EP1621507B1 - Regler für einen aufzug - Google Patents
Regler für einen aufzug Download PDFInfo
- Publication number
- EP1621507B1 EP1621507B1 EP03707048.9A EP03707048A EP1621507B1 EP 1621507 B1 EP1621507 B1 EP 1621507B1 EP 03707048 A EP03707048 A EP 03707048A EP 1621507 B1 EP1621507 B1 EP 1621507B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- speed
- car
- microcomputer
- judging unit
- elevator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000012806 monitoring device Methods 0.000 claims description 25
- 230000001133 acceleration Effects 0.000 claims description 14
- 238000012544 monitoring process Methods 0.000 claims description 8
- 230000003213 activating effect Effects 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 9
- 230000005611 electricity Effects 0.000 description 6
- 230000005284 excitation Effects 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/02—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
- B66B5/04—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed
- B66B5/06—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed electrical
Definitions
- the present invention relates to elevator governors, and, in particular, to electric governors using microprocessors.
- Elevator governors can generally be roughly divided into disk types and flyball types. Their specific structure is disclosed, for example, in " Description of Elevator Technical Standards for Conformity with Building Standards and Legal Implementation” (1994 edition) published by the Japan Elevator Association . This reference discloses that the disk type and the flyball type "are both configured to convert movement of an elevator car into rotational action; a pendulum arranged thereon operates by centrifugal force according to speed; by this means, the speed is detected and an excess-speed switch is opened; and the mechanism then bites on the governor rope and activates an emergency halting device.”
- an operation that opens the excess-speed switch is referred to as a switch operation
- an operation that restrains a governor rope and activates the emergency halting device is referred to as a catch operation.
- Japanese Laid-Open Patent Publication 2001-122549 discloses a means in which electrical energy is induced according to the car speed, and, by providing an actuator that operates by this electrical energy, a means in which excess-speed is detected and the catch operation is enacted.
- EP 0 773 180 A1 discloses an elevator safety device comprising a reference drive for moving and positioning a trigger part on the basis of travel parameters computed by an elevator control and passed on to the drive control of a cage drive for moving and positioning of the elevator cage.
- the trigger part is mechanically connected to the cage such that deviations between the cage position and the trigger part position can be used to actuate a safety switch to stop the cage or reference drivers or to arrest movement of the elevator cage.
- the car movement is converted into the operation of a pendulum, so as to realize the switch operation and the catch operation, or alternatively, the car movement is converted into electrical energy, and an actuator is made to operate by this electrical energy, so as to realize the switch operation and the catch operation. That is, various operations are realized so that the car movement is converted into mechanical energy of the arm, or into electrical energy. By converting into a different form of energy, operations can be assured; however, there will be variations, to some extent, in the speed of operations, and it is not easy to prevent malfunctions.
- the present invention has as an object the solution of the above problems though the realization of a governor with good accuracy and that can prevent malfunctions, without sacrificing safety.
- the elevator governor related to the present invention comprises: a detector for detecting physical volume variations that accompany ascent and descent of an elevator car and for outputting a signal, and a first microcomputer that has a first speed computation unit for computing speed of the car, based on the signal output from the detector, a first speed judging unit for judging whether or not the car speed computed by the first speed computation unit has exceeded a first speed level set in advance, and a second speed judging unit for judging whether or not the car speed computed by the first speed computation unit has exceeded a second speed level that is higher than the first speed level, wherein if the first speed judging unit judges that the car speed has exceeded the first speed level, electric supply to a hoisting winch for the car is suspended, and if the second speed judging unit judges that the car speed has exceeded the second speed level, the car is brought to an emergency stop.
- the elevator governor related to the present invention may comprise a first monitoring device for monitoring the operational state of the first microcomputer, wherein, if the first monitoring device judges that the first microcomputer is in a state in which the first microcomputer cannot judge the speed, then the car is brought to a halt.
- the elevator governor related to the present invention may comprise a second microcomputer that has a second speed computation unit for computing the speed of the car, based on the signal output from the detector, and a third speed judging unit for judging whether or not the car speed computed by the second speed computation unit has exceeded a first speed level set in advance, wherein if the second speed judging unit judges that the car speed has exceeded the first speed level, the car is brought to a halt.
