. Der Installationsaufwand vor Ort reduziert sich auch dadurch, dass die Anordnung der Düsen in Vernebelungsmodulen vorgefertigt werden kann, die dann vor Ort nur noch zu dem den Erfordernissen des Raumes entsprechenden Rohr system aneinandergereiht werden müssen. Zur Verbindung der einzelnen Vernebelungsmodule sind an sich bekannte Verbindungssysteme verwendbar.
Die technische Umsetzung der erfindungsgemäßen Anordnung d. h. die Dimensionierung sowie die Festlegung der radialen und axialen Auslenkung der Düsen erfolgt jeweils nach den Erfordernissen des Raumes, in dem das ebene Sprühfeld erzeugt werden soll. Insofern soll hier nur das Prinzip der Erfindung dargelegt werden. Dieses besteht darin, mehrere Düsen nebeneinander in einem Vernebelungsmodul anzuordnen, die jedoch aufgrund ihres unterschiedlichen Sprühwinkels sowie ihrer unterschiedlichen radialen und axiale Auslenkung nicht linienartig, sondern räumlich und somit von dem Vernebelungsmodul bis zu dem gewünschten Sprühfeld unterschiedlich weit sprühen. Die axiale Auslenkung bewirkt dabei eine leichte Versetzung der Sprühflächen, quasi eine auf Lücke angelegte Verzahnung der Sprühflächen.
In einer bestimmten Entfernung von ihren Austrittsöffnungen beginnen sich die einzelnen Sprühkegel untereinander zu berühren. Sprühwinkel, Durchsatz sowie radial und axiale Auslenkung werden so gewählt, dass diese Berührung in einer Ebene, der sog. Sprühfeldebene, liegt. In dieser Ebene herrschen die o. g. günstigen Bedingungen hinsichtlich der für eine effektive Rauch-, Wärme- und Schadstoffbindung notwendigen Homogenität der
Sprühnebeltröpfchen. Die unterschiedliche Größe der Sprühwinkel nebeneinander angeordneter Düsen ist erforderlich, damit sich die Sprühkegel nicht schon vor Erreichen dieser Ebene gegenseitig behindern. Die aufgrund der unterschiedlichen radialen und axialen Auslenkung der Düsen von den Sprühnebeltröpfchen bis zu dieser Ebene zurückzulegenden unterschiedlich langen Wege werden durch entsprechend unterschiedliche Sprühwinkel ausgeglichen. Den kleinsten Sprühwinkel müssen jene Düsen aufweisen, die das Sprühfeld an den am weitesten von dem Rohrsystem entfernten Bereichen versorgen. Bei der. Erzeugung eines gleichmäßigen horizontalen Sprühfeldes sprühen alle Düsen mit gleicher Intensität, d. h. dass je besprühter Flächeneinheit in einer Zeiteinheit gleiche Mengen aufgesprüht werden.
Für die Erzeugung vertikaler Sprühfelder muss als weitere Störgröße die Schwerkraft berücksichtigt werden. Neben der unterschiedlichen radialen und axialen Auslenkung der Düsen sowie ihrer abwechselnd großen und kleinen Austrittswinkel kommt hier noch der Durchsatz als zusätzliche Komponente hinzu. Die den oberen Bereich des vertikalen Sprühfeldes versorgenden Düsen müssen einen weitaus größeren Durchsatz besitzen als die Düsen, die die unteren Bereiche des Sprühfeldes versorgen. Letztere müssen lediglich das kleine Tropfenspektrum ergänzen, was durch Zusammenlagerung von aufeinandergetroffenen Tröpfchen auf dem Weg nach unten verlorengegangen ist.
Müssen größere Flächen mit Sprühnebel versehen werden, beispielsweise zur Staubbindung in großen Hallen oder Beregnung bzw. Befeuchtung großer Flächen, sind mehrere Vernebelungsmodule mit ein und derselben Düsenanordnung nebeneinander oder auch übereinander anzuordnen. Ihr Abstand ist dann so zu wählen, dass sich die äußeren Sprühkegel in der Sprühebene zumindest gegenseitig berühren. Dabei fügen sich die in der Sprühebene des einen Vernebelungsmoduls leicht versetzt zueinander entstehenden Sprühflächen nahtlos an die in gleicher Weise versetzt entstehenden Sprühflächen des angrenzenden Vernebelungsmoduls an. Nach einer vorteilhaften Ausgestaltung der Erfindung beträgt die Winkeldifferenz der radialen Auslenkung benachbarter Düsen 15° bis 45°. Dieser Bereich für die radiale Winkeldifferenz benachbarter Düsen hat sich als praktikabel erwiesen, wobei diese Winkeldifferenzen von Düse zu Düse auch unterschiedlich groß sein kann.