EP0630516B1 - Polarized electromagnetic relay - Google Patents

Polarized electromagnetic relay Download PDF

Info

Publication number
EP0630516B1
EP0630516B1 EP93905171A EP93905171A EP0630516B1 EP 0630516 B1 EP0630516 B1 EP 0630516B1 EP 93905171 A EP93905171 A EP 93905171A EP 93905171 A EP93905171 A EP 93905171A EP 0630516 B1 EP0630516 B1 EP 0630516B1
Authority
EP
European Patent Office
Prior art keywords
coil
pole
armature
core
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93905171A
Other languages
German (de)
French (fr)
Other versions
EP0630516A1 (en
Inventor
Robert Esterl
Josef Weiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0630516A1 publication Critical patent/EP0630516A1/en
Application granted granted Critical
Publication of EP0630516B1 publication Critical patent/EP0630516B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2227Polarised relays in which the movable part comprises at least one permanent magnet, sandwiched between pole-plates, each forming an active air-gap with parts of the stationary magnetic circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/02Bases; Casings; Covers
    • H01H2050/028Means to improve the overall withstanding voltage, e.g. creepage distances

Definitions

  • the invention relates to a polarized electromagnetic relay, which comprises: a base; a coil attached to the base, consisting of a coil body with a winding; a core which axially penetrates the coil and protrudes from the coil body with its two ends; at least one movable contact element and at least one fixed mating contact element, each of which is anchored laterally from the coil in the base; an armature arranged above the coil, which is formed by two pole plates lying next to one another in one plane, a flux plate arranged parallel above the pole plates and a four-pole permanent magnet arrangement enclosed in layers between the pole plates and the flux plate, two poles of the same name of the permanent magnet arrangement having the same name, each with a pole plate and the two opposite poles are coupled to the flux plate.
  • a magnet system for such a relay is known from EP-A-34 811.
  • an armature in layered construction is formed from pole plates, a four-pole permanent magnet arrangement and a flux plate, which is however mounted centrally above the winding and bears bent pole shoes at both ends, which form working air gaps with each of the two core ends.
  • Such a so-called H-armature system is magnetically very effective, but it has problems in production because, for example, a precisely aligned pin bearing in the area of the coil is difficult to manufacture and the system with two diagonally opposed air gaps and the one in between, precisely aligned Storage is mechanically overdetermined.
  • the cited publication also does not provide any concrete information about a constructive solution to this Problems; in particular, it is also not shown how the magnet system in a relay is to be brought into relation to a contact arrangement and how the latter can then be actuated.
  • a polarized relay with a magnetically similar system is known from EP-A-72 976 and similarly from US-A-4,665,375.
  • the four-pole permanent magnet with a layering of flux plate and pole plates is arranged firmly above the coil, while a rod-shaped armature is arranged in an axial opening of the coil body.
  • the four-pole permanent magnet above the coil winding gives very large pole faces, which is particularly advantageous for a long coil with a small cross-section.
  • the use of a very flat magnet with a very small extension in the preferred direction, for example a ferrite magnet results in a favorable use of space since the magnet only slightly increases the height of the relay.
  • the overlap area of these parts on the one hand and the pole surfaces of the permanent magnet on the other hand can be chosen to be optimally large, regardless of spatial restrictions. Since the rod-shaped armature is arranged within the coil, its iron cross-section is limited in comparison to the inner diameter of the coil tube, because the armature must carry out its switching movement within the coil, that is, an air gap must be kept free for the armature stroke.
  • the object of the present invention is to make the aforementioned relay principle usable for switching higher currents and voltages.
  • the magnetic circuit in particular should be optimized so that larger contact forces can also be generated for higher currents or voltages.
  • the construction should be chosen so that good insulation between the magnetic circuit and the contact system can be achieved.
  • this object is achieved with a relay of the type mentioned, in which two pole shoes formed as angled extensions of the pole plates enclose a first end of the core with the formation of working air gaps, the armature is rotatably mounted in the vicinity of the second core end about an axis perpendicular to the coil axis; the flux plate is magnetically coupled to the core and the pole plates are provided with the permanent magnet arrangement and the flux plate to form the one-piece armature with a plastic covering, which forms a wall on each side of the coil and at least one actuating lug for actuating the movable contact element or the movable contact elements.
  • the coil core is fixed in the relay according to the invention, its magnetic cross section can be made optimally large. This also optimizes the coil's efficiency.
  • connection of the flux plate, the permanent magnet arrangement and the pole plates by means of plastic to form a one-piece anchor can be achieved either by a plug-in fastening of the parts in a plastic frame or, preferably, by extrusion-coating the metal parts with plastic.
  • the actuating lugs are formed on the armature without any additional effort, with which at least one contact spring can then preferably be switched on both sides of the coil.
  • the relay shown in FIG. 1 in an exploded view has a coil assembly 1 with a core 2 inserted along the axis, an armature 3 pivotably mounted on the coil assembly and a base 4 in which, in addition to the coil assembly and the armature, a pair of contacts with the two on each side Contact springs 5 and 6 and the fixed counter-contact elements 7 and 8 are anchored.
  • a cap 9 (FIG. 4), not shown in FIG. 1, forms a housing with the base 4.
  • the coil assembly 1 consists of a coil body 11 with a winding 12, which is applied between two flanges 13 and 14.
  • the flange 13 has on its underside a nose 15 which engages in a recess 41 in the base 4.
  • a bearing pin 16 for the armature 3 is formed on the flange 14 on the upper side.
  • Coil connecting pins 17 are also anchored in the flange 14.
  • the bobbin 11 has an axial cavity 18 into which the core 2 is inserted.
  • This core has at its rear end in the region of the coil flange 14 a coupling section 21 with an enlarged cross section, which enables a better flow transition between the armature and the core.
  • the armature 3 contains as an assembly two ferromagnetic pole shoes 31 and 32 which, after assembly, enclose the front end 22 of the core and form a double working air gap with it.
  • Pole sheet sections 31a and 32a are formed on the top of each of the two pole pieces and bent into a common plane in order to ensure a large-area coupling to a permanent magnet 33.
  • This permanent magnet 33 is magnetized with four poles, so that it turns to the two pole plate sections 31a and 32a, respectively opposite poles N and S, while the respective opposite poles S and N are coupled on the top to a flux plate 34.
  • This flux plate 34 which, like the two pole pieces 31 and 32, is made of ferromagnetic material, lies on the permanent magnet 33 over a large area after assembly.
  • a coupling section 34a at the rear end which, after assembly, is brought as close as possible to the coupling section 21 of the core - while ensuring the mobility of the armature.
  • a bore 34b is provided in the flow plate for mounting the armature on the journal 16.
  • sheet metal studs 34c are formed on the front end of the flow plate, which allow sliding contact between the armature and the housing cap to ensure the mobility of the armature.
  • the pole plates 31 and 32, the permanent magnet 33 and the flux plate 34 are stacked on one another and then coated with plastic walls 35 on the sides such that the armature 3 shown in Figure 1 as a closed assembly is formed.
  • This held together with the plastic walls 35 armature has a downwardly open cavity, so that the armature is placed on the coil assembly 1 and on the Bearing pin 16 can be stored.
  • Actuating lugs 36 are also formed laterally on the plastic walls 35 and are used to actuate the contact springs 5 and 6, which are prestressed inwards in each case.
