EP1597743B1 - Linear magnetic drive - Google Patents

Linear magnetic drive Download PDF

Info

Publication number
EP1597743B1
EP1597743B1 EP04705378A EP04705378A EP1597743B1 EP 1597743 B1 EP1597743 B1 EP 1597743B1 EP 04705378 A EP04705378 A EP 04705378A EP 04705378 A EP04705378 A EP 04705378A EP 1597743 B1 EP1597743 B1 EP 1597743B1
Authority
EP
European Patent Office
Prior art keywords
iron core
armature
gap
magnetic
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04705378A
Other languages
German (de)
French (fr)
Other versions
EP1597743A1 (en
Inventor
Marcus Kampf
Carsten Protze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1597743A1 publication Critical patent/EP1597743A1/en
Application granted granted Critical
Publication of EP1597743B1 publication Critical patent/EP1597743B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2227Polarised relays in which the movable part comprises at least one permanent magnet, sandwiched between pole-plates, each forming an active air-gap with parts of the stationary magnetic circuit

Definitions

  • the invention relates to a magnetic linear drive with a first iron core, which passes through a first current-carrying coil and at least one magnetic flux enforced by a magnetic gap and having a first permanent magnet having movable armature, wherein in a first end position of the armature of the first permanent magnet at least partially fills a gap of the first iron core.
  • a magnetic linear drive is known, for example, from European Patent Application EP 0 867 903 A2.
  • the local linear drive serves to move a contact piece of an electrical switch.
  • a movable armature has a permanent magnet, which moves in the direction of the coil during energization of an electrical coil due to the force acting between the permanent magnet and the energized coil magnetic forces. This movement is used to switch on a breaker unit of the circuit breaker.
  • spring packages are tensioned.
  • the permanent magnet adheres to an iron core.
  • a magnetic linear drive of the type mentioned is known for example from DE 39 42 542 A1.
  • a permanent magnet is moved along an axis by a coil which can be charged with current.
  • the end positions beats the permanent magnet each at so-called stop poles.
  • the distance of the movable armature is limited.
  • An impact occurs relatively undamped and abrupt. This can cause vibrations, which shorten the life of the magnetic linear drive.
  • the invention has the object of providing a magnetic linear drive of the type mentioned in such a way that in a simplified construction a possible low-vibration positioning of the armature is made possible in an end position.
  • the object is achieved in a magnetic linear drive of the aforementioned type according to the invention that in a first end position of the armature of the first permanent magnet at least partially fills a gap of the first iron core and a yoke disposed on the armature rests against an edge of a gap of the first iron core.
  • An iron core can consist of various suitable materials which have ferromagnetic properties (for example iron, cobalt, nickel, core sheets of special alloys).
  • the at least partial filling of a gap in the first iron core by means of a permanent magnet permits a transition of the magnetic field lines emanating from the permanent magnet into the first iron core with low losses. Due to the abutment of the yoke at the edge of a gap, the guidance of the magnetic flux is improved by the magnetic flux is also guided within the yoke. The reluctance results in a force effect. The force effect is particularly great when the distance between the yoke and iron core is minimized.
  • the gap which fills the permanent magnet, as well as the gap, at the edge of which the yoke is applied, one and the same gap or are also different from each other column.
  • the magnetic flux generated within the first iron core is so strong that the armature is held in its final position. It can only be moved out by an external force or by energizing the coil.
  • the first iron core consists of at least two sections, between which gap (s) is / are formed, which is enforceable by a magnetic flux producible in the first iron core.
  • the division of the iron core into at least two sections allows advantageous guidance of the magnetic flux in the interior of the first iron core.
  • the iron core can be designed in one piece, wherein the iron core itself is subdivided into a plurality of sections by a corresponding arrangement of cuts. The incisions are then regarded as a column in which, for example, the first permanent magnet is moved with the armature.
  • specific regions can be specifically designed on the iron core, at which the magnetic flux extends in preferred directions, for example in order to be able to enter or exit perpendicular to a surface.
  • the first iron core is formed at least in two parts and respectively pole faces are arranged on a first core body and on a second core body of the first iron core, between which a first and a second gap are formed.
  • a division of the first iron core into a plurality of core bodies allows a modular assembly of the first iron core.
  • different iron cores can be formed from a small number of core bodies.
  • two identical core bodies may be used, between which a first and a second gap are formed.
  • the two core bodies are configured as U cores, with the free ends of the legs being arranged opposite one another on the front side. The end faces of the legs then form the pole faces. Between Pol vom each having a first and a second gap is formed.
  • the legs of the U-shaped core body are adapted to receive the first current-exciting coil and serve as attachment points of the yoke.
  • a further advantageous embodiment can provide that in the first end position of the armature, the yoke is held by a magnetic flux emanating from the first permanent magnet.
  • a further advantageous embodiment can provide that in the first end position, a magnetic force caused by the magnetic flux acts against a force emanating from an additional element.
  • An additional element may for example be an elastic element, which is tensioned during a movement of the armature in the first end position.
  • Elastic elements are, for example, springs, hydraulics, pneumatics, etc.
  • the holding force of the armature caused by the magnetic flux is greater than the force exerted by the elastic element.
  • the held by the elastic member force is now available to move the armature from the first end position.
  • the impetus for a move out The outer force required for the armature from the first end position only has to have an amount which is greater than the difference between the magnetic force and the force exerted by the elastic element.
  • the external force can be generated for example by energizing the electric coil.
  • a magnetic field can be generated, which passes through the gap transversely to the direction of movement of the armature.
  • a magnetic field oriented transversely to the direction of movement of the armature can be generated, for example, by winding the coil onto a leg of a U-shaped core body. This makes it very easy to replace the coil itself and the effect of the magnetic field generated by the first coil is directly amplified by the iron core. It can also be provided, for example, that the coil extends on two opposite sides of a gap of the iron core. Thus, a symmetrical force is generated at the gap or on the permanent magnet. In this case, the magnetic field in the gap can preferably run perpendicular to the direction of movement of the armature.
  • a further embodiment may advantageously provide that the armature has a second permanent magnet which cooperates with a second iron core interspersed with a second current-carrying coil, which has at least one magnetic gap which can be penetrated by a magnetic flux, wherein a magnetic gap of the second iron core is in a second end position of the armature is at least partially filled by the second permanent magnet and the yoke bears against an edge of a magnetic gap of the second iron core.
  • the magnetic flux generated by the first or by the second permanent magnet can be used to provide the holding forces.
  • a reinforcement of the forces available for moving the armature is made possible in a simple manner.
  • one or both coils can generate a force effect on the armature.
  • this makes it possible to increase the drive power or to produce the same drive power with two smaller-sized coils as with a single coil.
  • it is possible to dispense with the elastic elements which provide a restoring force.
  • elastic elements continue to be used, for example, to effect an emergency breaking capacity or braking or additional acceleration of the armature.
  • the yoke in the first end position at an edge of a gap of the first Iron core and in the second end position abuts an edge of a gap of the second iron core.
  • the yoke on the first iron core and on the second iron core serves as a mechanical stop.
  • the yoke is designed with sufficient mechanical stability to absorb the impact and abutment forces.
  • the iron cores and the yoke are mechanically stable as bearing elements and keep vibrations away from the coils.
  • a mirror-symmetrical design makes it possible to construct the drive in a modular way and to use similar modules.
  • the mirror axis may, for example, be parallel or congruent with the axis of movement of the linearly displaceable armature.
  • a further advantageous mirror axis may, for example, be an axis perpendicular to the direction of movement of the armature. With such a shape, it is possible to design the first and second iron cores in a same manner. This makes it possible to produce drives of different shapes with few components.
  • the magnetic linear drive 1 shows a first embodiment variant of a magnetic linear drive 1.
  • the magnetic linear drive 1 serves to move a switching contact of an electrical switching device 2.
  • the electrical switching device 2 may for example be a multi-pole circuit breaker having vacuum interrupters.
  • the magnetic linear drive 1 has a first iron core 3.
  • the first iron core 3 has a first core body 3a and a second core body 3b.
  • the first core body 3a and the second core body 3b are configured similarly.
  • the core body 3a, 3b are designed as U-shaped core body and in such a way to each other arranged that the free legs of the core body 3a, 3b are arranged frontally opposite one another.
  • the first core body 3a has a first leg 4a and a second leg 4b.
  • the second core body 3b has a first leg 4c and a second leg 4d.
  • the end faces of the first legs 4a, 4c are formed as pole faces and define a first gap 5.
  • a second gap 6 is formed between their pole faces.
  • An armature 7 is movable between the first gap 5 and the second gap 6.
  • the armature 7 has a first permanent magnet 8. North and south pole (NS) of the first permanent magnet 8 are arranged so that the running in the interior of the first permanent magnet 8 field lines 9 almost perpendicular to the pole faces of the first leg 4a, 4c and the second leg 4b, 4d can pass.
  • the armature 7 further comprises a yoke 10.
  • the yoke 10 is spaced from the first permanent magnet 8 mounted on a side remote from the switching device 2 side of the armature 7.
  • the connection of the first permanent magnet 8 with the yoke 10 is formed of a non-magnetic material.
  • the second legs 4b, 4d serve as a winding core for a first coil 11.
  • the first coil 11 is wound on the first legs 4a, 4c.
  • the first coil 11 extends on either side of the axis of movement of the armature 7.
  • a spring assembly 12a, b is arranged on the first iron core 3, which is compressible during a movement of the armature 7.
  • FIG. 1 shows the magnetic linear drive 1 in the off position, ie the electrical switching device 2 has opened contacts.
  • the armature 7 is held stable in its off position.
  • the off position defines a second end position of the armature 7.
  • the first permanent magnet 8 bridges the second gap 6 and fills it.
  • the first coil 11 is energized in a first direction (13) with direct current due to the force between the magnetic field of the first permanent magnet 8 and the magnetic field of the first coil 11 is a movement of the armature 7 in the direction of the first gap 5.
  • FIG. 2 shows the first end position of the armature 7, in which the first permanent magnet 8 bridges the first gap 5.
  • the contacts of the electrical switching device 2 are now closed.
  • the spring pack 12a, b is stretched.
  • the yoke 10 lies flat against the edge of the second gap 6.
  • the yoke 10 bridges the second gap 6.
  • the magnetic flux 15 emanating from the first permanent magnet 8 is now guided in the first core body 3 a and the second core body 3 b and is closed via the yoke 10.
  • the magnetic force caused by the first permanent magnet 8 keeps the armature 7 stable in the first end position.
  • the magnetic linear drive 1 acts as a drive, which is fed by a permanent magnet.
  • the armature 7 For a movement of the armature 7 from the first end position (FIG. 2) to a second end position (FIG. 1), it is necessary to energize the first coil in a second direction 14. Alternatively, it can be provided that an additional coil is used to effect a switch-off movement. Thus, for example, a special movement of the armature 7 can be effected during a switch-off. Supported by the tensioned spring assembly 12 a, b is the first permanent magnet 8 moved out of the first end position. With him, the armature 7 and the yoke 10 move.
  • the armature 7 In the first end position (FIG. 2), the armature 7 is kept stable by the magnetic flux emanating from the first permanent magnet 8. In the second end position ( Figure 1), the armature 7 is held stable by the spring assembly 12a, b.
  • FIG. 3 shows a modification of the variant of a magnetic linear drive shown in FIGS. 1 and 2.
  • FIG. 3 shows a magnetic linear drive 1a, which has a one-piece first iron core 3.
  • the first iron core 3 is U-shaped.
  • a first coil 11 is wound.
  • a first gap 5 is formed between the end face of the first leg 4a and the second Schwenkel 4b located pole faces a first gap 5 is formed.
  • a first permanent magnet 8 is movable.
  • the first permanent magnet 8 is arranged on an armature 7.
  • the armature 7 is associated with a yoke 10. After a movement of the armature 7 in a first end position (not shown), the yoke 10 is supported on the second leg 4b.
  • the second leg 4b forms an edge of the first gap 5. Due to the flat abutment of the yoke 10, the path of the emanating from the first permanent magnet 8 field lines on the first iron core 3 and the yoke 10 is shortened, so that the armature 7 due to the magnetic force of the permanent magnet 8 is stably held in the first end position. For the transfer of the armature 7 from the second end position to the first end position and vice versa, the first coil 11 is to be energized with opposite current directions.
  • FIG. 6 shows a magnetic linear drive as it is known in principle from FIG.
  • the armature 7 has, in addition to the yoke 10, a further yoke 10a.
  • the yokes 10,10a are used for stable storage of the armature 7 in the end positions.
  • FIGS. 4 and 5 show a second variant of a linear drive according to the invention.
  • a double magnetic linear drive 20 shown in FIGS. 4 and 5 has a first iron core 21 and a second iron core 22 with two core bodies each.
  • the configuration of the first iron core 21 and the second iron core 22 corresponds to the embodiment of the iron core shown in FIGS. 1 and 2.
  • the first iron core 21 is associated with a first coil 23.
  • the second iron core 22 is associated with a second coil 24.
  • the first coil 23 and the second coil 24 are arranged on free legs of the iron cores.
  • the double magnetic linear drive 20 has an armature 25. At the anchor 25 in the center, a yoke 26 is attached.
  • the armature 25 is configured linearly stretched and has at its ends a first permanent magnet 27 and a second permanent magnet 28.
  • the first iron core 21, the first coil 23 and the first permanent magnet 27 cooperate as well as the second iron core 22, the second coil 24 and the second permanent magnet 28 together (as described above with reference to FIGS. 1 and 2).
  • both the first and the second coil 23, 24 can be used. As described with reference to FIG. 1 and FIG.
  • the yoke 26 acts as a bridge to a gap of the first iron core 21 or the second iron core 22 and positions the armature 25 in its end positions using the respective permanent magnets 27, 28 magnetic holding forces.
  • the spring package 12a, b provided in FIGS. 1 and 2 for generating a return movement has been replaced by an arrangement comprising a second iron core 22, a second coil and a second permanent magnet 28.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Breakers (AREA)