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung werden Hohlkegeldüsen verwendet.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung hat sich die Winkeldifferenz der axialen Auslenkung benachbarter Düsen zwischen 1° und 10° als ausreichend geeignet erwiesen.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist in dem bzw. den Vernebelungsmodulen ein zylindrischer Filter angeordnet. Dieser verhindert den Eintritt von Schmutzpartikeln in die Düsen und dadurch deren Verstopfung. Die zylindrische Gestaltung des Filters verhindert außerdem ein Verstopfen des Vernebelungsmoduls bzw. des gesamten Rohrsystems, da es deren axiale Durchtrittsrichtung nicht behindert.
Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung sind der nachfolgenden Beispielbeschreibung, der Zeichnung und den Ansprüchen entnehmbar.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und im Folgenden näher beschrieben. Hierbei zeigen
Fig. 1 einen Vernebelungsmodul mit vier Düsen und Fig. 2 eine schematische Darstellung des durch das in Fig. 1 gezeigte Vernebelungsmodul erzeugten ebenen Sprühfeldes.
Ausgehend von einem dem Lichtraumprofil eines Verkehrstunnels folgend installierten Sprühbogens weist ein derartiger Sprühbogen bis zur Decke des Tunnels senkrecht aufsteigende, unterhalb der Decke leicht ansteigend, über waagerecht bis leicht abfallend verlaufende und auf der gegenüberliegenden Wand ebenfalls senkrecht verlaufende, ein flüssiges Medium führende Rohrabschnitte auf. Im Deckenbereich des Tunnels bestehen die Rohrabschnitte aus sog. Wassernebelmodulen, die Austrittsöffnungen für das Medium aufweisen. Je nach geometrischen Verhältnissen der Räumlichkeit, im vorliegenden Beispiel der Breite und Höhe des Verkehrs tunnels, sind die einzelnen Wassernebelmodule direkt oder über kurze Rohrteile miteinander verbunden. Fig. 1 zeigt einen derartigen Wassernebelmodul 1 in horizontaler Einbaulage eines Sprühbogens zur Erzeugung eines vertikalen Sprühfeldes. An seiner rechten Stirnfläche ist zur Orientierung ein räumliches Koordinatensystem x y z eingezeichnet, das die Lage des Wassernebelmoduls 1 zu einem nicht dargestellten Verkehrstunnel kennzeichnen soll. Mit x wurde die Breitenausdehnung des Verkehrstunnels, zu der bei waagerechter Anordnung des Wassernebelmoduls 1 dessen Längsachse demnach parallel verläuft, mit y seine Ausdehnung in der Höhe und mit z seine Längenausdehnung, also der Verlauf der Fahrbahn gekennzeichnet. Das Wassernebelmodul 1 weist mit ihren Austrittsöffnungen im wesentlichen entgegengesetzt zur z-Richtung gerichtete Wassernebeldüsen 2 bis 5 auf, die mit den in der Tabelle 1 genannten radialen Sprühwinkeln γ und axialen Sprühwinkeln ß an dem Wassernebelmodul 1 angeordnet sind, wobei sich die Werte für die Sprühwinkel γ und ß auf eine waagerechte Anordnung des Wassernebelmoduls 1 beziehen. Dabei wird der radiale Sprühwinkel γ in der y-z-Ebene und der axiale Sprühwinkeln ß in der x-z-Eben jeweils von der positiven z-Achse aus gemessen.
Figure imgf000011_0001
Zur Realisierung eines vertikalen ebenen Sprühbildes gehören neben der besonderen Ausrichtung der Wassernebeldüsen 2 bis 5 auch ein spezieller Sprühwinkel δ sowie ein angepasster Volumenstrom. Beide sind für das vorliegende Beispiel in der Tabelle 2 aufgeführt. In dieser Tabelle sind darüber hinaus auch die Charakteristika eines mit diesen Parametern erzeugten vertikalen ebenen Sprühbildes aufgelistet, wobei hier tatsächlich nur die Werte einer 3,0 m von dem Wassernebelmodul 1 entfernten gedachten Ebene der Wurfparabel des aus den Wassernebeldüsen 2 bis 5 austretenden Wassernebels angegeben sind.