  • 35 sliding knobs 37 are formed on the underside of the plastic walls, which slide on the base 4 during the switching movement of the armature and thus keep the necessary actuating force low.
  • the contact springs 5 and 6 each have contact pieces 51 and 61, while the counter-contact elements 7 and 8 also have contact pieces 71 and 81.
  • the contact springs 5 and 6 are each connected, for example welded, to a spring support or connecting element 52 or 62, which are respectively inserted into openings 42 in the base when the relay is installed. Openings 43 are also provided in the base for the mating contact elements 7 and 8.
  • the coil assembly 1 is placed on the base during assembly, the coil connection pins 17 being inserted into corresponding openings 44.
  • the armature is placed on the coil assembly, so that the bearing pin 16 reaches the bearing bore 34b.
  • the cap 9 is put on according to FIG. 4.
  • the housing can then be sealed on the underside by means of a casting compound 10 in the usual way, as is also indicated in FIG. 4.
  • FIG. 2 shows a slightly modified embodiment of the anchor.
  • the flow plate 34 is made somewhat narrower, while the side walls 35 are extended upwards.
  • sliding knobs 35a are also formed on the upper side of the side walls 35, which ensure the sliding on the housing cap instead of the sheet-metal knobs 34c described above.
  • the anchor according to FIG. 2 is constructed in the same way as the anchor from FIG. 1.
  • Figure 3 shows a view of the anchor of Figure 1 or Figure 2 from the bottom. From this it can be seen that the side walls 35 each have only a small thickness, so that a large inner cavity 38 remains, in which the coil of the relay comes to rest. In this view from below, the pole plate sections 31a and 32a and in the central part of the permanent magnet 33 are also visible.
  • FIG. 4 shows a section through the empty housing, consisting of base 4 and housing cap 9, that is to say without a magnet system and contacts.
  • the base 4 according to FIG. 4 is somewhat modified compared to FIG. 1. It also has raised side walls 45 and insulating intermediate walls 46 which separate the magnet system (coil assembly 1 and armature 3) arranged on the inside from the contact systems arranged on the side.
  • This base from FIG. 4 is shown again in a top view in FIG.
  • the intermediate walls 46 which each have recesses 47 for the passage of the actuating lugs 36, can also be clearly seen. In this way, specially separated contact chambers 48 are formed.
  • the cap 9 is also provided with additional partition walls 91 which overlap with the partition walls 46 of the base and thereby reinforce the insulation between the contact chambers and the magnet system with long creepage distances.
  • FIGS. 6 to 9 show modified embodiments for the magnet system which could therefore replace the magnet system from FIG. 1, consisting of the coil assembly 1 and the armature 3. Insofar as these are only schematic representations, the complete constructions can easily be supplemented by a specialist.
  • FIG. 6 shows again a system which, with minor changes, essentially corresponds to the system of FIG. 1. Only the pole sheet sections 31a and 32a are somewhat shortened compared to the illustration there.
  • the magnetic fluxes are shown in FIG. 6 as well as in the following figures, the excitation flux generated by the coil with FE and the permanent magnetic flux generated by the permanent magnet are designated with FD.
  • the arrows indicate the flow direction predetermined by the polarization of the permanent magnet according to FIG. 1.
  • the excitation flow FE the arrows show a direction of flow in the case of excitation with a specific current direction. In this case, the excitation flow at the front end of the core flows through the working air gaps on both sides towards the two pole shoes 31 and 32.
  • the magnet system has been modified such that the core 120 is widened in a T-shape at its front end, that is to say it has side legs 121 and 122, respectively.
  • Appropriately adapted pole pieces 131 and 132 thus each form working air gaps in the side wall area.
  • the extensions of the two pole pieces 131 and 132 are then coupled to the permanent magnet 33 again as pole sheet sections 131a and 132a. With such a construction, larger magnetic cross sections and coupling surfaces can be obtained on the T-shaped coil core.
  • a T-shaped widened coil core 220 with side legs 221 and 222 is again provided.
  • the pole shoes 231 and 232 have not only pole sheet sections 231a and 232a, but also additional coupling sections 231b (not visible) and 232b, which couple the excitation flow directly to the rear end of the core.
  • the excitation flux had to flow through the permanent magnet 33 to the flux plate 34, it becomes according to FIG. 8 directly coupled to the core via a portion of the ferromagnetic pole pieces.
  • the magnetic resistance for the excitation flux circuit is thus reduced.
  • the permanent magnetic flux is also partially short-circuited in this way, so that a higher magnetization of the permanent magnet 33 is required.
  • An optimization of the cross-sections and air gaps is therefore necessary in accordance with the desired characteristics.
  • a T-shaped core 220 and pole shoes 231 and 232 are constructed in the same way as in the example in FIG. 8. In turn, they have pole plate sections 231a and 232a and coupling sections 231b and 232b for coupling to the rear end of the core.
  • a modified flow plate 234 is now provided, the coupling section 234a of which is bent at the front of the armature. The excitation flow from the flux plate to the pole plate sections is thus not returned in the area of the armature bearing, but in the area of the working air gap. In this case, too, the excitation flux FE does not go through the permanent magnet 33, but directly to the pole shoes 231 and 232 via lateral air gaps.
  • the permanent magnet 33 is partially short-circuited, so that a high magnetization of the permanent magnet is also required here.
  • cross sections and air gaps must be optimized.
  • the contacts are designed as self-pressure contacts, that is to say that the contact springs 5 and 6 are each preloaded relative to the associated counter-contact element 7 and 8 and rest on them in the idle state.
  • the magnet system therefore only has the function of opening the contacts.
  • the safe opening of the contacts is the most critical condition at high currents.
  • the opening process is more effective for self-pressure contacts because the already accelerated magnet system at the end of its switching movement strikes the contact springs and is more likely to tear open any glued contacts.
  • the ACll switching capacity is greater here than with an inverted system.
  • An additional advantage of self-pressure contacts is that the NC and NO contacts have the same mechanical requirements, so that the movements are the same, which ultimately leads to the same electrical life under load.
  • the contacts can be adjusted using a purely mechanical spring bend with the appropriate gauges.
  • the spring force of the self-pressure contact springs can also be used to reset the relay armature.
  • the contact structure could also be changed so that a normally open contact with an additional tungsten lead contact is formed.
  • the self-pressure principle creates a kind of positive guidance if the magnet system has a certain, tolerated course.
  • the separation of the two contacts in separate chambers on the right and left of the magnet system generally prevents the influence of the erosion products of one contact on the switching behavior of the other.
  • the dielectric strength of the relay is also safer thanks to this contact separation due to the larger distances.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

A relay has a static core arranged inside the coil (12), and a swivelling armature arranged at one end of the coil that forms, together with two pole shoes (31, 32) at the other end of the coil, working air gaps with respect to one end of the core. The armature has two pole plate sections (31a, 32a) arranged in the extension of both pole shoes in a common plane outside of the coil and parallel to the axis of the coil, where they are coupled to one side of a four-pole permanent magnet. Both opposite poles of the permanent magnet are coupled to a flux plate which in turn forms a feedback to the core. With this system a polarized relay is obtained whose magnetic cross-sections can be very easily optimized and whose switching characteristic can be easily adjusted by balancing the permanent magnet. In addition, it is possible to easily separate the magnetic system from contact systems by means of appropriate insulating walls.