Description

Die Erfindung bezieht sich auf einen magnetischen Linearantrieb mit einem ersten Eisenkern, der eine erste strombeaufschlagbare Spule durchsetzt und wenigstens einen von einem magnetischen Fluss durchsetzbaren magnetischen Spalt aufweist und mit einem einen ersten Permanentmagneten aufweisenden bewegbaren Anker, wobei in einer ersten Endposition des Ankers der erste Permanentmagnet einen Spalt des ersten Eisenkerns zumindest teilweise ausfüllt.The invention relates to a magnetic linear drive with a first iron core, which passes through a first current-carrying coil and at least one magnetic flux enforced by a magnetic gap and having a first permanent magnet having movable armature, wherein in a first end position of the armature of the first permanent magnet at least partially fills a gap of the first iron core.

Ein magnetischer Linearantrieb ist beispielsweise aus der europäischen Patentanmeldung EP 0 867 903 A2 bekannt. Der dortige Linearantrieb dient der Bewegung eines Kontaktstückes eines elektrischen Schalters. Ein bewegbarer Anker weist einen Permanentmagneten auf, welcher sich bei einem Bestromen einer elektrischen Spule aufgrund der zwischen dem Permanentmagneten und der bestromten Spule wirkenden magnetischen Kräfte in Richtung der Spule bewegt. Diese Bewegung dient dem Einschalten einer Unterbrechereinheit des Leistungsschalters. Während der Einschaltbewegung werden Federpakete gespannt. Um den Antrieb in seiner Einschaltstellung auch nach einer Unterbrechung des Stromflusses durch die Spule zu halten, haftet der Permanentmagnet an einem Eisenkern.A magnetic linear drive is known, for example, from European Patent Application EP 0 867 903 A2. The local linear drive serves to move a contact piece of an electrical switch. A movable armature has a permanent magnet, which moves in the direction of the coil during energization of an electrical coil due to the force acting between the permanent magnet and the energized coil magnetic forces. This movement is used to switch on a breaker unit of the circuit breaker. During the switch-on movement spring packages are tensioned. In order to keep the drive in its closed position even after an interruption of the current flow through the coil, the permanent magnet adheres to an iron core.