Figure imgf000011_0002
Schematisch ist dieser Sachverhalt auch in Fig. 2 dargestellt. Die Wassernebeldüse 2 erzeugt einen Wassernebelkegel 6, die Wassernebeldüse 3 einen Wassernebelkegel 7, die Wassernebeldüse 4, einen Wassernebelkegel 8 und die Wassernebeldüse 5 einen Wassernebelkegel 9. Wird das Wassernebelmodul 1 unter Wasserdruck gesetzt, bilden die Querschnittsflächen der Wassernebelkegel 6 bis 9 in einer ca. 3,0 m von ihren Austrittsstellen aus den Wassernebeldüsen 2 bis 5 entfernt liegenden Ebene, gemessen in negativer z- Richtung, ein vertikales ebenes Sprühfeld 10, wie aus Fig. 2 zu erkennen ist. Der Sprühdurchmesser aller Wassernebelkegel 6 bis 9 ist an dieser Stelle gleich groß und beträgt ca. 1, 70 m, was einer Sprühfläche von jeweils 2,35 m2 entspricht. Dies wird durch die unterschiedlichen in Tabelle 2 genannten Parameter der Wassernebeldüsen 2 bis 5 erreicht. Die Sprühweite, also die tatsächliche Länge des Sprühkegels von seiner Austrittsstelle bis zu dieser Ebene, ist aus Spalte 3 der Tabelle 2 ersichtlich. Damit keine Lücken im Sprühfeld entstehen, müssen geringfügige Überlappungen der Wassernebelkegel 6 bis 9 in Kauf genommen werden. Um im Sprühfeld 10 ein gleichbleibendes Tropfen Spektrum und eine gleichbleibende Tröpfchendichte zu erzeugen, wird der Volumenstrom der Wassernebeldüsen 2 bis 5 mit fallendem Sprühwinkel δ geringer. In diesem Beispiel verringert sich der Volumenstrom jeweils um die Hälfte. Zur Erzeugung eines vertikalen ebenen Sprühfeldes bei Verkehrstunnelhöhen von 5,50 m werden pro Wassernebelmodul 1 ca. 42 1/min Wasser benötigt, um eine Reichweite von 3,00 m bei einer Wirkungsbreite von 1,50 m zu erreichen.
Für die Erzeugung eines horizontalen Sprühfeldes wird das Wassermodul 1 um die x-Achse um 90° nach unten gedreht. Die radiale bzw. axiale Stellung der Wassernebeldüsen 2 bis 5 zueinander bleiben erhalten, wobei jedoch der radiale Sprühwinkel γ bei der o. g. Messvorschrift durch die Drehung einen um 90° größeren Wert annimmt. Die verwendeten Wassernebeldüsen 2 bis 5 besitzen die gleichen Sprühwinkel δ wie bei der Anordnung für das vertikale ebene Sprühfeld, lediglich der Volumenstrom ist für alle Wassernebeldüsen 2 bis 5 gleich groß und beträgt im vorliegenden Beispiel 10,5 1/min. Wird nun das so angeordnete Wassernebelmodul 1 unter Wasserdruck gesetzt, entsteht ein horizontales ebenes Sprühfeld, das gleichfalls gleichgroße Sprühflächen je Wassernebeldüse 2 bis 5 und ein gleichbleibendes Tropfenspektrum und eine gleichbleibende Tröpfchendichte aufweist.
Selbstverständlich können die Wassernebelmodule 1 auch in der senkrechten Führung von Sprühbögen eingesetzt werden. Allerdings müssen sie in diesem Bereich nicht unbedingt ebene Sprühfelder erzeugen. Ihre Funktion besteht hier im wesentlichen in der Abdichtung des Bereiches zwischen dem vertikalen Wassernebelvorhang und den Seitenwänden des Verkehrstunnels, damit hier kein Rauch und keine Schadstoffe hindurch gelangen können.
Alle in der Beschreibung, den nachfolgenden Ansprüchen und der Zeichnung dargestellten Merkmale können sowohl einzeln als auch in beliebiger Kombination miteinander erfindungswesentlich sein.
Bezugszahlenliste
1 Wassernebelmodul
2 bis 5 Wassernebeldüsen 6 bis 9 Wassernebelkegel 10 Sprühfeld ß axialer Sprühwinkel (Auslenkung der Wassernebeldüse) γ radialer Sprühwinkel (Auslenkung der Wassernebeldüse) δ Sprühwinkel

