EP1597743B1 - Entrainement lineaire magnetique - Google Patents

Entrainement lineaire magnetique Download PDF

Info

Publication number
EP1597743B1
EP1597743B1 EP04705378A EP04705378A EP1597743B1 EP 1597743 B1 EP1597743 B1 EP 1597743B1 EP 04705378 A EP04705378 A EP 04705378A EP 04705378 A EP04705378 A EP 04705378A EP 1597743 B1 EP1597743 B1 EP 1597743B1
Authority
EP
European Patent Office
Prior art keywords
iron core
armature
gap
magnetic
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04705378A
Other languages
German (de)
English (en)
Other versions
EP1597743A1 (fr
Inventor
Marcus Kampf
Carsten Protze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1597743A1 publication Critical patent/EP1597743A1/fr
Application granted granted Critical
Publication of EP1597743B1 publication Critical patent/EP1597743B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2227Polarised relays in which the movable part comprises at least one permanent magnet, sandwiched between pole-plates, each forming an active air-gap with parts of the stationary magnetic circuit

Definitions

  • the invention relates to a magnetic linear drive with a first iron core, which passes through a first current-carrying coil and at least one magnetic flux enforced by a magnetic gap and having a first permanent magnet having movable armature, wherein in a first end position of the armature of the first permanent magnet at least partially fills a gap of the first iron core.
  • a magnetic linear drive is known, for example, from European Patent Application EP 0 867 903 A2.
  • the local linear drive serves to move a contact piece of an electrical switch.
  • a movable armature has a permanent magnet, which moves in the direction of the coil during energization of an electrical coil due to the force acting between the permanent magnet and the energized coil magnetic forces. This movement is used to switch on a breaker unit of the circuit breaker.
  • spring packages are tensioned.
  • the permanent magnet adheres to an iron core.
  • a magnetic linear drive of the type mentioned is known for example from DE 39 42 542 A1.
  • a permanent magnet is moved along an axis by a coil which can be charged with current.
  • the end positions beats the permanent magnet each at so-called stop poles.
  • the distance of the movable armature is limited.
  • An impact occurs relatively undamped and abrupt. This can cause vibrations, which shorten the life of the magnetic linear drive.
  • the invention has the object of providing a magnetic linear drive of the type mentioned in such a way that in a simplified construction a possible low-vibration positioning of the armature is made possible in an end position.
  • the object is achieved in a magnetic linear drive of the aforementioned type according to the invention that in a first end position of the armature of the first permanent magnet at least partially fills a gap of the first iron core and a yoke disposed on the armature rests against an edge of a gap of the first iron core.
  • An iron core can consist of various suitable materials which have ferromagnetic properties (for example iron, cobalt, nickel, core sheets of special alloys).
  • the at least partial filling of a gap in the first iron core by means of a permanent magnet permits a transition of the magnetic field lines emanating from the permanent magnet into the first iron core with low losses. Due to the abutment of the yoke at the edge of a gap, the guidance of the magnetic flux is improved by the magnetic flux is also guided within the yoke. The reluctance results in a force effect. The force effect is particularly great when the distance between the yoke and iron core is minimized.
  • the gap which fills the permanent magnet, as well as the gap, at the edge of which the yoke is applied, one and the same gap or are also different from each other column.
  • the magnetic flux generated within the first iron core is so strong that the armature is held in its final position. It can only be moved out by an external force or by energizing the coil.
  • the first iron core consists of at least two sections, between which gap (s) is / are formed, which is enforceable by a magnetic flux producible in the first iron core.
  • the division of the iron core into at least two sections allows advantageous guidance of the magnetic flux in the interior of the first iron core.
  • the iron core can be designed in one piece, wherein the iron core itself is subdivided into a plurality of sections by a corresponding arrangement of cuts. The incisions are then regarded as a column in which, for example, the first permanent magnet is moved with the armature.
  • specific regions can be specifically designed on the iron core, at which the magnetic flux extends in preferred directions, for example in order to be able to enter or exit perpendicular to a surface.
  • the first iron core is formed at least in two parts and respectively pole faces are arranged on a first core body and on a second core body of the first iron core, between which a first and a second gap are formed.
  • a division of the first iron core into a plurality of core bodies allows a modular assembly of the first iron core.
  • different iron cores can be formed from a small number of core bodies.
  • two identical core bodies may be used, between which a first and a second gap are formed.
  • the two core bodies are configured as U cores, with the free ends of the legs being arranged opposite one another on the front side. The end faces of the legs then form the pole faces. Between Pol vom each having a first and a second gap is formed.