Description

Die Erfindung betrifft ein polarisiertes elektromagnetisches Relais, welches umfaßt:
   einen Sockel;
   eine auf dem Sockel befestigte Spule, bestehend aus einem Spulenkörper mit einer Wicklung;
   einen Kern, der die Spule axial durchsetzt und mit seinen beiden Enden aus dem Spulenkörper hervorsteht;
   mindestens ein bewegliches Kontaktelement und mindestens ein feststehendes Gegenkontaktelement, die jeweils seitlich von der Spule in dem Sockel verankert sind;
   einen oberhalb der Spule angeordneten Anker, der von zwei in einer Ebene nebeneinanderliegenden Polblechen, einem parallel über den Polblechen angeordneten Flußblech und einer vierpoligen, zwischen den Polblechen und dem Flußblech schichtartig eingeschlossenen Dauermagnetanordnung gebildet ist, wobei zwei ungleichnamige Pole der Dauermagnetanordnung mit je einem Polblech und die beiden gegenüberliegenden Pole mit dem Flußblech gekoppelt sind.
The invention relates to a polarized electromagnetic relay, which comprises:
a base;
a coil attached to the base, consisting of a coil body with a winding;
a core which axially penetrates the coil and protrudes from the coil body with its two ends;
at least one movable contact element and at least one fixed mating contact element, each of which is anchored laterally from the coil in the base;
an armature arranged above the coil, which is formed by two pole plates lying next to one another in one plane, a flux plate arranged parallel above the pole plates and a four-pole permanent magnet arrangement enclosed in layers between the pole plates and the flux plate, two poles of the same name of the permanent magnet arrangement having the same name, each with a pole plate and the two opposite poles are coupled to the flux plate.

Aus der EP-A-34 811 ist ein Magnetsystem für ein derartiges Relais bekannt. Bei einem Ausführungsbeispiel ist dort ein Anker in Schichtbauweise aus Polblechen, einer vierpoligen Dauermagnetanordnung und einem Flußblech gebildet, welcher allerdings mittig oberhalb der Wicklung gelagert ist und an beiden Enden abgekröpfte Polschuhe trägt, die mit jedem der beiden Kernenden Arbeitsluftspalte bilden. Ein derartiges sogenanntes H-Ankersystem ist zwar magnetisch sehr wirksam, jedoch in der Fertigung mit Problemen behaftet, weil beispielsweise ein präzise ausgerichtetes Zapfenlager im Bereich der Spule nur schwer herzustellen ist und das System mit jeweils zwei diagonal gegenüberliegenden Luftspalten und der dazwischen liegenden, genau auszurichtenden Lagerung mechanisch überbestimmt ist. Die genannte Druckschrift gibt auch keine konkreten Informationen über eine konstruktive Lösung dieser Probleme; insbesondere ist auch nicht gezeigt, wie das Magnetsystem in einem Relais in Beziehung zu einer Kontaktanordnung gebracht werden soll und wie letztere dann betätigt werden kann.A magnet system for such a relay is known from EP-A-34 811. In one embodiment, an armature in layered construction is formed from pole plates, a four-pole permanent magnet arrangement and a flux plate, which is however mounted centrally above the winding and bears bent pole shoes at both ends, which form working air gaps with each of the two core ends. Such a so-called H-armature system is magnetically very effective, but it has problems in production because, for example, a precisely aligned pin bearing in the area of the coil is difficult to manufacture and the system with two diagonally opposed air gaps and the one in between, precisely aligned Storage is mechanically overdetermined. The cited publication also does not provide any concrete information about a constructive solution to this Problems; in particular, it is also not shown how the magnet system in a relay is to be brought into relation to a contact arrangement and how the latter can then be actuated.

Ein polarisiertes Relais mit einem magnetisch ähnlich aufgebauten System ist aus der EP-A-72 976 und in ähnlicher Weise aus der US-A-4,665,375 bekannt. Allerdings ist in diesem Fall der vierpolige Dauermagnet mit einer Schichtung aus Flußblech und Polblechen fest oberhalb der Spule angeordnet, während ein stabförmiger Anker in einer axialen Öffnung des Spulenkörpers angeordnet ist. Hier wie auch bei dem oben erwähnten System erhält man durch den vierpoligen Dauermagneten oberhalb der Spulenwicklung sehr große Polflächen, was insbesondere bei einer langen Spule mit kleinem Querschnitt günstig ist. Durch die Verwendung eines sehr flachen Magneten mit sehr kleiner Ausdehnung in Vorzugsrichtung, beispielsweise eines Ferritmagneten, erhält man eine günstige Raumausnutzung, da der Magnet die Bauhöhe des Relais nur wenig vergrößert. Da für die Länge der Polbleche und des Flußbleches die ganze Spulenlänge zur Verfügung steht, können der Überlappungsbereich dieser Teile einerseits und die Polflächen des Dauermagneten andererseits ohne Rücksicht auf räumliche Beschränkungen optimal groß gewählt werden. Da der stabförmige Anker innerhalb der Spule angeordnet ist, ist dessen Eisenquerschnitt jedoch im Vergleich zum Innendurchmesser des Spulenrohres beschränkt, weil der Anker innerhalb der Spule seine Schaltbewegung ausführen muß, also ein Luftspalt für den Ankerhub freigehalten werden muß.A polarized relay with a magnetically similar system is known from EP-A-72 976 and similarly from US-A-4,665,375. In this case, however, the four-pole permanent magnet with a layering of flux plate and pole plates is arranged firmly above the coil, while a rod-shaped armature is arranged in an axial opening of the coil body. Here, as in the system mentioned above, the four-pole permanent magnet above the coil winding gives very large pole faces, which is particularly advantageous for a long coil with a small cross-section. The use of a very flat magnet with a very small extension in the preferred direction, for example a ferrite magnet, results in a favorable use of space since the magnet only slightly increases the height of the relay. Since the entire coil length is available for the length of the pole plates and the flux plate, the overlap area of these parts on the one hand and the pole surfaces of the permanent magnet on the other hand can be chosen to be optimally large, regardless of spatial restrictions. Since the rod-shaped armature is arranged within the coil, its iron cross-section is limited in comparison to the inner diameter of the coil tube, because the armature must carry out its switching movement within the coil, that is, an air gap must be kept free for the armature stroke.

Aufgabe der vorliegenden Erfindung ist es, das obengenannte Relaisprinzip zum Schalten höherer Ströme und Spannungen einsetzbar zu machen. Hierfür soll insbesondere der Magnetkreis optimiert werden, um für höhere Ströme bzw. Spannungen auch größere Kontaktkräfte erzeugen zu können. Zugleich soll die Konstruktion so gewählt werden, daß eine gute Isolierung zwischen Magnetkreis und Kontaktsystem erreichbar ist.The object of the present invention is to make the aforementioned relay principle usable for switching higher currents and voltages. For this purpose, the magnetic circuit in particular should be optimized so that larger contact forces can also be generated for higher currents or voltages. At the same time, the construction should be chosen so that good insulation between the magnetic circuit and the contact system can be achieved.