Claims

Anordnung zur Erzeugung ebener SprühfelderAnsprüche
1. Anordnung zur Erzeugung ebener Sprühfelder mittels an Rohrleitungen nebeneinander angeordneter Düsen, dadurch gekennzeichnet,
- dass die das ebene Sprühfeld (10) oder Teile eines solchen erzeugenden Düsen (2, 3, 4, 5) in mindestens einem, einen Rohrleitungsabschnitt bildenden Vernebelungsmodul (1) nebeneinander angeordnet sind,
- die Düsen (2, 3, 4, 5) unterschiedliche Sprühwinkel (δ) besitzen,
- die Achsen der Düsen (2, 3, 4, 5) sowohl radial zur Rohrleitung unterschiedliche Auslenkungen (γ) als auch untereinander unterschiedliche axiale Auslenkungen (ß) aufweisen, so dass sich die entstehenden Sprühkegel zumindest in der gewünschten, d. h. von der Rohrleitung in bestimmter Entfernung befindlichen Sprühfeldebene gegenseitig nicht oder nur unwesentlich behindern, wobei
- - die Düse (4) mit dem kleinsten Sprühwinkel (δ) die größte radiale Auslenkung (γ) und die Düse (3) mit dem größten Sprühwinkel (δ) die kleinste radiale Auslenkung (γ) aufweist,
- - die nebeneinander angeordneten Düsen (2, 3, 4, 5) abwechselnd einen großen und einen kleinen Sprühwinkel (δ) aufweisen und
- - die axiale Auslenkung (ß) nebeneinander angeordneter Düsen
(2, 3, 4, 5) so gewählt ist, dass deren zugehörige Sprühflächen (6, 7, 8, 9) vertikal oder horizontal versetzt zueinander in der Sprühfeldebene (10) entstehen, und somit an allen Stellen des Sprühfeldes (10) nahezu die gleiche Töpfchengröße und Tröpfchendichte vorherrschen.
2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass benachbarte Düsen (2, 3, 4, 5) zur Erzeugung eines horizontalen ebenen Sprühfeldes (10) den gleichen Durchsatz besitzen.
3. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass benachbarte Düsen (2, 3, 4, 5) zur Erzeugung eines vertikalen ebenen Sprühfeldes (10) einen unterschiedlichen Durchsatz besitzen.
4. Anordnung nach Anspruch 3, dadurch gekennzeichnet, dass die Düse (4) mit dem kleinsten Sprühwinkel (δ) den geringsten und die Düse (3) mit dem größten Sprühwinkel (δ) den größten Volumenstrom hat.
5. Anordnung nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass mehrere Vernebelungsmodule (1) nebeneinander angeordnet sind.
6. Anordnung nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass die Winkeldifferenz der radialen Auslenkung (γ) benachbarter Düsen (2, 3, 4, 5) 15° bis 45° beträgt.
7. Anordnung nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass die Winkeldifferenz der axialen Auslenkung (ß) benachbarter Düsen (2, 3, 4, 5) 5° bis 15° beträgt.
8. Anordnung nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass als Düsen (2, 3, 4, 5) Hohlkegeldüsen verwendet werden.
9. Anordnung nach Anspruch 1 bis 8, dadurch gekennzeichnet, dass sich in dem Vernebelungsmodul (1) ein zylinderförmiger Filter befindet.
Hierzu zwei Seiten Zeichnung
PCT/DE2004/001068 2003-05-21 2004-05-19 Düsenanordnung zur erzeugung ebener sprühfelder WO2004105957A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04738538A EP1656206B1 (de) 2003-05-21 2004-05-19 Düsenanordnung zur erzeugung ebener sprühfelder
DE502004002919T DE502004002919D1 (de) 2003-05-21 2004-05-19 Düsenanordnung zur erzeugung ebener sprühfelder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10323356.3 2003-05-21
DE10323356A DE10323356A1 (de) 2003-05-21 2003-05-21 Anordnung zur Erzeugung ebener Sprühfelder