Ein magnetischer Linearantrieb der eingangs genannten Art ist beispielsweise aus der DE 39 42 542 A1 bekannt. Dort wird ein Permanentmagnet durch eine strombeaufschlagbare Spule längs einer Achse bewegt. In den Endlagen schlägt der Permanentmagnet jeweils an so genannte Anschlagpole an. Dadurch ist die Wegstrecke des bewegbaren Ankers begrenzt. Ein Anschlagen erfolgt dabei relativ ungedämpft und abrupt. Dadurch können Schwingungen entstehen, welche die Lebensdauer des magnetischen Linearantriebes verkürzen.A magnetic linear drive of the type mentioned is known for example from DE 39 42 542 A1. There, a permanent magnet is moved along an axis by a coil which can be charged with current. In the end positions beats the permanent magnet each at so-called stop poles. As a result, the distance of the movable armature is limited. An impact occurs relatively undamped and abrupt. This can cause vibrations, which shorten the life of the magnetic linear drive.

Der Erfindung liegt die Aufgabe zugrunde, einen magnetischen Linearantrieb der eingangs genannten Art so auszubilden, dass bei einer vereinfachten Konstruktion eine möglichst erschütterungsarme Positionierung des Ankers in einer Endposition ermöglicht wird.The invention has the object of providing a magnetic linear drive of the type mentioned in such a way that in a simplified construction a possible low-vibration positioning of the armature is made possible in an end position.

Erfindungsgemäß wird dies bei einem magnetischen Linearantrieb der eingangs genannten Art dadurch gelöst, dass im ersten Permanentmagneten verlaufende Feldlinien quer zur Bewegungsrichtung des Ankers ausgerichtet sind.According to the invention this is achieved in a magnetic linear drive of the type mentioned in that extending in the first permanent magnet field lines are aligned transversely to the direction of movement of the armature.

Die Aufgabe wird bei einem magnetischen Linearantrieb der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass in einer ersten Endposition des Ankers der erste Permanentmagnet einen Spalt des ersten Eisenkerns zumindest teilweise ausfüllt und ein an dem Anker angeordnetes Joch an einem Rand eines Spaltes des ersten Eisenkerns anliegt.The object is achieved in a magnetic linear drive of the aforementioned type according to the invention that in a first end position of the armature of the first permanent magnet at least partially fills a gap of the first iron core and a yoke disposed on the armature rests against an edge of a gap of the first iron core.

Innerhalb des ersten Eisenkernes ist ein magnetischer Fluss mit einem geringen magnetischen Widerstand lenkbar. Ein Eisenkern kann dabei aus verschiedenen geeigneten Werkstoffen bestehen, welche ferromagnetische Eigenschaften aufweisen (z.B. Eisen, Kobalt, Nickel, Kernbleche aus speziellen Legierungen). Das zumindest teilweise Ausfüllen eines Spaltes in dem ersten Eisenkern mittels eines Permanentmagneten gestattet einen Übergang der von dem Permanentmagneten ausgehenden magnetischen Feldlinien in den ersten Eisenkern mit geringen Verlusten. Durch das Anliegen des Joches am Rand eines Spaltes wird die Führung des magnetischen Flusses verbessert, indem der magnetische Fluss auch innerhalb des Joches geführt ist. Durch die Reluktanz ergibt sich eine Kraftwirkung. Die Kraftwirkung ist besonders groß, wenn der Abstand zwischen Joch und Eisenkern möglichst gering ist. Dabei kann es zum einen vorgesehen sein, dass der Spalt, den der Permanentmagnet ausfüllt, sowie der Spalt, an dessen Rand das Joch anliegt, ein und derselbe Spalt ist oder auch voneinander verschiedene Spalte sind. Der innerhalb des ersten Eisenkernes erzeugte magnetische Fluss ist derart stark, dass der Anker in seiner Endposition gehalten ist. Er kann nur durch eine von außen wirkende Kraft oder durch ein Bestromen der Spule herausbewegt werden.Within the first iron core, a magnetic flux with a low magnetic resistance is steerable. An iron core can consist of various suitable materials which have ferromagnetic properties (for example iron, cobalt, nickel, core sheets of special alloys). The at least partial filling of a gap in the first iron core by means of a permanent magnet permits a transition of the magnetic field lines emanating from the permanent magnet into the first iron core with low losses. Due to the abutment of the yoke at the edge of a gap, the guidance of the magnetic flux is improved by the magnetic flux is also guided within the yoke. The reluctance results in a force effect. The force effect is particularly great when the distance between the yoke and iron core is minimized. It may be provided on the one hand, that the gap, which fills the permanent magnet, as well as the gap, at the edge of which the yoke is applied, one and the same gap or are also different from each other column. The magnetic flux generated within the first iron core is so strong that the armature is held in its final position. It can only be moved out by an external force or by energizing the coil.

Weiterhin kann vorteilhaft vorgesehen sein, dass der erste Eisenkern aus zumindest zwei Abschnitten besteht, zwischen welchen der/ die Spalt(e) gebildet ist (sind), welche(r) von einem im ersten Eisenkern erzeugbaren magnetischen Fluss durchsetzbar ist (sind).Furthermore, it can be advantageously provided that the first iron core consists of at least two sections, between which gap (s) is / are formed, which is enforceable by a magnetic flux producible in the first iron core.

Die Aufteilung des Eisenkerns in zumindest zwei Abschnitte gestattet eine vorteilhafte Führung des magnetischen Flusses im Innern des ersten Eisenkerns. Beispielsweise kann der Eisenkern einstückig ausgestaltet sein, wobei durch eine entsprechende Anordnung von Einschnitten der Eisenkern selbst in mehrere Abschnitte unterteilt wird. Die Einschnitte sind dann als Spalte anzusehen, in welchen beispielsweise der erste Permanentmagnet mit dem Anker bewegt wird. Durch die Unterteilung in mehrere Abschnitte sind gezielt besondere Bereiche an dem Eisenkern gestaltbar, an welchen der magnetische Fluss in bevorzugten Richtungen verläuft, beispielsweise um senkrecht zu einer Oberfläche ein- bzw. austreten zu können.The division of the iron core into at least two sections allows advantageous guidance of the magnetic flux in the interior of the first iron core. For example, the iron core can be designed in one piece, wherein the iron core itself is subdivided into a plurality of sections by a corresponding arrangement of cuts. The incisions are then regarded as a column in which, for example, the first permanent magnet is moved with the armature. By subdividing into a plurality of sections, specific regions can be specifically designed on the iron core, at which the magnetic flux extends in preferred directions, for example in order to be able to enter or exit perpendicular to a surface.

Weiterhin kann vorteilhaft vorgesehen sein, dass der erste Eisenkern zumindest zweiteilig ausgebildet ist und an einem ersten Kernkörper und an einem zweiten Kernkörper des ersten Eisenkerns jeweils Polflächen angeordnet sind, zwischen denen ein erster und ein zweiter Spalt ausgebildet sind.Furthermore, it can be advantageously provided that the first iron core is formed at least in two parts and respectively pole faces are arranged on a first core body and on a second core body of the first iron core, between which a first and a second gap are formed.

Eine Aufteilung des ersten Eisenkerns in mehrere Kernkörper gestattet ein modulares Zusammensetzen des ersten Eisenkernes. Je nach Anforderungen sind so aus einer geringen Anzahl von Kernkörpern verschiedene Eisenkerne ausbildbar. Es können beispielsweise zwei identische Kernkörper Verwendung finden, zwischen denen ein erster und ein zweiter Spalt ausgebildet sind. In einem einfachen Fall sind die beiden Kernkörper als U-Kerne ausgestaltet, wobei die freien Enden der Schenkel stirnseitig gegenüberliegend angeordnet sind. Die Stirnseiten der Schenkel bilden dann die Polflächen aus. Zwischen den Polflächen ist jeweils ein erster und ein zweiter Spalt ausgebildet. Ein solcher Eisenkern ist äußerst robust und lässt sich kostengünstig herstellen. Die Schenkel der u-förmigen Kernkörper sind dazu geeignet, die erste strombeaufschlagbare Spule aufzunehmen sowie als Anschlagpunkte des Joches zu dienen.A division of the first iron core into a plurality of core bodies allows a modular assembly of the first iron core. Depending on the requirements, different iron cores can be formed from a small number of core bodies. For example, two identical core bodies may be used, between which a first and a second gap are formed. In a simple case, the two core bodies are configured as U cores, with the free ends of the legs being arranged opposite one another on the front side. The end faces of the legs then form the pole faces. Between Polflächen each having a first and a second gap is formed. Such an iron core is extremely robust and can be produced inexpensively. The legs of the U-shaped core body are adapted to receive the first current-exciting coil and serve as attachment points of the yoke.