Nach der Erfindung wird diese Aufgabe mit einem Relais der eingangs genannten Art gelöst, bei dem ferner
   zwei als abgewinkelte Verlängerungen der Polbleche gebildete Polschuhe ein erstes Ende des Kerns unter Bildung von Arbeitsluftspalten zwischen sich einschließen,
   der Anker in der Nähe des zweiten Kernendes um eine zur Spulenachse senkrechte Achse drehbar gelagert ist;
   das Flußblech magnetisch mit dem Kern gekoppelt ist und
   die Polbleche mit der Dauermagnetanordnung und dem Flußblech zur Bildung des einstückigen Ankers mit einer Kunststoffumhüllung versehen sind, welche je eine Wand zu beiden Seiten der Spule und mindestens eine Betätigungsnase zur Betätigung des beweglichen Kontaktelementes bzw. der beweglichen Kontaktelemente bildet.
According to the invention, this object is achieved with a relay of the type mentioned, in which
two pole shoes formed as angled extensions of the pole plates enclose a first end of the core with the formation of working air gaps,
the armature is rotatably mounted in the vicinity of the second core end about an axis perpendicular to the coil axis;
the flux plate is magnetically coupled to the core and
the pole plates are provided with the permanent magnet arrangement and the flux plate to form the one-piece armature with a plastic covering, which forms a wall on each side of the coil and at least one actuating lug for actuating the movable contact element or the movable contact elements.

Da bei dem erfindungsgemäßen Relais der Spulenkern feststeht, kann dieser in seinem magnetischen Querschnitt optimal groß gemacht werden. Auch der Wirkungsgrad der Spule wird dadurch optimiert.Since the coil core is fixed in the relay according to the invention, its magnetic cross section can be made optimally large. This also optimizes the coil's efficiency.

Die Verbindung des Flußbleches, der Dauermagnetanordnung und der Polbleche mittels Kunststoff zu einem einstückigen Anker kann entweder durch eine Steckbefestigung der Teile in einem Kunststoffrahmen oder vorzugsweise durch Umspritzen der Metallteile mit Kunststoff erreicht werden. Dabei werden die Betätigungsnasen ohne zusätzlichen Aufwand am Anker angeformt, mit denen dann vorzugsweise beiderseits der Spule jeweils mindestens eine Kontaktfeder geschaltet werden kann.The connection of the flux plate, the permanent magnet arrangement and the pole plates by means of plastic to form a one-piece anchor can be achieved either by a plug-in fastening of the parts in a plastic frame or, preferably, by extrusion-coating the metal parts with plastic. The actuating lugs are formed on the armature without any additional effort, with which at least one contact spring can then preferably be switched on both sides of the coil.

Weitere Ausgestaltungen sind in den Patentansprüchen angegeben.Further refinements are specified in the patent claims.

Die Erfindung wird nachfolgend an Ausführungsbeispielen anhand der Zeichnung näher erläutert. Es zeigt

  • Figur 1 ein erfindungsgemäß gestaltetes Relais in Einzelteilen,
  • Figur 2 eine gegenüber Figur 1 etwas abgewandelte Ausführungsform eines Ankers,
  • Figur 3 eine unterseitige Ansicht des Ankers von Figur 1 oder Figur 2,
  • Figur 4 einen Schnitt durch ein leeres Gehäuse für ein Relais gemäß Figur 1 mit abgewandeltem Sockel,
  • Figur 5 einen Sockel von Figur 4 in Draufsicht,
  • Figur 6 bis Figur 9 jeweils verschiedene, gegenüber Figur 1 abgewandelte Magnetsysteme für ein erfindungsgemäßes Relais.
The invention is explained in more detail below using exemplary embodiments with reference to the drawing. It shows
  • 1 shows a relay designed according to the invention in individual parts,
  • FIG. 2 shows an embodiment of an anchor that is somewhat modified compared to FIG. 1,
  • FIG. 3 shows an underside view of the armature from FIG. 1 or FIG. 2,
  • FIG. 4 shows a section through an empty housing for a relay according to FIG. 1 with a modified base,
  • FIG. 5 shows a base from FIG. 4 in plan view,
  • 6 to 9 each show different magnetic systems modified for FIG. 1 for a relay according to the invention.

Das in Figur 1 in Explosionsdarstellung gezeigte Relais besitzt eine Spulenbaugruppe 1 mit einem längs der Achse eingesteckten Kern 2, einen auf der Spulenbaugruppe schwenkbar gelagerten Anker 3 und einen Sockel 4, in welchem neben der Spulenbaugruppe und neben dem Anker beiderseits jeweils ein Kontaktpaar mit den beiden Kontaktfedern 5 und 6 sowie den feststehenden Gegenkontaktelementen 7 und 8 verankert sind. Eine in Figur 1 nicht gezeigte Kappe 9 (Figur 4) bildet mit dem Sockel 4 ein Gehäuse.The relay shown in FIG. 1 in an exploded view has a coil assembly 1 with a core 2 inserted along the axis, an armature 3 pivotably mounted on the coil assembly and a base 4 in which, in addition to the coil assembly and the armature, a pair of contacts with the two on each side Contact springs 5 and 6 and the fixed counter-contact elements 7 and 8 are anchored. A cap 9 (FIG. 4), not shown in FIG. 1, forms a housing with the base 4.

Im einzelnen besteht die Spulenbaugruppe 1 aus einem Spulenkörper 11 mit einer Wicklung 12, welche zwischen zwei Flanschen 13 und 14 aufgebracht ist. Der Flansch 13 besitzt an seiner Unterseite eine Nase 15, welche in eine Ausnehmung 41 des Sockels 4 eingreift. Am Flansch 14 ist an der Oberseite ein Lagerzapfen 16 für den Anker 3 angeformt. In dem Flansch 14 sind außerdem Spulenanschlußstifte 17 verankert. Der Spulenkörper 11 besitzt einen axialen Hohlraum 18, in welchen der Kern 2 eingesteckt wird. Dieser Kern besitzt an seinem hinteren Ende im Bereich des Spulenflansches 14 einen Koppelabschnitt 21 mit vergrößertem Querschnitt, die einen besseren Flußübergang zwischen Anker und Kern ermöglicht.Specifically, the coil assembly 1 consists of a coil body 11 with a winding 12, which is applied between two flanges 13 and 14. The flange 13 has on its underside a nose 15 which engages in a recess 41 in the base 4. A bearing pin 16 for the armature 3 is formed on the flange 14 on the upper side. Coil connecting pins 17 are also anchored in the flange 14. The bobbin 11 has an axial cavity 18 into which the core 2 is inserted. This core has at its rear end in the region of the coil flange 14 a coupling section 21 with an enlarged cross section, which enables a better flow transition between the armature and the core.

Der Anker 3 enthält als Baugruppe zwei ferromagnetische Polschuhe 31 und 32, welche nach dem Zusammenbau das vordere Ende 22 des Kerns einschließen und mit diesem einen Doppelarbeitsluftspalt bilden. An der Oberseite sind an den beiden Polschuhen jeweils Polblechabschnitte 31a und 32a angeformt und in eine gemeinsame Ebene gebogen, um so eine großflächige Ankopplung an einen Dauermagneten 33 zu gewährleisten. Dieser Dauermagnet 33 ist vierpolig aufmagnetisiert, so daß er den beiden Polblechabschnitten 31a und 32a jeweils ungleichnamige Pole N bzw. S zuwendet, während die jeweils zugehörigen Gegenpole S bzw. N an der Oberseite an ein Flußblech 34 angekoppelt werden. Dieses Flußblech 34, das also ebenso wie die beiden Polschuhe 31 und 32 aus ferromagnetischem Material besteht, liegt nach dem Zusammenbau großflächig auf dem Dauermagneten 33 auf. Es besitzt an dem hinteren Ende einen Koppelabschnitt 34a, der nach dem Zusammenbau möglichst nah an den Koppelabschnitt 21 des Kerns - unter Gewährleistung der Beweglichkeit des Ankers - herangebracht wird. Zur Lagerung des Ankers auf dem Lagerzapfen 16 ist eine Bohrung 34b im Flußblech vorgesehen. Außerdem sind am vorderen Ende des Flußbleches Blechnoppen 34c angeformt, die zur Gewährleistung der Beweglichkeit des Ankers eine Gleitberührung zwischen Anker und Gehäusekappe ermöglichen.The armature 3 contains as an assembly two ferromagnetic pole shoes 31 and 32 which, after assembly, enclose the front end 22 of the core and form a double working air gap with it. Pole sheet sections 31a and 32a are formed on the top of each of the two pole pieces and bent into a common plane in order to ensure a large-area coupling to a permanent magnet 33. This permanent magnet 33 is magnetized with four poles, so that it turns to the two pole plate sections 31a and 32a, respectively opposite poles N and S, while the respective opposite poles S and N are coupled on the top to a flux plate 34. This flux plate 34, which, like the two pole pieces 31 and 32, is made of ferromagnetic material, lies on the permanent magnet 33 over a large area after assembly. It has a coupling section 34a at the rear end which, after assembly, is brought as close as possible to the coupling section 21 of the core - while ensuring the mobility of the armature. A bore 34b is provided in the flow plate for mounting the armature on the journal 16. In addition, sheet metal studs 34c are formed on the front end of the flow plate, which allow sliding contact between the armature and the housing cap to ensure the mobility of the armature.