- the elevator governor above may further comprise the first monitoring device for monitoring the operational state of the first microcomputer, and a second monitoring device for monitoring the operational state of the second microcomputer, wherein if the first monitoring device judges that the first microcomputer is in a state where it cannot judge speed, or if the second monitoring device judges that the second microcomputer is in a state where it cannot judge speed, the car is brought to a halt.
- the elevator governor related to the present invention may comprise a second microcomputer that has a second speed computation unit for computing the speed of the car, based on the signal output from the detector, wherein the first microcomputer includes a first discrepancy judging unit for judging whether or not the discrepancy between the car speed computed by the first speed computation unit and the car speed computed by the second speed computation unit exceeds a preset value, and based on the judged result of the first discrepancy judging unit, the car is brought to a halt.
- the above second microcomputer may comprise a second discrepancy judging unit for judging whether or not discrepancy between the car speed computed by the first speed computation unit and the car speed computed by the second speed computation unit exceeds a preset value, and based on the judged result of the second discrepancy judging unit, the car is brought to a halt.
- a battery may be provided to supply electrical power to the detector and the microcomputers if there is any power outage.
- the car may be brought to a halt by shutting off electrical power to the car hoisting winch.
- the car may be halted by activating the emergency stop means of the car.
- the detector may be an encoder or acceleration sensor.
- Embodiment 1 of the present invention is described using Figs. 1 through 6 .
- an elevator car 1 is linked to one end of a main wire-rope 4, and a counterweight 3 is linked to the other end of the main wire-rope 4.
- a portion of this main wire 4 is wound around a drive sheave of a hoisting winch 2, and through the revolution of this drive sheave, the car 1 and the counterweight 3 move up and down in the elevator shaft.
- An upper pulley 5 is disposed in a machine room arranged in the upper portion of the elevator shaft or above the elevator shaft.
- a lower pulley 6 is disposed in the lower portion of the elevator shaft, and an endlessly looped rope 7 is stretched between the upper pulley 5 and the lower pulley 6. Since a weight is suspended from the lower pulley 6, the rope 7 is held in tension. Since the rope 7 is linked to the car 1 at one position, the upper pulley 5 and the lower pulley 6 revolve as the car 1 goes up or down.
- An encoder 8 that has two output systems is attached to the upper pulley 5; the encoder 8 detects revolving of the upper pulley 5 and outputs a pulse signal. Since the upper pulley 5 revolves as the car 1 ascends or descends, the encoder 8 constitutes a detector for detecting physical volume variations that accompany the ascent and descent of the car 1. The output signal from the encoder 8 is a signal that varies in correspondence with the speed of the car 1.
- a first microcomputer 9, a second microcomputer 10, a first microcomputer monitoring device 11, a second microcomputer monitoring device 12, and AND-circuits 13 and 15 are arranged in a processing unit 100 for the governor.
- a first output signal from the encoder 8 is input to the first microcomputer 9, and the first microcomputer 9 computes the speed of the car 1 from this first output signal.
- a second output signal from the encoder 8 is input to the second microcomputer 10, and the second microcomputer 10 computes the speed of the car 1 from this second output signal.
- the first microcomputer monitoring device 11 monitors the operation state of the first microcomputer 9, and the second microcomputer monitoring device 12 monitors the operation state of the second microcomputer 10.
- the AND-circuit 13 receives the output signal from the first microcomputer 9 and the output signal from the first microcomputer monitoring device 11, and if either of the output signals is LO, it shuts off a relay A1 17.
- the AND-circuit 15 receives the output signal from the first microcomputer 9 and the output signal from the second microcomputer monitoring device 12, and if either of the output signals is LO, it shuts off a relay B1 19.
- a relay A2 18 receives the output signal from the second microcomputer 10, and if this output signal is LO, it is shut off.
- a relay B2 20 receives the output signal from the second microcomputer 10, and if this output signal is LO, it is shut off.
- An emergency stop is arranged on the car 1, and this emergency stop has an actuator 40.
- the emergency stop is activated by the operation of the actuator 40.
- an electrical power source 200 supplies electrical current from a three-phase alternating current source 29 to each member of the processing unit 100, the encoder 8 and the emergency stop actuator 40; and if there is a power outage, electrical current is supplied from a battery 210 to each of these members. In normal operation, the battery 210 is charged in advance.
- Fig. 2 is a diagram illustrating a driver circuit for the emergency stop actuator 40, this driver circuit having normally open contact breaker points 24 in the relay B1 19, normally open contact breaker points 25 in the relay B2 20, and a coil B 26 for the actuator 40.