Eine weitere vorteilhafte Ausgestaltung kann vorsehen, dass in der ersten Endposition des Ankers das Joch durch einen von dem ersten Permanentmagneten ausgehenden magnetischen Fluss gehalten ist.A further advantageous embodiment can provide that in the first end position of the armature, the yoke is held by a magnetic flux emanating from the first permanent magnet.

Die Nutzung des magnetischen Flusses zum Halten des Ankers macht den Einsatz von mechanischen Verklinkungen überflüssig. Diese magnetische "Verklinkung" ist nahezu frei von einem mechanischen Verschleiß. Aufgrund der Verwendung eines Permanentmagneten sind auch keinerlei Hilfsenergien notwendig, um die erste Endposition des Ankers dauerhaft zu halten.The use of magnetic flux to hold the anchor eliminates the need for mechanical latching. This magnetic "latching" is virtually free of mechanical wear. Due to the use of a permanent magnet, no auxiliary energy is needed to permanently hold the first end position of the armature.

Eine weitere vorteilhafte Ausgestaltung kann vorsehen, dass in der ersten Endposition eine durch den magnetischen Fluss bewirkte Magnetkraft gegen eine von einem zusätzlichen Element ausgehende Kraft wirkt.A further advantageous embodiment can provide that in the first end position, a magnetic force caused by the magnetic flux acts against a force emanating from an additional element.

Ein zusätzliches Element kann beispielsweise ein elastisches Element sein, welches während einer Bewegung des Ankers in die erste Endposition gespannt wird. Elastische Elemente sind beispielsweise Federn, Hydrauliken, Pneumatiken usw. Die von dem magnetischen Fluss bewirkte Haltekraft des Ankers ist dabei größer als die von dem elastischen Element ausgehende Kraft. Die durch das elastische Element vorgehaltene Kraft steht nunmehr zur Verfügung, um den Anker aus der ersten Endposition herauszubewegen. Die zum Anstoß einer Herausbewegung des Ankers aus der ersten Endposition benötigte äußere Kraft muss dabei nur noch einen Betrag aufweisen, der größer ist als die Differenz der Magnetkraft und der von dem elastischen Element ausgehenden Kraft. Die äußere Kraft kann beispielsweise durch ein Bestromen der elektrischen Spule erzeugt werden. Durch eine derartige Konstruktion ist es unabhängig von den Beträgen der Magnetkraft bzw. der von dem elastischen Element ausgehenden Kraft möglich, eine Bewegung des Ankers aus der ersten Endposition mit einer relativ kleinen, nur von der Kraftdifferenz abhängenden äußeren Kraft zu bewirken. Die zur vollständigen Bewegung des Ankers notwendige Kraft wird von dem elastischen Element zur Verfügung gestellt. So sind selbst für magnetische Linearantriebe sehr großer Leistung nur geringe äußere Ausschaltkräfte notwendig.An additional element may for example be an elastic element, which is tensioned during a movement of the armature in the first end position. Elastic elements are, for example, springs, hydraulics, pneumatics, etc. The holding force of the armature caused by the magnetic flux is greater than the force exerted by the elastic element. The held by the elastic member force is now available to move the armature from the first end position. The impetus for a move out The outer force required for the armature from the first end position only has to have an amount which is greater than the difference between the magnetic force and the force exerted by the elastic element. The external force can be generated for example by energizing the electric coil. By such a construction, regardless of the magnitudes of the magnetic force or force exerted by the elastic member, it is possible to effect movement of the armature from the first end position with a relatively small external force depending only on the force difference. The force necessary for complete movement of the armature is provided by the elastic element. Thus, even small external breaking forces are necessary even for magnetic linear drives very high performance.

Weiterhin kann vorteilhaft vorgesehen sein, dass mit der ersten Spule ein magnetisches Feld erzeugbar ist, welches den Spalt quer zur Bewegungsrichtung des Ankers durchsetzt.Furthermore, it can be advantageously provided that with the first coil, a magnetic field can be generated, which passes through the gap transversely to the direction of movement of the armature.

Ein quer zur Bewegungsrichtung des Ankers ausgerichtetes Magnetfeld ist beispielsweise erzeugbar, indem die Spule auf einen Schenkel eines u-förmigen Kernkörpers aufgewickelt wird. Dadurch ist es sehr leicht möglich, die Spule selbst auszustauschen und die Wirkung des durch die erste Spule erzeugten Magnetfeldes wird unmittelbar durch den Eisenkern verstärkt. Dabei kann es beispielsweise auch vorgesehen sein, dass sich die Spule auf zwei gegenüberliegenden Seiten eines Spaltes des Eisenkernes erstreckt. So wird eine symmetrische Kraftwirkung an dem Spalt bzw. auf den Permanentmagneten erzeugt. Bevorzugt kann dabei das magnetische Feld im Spalt senkrecht zur Bewegungsrichtung des Ankers verlaufen.A magnetic field oriented transversely to the direction of movement of the armature can be generated, for example, by winding the coil onto a leg of a U-shaped core body. This makes it very easy to replace the coil itself and the effect of the magnetic field generated by the first coil is directly amplified by the iron core. It can also be provided, for example, that the coil extends on two opposite sides of a gap of the iron core. Thus, a symmetrical force is generated at the gap or on the permanent magnet. In this case, the magnetic field in the gap can preferably run perpendicular to the direction of movement of the armature.

Eine weitere Ausgestaltung kann vorteilhafterweise vorsehen, dass der Anker einen zweiten Permanentmagneten aufweist, welcher mit einem zweiten eine zweite strombeaufschlagbare Spule durchsetzten Eisenkern zusammenwirkt, der zumindest einen von einem magnetischen Fluss durchsetzbaren magnetischen Spalt aufweist, wobei ein magnetischer Spalt des zweiten Eisenkerns in einer zweiten Endposition des Ankers von dem zweiten Permanentmagneten zumindest teilweise ausgefüllt ist und das Joch an einem Rand eines magnetischen Spaltes des zweiten Eisenkerns anliegt.A further embodiment may advantageously provide that the armature has a second permanent magnet which cooperates with a second iron core interspersed with a second current-carrying coil, which has at least one magnetic gap which can be penetrated by a magnetic flux, wherein a magnetic gap of the second iron core is in a second end position of the armature is at least partially filled by the second permanent magnet and the yoke bears against an edge of a magnetic gap of the second iron core.

Durch die Verwendung eines Ankers mit zwei Permanentmagneten und einem Joch ist es möglich, den Anker in zwei Endpositionen sicher zu halten. Dabei kann der von dem ersten oder von dem zweiten Permanentmagneten erzeugte magnetische Fluss zur Bereitstellung der Haltekräfte genutzt werden. Weiterhin ist durch die Verwendung der ersten und der zweiten Spule eine Verstärkung der zum Bewegen des Ankers zur Verfügung stehenden Kräfte in einfacher Art ermöglicht. Je nach Wickelsinn und Bestromungsrichtung der beiden Spulen können eine oder beide Spulen eine Kraftwirkung auf den Anker erzeugen. Je nach Konstruktion ist es dadurch möglich, die Antriebsleistung zu erhöhen oder mit zwei geringer dimensionierten Spulen dieselbe Antriebsleistung zu erzeugen wie mit einer einzigen Spule. Weiterhin ist es möglich, auf die elastischen Elemente zu verzichten, welche eine Rückstellkraft bereitstellen. Es kann jedoch auch vorgesehen sein, dass weiterhin elastische Elemente zum Einsatz kommen, um beispielsweise ein Notschaltvermögen oder ein Abbremsen oder zusätzliches Beschleunigen des Ankers zu bewirken.By using an armature with two permanent magnets and a yoke it is possible to hold the armature securely in two end positions. In this case, the magnetic flux generated by the first or by the second permanent magnet can be used to provide the holding forces. Furthermore, by the use of the first and the second coil, a reinforcement of the forces available for moving the armature is made possible in a simple manner. Depending on the winding direction and direction of energization of the two coils, one or both coils can generate a force effect on the armature. Depending on the design, this makes it possible to increase the drive power or to produce the same drive power with two smaller-sized coils as with a single coil. Furthermore, it is possible to dispense with the elastic elements which provide a restoring force. However, it can also be provided that elastic elements continue to be used, for example, to effect an emergency breaking capacity or braking or additional acceleration of the armature.