Wie in Figur 1 dargestellt, werden die Polbleche 31 und 32, der Dauermagnet 33 und das Flußblech 34 aufeinandergeschichtet und dann mit Kunststoffwänden 35 an den Seiten derart umhüllt, daß der in Figur 1 auch als geschlossene Baugruppe gezeigte Anker 3 entsteht. Dieser mit den Kunststoffwänden 35 zusammengehaltene Anker besitzt einen nach unten offenen Hohlraum, so daß der Anker auf die Spulenbaugruppe 1 aufgesetzt und auf dem Lagerzapfen 16 gelagert werden kann. An den Kunststoffwänden 35 sind außerdem seitlich Betätigungsnasen 36 angeformt, die zur Betätigung der jeweils nach innen vorgespannten Kontaktfedern 5 und 6 dienen. Außerdem sind an der Unterseite der Kunststoffwände 35 Gleitnoppen 37 angeformt, die bei der Schaltbewegung des Ankers auf dem Sockel 4 gleiten und damit die notwendige Betätigungskraft gering halten.As shown in Figure 1, the pole plates 31 and 32, the permanent magnet 33 and the flux plate 34 are stacked on one another and then coated with plastic walls 35 on the sides such that the armature 3 shown in Figure 1 as a closed assembly is formed. This held together with the plastic walls 35 armature has a downwardly open cavity, so that the armature is placed on the coil assembly 1 and on the Bearing pin 16 can be stored. Actuating lugs 36 are also formed laterally on the plastic walls 35 and are used to actuate the contact springs 5 and 6, which are prestressed inwards in each case. In addition, 35 sliding knobs 37 are formed on the underside of the plastic walls, which slide on the base 4 during the switching movement of the armature and thus keep the necessary actuating force low.

Die Kontaktfedern 5 und 6 besitzen jeweils Kontaktstücke 51 bzw. 61, während die Gegenkontaktelemente 7 und 8 ebenfalls Kontaktstücke 71 bzw. 81 aufweisen. Die Kontaktfedern 5 und 6 sind jeweils mit einem Federträger bzw. Anschlußelement 52 bzw. 62 verbunden, beispielsweise verschweißt, welche bei der Montage des Relais jeweils in Durchbrüche 42 des Sockels eingesteckt werden. Für die Gegenkontaktelemente 7 bzw. 8 sind ebenfalls Durchbrüche 43 im Sockel vorgesehen. Weiterhin wird bei der Montage die Spulenbaugruppe 1 auf den Sockel aufgesetzt, wobei die Spulenanschlußstifte 17 in entsprechende Durchbrüche 44 eingesteckt werden. Auf die Spulenbaugruppe wird der Anker, wie bereits erwähnt, aufgesetzt, so daß der Lagerzapfen 16 in die Lagerbohrung 34b gelangt. Danach wird die Kappe 9 gemäß Figur 4 aufgesetzt. Das Gehäuse kann dann an der Unterseite mittels einer Vergußmasse 10 in üblicher Weise abgedichtet werden, wie ebenfalls in Figur 4 angedeutet ist.The contact springs 5 and 6 each have contact pieces 51 and 61, while the counter-contact elements 7 and 8 also have contact pieces 71 and 81. The contact springs 5 and 6 are each connected, for example welded, to a spring support or connecting element 52 or 62, which are respectively inserted into openings 42 in the base when the relay is installed. Openings 43 are also provided in the base for the mating contact elements 7 and 8. Furthermore, the coil assembly 1 is placed on the base during assembly, the coil connection pins 17 being inserted into corresponding openings 44. As already mentioned, the armature is placed on the coil assembly, so that the bearing pin 16 reaches the bearing bore 34b. Then the cap 9 is put on according to FIG. 4. The housing can then be sealed on the underside by means of a casting compound 10 in the usual way, as is also indicated in FIG. 4.

Figur 2 zeigt eine etwas abgewandelte Ausführungsform des Ankers. In diesem Fall ist das Flußblech 34 etwas schmäler ausgeführt, während die Seitenwände 35 nach oben verlängert sind. In diesem Fall sind Gleitnoppen 35a auch an der Oberseite der Seitenwände 35 angeformt, welche anstelle der vorher beschriebenen Blechnoppen 34c das Gleiten an der Gehäusekappe sicherstellen. Im übrigen ist der Anker gemäß Figur 2 in gleicher Weise aufgebaut wie der Anker von Figur 1.Figure 2 shows a slightly modified embodiment of the anchor. In this case, the flow plate 34 is made somewhat narrower, while the side walls 35 are extended upwards. In this case, sliding knobs 35a are also formed on the upper side of the side walls 35, which ensure the sliding on the housing cap instead of the sheet-metal knobs 34c described above. Otherwise, the anchor according to FIG. 2 is constructed in the same way as the anchor from FIG. 1.

Figur 3 zeigt eine Ansicht des Ankers von Figur 1 oder von Figur 2 von der Unterseite. Hieraus wird ersichtlich, daß die Seitenwände 35 jeweils nur eine geringe Dicke besitzen, so daß ein großer innerer Hohlraum 38 verbleibt, in welchem die Spule des Relais zu liegen kommt. Bei dieser Ansicht von unten werden auch die Polblechabschnitte 31a und 32a und im mittleren Teil der Dauermagnet 33 sichtbar.Figure 3 shows a view of the anchor of Figure 1 or Figure 2 from the bottom. From this it can be seen that the side walls 35 each have only a small thickness, so that a large inner cavity 38 remains, in which the coil of the relay comes to rest. In this view from below, the pole plate sections 31a and 32a and in the central part of the permanent magnet 33 are also visible.