- the coil B 26 normally has an electricity supply and since the actuator 40 is excited by this electricity supply, the emergency stop is not activated. In cases of abnormalities, the excitation of the actuator 40 is cut by the electricity power source to the actuator 40 being shut off, and the emergency stop is activated.
- Fig. 3 is a diagram illustrating a driver circuit with a main contactor MC 27 or the like, in a motor driver circuit, this driver circuit having normally open contact breaker points 21 in the relay A1 17, normally open contact breaker points 22 in the relay A2 18, contact breaker points 23 of another safety device for the elevator, a main contactor MC 27 for the motor driver circuit, a main contactor driver circuit 28, a contactor BK 36 for driving a brake for the hoisting winch 2, and a contactor driver circuit 37 for driving the brake.
- Fig. 4 is a schematic view of the motor driver circuit.
- the motor driver circuit is connected to a three-phase alternating current electricity source 29, and has breaker points 30 for the main contactor MC 27, and an inverter 31 for driving a motor 32 attached to the hoisting winch 2.
- Fig. 5 is a conceptual view illustrating a configuration of the internal parts of the encoder 8, the encoder 8 having a disk 35 with teeth to give the form of a gear wheel, and magnetic sensors 33 and 34 for detecting the teeth of the disk 35 and outputting pulse signals.
- the disk 35 is arranged on the upper pulley 5 and the disk 35 revolves as the upper pulley 5 revolves.
- the magnetic sensors 33 and 34 detect the teeth of the disk 35 and output pulse signals.
- the output signal from this magnetic sensor 33 is input to the first microcomputer 9 as a first output signal.
- the output signal from the magnetic sensor 34 is input to the second microcomputer 10 as a second output signal.
- Fig. 6 is a diagram illustrating an internal configuration of the first microcomputer 9 and the second microcomputer 10.
- a first speed computation unit 41, a first speed judging unit 42 and a second speed judging unit 43 are disposed inside the first microcomputer 9.
- the first output signal from the encoder 8 is input to the first speed computation unit 41.
- the output signal from the first speed computation unit 41 is input to the first speed judging unit 42 and the second speed judging unit 43.
- a second speed computation unit 44, a third speed judging unit 45 and a fourth speed judging unit 46 are disposed inside the second microcomputer 10.
- the encoder 8 attached to the upper pulley 5 outputs a signal corresponding to the speed of the car 1. That is, the magnetic sensors 33 and 34 of the encoder 8 detect the teeth of the disk 35 and output pulse signals.
- the first output signal output from the magnetic sensor 33 is input to the first microcomputer 9, and the second output signal output from the magnetic sensor 34 is input to the second microcomputer 10.
- the first speed computation unit 41 of the first microcomputer 9 counts the pulses of the first output signal, computes the speed of the car 1, and outputs a signal indicating the detected speed of the car 1 to the first speed judging unit 42 and the second speed judging unit 43.
- the first speed judging unit 42 judges whether the car speed has exceeded a first abnormal speed level that is decided in advance, and if the car speed has exceeded the first abnormal speed level, outputs a LO signal to the AND-circuit 13.
- the relay A1 17 is shut off.
- the normally open contact breaker points 21 of the relay A1 17 are shut off, and electricity power supply to the main contactor MC 27 and contactor BK 36 for driving the brake is cut.
- the first speed judging unit 42 constantly outputs a HI signal to the AND-circuit 13, and the elevator does not come to an abrupt halt.
- the second speed judging unit 43 of the first microcomputer 9 receives, from the first speed computation unit 41, a signal indicating the speed of the car 1, and judges whether the speed of the car 1 has exceeded a second abnormal speed level that is decided in advance.
- the second abnormal speed level is set to a value higher than the first abnormal speed level.
- the second speed judging unit 43 outputs a LO signal to the AND-circuit 15.
- the relay B1 19 is shut off.
- the normally open contact breaker points 24 of the relay B1 19 are shut off, and electrical power supply to the coil B 26 of the actuator 40 is cut. In this way, the excitation of the actuator 40 is cut and the emergency stop is activated.
- the elevator comes to an abrupt halt.
- the second speed judging unit 43 constantly outputs a HI signal to the AND-circuit 15, and the emergency stop is not activated.
- the second microcomputer 10 also receives a second output signal from the encoder 8, and operates in the same way as the first microcomputer 10. That is, if the speed of the car 1 exceeds the first abnormal speed level, a third speed judging unit 45 outputs a LO signal to the relay A2 18.
- the LO signal is input to the relay A2 18, the normally open contact breaker points 22 of the relay A2 18 are cut off, and electrical power supply to the main contactor MC 27 and contactor BK 36 for driving the brake is cut. Since electrical power supply to the inverter 31 is then cut, power supply to the hoisting winch 2 is cut and the elevator comes to a halt. Since electrical power supply to the contactor BK 36 for driving the brake is cut, the brake is activated and the elevator comes to an abrupt halt.
- a fourth speed judging unit 46 outputs a LO signal to the relay B2 20.
- the LO signal is input to the relay B2 20
- the normally open contact breaker points 25 of the relay B2 20 are cut off, and electrical power supply to the coil B 26 of the actuator 40 is cut. In this way, the excitation of the actuator 40 is cut, and the emergency stop is activated. As a result, the elevator comes to an abrupt halt.
- the first microcomputer monitoring device 11 If the first microcomputer 9 runs out of control and falls into a state where judgment of speed is not possible, the first microcomputer monitoring device 11 outputs a LO signal. Since the LO signal is input to the AND-circuit 13, the relay A1 17 is shut off, and the elevator comes to an abrupt halt as described above.
- the second microcomputer monitoring device 12 If the second microcomputer 10 runs out of control and falls into a state where judgment of speed is not possible, the second microcomputer monitoring device 12 outputs a LO signal. Since the LO signal is input to the AND-circuit 15, the relay B1 19 is shut off, the emergency stop is activated as described above, and the elevator comes to an abrupt halt.
- the elevator governor in this embodiment provides the following advantages. Since the judgment as to whether or not the speed of the car 1 has exceeded the first abnormal speed level is arranged to be carried out in the first speed judging unit 42 of the first microcomputer 9, little variability occurs in the operations, and it is possible to prevent malfunctions.
- the first microcomputer monitoring device 11 is provided for monitoring the operation state of the first microcomputer 9, and if the first microcomputer monitoring device 11 judges that the first microcomputer 9 is in a state where judgment of speed is not possible, the arrangement is such that the car 1 is brought to a halt; thus, it is possible to raise the safety level of the governor.
- the first and the second microcomputers 9 and 10 are provided, and if the first speed judging unit 42 of the first microcomputer 9 judges that the speed of the car 1 has exceeded the first abnormal speed level, or if the third speed judging unit 45 of the second microcomputer 10 makes a judgment, the arrangement is such that the car 1 is brought to a halt, and thus it is possible to increase the reliability of the governor.
- the second microcomputer monitoring device 12 for monitoring the operation state of the second microcomputer 10 is provided, it is possible to raise the safety level of the governor even further.
- the battery 210 Since the battery 210 is provided to backup the electrical power source in times of a power outage, it is possible to operate, with the battery 210, the encoder 8, the first microcomputer 9, the second microcomputer 10, the actuator 26, the first microcomputer monitoring device 11 and the second microcomputer monitoring device 12, even when there is a power outage.
- Embodiment 2 In addition to the configuration of Embodiment 1, it is possible to add a configuration illustrated in Fig. 7 to the first microcomputer 9 and the second microcomputer 10. In accordance with this configuration, in Embodiment 2, the detected speeds, obtained by the computations in the first microcomputer 9 and the second microcomputer 10, are compared, and if there is a discrepancy between the two detected speeds, the situation is deemed abnormal, and the relay 17 or 19 is cut off.
- the first microcomputer 9 has a first comparison unit 47, a first variation judging unit 48, and a second variation judging unit 49.
- An output signal from the first variation judging unit 48 is output to an AND-circuit 13
- an output signal from the second variation judging unit 49 is output to an AND-circuit 15.
- the second microcomputer 10 has a second comparison unit 50, a third variation judging unit 51, and a fourth variation judging unit 52.
- An output signal from the third variation judging unit 51 is output to the relay B2 20, and an output signal from the fourth variation judging unit 52 is output to the relay A2 18.
- the output signal from the first speed computation unit 41 and the output signal from the second speed judging unit 44 are input to the first comparison unit 47.
- the output signal from the first speed computation unit 41 and the output signal from the second speed judging unit 44 constitute signals indicating the detected speed of the car 1.
- the first comparison unit 47 the speed of the car 1, computed by the first speed computation unit 41, and the speed of the car 1 computed by the second speed computation unit 44 are compared, and the absolute value of the variation in the speeds is outputted.
- the first variation judging unit 48 outputs a LO signal to the AND-circuit 13.
- the relay A1 17 When the LO signal is input to the AND-circuit 13, the relay A1 17 is cut off, and as a result, the electrical power supply to the main contactor MC 27 and the contactor BK 36 for driving the brake is cut. Since the electrical power supply to the inverter 31 is cut, power supply to the hoisting winch 2 is cut and the elevator comes to a halt. Since the electrical power supply to the contactor BK 36 for driving the brake is cut, the brake is activated and the elevator comes to an abrupt halt.
- the second variation judging unit 49 When the absolute value of the variation in speeds is larger than a second variation volume set in advance, the second variation judging unit 49 outputs a LO signal to the AND-circuit 15. This second variation volume has a value larger than the first variation volume.
- the relay B1 19 When the LO signal is input to the AND-circuit 15, the relay B1 19 is cut off and an emergency stop is activated. As a result, the elevator comes to an abrupt halt.
- the second comparison unit 50 operates similarly to the first comparison unit 47 and outputs the absolute value of the variation in speeds.
- the third variation judging unit 51 outputs a LO signal to the relay A2 18.
- the normally open contact breaker points 22 of the relay A2 18 are shut off, and electricity power supply to the main contactor MC 27 and the contactor BK 36 for driving the brake is cut.
- the electrical power supply to the inverter 31 being cut, power supply to the hoisting winch 2 is cut and the elevator comes to a halt. Since the electrical power supply to the contactor BK 36 for driving the brake is cut, the brake is activated and the elevator comes to an abrupt halt.
- the fourth variation judging unit 52 When the absolute value of the variation in speeds is larger than the second variation volume, the fourth variation judging unit 52 outputs a LO signal to the relay A2 20. As a result, an emergency stop is activated.
- the first through to the fourth variation judging units 48, 49, 51, 52 output a HI signal. Therefore, the elevator operates normally.
- the elevator governor in this embodiment provides the following advantages. Since the first microcomputer 9 includes the first variation judging unit 48 that receives an output signal from the second speed computation unit 44 and judges whether or not the variation between the speed of the car 1 computed by the first speed computation unit 41 and the speed of the car 1 computed by the second speed computation unit 44 has exceeded the first variation volume, it is possible to improve the reliability of the governor.
- the first microcomputer 9 includes the second variation judging unit 49 for judging whether or not the variation between the speed of the car 1 computed by the first speed computation unit 41 and the speed of the car 1 computed by the second speed computation unit 44 has exceeded the second variation volume or not, it is possible to halt the elevator in two stages.
- the second microcomputer 10 also includes the third variation judging unit 51 and the fourth variation judging unit 52, even if the first microcomputer 9 should stop operating, it is possible to halt the elevator.
- programs for the first microcomputer 9 and the second microcomputer 10 may be written in devices, such as a ROM, in which they cannot be overwritten. In this way, it is possible to avoid alterations to the programs for any reason, that might lead to unsafe operation.
- an encoder 8 is used for detecting the speed of the car 1; however, the speed may also be computed by an accelerator sensor.
- Fig. 8 is a configuration view where an accelerator sensor is used.
- An acceleration sensor 53 is attached to the roof portion of the car 1; a first speed computation member 41 and a second speed computation member 44 each having an acceleration signal computation unit 54 and an integrator 55.
- the acceleration sensor 53 detects the acceleration of the car 1 and outputs a signal corresponding to the acceleration of the car 1.
- the acceleration sensor 53 is a detector for detecting physical volume variations that accompany acceleration of the car 1 as it ascends and descends. In other respects the configuration is similar to that of the above embodiments and explanations are omitted.
- the acceleration signal computation unit 54 obtains an output signal from the acceleration sensor 53 and computes the acceleration.
- the integrator 55 integrates the acceleration computed by the acceleration signal computation unit 54 and outputs the speed of the car 1. Subsequent processing is similar to the above described embodiments.
- the governor in accordance with the present invention enables accuracy to be improved without sacrificing safety.
- the present invention can be applied, as an electrical governor, to elevators.
Landscapes
- Maintenance And Inspection Apparatuses For Elevators (AREA)
Claims (10)
- Aufzugregler, umfassend:einen Detektor (8) zum Detektieren physikalischer Volumenvariationen, die mit einem Aufstieg und Abstieg einer Aufzugkabine (1) einhergehen, und zum Ausgeben eines Signals; undeinen ersten Mikrocomputer (9), welcher aufweisteine erste Geschwindigkeits-Recheneinheit (41) zum Berechnen einer Geschwindigkeit der Kabine, basierend auf dem aus dem Detektor (8) ausgegebenen Signal,eine erste Geschwindigkeits-Bewertungseinheit (42) zum Bewerten, ob die durch die erste Geschwindigkeits-Recheneinheit (41) berechnete Kabinengeschwindigkeit ein vorab eingestelltes erstes Geschwindigkeitsniveau übersteigt, undeine zweite Geschwindigkeits-Bewertungseinheit (43) zum Bewerten, ob die durch die erste Geschwindigkeits-Recheneinheit (41) berechnete Kabinengeschwindigkeit ein zweites Geschwindigkeitsniveau überstiegen hat, welches höher ist als das erste Geschwindigkeitsniveau; wobeifalls die erste Geschwindigkeits-Bewertungseinheit (42) bewertet, dass die Kabinengeschwindigkeit das erste Geschwindigkeitsniveau überstiegen hat, die Stromversorgung an eine Hubwinde für die Kabine suspendiert wird, undfalls die zweite Geschwindigkeits-Bewertungseinheit (43) bewertet, dass die Kabinengeschwindigkeit das zweite Geschwindigkeitsniveau überstiegen hat, die Kabine zu einem Nothalt gebracht wird.
- Aufzugregler gemäß Anspruch 1, weiter umfassend:eine erste Überwachungsvorrichtung (11) zum Überwachen des Betriebszustandes des ersten Mikrocomputers (9); wobeifalls die erste Überwachungsvorrichtung (11) bewertet, dass der erste Mikrocomputer (9) in einem Zustand ist, in welchem der erste Mikrocomputer (9) die Geschwindigkeit nicht bewerten kann, die Kabine dann angehalten wird.
- Aufzugregler gemäß Anspruch 1, weiter umfassend:einen zweiten Mikrocomputer (10) mit einer zweiten Geschwindigkeits-Recheneinheit (44) zum Berechnen der Geschwindigkeit der Kabine, basierend auf dem aus dem Detektor (8) ausgegebenen Signal, undeine dritte Geschwindigkeits-Bewertungseinheit (45) zum Bewerten, ob die durch die zweite Geschwindigkeits-Recheneinheit (44) berechnete Kabinengeschwindigkeit ein vorab eingestelltes erstes Geschwindigkeitsniveau überstiegen hat oder nicht; wobeifalls die dritte Geschwindigkeits-Bewertungseinheit (45) bewertet, dass die Kabinengeschwindigkeit das erste Geschwindigkeitsniveau überstiegen hat, die Kabine angehalten wird.
- Aufzugregler gemäß Anspruch 3, weiter umfassend:eine erste Überwachungsvorrichtung (11) zum Überwachen des Betriebszustands des ersten Mikrocomputers (9); undeine zweite Überwachungsvorrichtung (12) zum Überwachen des Betriebszustands des zweiten Mikrocomputers (10); wobeifalls die erste Überwachungsvorrichtung (11) bewertet, dass der erste Mikrocomputer (9) in einem Zustand ist, in welchem der erste Mikrocomputer (9) die Geschwindigkeit nicht bewerten kann, oder falls die zweite Überwachungsvorrichtung (12) bewertet, dass der zweite Mikrocomputer (10) in einem Zustand ist, in welchem der zweite Mikrocomputer (10) die Geschwindigkeit nicht bewerten kann, die Kabine angehalten wird.
- Aufzugregler gemäß Anspruch 1, weiter umfassend:einen zweiten Mikrocomputer (10) mit einer zweiten Geschwindigkeits-Recheneinheit (44) zum Berechnen der Geschwindigkeit der Kabine, basierend auf dem aus dem Detektor (8) ausgegebenem Signal; wobeider erste Mikrocomputer (9) eine erste Diskrepanz-Bewertungseinheit zum Bewerten, ob eine Diskrepanz zwischen der durch die erste Geschwindigkeits-Recheneinheit (41) berechneten Kabinengeschwindigkeit und der durch die zweite Geschwindigkeits-Recheneinheit (44) berechneten Kabinengeschwindigkeit einen voreingestellten Wert übersteigt, undbasierend auf dem Ergebnis der Bewertung durch die erste Diskrepanz-Bewertungseinheit, die Kabine angehalten wird.
- Aufzugregler gemäß Anspruch 5, wobei
der zweite Mikrocomputer (10) weiter eine zweite Diskrepanz-Bewertungseinheit zum Bewerten umfasst, ob eine Diskrepanz zwischen der durch die erste Geschwindigkeits-Recheneinheit (41) berechneten Kabinengeschwindigkeit und der durch die zweite Geschwindigkeits-Recheneinheit (44) berechneten Kabinengeschwindigkeit einen voreingestellten Wert übersteigt; und
basierend auf dem Bewertungsergebnis durch die zweite Diskrepanz-Bewertungseinheit, die Kabine angehalten wird. - Aufzugregler gemäß einem der Ansprüche 1 bis 6, weiter umfassend eine Batterie zum Zuführen elektrischen Stroms an den Detektor (8) und die Mikrocomputer (9, 10) falls es einen Stromausfall gibt.
- Aufzugregler gemäß einem der Ansprüche 1 bis 6, wobei die Kabine durch Abschalten des elektrischen Stroms an die Hubwinde für die Kabine angehalten wird.
- Aufzugregler gemäß einem der Ansprüche 1 bis 6, wobei die Kabine durch Aktivieren eines Nothalts für die Kabine angehalten wird.
- Aufzugregler gemäß einem der Ansprüche 1 bis 6, wobei der Detektor (8) ein Encoder (8, 33, 34, 35) oder ein Beschleunigungssensor (53) ist.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2003/002051 WO2004076326A1 (ja) | 2003-02-25 | 2003-02-25 | エレベーター用調速器 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1621507A1 EP1621507A1 (de) | 2006-02-01 |
EP1621507A4 EP1621507A4 (de) | 2011-07-06 |
EP1621507B1 true EP1621507B1 (de) | 2017-08-16 |
Family
ID=32923066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03707048.9A Expired - Lifetime EP1621507B1 (de) | 2003-02-25 | 2003-02-25 | Regler für einen aufzug |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1621507B1 (de) |
JP (1) | JP4412175B2 (de) |
CN (1) | CN1720189A (de) |
WO (1) | WO2004076326A1 (de) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1950287B (zh) * | 2005-03-30 | 2011-05-11 | 三菱电机株式会社 | 电梯装置 |
JP5068521B2 (ja) * | 2006-12-06 | 2012-11-07 | 三菱電機株式会社 | エレベータの制御装置 |
JP5600399B2 (ja) * | 2009-05-19 | 2014-10-01 | 株式会社日立製作所 | エレベーター装置 |
KR20120042991A (ko) * | 2009-10-20 | 2012-05-03 | 미쓰비시덴키 가부시키가이샤 | 엘리베이터의 안전 장치 |
FI122183B (fi) | 2010-03-15 | 2011-09-30 | Kone Corp | Menetelmä ja laite hissin sähkökäytön käyntiinajamiseksi |
JP5624845B2 (ja) * | 2010-10-14 | 2014-11-12 | 株式会社日立製作所 | 電子安全エレベータ |
FI122425B (fi) * | 2010-11-18 | 2012-01-31 | Kone Corp | Sähkönsyötön varmennuspiiri, hissijärjestelmä sekä menetelmä |
JP5529075B2 (ja) | 2011-05-25 | 2014-06-25 | 株式会社日立製作所 | エレベータ |
JP5462836B2 (ja) * | 2011-06-06 | 2014-04-02 | 株式会社日立製作所 | エレベーター用制動装置及びエレベーター |
JP6220613B2 (ja) * | 2013-09-19 | 2017-10-25 | 株式会社日立製作所 | エレベータの制御システム |
CN104516366A (zh) * | 2013-09-27 | 2015-04-15 | 方正宽带网络服务股份有限公司 | 直流电机驱动的升降柱自检测平衡方法、系统及装置 |
US10071881B2 (en) | 2013-12-12 | 2018-09-11 | Otis Elevator Company | Safety system for use in a drive system |
JP6636411B2 (ja) * | 2016-11-18 | 2020-01-29 | 株式会社日立製作所 | エレベーター制御装置及びエレベーター制御方法 |
CN107572332A (zh) * | 2017-09-15 | 2018-01-12 | 广西建工集团建筑机械制造有限责任公司 | 一种施工升降机状态反馈控制系统 |
JP6601587B1 (ja) | 2019-07-26 | 2019-11-06 | フジテック株式会社 | エレベーターのエンコーダー診断システム及び診断方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH663778A5 (de) * | 1982-11-19 | 1988-01-15 | Inventio Ag | Sollwertgeber fuer eine antriebsregelungseinrichtung. |
MY118747A (en) * | 1995-11-08 | 2005-01-31 | Inventio Ag | Method and device for increased safety in elevators |
JP3532349B2 (ja) * | 1996-06-11 | 2004-05-31 | 三菱電機株式会社 | エレベータの安全装置 |
US6173813B1 (en) * | 1998-12-23 | 2001-01-16 | Otis Elevator Company | Electronic control for an elevator braking system |
US6170614B1 (en) * | 1998-12-29 | 2001-01-09 | Otis Elevator Company | Electronic overspeed governor for elevators |
JP2000327240A (ja) * | 1999-05-19 | 2000-11-28 | Toshiba Corp | エレベータ制御装置 |
JP2001122549A (ja) * | 1999-10-25 | 2001-05-08 | Hitachi Ltd | エレベーターのガバナ |
JP4553535B2 (ja) * | 2001-09-28 | 2010-09-29 | 三菱電機株式会社 | エレベータ装置 |
JP4115743B2 (ja) * | 2002-05-14 | 2008-07-09 | 三菱電機株式会社 | エレベータ装置 |
-
2003
- 2003-02-25 WO PCT/JP2003/002051 patent/WO2004076326A1/ja active Application Filing
- 2003-02-25 JP JP2004566482A patent/JP4412175B2/ja not_active Expired - Fee Related
- 2003-02-25 EP EP03707048.9A patent/EP1621507B1/de not_active Expired - Lifetime
- 2003-02-25 CN CNA038257483A patent/CN1720189A/zh active Pending
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
JP4412175B2 (ja) | 2010-02-10 |
CN1720189A (zh) | 2006-01-11 |
EP1621507A4 (de) | 2011-07-06 |
JPWO2004076326A1 (ja) | 2006-06-01 |
WO2004076326A1 (ja) | 2004-09-10 |
EP1621507A1 (de) | 2006-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1621507B1 (de) | Regler für einen aufzug | |
US10196234B2 (en) | Method for controlling unintended vertical speed and acceleration of an elevator | |
JP5101803B2 (ja) | エレベータ管理 | |
US9771243B2 (en) | Elevator safety arrangement for controlling elevator movement | |
US20200024105A1 (en) | Elevator | |
CN104080722B (zh) | 用于减小升降机轿厢的速度的系统和方法 | |
EP1584597A1 (de) | Aufzugssteuersystem | |
JPWO2008155853A1 (ja) | エレベータの安全装置及びロープスリップ検出方法 | |
CN101312898A (zh) | 电梯的紧急停止系统 | |
WO2014097373A1 (ja) | エレベータ装置 | |
EP1497214A1 (de) | Überdrehzahlreglervorrichtung für aufzugssystem | |
JP5523455B2 (ja) | エレベータ装置 | |
JPWO2007055020A1 (ja) | エレベータ装置 | |
JP2009519445A (ja) | 駆動装置のための監視装置もしくは監視方法 | |
CN112912328B (zh) | 电梯的控制系统 | |
WO2004031064A1 (ja) | エレベーターシステム | |
KR100785179B1 (ko) | 엘리베이터용 조속기 | |
JPH05155553A (ja) | エレベータの速度監視装置 | |
JP4901446B2 (ja) | エレベータ制御システム | |
KR20070088454A (ko) | 엘리베이터 장치 | |
KR20080110689A (ko) | 엘리베이터 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050406 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE NL |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MITSUBISHI DENKI KABUSHIKI KAISHA |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE NL |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20110608 |
|
17Q | First examination report despatched |
Effective date: 20120803 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170324 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE NL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60350514 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60350514 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180517 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190212 Year of fee payment: 17 Ref country code: NL Payment date: 20190116 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60350514 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20200301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200901 |