  • the legs of the U-shaped core body are adapted to receive the first current-exciting coil and serve as attachment points of the yoke.
  • a further advantageous embodiment can provide that in the first end position of the armature, the yoke is held by a magnetic flux emanating from the first permanent magnet.
  • a further advantageous embodiment can provide that in the first end position, a magnetic force caused by the magnetic flux acts against a force emanating from an additional element.
  • An additional element may for example be an elastic element, which is tensioned during a movement of the armature in the first end position.
  • Elastic elements are, for example, springs, hydraulics, pneumatics, etc.
  • the holding force of the armature caused by the magnetic flux is greater than the force exerted by the elastic element.
  • the held by the elastic member force is now available to move the armature from the first end position.
  • the impetus for a move out The outer force required for the armature from the first end position only has to have an amount which is greater than the difference between the magnetic force and the force exerted by the elastic element.
  • the external force can be generated for example by energizing the electric coil.
  • a magnetic field can be generated, which passes through the gap transversely to the direction of movement of the armature.
  • a magnetic field oriented transversely to the direction of movement of the armature can be generated, for example, by winding the coil onto a leg of a U-shaped core body. This makes it very easy to replace the coil itself and the effect of the magnetic field generated by the first coil is directly amplified by the iron core. It can also be provided, for example, that the coil extends on two opposite sides of a gap of the iron core. Thus, a symmetrical force is generated at the gap or on the permanent magnet. In this case, the magnetic field in the gap can preferably run perpendicular to the direction of movement of the armature.
  • a further embodiment may advantageously provide that the armature has a second permanent magnet which cooperates with a second iron core interspersed with a second current-carrying coil, which has at least one magnetic gap which can be penetrated by a magnetic flux, wherein a magnetic gap of the second iron core is in a second end position of the armature is at least partially filled by the second permanent magnet and the yoke bears against an edge of a magnetic gap of the second iron core.
  • the magnetic flux generated by the first or by the second permanent magnet can be used to provide the holding forces.
  • a reinforcement of the forces available for moving the armature is made possible in a simple manner.
  • one or both coils can generate a force effect on the armature.
  • this makes it possible to increase the drive power or to produce the same drive power with two smaller-sized coils as with a single coil.
  • it is possible to dispense with the elastic elements which provide a restoring force.
  • elastic elements continue to be used, for example, to effect an emergency breaking capacity or braking or additional acceleration of the armature.
  • the yoke in the first end position at an edge of a gap of the first Iron core and in the second end position abuts an edge of a gap of the second iron core.
  • the yoke on the first iron core and on the second iron core serves as a mechanical stop.
  • the yoke is designed with sufficient mechanical stability to absorb the impact and abutment forces.
  • the iron cores and the yoke are mechanically stable as bearing elements and keep vibrations away from the coils.
  • a mirror-symmetrical design makes it possible to construct the drive in a modular way and to use similar modules.
  • the mirror axis may, for example, be parallel or congruent with the axis of movement of the linearly displaceable armature.
  • a further advantageous mirror axis may, for example, be an axis perpendicular to the direction of movement of the armature. With such a shape, it is possible to design the first and second iron cores in a same manner. This makes it possible to produce drives of different shapes with few components.
  • the magnetic linear drive 1 shows a first embodiment variant of a magnetic linear drive 1.
  • the magnetic linear drive 1 serves to move a switching contact of an electrical switching device 2.
  • the electrical switching device 2 may for example be a multi-pole circuit breaker having vacuum interrupters.
  • the magnetic linear drive 1 has a first iron core 3.
  • the first iron core 3 has a first core body 3a and a second core body 3b.
  • the first core body 3a and the second core body 3b are configured similarly.
  • the core body 3a, 3b are designed as U-shaped core body and in such a way to each other arranged that the free legs of the core body 3a, 3b are arranged frontally opposite one another.
  • the first core body 3a has a first leg 4a and a second leg 4b.
  • the second core body 3b has a first leg 4c and a second leg 4d.
  • the end faces of the first legs 4a, 4c are formed as pole faces and define a first gap 5.
  • a second gap 6 is formed between their pole faces.
  • An armature 7 is movable between the first gap 5 and the second gap 6.
  • the armature 7 has a first permanent magnet 8. North and south pole (NS) of the first permanent magnet 8 are arranged so that the running in the interior of the first permanent magnet 8 field lines 9 almost perpendicular to the pole faces of the first leg 4a, 4c and the second leg 4b, 4d can pass.
  • the armature 7 further comprises a yoke 10.
  • the yoke 10 is spaced from the first permanent magnet 8 mounted on a side remote from the switching device 2 side of the armature 7.
  • the connection of the first permanent magnet 8 with the yoke 10 is formed of a non-magnetic material.
  • the second legs 4b, 4d serve as a winding core for a first coil 11.
  • the first coil 11 is wound on the first legs 4a, 4c.
  • the first coil 11 extends on either side of the axis of movement of the armature 7.
  • a spring assembly 12a, b is arranged on the first iron core 3, which is compressible during a movement of the armature 7.
  • FIG. 1 shows the magnetic linear drive 1 in the off position, ie the electrical switching device 2 has opened contacts.
  • the armature 7 is held stable in its off position.
  • the off position defines a second end position of the armature 7.
  • the first permanent magnet 8 bridges the second gap 6 and fills it.
  • the first coil 11 is energized in a first direction (13) with direct current due to the force between the magnetic field of the first permanent magnet 8 and the magnetic field of the first coil 11 is a movement of the armature 7 in the direction of the first gap 5.
  • FIG. 2 shows the first end position of the armature 7, in which the first permanent magnet 8 bridges the first gap 5.
  • the contacts of the electrical switching device 2 are now closed.
  • the spring pack 12a, b is stretched.
  • the yoke 10 lies flat against the edge of the second gap 6.
  • the yoke 10 bridges the second gap 6.
  • the magnetic flux 15 emanating from the first permanent magnet 8 is now guided in the first core body 3 a and the second core body 3 b and is closed via the yoke 10.
  • the magnetic force caused by the first permanent magnet 8 keeps the armature 7 stable in the first end position.
  • the magnetic linear drive 1 acts as a drive, which is fed by a permanent magnet.
  • the armature 7 For a movement of the armature 7 from the first end position (FIG. 2) to a second end position (FIG. 1), it is necessary to energize the first coil in a second direction 14. Alternatively, it can be provided that an additional coil is used to effect a switch-off movement. Thus, for example, a special movement of the armature 7 can be effected during a switch-off. Supported by the tensioned spring assembly 12 a, b is the first permanent magnet 8 moved out of the first end position. With him, the armature 7 and the yoke 10 move.
  • the armature 7 In the first end position (FIG. 2), the armature 7 is kept stable by the magnetic flux emanating from the first permanent magnet 8. In the second end position ( Figure 1), the armature 7 is held stable by the spring assembly 12a, b.
  • FIG. 3 shows a modification of the variant of a magnetic linear drive shown in FIGS. 1 and 2.
  • FIG. 3 shows a magnetic linear drive 1a, which has a one-piece first iron core 3.
  • the first iron core 3 is U-shaped.
  • a first coil 11 is wound.
  • a first gap 5 is formed between the end face of the first leg 4a and the second Schwenkel 4b located pole faces a first gap 5 is formed.
  • a first permanent magnet 8 is movable.
  • the first permanent magnet 8 is arranged on an armature 7.
  • the armature 7 is associated with a yoke 10. After a movement of the armature 7 in a first end position (not shown), the yoke 10 is supported on the second leg 4b.
  • the second leg 4b forms an edge of the first gap 5. Due to the flat abutment of the yoke 10, the path of the emanating from the first permanent magnet 8 field lines on the first iron core 3 and the yoke 10 is shortened, so that the armature 7 due to the magnetic force of the permanent magnet 8 is stably held in the first end position. For the transfer of the armature 7 from the second end position to the first end position and vice versa, the first coil 11 is to be energized with opposite current directions.
  • FIG. 6 shows a magnetic linear drive as it is known in principle from FIG.
  • the armature 7 has, in addition to the yoke 10, a further yoke 10a.
  • the yokes 10,10a are used for stable storage of the armature 7 in the end positions.
  • FIGS. 4 and 5 show a second variant of a linear drive according to the invention.
  • a double magnetic linear drive 20 shown in FIGS. 4 and 5 has a first iron core 21 and a second iron core 22 with two core bodies each.
  • the configuration of the first iron core 21 and the second iron core 22 corresponds to the embodiment of the iron core shown in FIGS. 1 and 2.
  • the first iron core 21 is associated with a first coil 23.
  • the second iron core 22 is associated with a second coil 24.
  • the first coil 23 and the second coil 24 are arranged on free legs of the iron cores.
  • the double magnetic linear drive 20 has an armature 25. At the anchor 25 in the center, a yoke 26 is attached.
  • the armature 25 is configured linearly stretched and has at its ends a first permanent magnet 27 and a second permanent magnet 28.
  • the first iron core 21, the first coil 23 and the first permanent magnet 27 cooperate as well as the second iron core 22, the second coil 24 and the second permanent magnet 28 together (as described above with reference to FIGS. 1 and 2).
  • both the first and the second coil 23, 24 can be used. As described with reference to FIG. 1 and FIG.
  • the yoke 26 acts as a bridge to a gap of the first iron core 21 or the second iron core 22 and positions the armature 25 in its end positions using the respective permanent magnets 27, 28 magnetic holding forces.
  • the spring package 12a, b provided in FIGS. 1 and 2 for generating a return movement has been replaced by an arrangement comprising a second iron core 22, a second coil and a second permanent magnet 28.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Breakers (AREA)