In Figur 4 ist ein Schnitt durch das leere Gehäuse, bestehend aus Sockel 4 und Gehäusekappe 9, gezeigt, also ohne Magnetsystem und Kontakte. Der Sockel 4 gemäß Figur 4 ist gegenüber Figur 1 etwas abgewandelt. Er besitzt zusätzlich hochgezogene Seitenwände 45 und isolierende Zwischenwände 46, welche das innen angeordnete Magnetsystem (Spulenbaugruppe 1 und Anker 3) von den seitlich angeordneten Kontaktsystemen trennen. In einer Draufsicht ist in Figur 5 dieser Sockel von Figur 4 nochmals gezeigt. Dabei sind auch deutlich die Zwischenwände 46 zu erkennen, welche jeweils Ausnehmungen 47 für den Durchtritt der Betätigungsnasen 36 aufweisen. So werden jeweils speziell abgetrennte Kontaktkammern 48 gebildet. Wie in Figur 4 weiter gezeigt ist, ist in diesem Fall auch die Kappe 9 mit zusätzlichen Trennwänden 91 versehen, welche sich mit den Zwischenwänden 46 des Sockels überlappen und dadurch die Isolierung zwischen den Kontaktkammern und dem Magnetsystem mit langen Kriechwegen verstärken.FIG. 4 shows a section through the empty housing, consisting of base 4 and housing cap 9, that is to say without a magnet system and contacts. The base 4 according to FIG. 4 is somewhat modified compared to FIG. 1. It also has raised side walls 45 and insulating intermediate walls 46 which separate the magnet system (coil assembly 1 and armature 3) arranged on the inside from the contact systems arranged on the side. This base from FIG. 4 is shown again in a top view in FIG. The intermediate walls 46, which each have recesses 47 for the passage of the actuating lugs 36, can also be clearly seen. In this way, specially separated contact chambers 48 are formed. In this case, as is also shown in FIG. 4, the cap 9 is also provided with additional partition walls 91 which overlap with the partition walls 46 of the base and thereby reinforce the insulation between the contact chambers and the magnet system with long creepage distances.

In den Figuren 6 bis 9 sind abgewandelte Ausführungsformen für das Magnetsystem gezeigt, die also das Magnetsystem von Figur 1, bestehend aus der Spulenbaugruppe 1 und dem Anker 3, ersetzen könnten. Soweit es sich dabei nur um schematische Darstellungen handelt, können die vollständigen Konstruktionen von einem Fachmann ohne weiteres ergänzt werden.FIGS. 6 to 9 show modified embodiments for the magnet system which could therefore replace the magnet system from FIG. 1, consisting of the coil assembly 1 and the armature 3. Insofar as these are only schematic representations, the complete constructions can easily be supplemented by a specialist.

Dabei zeigt Figur 6 noch einmal ein System, das mit geringfügigen Änderungen im wesentlichen dem System von Figur 1 entspricht. Lediglich die Polblechabschnitte 31a und 32a sind gegenüber der dortigen Darstellung etwas verkürzt. In Figur 6 wie auch in den folgenden Figuren sind jeweils die Magnetflüsse eingezeichnet, wobei jeweils der von der Spule erzeugte Erregerfluß mit FE und der vom Dauermagneten erzeugte Dauermagnetfluß mit FD bezeichnet sind. Die Pfeile bedeuten beim Dauermagnetfluß FD die durch die Polarisierung des Dauermagne ten gemäß Figur 1 vorgegebene Flußrichtung. Für den Erregerfluß FE ist in Figur 6 durch die Pfeile eine Flußrichtung bei einer Erregung mit einer bestimmten Stromrichtung gezeigt. In diesem Fall fließt also der Erregerfluß am vorderen Ende des Kerns über die Arbeitsluftspalte nach beiden Seiten in Richtung auf die beiden Polschuhe 31 und 32. Er überlagert sich also im rechten Arbeitsluftspalt mit dem Dauermagnetfluß FD positiv, im linken Arbeitsluftspalt dagegen negativ. Das bedeutet, daß bei der Darstellung in Figur 6 der Anker über den Polschuh 32 an den Kern angezogen wird. Bei einer Umkehrung des Erregerflusses FE schaltet der Anker in die entgegengesetzte Richtung. Durch eine entsprechend unsymmetrische Aufmagnetisierung des Dauermagneten kann auch ein monostabiles Schaltverhalten erreicht werden.FIG. 6 shows again a system which, with minor changes, essentially corresponds to the system of FIG. 1. Only the pole sheet sections 31a and 32a are somewhat shortened compared to the illustration there. The magnetic fluxes are shown in FIG. 6 as well as in the following figures, the excitation flux generated by the coil with FE and the permanent magnetic flux generated by the permanent magnet are designated with FD. In the case of the permanent magnetic flux FD, the arrows indicate the flow direction predetermined by the polarization of the permanent magnet according to FIG. 1. For the excitation flow FE, the arrows show a direction of flow in the case of excitation with a specific current direction. In this case, the excitation flow at the front end of the core flows through the working air gaps on both sides towards the two pole shoes 31 and 32. It therefore overlaps with the permanent magnetic flux FD in the right working air gap, but negatively in the left working air gap. This means that in the illustration in FIG. 6 the armature is attracted to the core via the pole shoe 32. When the excitation flow FE is reversed, the armature switches in the opposite direction. A correspondingly asymmetrical magnetization of the permanent magnet can also achieve a monostable switching behavior.

Bei der Darstellung von Figur 7 ist das Magnetsystem dergestalt abgewandelt, daß der Kern 120 an seinem Vorderende T-förmig verbreitert ist, also jeweils Seitenschenkel 121 und 122 aufweist. Entsprechend angepaßte Polschuhe 131 und 132 bilden somit jeweils Arbeitsluftspalte im Seitenwandbereich. Die Fortsätze der beiden Polschuhe 131 und 132 sind dann als Polblechabschnitte 131a und 132a wieder an den Dauermagneten 33 angekoppelt. Bei einer derartigen Konstruktion können größere magnetische Querschnitte und Koppelflächen an dem T-förmigen Spulenkern gewonnen werden.7, the magnet system has been modified such that the core 120 is widened in a T-shape at its front end, that is to say it has side legs 121 and 122, respectively. Appropriately adapted pole pieces 131 and 132 thus each form working air gaps in the side wall area. The extensions of the two pole pieces 131 and 132 are then coupled to the permanent magnet 33 again as pole sheet sections 131a and 132a. With such a construction, larger magnetic cross sections and coupling surfaces can be obtained on the T-shaped coil core.

Bei der Ausführungsform gemäß Figur 8 ist wiederum ein T-förmig verbreiterter Spulenkern 220 mit Seitenschenkeln 221 und 222 vorgesehen. Die Polschuhe 231 und 232 besitzen in diesem Fall jedoch nicht nur Polblechabschnitte 231a und 232a, sondern zusätzliche Koppelabschnitte 231b (nicht sichtbar) und 232b, welche den Erregerfluß direkt an das hintere Ende des Kerns ankoppeln. Während also bei den vorhergehenden Ausführungsbeispielen der Erregerfluß jeweils durch den Dauermagneten 33 zum Flußblech 34 fließen mußte, wird er gemäß Figur 8 direkt über einen Abschnitt der ferromagnetischen Polschuhe an den Kern gekoppelt. Der magnetische Widerstand für den Erregerflußkreis wird damit verringert. Allerdings wird auf diese Weise auch der Dauermagnetfluß teilweise kurzgeschlossen, so daß eine höhere Magnetisierung des Dauermagneten 33 erforderlich wird. Entsprechend der gewünschten Charakteristik ist somit eine Optimierung der Querschnitte und Luftspalte erforderlich.In the embodiment according to FIG. 8, a T-shaped widened coil core 220 with side legs 221 and 222 is again provided. In this case, however, the pole shoes 231 and 232 have not only pole sheet sections 231a and 232a, but also additional coupling sections 231b (not visible) and 232b, which couple the excitation flow directly to the rear end of the core. Thus, while in the previous exemplary embodiments the excitation flux had to flow through the permanent magnet 33 to the flux plate 34, it becomes according to FIG. 8 directly coupled to the core via a portion of the ferromagnetic pole pieces. The magnetic resistance for the excitation flux circuit is thus reduced. However, the permanent magnetic flux is also partially short-circuited in this way, so that a higher magnetization of the permanent magnet 33 is required. An optimization of the cross-sections and air gaps is therefore necessary in accordance with the desired characteristics.