Weiterhin kann vorteilhaft vorgesehen sein, dass das Joch in der ersten Endposition an einem Rand eines Spalts des ersten Eisenkerns und in der zweiten Endposition an einem Rand eines Spalts des zweiten Eisenkerns anliegt.Furthermore, it can be advantageously provided that the yoke in the first end position at an edge of a gap of the first Iron core and in the second end position abuts an edge of a gap of the second iron core.

Neben der Erzeugung der Haltekräfte in der ersten Endposition und in der zweiten Endposition dient das Joch an dem ersten Eisenkern und an dem zweiten Eisenkern als mechanischer Anschlag. Dadurch ist die Wegstrecke des Ankers begrenzt. Das Joch ist mit einer ausreichenden mechanischen Stabilität ausgestaltbar, um die Anschlag- und Anstoßkräfte aufzunehmen. Die Eisenkerne sowie das Joch sind als tragende Elemente mechanisch stabil und halten Erschütterungen von den Spulen fern.In addition to the generation of the holding forces in the first end position and in the second end position, the yoke on the first iron core and on the second iron core serves as a mechanical stop. As a result, the distance of the armature is limited. The yoke is designed with sufficient mechanical stability to absorb the impact and abutment forces. The iron cores and the yoke are mechanically stable as bearing elements and keep vibrations away from the coils.

Weiterhin kann vorteilhaft vorgesehen sein, dass ein die Merkmale nach einem der Ansprüche 1 bis 6 aufweisender Antrieb zu einer Spiegelachse spiegelsymmetrisch aufgebaut ist.Furthermore, it can be advantageously provided that a the features according to one of claims 1 to 6 exhibiting drive to a mirror axis is constructed mirror-symmetrical.

Ein spiegelsymmetrischer Aufbau gestattet es, den Antrieb modular aufzubauen und dabei gleichartige Baugruppen zu verwenden. Die Spiegelachse kann beispielsweise parallel oder deckungsgleich mit der Bewegungsachse des linear verschiebbaren Ankers liegen. Eine weitere vorteilhafte Spiegelachse kann beispielsweise eine senkrecht zur Bewegungsrichtung des Ankers liegende Achse sein. Bei einer derartigen Gestalt ist es möglich, den ersten und den zweiten Eisenkern in einer gleichen Art auszugestalten. Somit ist es ermöglicht, Antriebe verschiedener Formen mit wenigen Komponenten herzustellen.A mirror-symmetrical design makes it possible to construct the drive in a modular way and to use similar modules. The mirror axis may, for example, be parallel or congruent with the axis of movement of the linearly displaceable armature. A further advantageous mirror axis may, for example, be an axis perpendicular to the direction of movement of the armature. With such a shape, it is possible to design the first and second iron cores in a same manner. This makes it possible to produce drives of different shapes with few components.

Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels in einer Zeichnung schematisch gezeigt und nachfolgend näher beschrieben.In the following the invention is shown schematically with reference to an embodiment in a drawing and described in more detail below.

Dabei zeigt die

Figur 1
eine erste Variante eines magnetischen Linearantriebes in einer ersten Schaltstellung, die
Figur 2
die erste Variante eines magnetischen Linearantriebes in einer zweiten Schaltstellung, die
Figur 3
eine Abwandlung der ersten Variante eines magnetischen Linearantriebes, die
Figur 4
einen magnetischen Linearantrieb in einer zweiten Variante in einer ersten Schaltstellung, die
Figur 5
die zweite Variante eines magnetischen Linearantriebes zu Beginn der Überführung von der ersten Schaltstellung in eine zweite Schaltstellung und die
Figur 6
eine Abwandlung der ersten Variante eines magnetischen Linearantriebes mit einem weiteren Joch.
It shows the
FIG. 1
a first variant of a magnetic linear drive in a first switching position, the
FIG. 2
the first variant of a magnetic linear drive in a second switching position, the
FIG. 3
a modification of the first variant of a magnetic linear drive, the
FIG. 4
a magnetic linear drive in a second variant in a first switching position, the
FIG. 5
the second variant of a magnetic linear drive at the beginning of the transfer from the first switching position to a second switching position and the
FIG. 6
a modification of the first variant of a magnetic linear drive with another yoke.

Die Figur 1 zeigt eine erste Ausgestaltungsvariante eines magnetischen Linearantriebes 1. Der magnetische Linearantrieb 1 dient der Bewegung eines Schaltkontaktes eines elektrischen Schaltgerätes 2. Das elektrische Schaltgerät 2 kann beispielsweise ein mehrpoliger Leistungsschalter sein, welcher Vakuumschaltröhren aufweist. Der magnetische Linearantrieb 1 weist einen ersten Eisenkern 3 auf. Der erste Eisenkern 3 weist einen ersten Kernkörper 3a sowie einen zweiten Kernkörper 3b auf. Der erste Kernkörper 3a sowie der zweite Kernkörper 3b sind gleichartig ausgestaltet. Die Kernkörper 3a, 3b sind als u-förmige Kernkörper ausgeführt und derartig zueinander angeordnet, dass die freien Schenkel der Kernkörper 3a,3b stirnseitig gegenüberliegend angeordnet sind. Der erste Kernkörper 3a weist einen ersten Schenkel 4a sowie einen zweiten Schenkel 4b auf. Der zweite Kernkörper 3b weist einen ersten Schenkel 4c und einen zweiten Schenkel 4d auf. Die Stirnseiten der ersten Schenkel 4a,4c sind als Polflächen ausgebildet und begrenzen einen ersten Spalt 5. An den Stirnseiten der zweiten Schenkel 4b,4d ist zwischen deren Polflächen ein zweiter Spalt 6 ausgebildet. Zwischen dem ersten Spalt 5 und dem zweiten Spalt 6 ist ein Anker 7 bewegbar. Der Anker 7 weist einen ersten Permanentmagneten 8 auf. Nord- und Südpol (NS) des ersten Permanentmagneten 8 sind dabei so angeordnet, dass die im Innern des ersten Permanentmagneten 8 verlaufenden Feldlinien 9 nahezu senkrecht in die Polflächen der ersten Schenkel 4a,4c bzw. der zweiten Schenkel 4b,4d übertreten können. Der Anker 7 weist weiterhin ein Joch 10 auf. Das Joch 10 ist beabstandet von dem ersten Permanentmagneten 8 auf einer von dem Schaltgerät 2 abgewandten Seite des Ankers 7 befestigt. Die Verbindung des ersten Permanentmagneten 8 mit dem Joch 10 ist aus einem nichtmagnetischen Material gebildet. Die zweiten Schenkel 4b,4d dienen als Wickelkern für eine erste Spule 11. Alternativ kann auch vorgesehen sein, dass die erste Spule 11 auf den ersten Schenkeln 4a,4c aufgewickelt ist. Die erste Spule 11 erstreckt sich beiderseits der Bewegungsachse des Ankers 7. Als elastisches Element ist ein Federpaket 12a,b an dem ersten Eisenkern 3 angeordnet, welches bei einer Bewegung des Ankers 7 komprimierbar ist.1 shows a first embodiment variant of a magnetic linear drive 1. The magnetic linear drive 1 serves to move a switching contact of an electrical switching device 2. The electrical switching device 2 may for example be a multi-pole circuit breaker having vacuum interrupters. The magnetic linear drive 1 has a first iron core 3. The first iron core 3 has a first core body 3a and a second core body 3b. The first core body 3a and the second core body 3b are configured similarly. The core body 3a, 3b are designed as U-shaped core body and in such a way to each other arranged that the free legs of the core body 3a, 3b are arranged frontally opposite one another. The first core body 3a has a first leg 4a and a second leg 4b. The second core body 3b has a first leg 4c and a second leg 4d. The end faces of the first legs 4a, 4c are formed as pole faces and define a first gap 5. At the end faces of the second legs 4b, 4d, a second gap 6 is formed between their pole faces. An armature 7 is movable between the first gap 5 and the second gap 6. The armature 7 has a first permanent magnet 8. North and south pole (NS) of the first permanent magnet 8 are arranged so that the running in the interior of the first permanent magnet 8 field lines 9 almost perpendicular to the pole faces of the first leg 4a, 4c and the second leg 4b, 4d can pass. The armature 7 further comprises a yoke 10. The yoke 10 is spaced from the first permanent magnet 8 mounted on a side remote from the switching device 2 side of the armature 7. The connection of the first permanent magnet 8 with the yoke 10 is formed of a non-magnetic material. The second legs 4b, 4d serve as a winding core for a first coil 11. Alternatively, it can also be provided that the first coil 11 is wound on the first legs 4a, 4c. The first coil 11 extends on either side of the axis of movement of the armature 7. As an elastic element, a spring assembly 12a, b is arranged on the first iron core 3, which is compressible during a movement of the armature 7.

Die Figur 1 zeigt den magnetischen Linearantrieb 1 in der Aus-Stellung, d.h. das elektrische Schaltgerät 2 weist geöffnete Kontakte auf. Über das vorgespannte Federpaket 12a,b ist der Anker 7 stabil in seiner Aus-Position gehalten. Die Aus-Position definiert eine zweite Endposition des Ankers 7. Der erste Permanentmagnet 8 überbrückt den zweiten Spalt 6 und füllt ihn aus. Bei einer Bestromung der ersten Spule 11 in einer ersten Richtung (13) mit Gleichstrom erfolgt aufgrund der Kraftwirkung zwischen dem Magnetfeld des ersten Permanentmagneten 8 und des Magnetfeldes der ersten Spule 11 eine Bewegung des Ankers 7 in Richtung des ersten Spaltes 5. Eine zusätzliche Kraftwirkung wird während der Bewegung durch die Verringerung des Abstandes des Joches 10 und des ersten Eisenkernes 3 erzeugt.FIG. 1 shows the magnetic linear drive 1 in the off position, ie the electrical switching device 2 has opened contacts. About the prestressed spring assembly 12a, b, the armature 7 is held stable in its off position. The off position defines a second end position of the armature 7. The first permanent magnet 8 bridges the second gap 6 and fills it. When the first coil 11 is energized in a first direction (13) with direct current due to the force between the magnetic field of the first permanent magnet 8 and the magnetic field of the first coil 11 is a movement of the armature 7 in the direction of the first gap 5. An additional force effect generated during movement by reducing the distance of the yoke 10 and the first iron core 3.

Die Figur 2 zeigt die erste Endposition des Ankers 7, in welcher der erste Permanentmagnet 8 den ersten Spalt 5 überbrückt. Die Kontakte des elektrischen Schaltgerätes 2 sind nun geschlossen. Das Federpaket 12a,b ist gespannt. Das Joch 10 liegt flächig am Rand des zweiten Spaltes 6 an. Das Joch 10 überbrückt den zweiten Spalt 6. Der von dem ersten Permanentmagneten 8 ausgehende magnetische Fluss 15 wird nunmehr in dem ersten Kernkörper 3a sowie dem zweiten Kernkörper 3b geleitet und ist über das Joch 10 geschlossen. Die von dem ersten Permanentmagnet 8 bewirkte Magnetkraft hält den Anker 7 stabil in der ersten Endposition. Der magnetische Linearantrieb 1 wirkt als Antrieb, der von einem Permanentmagneten gespeist ist.FIG. 2 shows the first end position of the armature 7, in which the first permanent magnet 8 bridges the first gap 5. The contacts of the electrical switching device 2 are now closed. The spring pack 12a, b is stretched. The yoke 10 lies flat against the edge of the second gap 6. The yoke 10 bridges the second gap 6. The magnetic flux 15 emanating from the first permanent magnet 8 is now guided in the first core body 3 a and the second core body 3 b and is closed via the yoke 10. The magnetic force caused by the first permanent magnet 8 keeps the armature 7 stable in the first end position. The magnetic linear drive 1 acts as a drive, which is fed by a permanent magnet.

Für eine Bewegung des Ankers 7 von der ersten Endposition (Figur 2) in eine zweite Endposition (Figur 1) ist eine Bestromung der ersten Spule in einer zweiten Richtung 14 notwendig. Alternativ kann vorgesehen sein, dass eine zusätzliche Spule zur Bewirkung einer Ausschaltbewegung Verwendung findet. So kann beispielsweise ein spezieller Bewegungsablauf des Ankers 7 während eines Ausschaltvorganges bewirkt werden. Unterstützt von dem gespannten Federpaket 12a,b wird der erste Permanentmagnet 8 aus der ersten Endposition herausbewegt. Mit ihm bewegen sich auch der Anker 7 sowie das Joch 10.For a movement of the armature 7 from the first end position (FIG. 2) to a second end position (FIG. 1), it is necessary to energize the first coil in a second direction 14. Alternatively, it can be provided that an additional coil is used to effect a switch-off movement. Thus, for example, a special movement of the armature 7 can be effected during a switch-off. Supported by the tensioned spring assembly 12 a, b is the first permanent magnet 8 moved out of the first end position. With him, the armature 7 and the yoke 10 move.

In der ersten Endposition (Figur 2) wird der Anker 7 durch den von dem ersten Permanentmagneten 8 ausgehenden magnetischen Fluss stabil gehalten. In der zweiten Endposition (Figur 1) wird der Anker 7 durch das Federpaket 12a,b stabil gehalten.In the first end position (FIG. 2), the armature 7 is kept stable by the magnetic flux emanating from the first permanent magnet 8. In the second end position (Figure 1), the armature 7 is held stable by the spring assembly 12a, b.

In der Figur 3 ist eine Abwandlung der in den Figuren 1 und 2 dargestellten Variante eines magnetischen Linearantriebes dargestellt. Die Figur 3 zeigt einen magnetischen Linearantrieb 1a, welcher einen einstückigen ersten Eisenkern 3 aufweist. Der erste Eisenkern 3 ist u-förmig gestaltet. Auf einem der Schenkel ist eine erste Spule 11 aufgewickelt. Zwischen den stirnseitig an dem ersten Schenkel 4a und dem zweiten Schwenkel 4b befindlichen Polflächen ist ein erster Spalt 5 ausgebildet. Innerhalb des ersten Spaltes 5 ist ein erster Permanentmagnet 8 bewegbar. Der erste Permanentmagnet 8 ist an einem Anker 7 angeordnet. Weiterhin ist dem Anker 7 ein Joch 10 zugeordnet. Nach einer Bewegung des Ankers 7 in eine erste Endposition (nicht dargestellt) stützt sich das Joch 10 an dem zweiten Schenkel 4b ab. Der zweite Schenkel 4b bildet einen Rand des ersten Spaltes 5. Durch das flächige Anliegen des Joches 10 ist der Weg der von dem ersten Permanentmagnet 8 ausgehenden Feldlinien über den ersten Eisenkern 3 und das Joch 10 verkürzt, so dass der Anker 7 aufgrund der magnetischen Kraftwirkung des Permanentmagneten 8, in der ersten Endposition stabil gehalten ist. Zur Überführung des Ankers 7 von der zweiten Endposition in die erste Endposition und umgekehrt ist jeweils die erste Spule 11 mit entgegengesetzten Stromrichtungen zu bestromen.FIG. 3 shows a modification of the variant of a magnetic linear drive shown in FIGS. 1 and 2. FIG. 3 shows a magnetic linear drive 1a, which has a one-piece first iron core 3. The first iron core 3 is U-shaped. On one of the legs, a first coil 11 is wound. Between the end face of the first leg 4a and the second Schwenkel 4b located pole faces a first gap 5 is formed. Within the first gap 5, a first permanent magnet 8 is movable. The first permanent magnet 8 is arranged on an armature 7. Furthermore, the armature 7 is associated with a yoke 10. After a movement of the armature 7 in a first end position (not shown), the yoke 10 is supported on the second leg 4b. The second leg 4b forms an edge of the first gap 5. Due to the flat abutment of the yoke 10, the path of the emanating from the first permanent magnet 8 field lines on the first iron core 3 and the yoke 10 is shortened, so that the armature 7 due to the magnetic force of the permanent magnet 8 is stably held in the first end position. For the transfer of the armature 7 from the second end position to the first end position and vice versa, the first coil 11 is to be energized with opposite current directions.

Die Wirkungsweise der in der Figur 3 dargestellten Anordnung entspricht der Wirkungsweise des in den Figuren 1 und 2 dargestellten und voranstehend beschriebenen magnetischen Linearantriebs.The operation of the arrangement shown in Figure 3 corresponds to the operation of the magnetic linear drive shown in Figures 1 and 2 and described above.

Die Figur 6 zeigt einen magnetischen Linearantrieb wie er prinzipiell aus der Figur 3 bekannt ist. Der Anker 7 weist neben dem Joch 10 ein weiteres Joch 10a auf. Die Joche 10,10a dienen der stabilen Lagerung des Ankers 7 in den Endpositionen.FIG. 6 shows a magnetic linear drive as it is known in principle from FIG. The armature 7 has, in addition to the yoke 10, a further yoke 10a. The yokes 10,10a are used for stable storage of the armature 7 in the end positions.

Die Figuren 4 und 5 zeigen eine zweite Variante eines erfindungsgemäßen Linearantriebes. Ein in den Figuren 4 und 5 dargestellter doppelter magnetischer Linearantrieb 20 weist einen ersten Eisenkern 21 sowie einen zweiten Eisenkern 22 mit je zwei Kernkörpern auf. Die Ausgestaltung des ersten Eisenkernes 21 und des zweiten Eisenkernes 22 entspricht der Ausgestaltung des in den Figuren 1 und 2 dargestellten Eisenkernes. Dem ersten Eisenkern 21 ist eine erste Spule 23 zugeordnet. Dem zweiten Eisenkern 22 ist eine zweite Spule 24 zugeordnet. Die erste Spule 23 sowie die zweite Spule 24 sind auf freien Schenkeln der Eisenkerne angeordnet. Der doppelte magnetische Linearantrieb 20 weist einen Anker 25 auf. An dem Anker 25 mittig ist ein Joch 26 befestigt. Der Anker 25 ist linienhaft gestreckt ausgestaltet und weist an seinen Enden einen ersten Permanentmagneten 27 sowie einen zweiten Permanentmagneten 28 auf. Der erste Eisenkern 21, die erste Spule 23 sowie der erste Permanentmagnet 27 wirken ebenso wie der zweite Eisenkern 22, die zweite Spule 24 sowie der zweite Permanentmagnet 28 zusammen (wie oben stehend zu den Figuren 1 und 2 beschrieben). Aufgrund der bezüglich seiner Symmetrieachse 29 spiegelbildlichen Ausgestaltung sowie der Gestalt des Ankers 25 ist zur Überführung des Ankers 25 von einer ersten Endposition eine zweite Endposition und umgekehrt sowohl die erste als auch die zweite Spule 23, 24 einsetzbar. Ebenso wie zu der Figur 1 und der Figur 2 beschrieben, wirkt das Joch 26 jeweils als Brücke zu einem Spalt des ersten Eisenkerns 21 oder des zweiten Eisenkernes 22 und positioniert den Anker 25 in seinen Endlagen unter Nutzung der von dem jeweiligen Permanentmagneten 27, 28 bewirkten magnetischen Haltekräfte. Vereinfacht ausgedrückt wurde das in den Figuren 1 und 2 zur Erzeugung einer Rückstellbewegung vorgesehene Federpaket 12a,b durch einer Anordnung mit einem zweiten Eisenkern 22, einer zweiten Spulen und einem zweiten Permanentmagneten 28 ersetzt.FIGS. 4 and 5 show a second variant of a linear drive according to the invention. A double magnetic linear drive 20 shown in FIGS. 4 and 5 has a first iron core 21 and a second iron core 22 with two core bodies each. The configuration of the first iron core 21 and the second iron core 22 corresponds to the embodiment of the iron core shown in FIGS. 1 and 2. The first iron core 21 is associated with a first coil 23. The second iron core 22 is associated with a second coil 24. The first coil 23 and the second coil 24 are arranged on free legs of the iron cores. The double magnetic linear drive 20 has an armature 25. At the anchor 25 in the center, a yoke 26 is attached. The armature 25 is configured linearly stretched and has at its ends a first permanent magnet 27 and a second permanent magnet 28. The first iron core 21, the first coil 23 and the first permanent magnet 27 cooperate as well as the second iron core 22, the second coil 24 and the second permanent magnet 28 together (as described above with reference to FIGS. 1 and 2). Because of its symmetry axis 29 mirror-image embodiment and the shape of the armature 25 is for transferring the armature 25 from a first end position, a second end position, and vice versa, both the first and the second coil 23, 24 can be used. As described with reference to FIG. 1 and FIG. 2, the yoke 26 acts as a bridge to a gap of the first iron core 21 or the second iron core 22 and positions the armature 25 in its end positions using the respective permanent magnets 27, 28 magnetic holding forces. In simple terms, the spring package 12a, b provided in FIGS. 1 and 2 for generating a return movement has been replaced by an arrangement comprising a second iron core 22, a second coil and a second permanent magnet 28.

Claims (9)

  1. Linear magnetic drive (1, 20) having a first iron core (3, 21), which passes through a first coil (11, 23) (to which current can be applied) and has at least one magnetic gap (5) through which a magnetic flux can pass, and having a moveable armature (7, 25) which has a first permanent magnet (8, 27), wherein,
    in a first limit position of the armature (7, 25), the first permanent magnet (8, 27) at least partially fills a gap in the first iron core (3, 21), and a yoke (10, 26), which is arranged on the armature (7, 25), rests on one edge of a gap in the first iron core (3, 21),
    characterized in that
    lines of force (9) which run in the first permanent magnet (8, 27) are aligned transversely with respect to the movement direction of the armature (7, 25).
  2. Linear magnetic drive (1, 20) according to Claim 1,
    characterized in that
    the first iron core (3, 21) comprises at least two sections between which the gap or gaps is or are formed through which the magnetic flux which can be produced in the first iron core (3, 21) can flow.
  3. Linear magnetic drive (1, 20) according to Claim 2,
    characterized in that
    the first iron core (3, 21) is formed in at least two parts, and pole surfaces are in each case arranged on a first core body (3a) and on a second core body (3b) of the first iron core (3), between which pole surfaces a first and a second gap (5, 6) are formed.
  4. Linear magnetic drive (1, 20) according to one of Claims 1 to 3,
    characterized in that,
    in the first limit position of the armature (7, 25), the yoke (10, 26) is held by a magnetic flux which originates from the first permanent magnet (8, 27).
  5. Linear magnetic drive (1, 20) according to Claim 4,
    characterized in that,
    in the first limit position, a magnetic force which is produced by the magnetic flux acts against a force which originates from an additional element (12a,b).
  6. Linear magnetic drive (1, 20) according to one of Claims 1 to 5,
    characterized in that
    the first coil (11, 23) can produce a magnetic field which passes through the gap (5, 6) transversely with respect to the movement direction of the armature (7, 25).
  7. Linear magnetic drive (20) according to one of Claims 1 to 6,
    characterized in that
    the armature (25) has a second permanent magnet (28), which interacts with a second iron core (22) which passes through a second coil (24) (to which current can be applied) and has at least one magnetic gap through which a magnetic flux can pass, wherein a magnetic gap in the second iron core (22) is at least partially filled by the second permanent magnet (28) in a second limit position of the armature (25), and the yoke (26) rests on one edge of a magnetic gap in the second iron core (22).
  8. Linear magnetic drive (20) according to Claim 7,
    characterized in that
    the yoke (26) rests on one edge of a gap in the first iron core (21) in the first limit position, and rests on one edge of a gap in the second iron core (22) in the second limit position.
  9. Linear magnetic drive (20) according to one of Claims 7 or 8,
    characterized in that
    a drive which has the features as claimed in one of claims 1 to 6 is designed with mirror-image symmetry with respect to a mirror-image axis.
EP04705378A 2003-02-26 2004-01-27 Linear magnetic drive Expired - Lifetime EP1597743B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10309697 2003-02-26
DE10309697A DE10309697B3 (en) 2003-02-26 2003-02-26 Magnetic linear drive
PCT/DE2004/000159 WO2004077477A1 (en) 2003-02-26 2004-01-27 Linear magnetic drive

Publications (2)

Publication Number Publication Date
EP1597743A1 EP1597743A1 (en) 2005-11-23
EP1597743B1 true EP1597743B1 (en) 2006-10-04

Family

ID=32797831

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04705378A Expired - Lifetime EP1597743B1 (en) 2003-02-26 2004-01-27 Linear magnetic drive

Country Status (6)

Country Link
US (1) US7482902B2 (en)
EP (1) EP1597743B1 (en)
JP (1) JP2006520517A (en)
CN (1) CN100369173C (en)
DE (2) DE10309697B3 (en)
WO (1) WO2004077477A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10309697B3 (en) 2003-02-26 2004-09-02 Siemens Ag Magnetic linear drive
DE102005013197A1 (en) * 2005-03-16 2006-09-28 Siemens Ag Magnetic actuator
DE102005013196A1 (en) * 2005-03-16 2006-09-28 Siemens Ag An electric supply circuit, a switch operating device, and a method of operating a switch operating device
EP1892739A1 (en) * 2006-08-25 2008-02-27 Siemens Aktiengesellschaft An electromagnetic drive unit and an electromechanical switching device
DE102006052454B3 (en) * 2006-11-07 2008-05-29 Siemens Ag Placement head with reset device and placement machine
DE102008000534A1 (en) * 2008-03-06 2009-09-10 Zf Friedrichshafen Ag Electromagnetic actuator
US20110146681A1 (en) * 2009-12-21 2011-06-23 Nellcor Puritan Bennett Llc Adaptive Flow Sensor Model
DE102010035395B4 (en) * 2010-08-25 2015-02-12 Siemens Aktiengesellschaft Medical examination or treatment facility
EP2501023B1 (en) * 2011-03-15 2021-01-27 Etel S. A.. Vertical actuator with gravity compensation
KR101449736B1 (en) * 2012-12-27 2014-10-08 주식회사 효성 Bypass apparatus for converter
JP5883516B2 (en) * 2013-01-29 2016-03-15 株式会社日立製作所 Switchgear
CN105280433B (en) * 2015-08-05 2017-11-10 杨斌堂 From folding vacuum breaker device
CN108962687B (en) * 2018-09-17 2024-05-07 浙江天正电气股份有限公司 AC contactor
CN110524533B (en) * 2019-09-05 2021-07-23 华北电力大学 Device and method for replacing biological muscle function by series-parallel relays

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2466844A1 (en) * 1979-09-28 1981-04-10 Telemecanique Electrique ELECTRO-MAGNET COMPRISING A CORE-PLUNGER WITH A MONOSTABLE OR BISTABLE MAGNET
JPS5829754U (en) * 1981-08-21 1983-02-26 日立金属株式会社 Actuator for door lock
US4870306A (en) * 1981-10-08 1989-09-26 Polaroid Corporation Method and apparatus for precisely moving a motor armature
US4533890A (en) * 1984-12-24 1985-08-06 General Motors Corporation Permanent magnet bistable solenoid actuator
US4928028A (en) * 1989-02-23 1990-05-22 Hydraulic Units, Inc. Proportional permanent magnet force actuator
DE3942542A1 (en) 1989-12-22 1991-06-27 Lungu Cornelius BISTABLE MAGNETIC DRIVE WITH PERMANENT MAGNETIC HUBANKER
DE19509195B4 (en) 1995-03-14 2004-07-22 Siemens Ag DC magnet system with permanent magnet support
JP3441360B2 (en) * 1997-03-25 2003-09-02 株式会社東芝 Circuit breaker operating device
NL1006087C2 (en) 1997-05-20 1998-11-23 Bogey Venlo B V Electromagnetic actuator drive for e.g. records
JP2000164059A (en) 1998-11-27 2000-06-16 Matsushita Electric Works Ltd Switch with resetting function
JP4126787B2 (en) * 1998-12-07 2008-07-30 トヨタ自動車株式会社 Electromagnetic drive device
JP2000268683A (en) * 1999-01-14 2000-09-29 Toshiba Corp Operating device for switch
JP3492228B2 (en) * 1999-02-09 2004-02-03 株式会社テクノ高槻 Iron core and electromagnetic drive mechanism using the iron core
DE19929572A1 (en) 1999-06-22 2001-01-04 Siemens Ag Magnetic linear drive
JP3899941B2 (en) 2000-07-28 2007-03-28 富士電機機器制御株式会社 Remote operation device for electromagnetic linear actuator and circuit breaker
US6512435B2 (en) * 2001-04-25 2003-01-28 Charles Willard Bistable electro-magnetic mechanical actuator
DE10132553A1 (en) 2001-07-04 2003-01-23 Siemens Ag Electrodynamic linear drive
US20050046531A1 (en) * 2002-10-09 2005-03-03 David Moyer Electromagnetic valve system
DE10309697B3 (en) 2003-02-26 2004-09-02 Siemens Ag Magnetic linear drive

Also Published As

Publication number Publication date
US20060139135A1 (en) 2006-06-29
DE502004001671D1 (en) 2006-11-16
CN100369173C (en) 2008-02-13
EP1597743A1 (en) 2005-11-23
DE10309697B3 (en) 2004-09-02
WO2004077477A1 (en) 2004-09-10
US7482902B2 (en) 2009-01-27
JP2006520517A (en) 2006-09-07
CN1754241A (en) 2006-03-29

Similar Documents

Publication Publication Date Title
EP1597743B1 (en) Linear magnetic drive
DE102013110029C5 (en) Electrodynamic actuator
EP0885450B1 (en) Electromagnetic switching device
EP2079154B1 (en) Energy converter
EP1430490B1 (en) Electromagnetic actuator
DE19820821C1 (en) Electromagnetic relay with a rocker anchor
DE4304921C1 (en) Bistable magnetic drive for an electrical switch
DD208262A5 (en) ELECTROMAGNET WITH MOVING PARTS WITH PERMANENT MAGNET
EP1132929B1 (en) Permanent magnetic drive for an electrical switching device
EP1573766B1 (en) Electromagnetic actuator
DE10343005B4 (en) Switching device and method for its production
DE10140559A1 (en) Electromagnet arrangement for a switch
WO2001084579A1 (en) Magnetic release for opening a contact system
EP1626427A2 (en) Relay
DE3124412C1 (en) Small polarized electromagnetic relay
DE102018001243A1 (en) Bistable electromagnetic lifting actuator and wire drawing machine
WO2005086328A1 (en) Linear drive device with a magnet yoke body and a permanent magnetic armature
CH661377A5 (en) ELECTROMAGNETIC SWITCHING DEVICE, CONSTRUCTING A MAGNETIC DRIVE AND A CONTACT APPLICATION ABOVE IT.
CH661821A5 (en) CIRCUIT FOR CONTROLLING REVERSIBLE ELECTRIC DRIVES.
EP1887594A2 (en) Drive for an electromechanical switch
DE602004005243T2 (en) ELECTROMECHANICAL ACTUATOR
WO2008019753A1 (en) Mirror drive for projection systems and associated method
WO2001069616A1 (en) Contact system for a low-voltage switch device
DE3246256C2 (en) Electromagnetic relay
EP0630516B1 (en) Polarized electromagnetic relay

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE FR IT LI SE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061004

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004001671

Country of ref document: DE

Date of ref document: 20061116

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080415

Year of fee payment: 5

Ref country code: DE

Payment date: 20080320

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090127

Year of fee payment: 6

Ref country code: SE

Payment date: 20090114

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090120

Year of fee payment: 6

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100127