Claims (9)

  1. Entraînement linéaire magnétique (1, 20) comprenant un premier noyau de fer (3, 21) qui traverse une première bobine (11, 23) pouvant être alimentée en courant et a au moins un entrefer magnétique (5) pouvant être traversé par un flux magnétique, et comprenant également une palette ou armature (7, 25) mobile qui a un premier aimant permanent (8, 27), l'agencement étant tel, que pour une première position extrême de la palette (7, 25), le premier aimant permanent (8, 27) remplisse au moins partiellement un entrefer du premier noyau de fer (3, 21) et une culasse (10, 26) disposée sur la palette (7, 25) s'appuie sur un bord d'un entrefer du premier noyau de fer (3, 21),
    caractérisé en ce que des lignes de champ (9) s'étendant dans le premier aimant permanent sont orientées transversalement à la direction de mouvement de la palette (7, 25).
  2. Entraînement linéaire magnétique (1, 20) selon la revendication 1,
    caractérisé en ce que le premier noyau de fer (3, 21) est constitué d'au moins deux tronçons entre lesquels est (sont) formé(s) l'/les entrefer(s) qui peut (peuvent) être traversé(s) par un flux magnétique pouvant être engendré dans le premier noyau de fer ((3, 21).
  3. Entraînement linéaire magnétique (1, 20) selon la revendication 2,
    caractérisé en ce que le premier noyau de fer (3, 21) est réalisé au moins en deux parties, et en ce que sur un premier corps de noyau (3a) et sur un deuxième corps de noyau (3b) du premier noyau de fer (3) sont agencées respectivement des surfaces polaires entre lesquelles sont formés un premier et un deuxième entrefer (5, 6).
  4. Entraînement linéaire magnétique (1, 20) selon l'une des revendications 1 à 3,
    caractérisé en ce que dans la première position extrême de la palette (7, 25), la culasse (10, 26) est maintenue par un flux magnétique issu du premier aimant permanent (8, 27).
  5. Entraînement linéaire magnétique (1, 20) selon la revendication 4,
    caractérisé en ce que dans la première position extrême, une force magnétique produite par le flux magnétique agit à l'encontre d'une force issue d'un élément (12a,b) supplémentaire.
  6. Entraînement linéaire magnétique (1, 20) selon l'une des revendications 1 à 5,
    caractérisé en ce qu'à l'aide de la première bobine (11, 23) il est possible d'engendrer un flux magnétique qui traverse l'entrefer (5, 6) transversalement à la direction de mouvement de la palette (7, 25).
  7. Entraînement linéaire magnétique (20) selon l'une des revendications 1 à 6,
    caractérisé en ce que la palette (25) comprend un deuxième aimant permanent (28) interagissant avec un deuxième noyau de fer (22) qui traverse une deuxième bobine (24) pouvant être alimentée en courant et a au moins un entrefer magnétique pouvant être traversé par un flux magnétique, l'agencement étant tel que dans une deuxième position extrême de la palette (25), un entrefer magnétique du deuxième noyau de fer (22) soit au moins partiellement rempli par le deuxième aimant permanent (28), et que la culasse (26) s'appuie sur un bord d'un entrefer magnétique du deuxième noyau de fer (22).
  8. Entraînement linéaire magnétique (20) selon la revendication 7,
    caractérisé en ce que la culasse (26), dans la première position extrême, s'appuie sur un bord d'un entrefer du premier noyau de fer (21), et dans la deuxième position extrême, sur un bord d'un entrefer du deuxième noyau de fer (22).
  9. Entraînement linéaire magnétique (20) selon l'une des revendications 7 ou 8,
    caractérisé en ce qu'un entraînement présentant les caractéristiques selon l'une des revendications 1 à 6, est d'une construction inversée par symétrie par rapport à un axe de symétrie.
EP04705378A 2003-02-26 2004-01-27 Entrainement lineaire magnetique Expired - Lifetime EP1597743B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10309697A DE10309697B3 (de) 2003-02-26 2003-02-26 Magnetischer Linearantrieb
DE10309697 2003-02-26
PCT/DE2004/000159 WO2004077477A1 (fr) 2003-02-26 2004-01-27 Entrainement lineaire magnetique

Publications (2)

Publication Number Publication Date
EP1597743A1 EP1597743A1 (fr) 2005-11-23
EP1597743B1 true EP1597743B1 (fr) 2006-10-04

Family

ID=32797831

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04705378A Expired - Lifetime EP1597743B1 (fr) 2003-02-26 2004-01-27 Entrainement lineaire magnetique

Country Status (6)

Country Link
US (1) US7482902B2 (fr)
EP (1) EP1597743B1 (fr)
JP (1) JP2006520517A (fr)
CN (1) CN100369173C (fr)
DE (2) DE10309697B3 (fr)
WO (1) WO2004077477A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10309697B3 (de) 2003-02-26 2004-09-02 Siemens Ag Magnetischer Linearantrieb
DE102005013196A1 (de) 2005-03-16 2006-09-28 Siemens Ag Elektrische Versorgungsschaltung, Schalterbetätigungsvorrichtung und Verfahren zum Betreiben einer Schalterbetätigungsvorrichtung
DE102005013197A1 (de) * 2005-03-16 2006-09-28 Siemens Ag Magnetische Betätigungsvorrichtung
EP1892739A1 (fr) * 2006-08-25 2008-02-27 Siemens Aktiengesellschaft Unité d'entraînement électromagnétique et appareil de commutation électromécanique
DE102006052454B3 (de) * 2006-11-07 2008-05-29 Siemens Ag Bestückkopf mit Rückstelleinrichtung und Bestückautomat
DE102008000534A1 (de) * 2008-03-06 2009-09-10 Zf Friedrichshafen Ag Elektromagnetische Stellvorrichtung
US20110146681A1 (en) * 2009-12-21 2011-06-23 Nellcor Puritan Bennett Llc Adaptive Flow Sensor Model
DE102010035395B4 (de) * 2010-08-25 2015-02-12 Siemens Aktiengesellschaft Medizinische Untersuchungs- oder Behandlungseinrichtung
EP2501023B1 (fr) * 2011-03-15 2021-01-27 Etel S. A.. actuateur vertical comprenant une compensation de gravité
KR101449736B1 (ko) * 2012-12-27 2014-10-08 주식회사 효성 컨버터의 바이패스 장치
JP5883516B2 (ja) * 2013-01-29 2016-03-15 株式会社日立製作所 開閉装置
CN105280433B (zh) * 2015-08-05 2017-11-10 杨斌堂 自开合真空断路器装置
CN108962687B (zh) * 2018-09-17 2024-05-07 浙江天正电气股份有限公司 一种交流接触器
CN110524533B (zh) * 2019-09-05 2021-07-23 华北电力大学 一种串并联继电器替代生物肌肉功能的装置及方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2466844A1 (fr) * 1979-09-28 1981-04-10 Telemecanique Electrique Electro-aimant comportant un noyau-plongeur muni d'un aimant monostable ou bistable
JPS5829754U (ja) * 1981-08-21 1983-02-26 日立金属株式会社 ドアロツク用アクチユエ−タ
US4870306A (en) * 1981-10-08 1989-09-26 Polaroid Corporation Method and apparatus for precisely moving a motor armature
US4533890A (en) * 1984-12-24 1985-08-06 General Motors Corporation Permanent magnet bistable solenoid actuator
US4928028A (en) * 1989-02-23 1990-05-22 Hydraulic Units, Inc. Proportional permanent magnet force actuator
DE3942542A1 (de) 1989-12-22 1991-06-27 Lungu Cornelius Bistabiler magnetantrieb mit permanentmagnetischem hubanker
DE19509195B4 (de) 1995-03-14 2004-07-22 Siemens Ag Gleichstrom-Magnetsystem mit Dauermagnetunterstützung
JP3441360B2 (ja) * 1997-03-25 2003-09-02 株式会社東芝 しゃ断器の操作装置
NL1006087C2 (nl) 1997-05-20 1998-11-23 Bogey Venlo B V Actuatormechanisme.
JP2000164059A (ja) 1998-11-27 2000-06-16 Matsushita Electric Works Ltd リセット機能付スイッチ
JP4126787B2 (ja) * 1998-12-07 2008-07-30 トヨタ自動車株式会社 電磁駆動装置
JP2000268683A (ja) 1999-01-14 2000-09-29 Toshiba Corp 開閉器の操作装置
JP3492228B2 (ja) * 1999-02-09 2004-02-03 株式会社テクノ高槻 鉄心および該鉄心を用いる電磁駆動機構
DE19929572A1 (de) * 1999-06-22 2001-01-04 Siemens Ag Magnetischer Linearantrieb
JP3899941B2 (ja) 2000-07-28 2007-03-28 富士電機機器制御株式会社 電磁式リニアアクチュエータおよび回路しゃ断器のリモート操作装置
US6512435B2 (en) * 2001-04-25 2003-01-28 Charles Willard Bistable electro-magnetic mechanical actuator
DE10132553A1 (de) 2001-07-04 2003-01-23 Siemens Ag Elektrodynamischer Linearantrieb
US20050046531A1 (en) * 2002-10-09 2005-03-03 David Moyer Electromagnetic valve system
DE10309697B3 (de) 2003-02-26 2004-09-02 Siemens Ag Magnetischer Linearantrieb

Also Published As

Publication number Publication date
US7482902B2 (en) 2009-01-27
CN1754241A (zh) 2006-03-29
DE10309697B3 (de) 2004-09-02
WO2004077477A1 (fr) 2004-09-10
DE502004001671D1 (de) 2006-11-16
EP1597743A1 (fr) 2005-11-23
US20060139135A1 (en) 2006-06-29
JP2006520517A (ja) 2006-09-07
CN100369173C (zh) 2008-02-13

Similar Documents

Publication Publication Date Title
EP1597743B1 (fr) Entrainement lineaire magnetique
DE102013110029C5 (de) Elektrodynamischer Aktor
EP0885450B1 (fr) Dispositif de commutation electromagnetique
EP2079154B1 (fr) Convertisseur d'énergie
EP1430490B1 (fr) Actionneur electromagnetique
DE19820821C1 (de) Elektromagnetisches Relais
DE4304921C1 (de) Bistabiler magnetischer Antrieb für einen elektrischen Schalter
DE112011104482T5 (de) Magnetbetätigte Vorrichtung
DD208262A5 (de) Elektromagnet mit beweglichen teilen mit dauermagnet
EP1132929B1 (fr) Entraînement à aimant permanent pour dispositif de commutation électrique
EP1573766B1 (fr) Actionneur electromagnetique
DE10343005B4 (de) Schaltgerät sowie Verfahren zu dessen Herstellung
DE10140559A1 (de) Elektromagnetanordnung für einen Schalter
WO2001084579A1 (fr) Declencheur magnetique permettant d'ouvrir un systeme de a contacts
EP1626427A2 (fr) Relais
DE3124412C1 (de) Polarisiertes elektromagnetisches Kleinrelais
DE102018001243A1 (de) Bistabiler elektromagnetischer Hubaktor sowie Drahtziehmaschine
CH661377A5 (de) Elektromagnetisches schaltgeraet, bestehend aus einem magnetantrieb und einem oberhalb dessen angeordneten kontaktapparat.
CH661821A5 (de) Schaltung zur steuerung von drehrichtungsumkehrbaren elektrischen antrieben.
EP1887594A2 (fr) Engrenage pour un commutateur électromécanique
DE602004005243T2 (de) Elektromechanischer aktor
EP2054995A1 (fr) Entrainement de moroir pour systemes de projection et procede associe
WO2001069616A1 (fr) Systeme de contacts pour un appareil de coupure a basse tension
DE3246256C2 (de) Elektromagnetisches Relais
EP0630516B1 (fr) Relais electromagnetique polarise

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FR IT LI SE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061004

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004001671

Country of ref document: DE

Date of ref document: 20061116

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080415

Year of fee payment: 5

Ref country code: DE

Payment date: 20080320

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090127

Year of fee payment: 6

Ref country code: SE

Payment date: 20090114

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090120

Year of fee payment: 6

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100127