In dem Beispiel von Figur 9 schließlich sind ein T-förmiger Kern 220 und Polschuhe 231 und 232 in gleicher Weise aufgebaut wie bei dem Beispiel von Figur 8. Sie besitzen also wiederum Polblechabschnitte 231a und 232a sowie Koppelabschnitte 231b und 232b zur Ankopplung an das hintere Ende des Kerns. Gegenüber dem vorherigen Beispiel ist nunmehr ein geändertes Flußblech 234 vorgesehen, dessen Koppelabschnitt 234a an der Vorderseite des Ankers abgebogen ist. Damit erfolgt die Rückführung des Erregerflusses vom Flußblech zu den Polblechabschnitten nicht im Bereich der Ankerlagerung, sondern im Bereich der Arbeitsluftspalte. Auch in diesem Fall geht der Erregerfluß FE nicht durch den Dauermagneten 33, sondern über seitliche Luftspalte direkt zu den Polschuhen 231 bzw. 232.Finally, in the example in FIG. 9, a T-shaped core 220 and pole shoes 231 and 232 are constructed in the same way as in the example in FIG. 8. In turn, they have pole plate sections 231a and 232a and coupling sections 231b and 232b for coupling to the rear end of the core. Compared to the previous example, a modified flow plate 234 is now provided, the coupling section 234a of which is bent at the front of the armature. The excitation flow from the flux plate to the pole plate sections is thus not returned in the area of the armature bearing, but in the area of the working air gap. In this case, too, the excitation flux FE does not go through the permanent magnet 33, but directly to the pole shoes 231 and 232 via lateral air gaps.

Auch in diesem Fall wird also der Dauermagnet 33 teilweise kurzgeschlossen, so daß auch hier eine hohe Magnetisierung des Dauermagneten erforderlich ist. Auch in diesem Fall müssen Querschnitte und Luftspalte optimiert werden.In this case too, the permanent magnet 33 is partially short-circuited, so that a high magnetization of the permanent magnet is also required here. In this case, too, cross sections and air gaps must be optimized.

Wie aus Figur 1 hervorgeht, sind die Kontakte als Eigendruckkontakte ausgebildet, d. h., daß die Kontaktfedern 5 und 6 jeweils gegenüber dem zugehörigen Gegenkontaktelement 7 bzw. 8 vorgespannt sind und im Ruhezustand auf diesen aufliegen. Das Magnetsystem hat also nur die Funktion des Öffnens der Kontakte. Das sichere Öffnen der Kontakte ist jedoch bei hohen Strömen die am meisten kritische Bedingung. Bei Eigendruckkontakten ist der Öffnungsvorgang deshalb wirkungsvoller, weils das schon beschleunigte Magnetsystem am Ende seiner Schaltbewegung auf die Kontaktfedern schlägt und mit höherer Wahrscheinlichkeit auch evtl. verklebte Kontakte aufreißt. Das ACll-Schaltvermögen ist hier größer als bei einem umgekehrten System. Ein zusätzlicher Vorteil von Eigendruckkontakten besteht darin, daß Öffner und Schließer gleiche mechanische Voraussetzungen, damit gleiche Bewegungsabläufe haben, womit letztlich auch die gleiche elektrische Lebensdauer unter Last erreicht wird. Die Kontakte können durch eine rein mechanische Federverbiegung mit entsprechenden Lehren justiert werden. Die Federkraft der Eigendruck-Kontaktfedern kann auch zur Rückstellung des Relaisankers verwendet werden. In Sonderfällen ließe sich der Kontaktaufbau auch so abändern, daß ein Schließerkontakt mit zusätzlichem Wolfram-Vorlaufkontakt gebildet wird.As can be seen from FIG. 1, the contacts are designed as self-pressure contacts, that is to say that the contact springs 5 and 6 are each preloaded relative to the associated counter-contact element 7 and 8 and rest on them in the idle state. The magnet system therefore only has the function of opening the contacts. However, the safe opening of the contacts is the most critical condition at high currents. The opening process is more effective for self-pressure contacts because the already accelerated magnet system at the end of its switching movement strikes the contact springs and is more likely to tear open any glued contacts. The ACll switching capacity is greater here than with an inverted system. An additional advantage of self-pressure contacts is that the NC and NO contacts have the same mechanical requirements, so that the movements are the same, which ultimately leads to the same electrical life under load. The contacts can be adjusted using a purely mechanical spring bend with the appropriate gauges. The spring force of the self-pressure contact springs can also be used to reset the relay armature. In special cases, the contact structure could also be changed so that a normally open contact with an additional tungsten lead contact is formed.

Da bei dem dargestellten System von Figur 1 jeweils ein Kontakt schließt, während der andere öffnet, kann durch entsprechende Beschaltung ein Wechsler gebildet werden. Hierfür entsteht durch das Eigendruckprinzip eine Art Zwangsführung, wenn das Magnetsystem einen bestimmten, tolerierten Verlauf hat.Since in the system shown in FIG. 1 one contact closes while the other opens, a changeover contact can be formed by appropriate wiring. For this purpose, the self-pressure principle creates a kind of positive guidance if the magnet system has a certain, tolerated course.

Dadurch wird sichergestellt, daß beim Verschweißen eines der Kontakte der andere nicht schließen kann, da das Magnetsystem durch den verschweißten Kontakt blockiert wird. Durch die voneinander getrennten Kammern ist auch sichergestellt, daß im Falle eines Federbruchs eines der Kontakte kein unkontrolliertes Überbrücken durch lose Metallteile am anderen Kontakt stattfinden kann.This ensures that when one of the contacts is welded, the other cannot close, since the magnet system is blocked by the welded contact. The separate chambers also ensure that in the event of a spring break in one of the contacts, uncontrolled bridging by loose metal parts on the other contact cannot take place.

Die Trennung der beiden Kontakte in gesonderten Kammern rechts und links des Magnetsystems verhindert generell den Einfluß von Abbrandprodukten des einen Kontaktes auf das Schaltverhalten des anderen. Auch die Spannungsfestigkeit des Relais wird durch diese Kontakttrennung infolge der größeren Abstände sicherer.The separation of the two contacts in separate chambers on the right and left of the magnet system generally prevents the influence of the erosion products of one contact on the switching behavior of the other. The dielectric strength of the relay is also safer thanks to this contact separation due to the larger distances.

Denkbar wäre es auch, das Magnetsystem asymmetrisch auf dem Sockel anzuordnen, um auf einer Seite einen größeren Raum für nur einen Kontakt entweder in Öffner- oder Schließerbestückung zu bilden. Die Kontakt- und Federabmessungen können so für höhere Schaltleistungen vergrößert werden. Die Isolationsstrekken vergrößern sich dadurch automatisch. Auch ein Brückenkontakt ließe sich bei diesem Aufbau realisieren.It would also be conceivable to arrange the magnet system asymmetrically on the base in order to have a larger space on one side for only one contact, either in the opener or closer configuration to build. The contact and spring dimensions can thus be increased for higher switching capacities. This automatically increases the insulation distances. A bridge contact could also be realized with this structure.