Publications (1)

Publication Number Publication Date
WO2004105957A1 true WO2004105957A1 (de) 2004-12-09

Family

ID=33441210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/001068 WO2004105957A1 (de) 2003-05-21 2004-05-19 Düsenanordnung zur erzeugung ebener sprühfelder

Country Status (4)

Country Link
EP (1) EP1656206B1 (de)
AT (1) ATE353709T1 (de)
DE (2) DE10323356A1 (de)
WO (1) WO2004105957A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757332A2 (de) 2005-08-27 2007-02-28 Minimax Mobile Service GmbH & Co. KG Mobiler Feinsprühfeuerlöscher
US8561924B2 (en) 2007-03-16 2013-10-22 Rolls-Royce Plc Cooling arrangement
CN114467584A (zh) * 2022-02-14 2022-05-13 李新艳 一种基于林业种植病虫害防治的石灰涂层涂刷装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104437931A (zh) * 2013-09-17 2015-03-25 贵阳铝镁设计研究院有限公司 一种具有规律的接管分布的分配头
US10124348B2 (en) * 2015-07-30 2018-11-13 Mark A. Cowan Dual-headed paint spray wand

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2741305A1 (de) * 1977-09-14 1979-03-22 Fuchs Fa Otto Vorrichtung zum loeschen von flaechenbraenden
DE4124131A1 (de) * 1991-07-20 1993-01-21 Bauer Schaum Chem Vorrichtung zur abdeckung von schuettungen
DE10145136A1 (de) * 2001-09-13 2003-04-10 Bahn Station & Service Ag Deut Verfahren und Anordnung zur Abschottung von Feuer und Rauch an baulichen Anlagen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1924387U (de) * 1965-05-07 1965-09-23 Otto Koudelka Vorrichtung zum hohlkegelfoermigen verspruehen oder zerstaeuben von fluessigkeiten unter druck (hohlkegelduese).
US3698482A (en) * 1971-09-29 1972-10-17 Factory Mutual Res Corp Fire protection system utilizing high-capacity direct discharge nozzles
US4582259A (en) * 1984-09-12 1986-04-15 Hobart Corporation Wash arm and method and apparatus for forming the same
DE8627384U1 (de) * 1986-10-14 1987-10-15 Schako Metallwarenfabrik Ferdinand Schad Kg Zweigniederlassung Kolbingen, 7201 Kolbingen, De
DE4403243B4 (de) * 1994-02-03 2005-12-15 Robert Breining Maschinen- & Fahrzeugbau Gmbh U. Co Spritzvorrichtung zum Aufspritzen von flüssigem bitumenförmigem Bindemittel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2741305A1 (de) * 1977-09-14 1979-03-22 Fuchs Fa Otto Vorrichtung zum loeschen von flaechenbraenden
DE4124131A1 (de) * 1991-07-20 1993-01-21 Bauer Schaum Chem Vorrichtung zur abdeckung von schuettungen
DE10145136A1 (de) * 2001-09-13 2003-04-10 Bahn Station & Service Ag Deut Verfahren und Anordnung zur Abschottung von Feuer und Rauch an baulichen Anlagen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757332A2 (de) 2005-08-27 2007-02-28 Minimax Mobile Service GmbH & Co. KG Mobiler Feinsprühfeuerlöscher
US8561924B2 (en) 2007-03-16 2013-10-22 Rolls-Royce Plc Cooling arrangement
CN114467584A (zh) * 2022-02-14 2022-05-13 李新艳 一种基于林业种植病虫害防治的石灰涂层涂刷装置
CN114467584B (zh) * 2022-02-14 2022-10-21 李新艳 一种基于林业种植病虫害防治的石灰涂层涂刷装置

Also Published As

Publication number Publication date
ATE353709T1 (de) 2007-03-15
EP1656206B1 (de) 2007-02-14
DE502004002919D1 (de) 2007-03-29
DE10323356A1 (de) 2004-12-09
EP1656206A1 (de) 2006-05-17

Similar Documents

Publication Publication Date Title
DE60024324T2 (de) Sprinkler
DE102005059971A1 (de) Vorrichtung zum Vermischen eines Fluids mit einem großen Gasmengenstrom, insbesondere zum Einbringen eines Reduktionsmittels in ein Stickoxide enthaltendes Rauchgas
EP2387469A1 (de) Zerstäubungsvorrichtung für flüssigkeiten, verfahren zu deren herstellung und deren verwendung
WO2007051437A1 (de) Verfahren und anordnung zur brandbekämpfung mit druckluftschaum
EP1656206B1 (de) Düsenanordnung zur erzeugung ebener sprühfelder
CH641062A5 (de) Zerstaeuberkopf an einer farbspritzpistole.
DD233490A1 (de) Verfahren und vorrichtung zum aufbringen eines loeschmittels
DE1935487C3 (de) Einrichtung zum Umlenken von flüssigen oder gasförmigen Medien in rechteckigen Kanälen
AT411571B (de) Anlage zur brandbekämpfung in einem tunnel, insbesondere einem strassentunnel
DE10019537C2 (de) Anordnung zur Sicherung der Flucht und Rettung unter Rauch-, Wärme- und Schadstoffbelastung
DE10231230B4 (de) Wassersprühnebel-System zur Brandort-Lokalisierung
DE102006011655A1 (de) Statischer Fluidmischer mit Wandeindüsung
WO2004105920A1 (de) Verfahren, anordnung und vorrichtung zur reinigung strömender gase
DE10037921A1 (de) Verfahren und Vorrichtung zur Brandbekämpfung in Tunnelbauwerken
DE2649977C2 (de) Pralldüse zur Vollzerstäubung von Flüssigkeiten für die Niederschlagung von Schwebefeinstäuben des Untertagebetriebes
DE10226751A1 (de) Lufttechnische Anlage als Schutzeinrichtung gegen Brandgas
DE102014112757B4 (de) Flachstrahldüse und deren Verwendung
EP1570881A2 (de) Einrichtung und Verfahren zur Verminderung und/oder zur Vermeidung einer Rauch- und/oder Brandausbreitung in einem Kanal
EP1502653B1 (de) Düse zum Besprühen einer Fläche
AT515048B1 (de) Vorrichtung zur optischen Anzeige einer Durchfahrsperre
EP4188559A1 (de) Sprühmodul sowie vorrichtung und verfahren zur bekämpfung eines vegetationsbrands
DE102004012967A1 (de) Entstauber mit Mehrstrahldüsen
DE869335C (de) Duese zur Zerstaeubung von Wasser od. dgl. mittels Pressluft
DE102009057254B4 (de) Verfahren und Vorrichtung zum Online-Reinigen von Bereichen vertikaler Leerzüge einer Verbrennungsanlage
AT280570B (de) Spritzvorrichtung fuer faser- oder staubfoermige stoffe, insbesondere isolierstoffe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004738538

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004738538

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2004738538

Country of ref document: EP