Claims (9)

  1. Polarized electromagnetic relay, comprising:
       a base (4);
       a coil (1) which is fastened to the base and comprises a coil former (11) with a winding (12);
       a core (2) which axially penetrates the coil (1) and the two ends (21, 22) of which protrude from the coil former (1);
       at least one movable contact element (5, 6) and at least one stationary mating contact element (7, 8), which are each anchored in the base (4) to the side of the coil (1);
       an armature (3) which is arranged above the coil (1) and is formed by two pole laminations (31a, 32a; 131a, 132a; 231a, 232a) situated next to one another in one plane, a flux lamination (34; 234) arranged in parallel over the pole laminations and a four-pole permanent magnet arrangement (33) which is enclosed like a layer between the pole laminations and the flux lamination, two unlike poles of the permanent magnet arrangement being coupled to one pole lamination each and the two opposite poles being coupled to the flux lamination, and, furthermore,
          two pole shoes (31, 32; 131, 132; 231, 232), which are formed as angled extensions of the pole laminations (31a, 32a; 131a, 132a; 231a, 232a), enclosing between them a first end (22) of the core (2), thereby forming operating air gaps, the armature (3) being supported in the vicinity of the second core end (21) in a manner which allows it to rotate about an axis which is perpendicular with respect to the coil axis;
          the flux lamination (34; 234) being magnetically coupled to the core (2), and the pole laminations (31a, 32a; 131a, 132a; 231a, 232a) together with the permanent magnet arrangement (33) and the flux lamination (34; 234) being provided with a plastic encapsulation in order to form the integral armature (3), which encapsulation forms one wall (35) in each case at both sides of the coil (1) and at least one actuating lug (36) for actuating the movable contact element or the movable contact elements (5, 6).
  2. Relay according to Claim 1, characterized in that a bearing journal (16), which is perpendicular with respect to the coil axis and engages into a bearing recess (34b) in the armature (3), is moulded onto a coil flange (14) of the coil former (11) in the vicinity of the second core end (21).
  3. Relay according to Claim 1 or 2, characterized in that sliding knobs (37; 34c) are provided on the underside and, if appropriate, on the top side of the end section, opposite the bearing arrangement, of the armature (3), by means of which knobs sliding movement is made possible on the base (4) and, if appropriate, on a housing cap (9).
  4. Relay according to one of Claims 1 to 3, characterized in that the pole shoes (31, 32) are angled and offset at the ends in front of the coil in the direction of the axis, in order to form the operating air gaps with the first core end (22).
  5. Relay according to one of Claims 1 to 3, characterized in that the pole shoes (131, 132) form operating air gaps which are in each case parallel to one another and to the side walls, and in that the first core end is widened in a T-shape in order to form the operating air gaps (Figures 7 to 10).
  6. Relay according to Claim 4 or 5, characterized in that the pole shoes (231, 232) each form coupling sections (231b, 232b) to the side of and next to the coil, for the purpose of feeding the exciter flux back to the second core end.
  7. Relay according to one of Claims 1 to 6, characterized in that the flux lamination (34) is coupled to the second core end.
  8. Relay according to Claim 6, characterized in that the flux lamination (234) is coupled to the first core end (Figure 9).
  9. Relay according to one of Claims 1 to 8, characterized in that the magnet system is insulated from sets of contacts (5, 6, 7, 8), which are arranged on both sides, by means of partitions (46; 91) which are moulded onto the base (4) and/or a cap (9).
EP93905171A 1992-03-13 1993-03-09 Polarized electromagnetic relay Expired - Lifetime EP0630516B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4208164 1992-03-13
DE4208164A DE4208164A1 (en) 1992-03-13 1992-03-13 POLARIZED ELECTROMAGNETIC RELAY
PCT/DE1993/000215 WO1993018534A1 (en) 1992-03-13 1993-03-09 Polarized electromagnetic relay

Publications (2)

Publication Number Publication Date
EP0630516A1 EP0630516A1 (en) 1994-12-28
EP0630516B1 true EP0630516B1 (en) 1995-11-22

Family

ID=6454053

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93905171A Expired - Lifetime EP0630516B1 (en) 1992-03-13 1993-03-09 Polarized electromagnetic relay

Country Status (5)

Country Link
EP (1) EP0630516B1 (en)
AT (1) ATE130701T1 (en)
DE (2) DE4208164A1 (en)
SI (1) SI9300117A (en)
WO (1) WO1993018534A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10251455B3 (en) * 2002-11-05 2004-09-02 Matsushita Electric Works (Europe) Ag Electromagnetic relay

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3006948A1 (en) * 1980-02-25 1981-09-10 Siemens AG, 1000 Berlin und 8000 München POLARIZED MAGNETIC SYSTEM
DE3410424C2 (en) * 1984-03-21 1986-01-30 Sds-Elektro Gmbh, 8024 Deisenhofen Trunnion mounted relay
EP0192928B1 (en) * 1985-02-12 1990-06-13 Siemens Aktiengesellschaft Electromagnetic relay
DE3520773C1 (en) * 1985-05-29 1989-07-20 SDS-Relais AG, 8024 Deisenhofen Electromagnetic relay

Also Published As

Publication number Publication date
DE59301014D1 (en) 1996-01-04
ATE130701T1 (en) 1995-12-15
SI9300117A (en) 1993-09-30
DE4208164A1 (en) 1993-09-16
WO1993018534A1 (en) 1993-09-16
EP0630516A1 (en) 1994-12-28

Similar Documents

Publication Publication Date Title
DE2454967C3 (en) Poled electromagnetic relay
DE3885508T2 (en) Electromagnetic relay.
EP0078324A1 (en) Polarized electromagnetic relay
EP0118715B1 (en) Polarised electromagnetic relay
DE3586200T2 (en) ELECTROMAGNETIC RELAY.
WO2013144218A2 (en) Polarized electromagnetic relay and method for production thereof
EP0017129B1 (en) Polarised relay having contact blades
DE4011977A1 (en) MAGNETIC SWITCH FOR COAXIAL TRANSMISSION LINES
EP0110162B1 (en) Electromagnetic relay
DE2723220B1 (en) Polarized miniature electromagnetic relay
DE3132239C2 (en) Electromagnetic relay
DE69019866T2 (en) Polarized electromagnetic relay.
EP0630516B1 (en) Polarized electromagnetic relay
EP0072976B1 (en) Polarised electromagnetic relay
EP0096350B1 (en) Electromagnetic relay with rotating armature
DE3124412C1 (en) Small polarized electromagnetic relay
DE3230562A1 (en) Electromagnetic switching apparatus for controlling electric-motor drives whose rotation direction is reversible
EP0013991A1 (en) Arrangement of contact springs for polarized electromagnetic relays
DE3438275C1 (en) Poled electromagnetic relay
EP0192928A1 (en) Electromagnetic relay
DE3246256C2 (en) Electromagnetic relay
DE3508795A1 (en) POLARIZED ELECTROMAGNETIC RELAY
DE3224070C2 (en) Polarized relay
EP0865060A2 (en) Electromagnetic relay
WO2000005736A1 (en) Polarized electromagnetic relay

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB

17Q First examination report despatched

Effective date: 19950428

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB

REF Corresponds to:

Ref document number: 130701

Country of ref document: AT

Date of ref document: 19951215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59301014

Country of ref document: DE

Date of ref document: 19960104

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970224

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970305

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970321

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970521

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980309

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST