EP1573766B1 - Electromagnetic actuator - Google Patents

Electromagnetic actuator Download PDF

Info

Publication number
EP1573766B1
EP1573766B1 EP03785595A EP03785595A EP1573766B1 EP 1573766 B1 EP1573766 B1 EP 1573766B1 EP 03785595 A EP03785595 A EP 03785595A EP 03785595 A EP03785595 A EP 03785595A EP 1573766 B1 EP1573766 B1 EP 1573766B1
Authority
EP
European Patent Office
Prior art keywords
moving part
magnetic
air gap
electromagnetic drive
locking body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03785595A
Other languages
German (de)
French (fr)
Other versions
EP1573766A1 (en
Inventor
Martin Böttcher
Marcus Kampf
Carsten Protze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1573766A1 publication Critical patent/EP1573766A1/en
Application granted granted Critical
Publication of EP1573766B1 publication Critical patent/EP1573766B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/066Electromagnets with movable winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/122Guiding or setting position of armatures, e.g. retaining armatures in their end position by permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/14Pivoting armatures
    • H01F7/145Rotary electromagnets with variable gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • H01H2003/268Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor using a linear motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H53/00Relays using the dynamo-electric effect, i.e. relays in which contacts are opened or closed due to relative movement of current-carrying conductor and magnetic field caused by force of interaction between them
    • H01H53/01Details
    • H01H53/015Moving coils; Contact-driving arrangements associated therewith

Definitions

  • the invention relates to an electromagnetic drive for a switch, in particular in the field of medium voltage technology, with at least one magnetic body which defines an air gap, arranged in the air gap the magnet body movably guided moving part, at least one permanent magnet and at least one conductor can be acted upon with electricity is at least partially disposed in the air gap, wherein the one or more conductors extend at a movement of the moving part at least partially in a magnetic flux generated by the or from the permanent magnets / extend.
  • Such an electromagnetic drive is for example from the DE 198 15 538 A1 known.
  • the disclosed there drive has a three-phase linear motor, which is composed of several motor modules.
  • the motor module has a certain number of fixed motor coils and in this regard longitudinally movably guided moving parts with permanent magnets.
  • the excitation of the motor coils creates a magnetic field in which the permanent magnets of the moving part are arranged.
  • Due to the Lorenzkraft generated there is a drive movement of the moving part, which is connected via a switching rod with the moving contact of a switch. To switch on the vacuum switch, the moving contact is pressed by the three-phase linear motor against a fixed contact of the switch, wherein the moving part reaches an end position.
  • an electromagnetic drive which is a frame-shaped closed yoke having soft magnetic material which is stacked to avoid eddy currents from lamellae.
  • the yoke forms a cavity in which an existing of soft magnetic material anchor is movably guided between two end positions. In each end position, the armature contacts the soft-magnetic yoke with one of its end faces, an air gap being defined between the other end face of the armature opposite the contact point and the closed circumferential yoke.
  • In the cavity of the yoke further two coils are fixed, each surrounding one of the end faces of the armature. Between the coils permanent magnets for generating a magnetic flux are provided.
  • the anchor Due to the air gap, the anchor remains fixed in the respective end position. Due to the excitation of the coil, which encloses the air-gap side end, in the air gap, a high magnetic flux is generated that demolished to reduce the magnetic resistance of the armature yoke and is transferred with closure of the air gap in its second stable end position in which he with its other end face, which previously limited the air gap, rests against the yoke. The exciting current of the coil can now be interrupted, since the armature is fixed in this end position.
  • the two prior art magnetic drives described above are based on different physical effects.
  • the electromagnetic drive according to the DE 198 15 538 A1 uses the so-called Lorentz force to generate the driving effect, which arises when moving charged particles in a magnetic field.
  • the effect of an electromagnetic drive according to the WO 95/07542 is due to the physical effect that a magnetic field preferably in a material with a high magnetic permeability or, in other words, propagates in a material having a low magnetic resistance.
  • a magnetic field preferably in a material with a high magnetic permeability or, in other words, propagates in a material having a low magnetic resistance.
  • the entire system is converted from an energetically unfavorable state with a high magnetic potential into an energetically more favorable state in which an air gap is closed and the magnetic flux passes almost exclusively through a material with low magnetic resistance.
  • the power to transfer the system into the energetically favorable state results from the formation of gradients.
  • Drives based on such an effect are also called reluctance
  • Electromagnetic actuators based on the Lorentz force have a high dynamic and can moreover be controlled in a simple manner, namely via the current conducted through the magnetic field.
  • springs, pawls or the like are usually used, the force effect is to be lifted only with effort.
  • Reluctance drives are usually characterized by a stable end position fixation. However, they are liable to the disadvantage of a highly non-linear path-force curve, which can either be difficult or at the expense of the holding force in the end positions or at the expense of space can be influenced.
  • the electromagnetic drive shown there has a gap limiting magnetic body with a permanent magnet.
  • the magnetic field of the permanent magnet passes through an air gap into which a locking body connected fixedly to the moving part extends.
  • the magnetic field of the permanent magnet is guided via the locking body and the moving part instead of over the air gap, wherein, however, a new magnetic circuit is formed.
  • a coil is further arranged, which serves to weaken the magnetic field of the permanent magnet, so that the moving part between contact position and separation position can be moved back and forth.
  • the object of the invention is to provide an electromagnetic drive of the type mentioned, which can be fixed in its end positions in a simple manner, but the simple control of the drive movement is maintained.
  • the invention achieves this object by virtue of the fact that the moving part is fixedly connected to at least one soft-magnetic locking body and that the magnetic flux generated by the permanent magnet (s) passes through the locking body in an end position of the moving part, the air gap being bridged by the magnetic flux locking body ,
  • the electromagnetic drive according to the invention makes use of both the Lorentz force and the force effect resulting from a reduction of the magnetic resistance or, in other words, the reluctance force.
  • an air gap is bridged in at least one end position by the locking body, which increases the magnetic resistance for the magnetic flux.
  • the moving part has thus taken an energetically favorable state. After detaching the locking body from its end position, the magnetic flux is forced to flow over the air gap provided in the magnetic body or via air gaps formed and enlarged between the magnetic body and the locking body, thereby increasing the magnetic resistance. In this way, a magnetically unfavorable state is set with regard to the end position. The result is a counteracting the detachment magnetic force.
  • the moving part can be connected via a suitable mechanism, such as drive rods and power transmission lever, with a movable switching contact of a switch, in particular a vacuum switch.
  • a suitable mechanism such as drive rods and power transmission lever
  • the movable switching contact is firmly in contact with a fixed contact piece of the switch.
  • the force effect due to the reduction of the magnetic flux for the magnetic flux has a highly non-linear characteristic, since high forces are generated at small distances of the locking body from the magnetic body.
  • middle position in which the locking body is further spaced from the yoke, the drive is almost exclusively Lorenz concept.
  • the electromagnetic drive according to the invention can therefore be controlled in the middle positions of the moving part in a simple manner, namely either via appropriate power supply of the conductor or by changing the magnetic flux generated electromagnetically by means of coils.
  • a sufficiently high locking force is provided at the same time in order to avoid the lifting of a movable switching contact from a stationary mating contact even in the event of a short circuit.
  • the locking body it is by no means necessary for the locking body to bear against the areas of the magnetic body or the magnetic body delimiting the air gap. Rather, the locking body can be held with a small distance to these areas, so that in these cases, for example, a permanent Antikskraft for the switching contact against the fixed contact of the switch can be generated. It is essential, however, that the magnetic resistance in the end position is minimized compared to other possible paths.
  • permanent magnets are attached to the moving part, and the magnetic flux generated by them and possibly also the conductor generated by the conductor partially flows over the locking body in an end position of the locking body, so that the resistance of the entire magnetic circuit in the end position is minimized.
  • the moving part has at least one coil with a carrier, which is wrapped by the conductor, wherein each locking body is connected to an end face of the coil.
  • the electromagnetic drive is a lifting drive, wherein the stroke of the electromagnetic drive corresponds to the length of the coil or coils substantially.
  • the locking body may be arranged on one side or on both sides of a coil. If the moving part has, for example, two locking bodies and a coil, it is fixed in two end positions. The influence of the locking body on the force-displacement characteristic of the drive is increased compared to the variant with a locking body.
  • the magnetic body comprises in addition to the permanent magnet or magnets, a soft magnetic yoke, wherein the magnetic flux generated by each permanent magnet passes through the yoke.
  • the use of a yoke to guide the magnetic flux helps to reduce costs because the air gap does not have to be placed in a large and therefore expensive permanent magnet. Rather, the use of a smaller permanent magnet is sufficient.
  • the yoke is advantageously annular or frame-shaped, wherein by the example rectangular frame, a magnetic circuit is formed, the only is interrupted by an interrupting the frame course air gap. To avoid eddy currents, the yoke is composed of lamellae in batches. The magnetic body and thus the one or more permanent magnets are stationary with respect to the moving part.
  • this development of the invention is also referred to as a drive based on the Tauchspulenzin.
  • Such a drive is compared to drives on the three-phase linear motor principle with a DC voltage, which can be obtained from only one phase of a three-phase network.
  • each locking body abuts in the end position associated with it on the soft magnetic yoke. An air gap between the locking body and the magnetic body in the end position is thus avoided. The magnetic flux passes from the magnetic body directly into the locking body, whereby the magnetic resistance of the magnetic circuit is minimized. The moving part is thus firmly locked in the end position.
  • a spring is provided for detaching the moving part from its end position.
  • the holding force in the respective end position can be reduced or even eliminated by a suitable energizing of the coil.
  • the spring supports the detachment of the moving part from the end position.
  • Suitable springs are, for example, compression springs, which are supported on a stationary abutment on the one hand, as well as on the end facing away from the coil of the locking body.
  • the moving part is mounted on a shaft and rotatable, each locking body in an end position with with the magnetic body connected attacks.
  • the electromagnetic drive is not a linear motor, but generates a rotational movement, which is thus carried over the shaft in the form of a rotational movement to the outside.
  • the magnetic body may comprise electromagnets which generate a traveling magnetic field.
  • the magnetic body preferably has a yoke with a permanent magnet, wherein the magnetic flux generated by the permanent magnet intersperses the recess formed in the magnetic body or, in other words, the air gap.
  • the moving part is formed substantially matching the hollow cylindrical air gap and rotatably supported therein by means of the shaft. By energizing the head of the moving part, a rotational movement is generated.
  • the conductor may for example be formed as a winding which is fed by a current phase. However, the conductor can also be realized by a plurality of windings, which are energized by a plurality of current phases, so that a traveling field is formed.
  • the end positions are defined by the positioning of two stops, which are firmly connected to the magnetic body.
  • the rod-shaped locking body strikes with its opposite end portions of the stops, so that in the end position, a bridging of the stops is provided by the locking body.
  • the magnetic flux is no longer forced to pass through the air gap, but passes against lower magnetic resistance across the locking body from one stop to another.
  • the moving part is rotationally symmetrical and the conductor is designed as at least one winding on the moving part.
  • FIG. 1 shows an embodiment of the electromagnetic drive 1 according to the invention in a schematic representation.
  • the electromagnetic drive shown has a consisting of a yoke 2 and a permanent magnet 3 existing magnetic body in which an air gap 4 is provided.
  • the magnetic body 2, 3 and the air gap 4 form a magnetic circuit for the magnetic flux generated by the permanent magnet 3, wherein the air gap 4 in comparison with the magnetic body 2, 3 represents an area with increased magnetic resistance.
  • a moving part 5 projects, which is composed of a coil 6 and a locking body 7.
  • the coil 6 has a non-conductive coil carrier, for example made of plastic, which is wrapped with contacting and mutually outwardly insulated conductor.
  • a lifting movement is provided, which can be used as a drive movement, for example, for the interrupter unit in a power switchgear in the medium voltage range.
  • the magnetic resistance of the magnetic circuit is lowered.
  • the air gap 4 is bridged by the locking body 7. If the locking body 7 completely engages the soft-magnetic yoke 2, a closed magnetic flux is made possible exclusively via substances which have a high permeability and thus a low magnetic resistance. This state is thus energetic with respect to a magnetic circuit Air gap favors. A displacement of the moving member 5 in a position in which the locking body 7 is spaced from the yoke 2, therefore counteracts a force gradient. The locking body 7 is locked to the yoke 2.
  • spring 8 is provided, which is for example designed as a helical spring and is supported on the one hand on the yoke 2 and on the other hand on the coil 6. If the locking body 7 on the yoke 2, the spring 8 is biased. By energizing the coil 6 with current, the permanent magnetic field generating the holding force is weakened so much that the spring 8 accelerates the moving part 5 out of the end position.
  • the spring 8 can also be used to generate a permanent pressure force for a moving contact of a vacuum interrupter at the stationary fixed contact, the moving contact via a suitable rod and lever assembly with the moving part 5 is mechanically connected to initiate the movement of the moving part in the moving contact ,
  • FIG. 2 shows a further embodiment of an electromagnetic drive according to the invention 1.
  • the yoke 2 consisting of two sections 2a and 2b two air gaps 4, wherein the moving part 5 extends with two coils 6 in each one of the air gaps 4 inside. In this way, the proportion of the Lorenz force to the force effect from the reduction of the magnetic resistance is increased.
  • FIG. 3 shows a further embodiment of the electromagnetic drive 1 according to the invention in a schematic representation.
  • the moving part 5 As in FIG. 1 is in the soft magnetic Yoke 2 only one air gap 4 is provided.
  • the moving part 5 Unlike the in FIG. 1 shown embodiment, the moving part 5, however, two locking body 7, which are arranged on both sides of the coil 6. The movement of the moving part 5 is therefore limited on both sides, so that two end positions are defined, in which one of the locking bodies 7 rests against the soft-magnetic yoke 2 and the moving part 5 is in the locking position.
  • both locking body two springs 8 are provided, which are arranged opposite each other in the direction of movement of the Bewegteils 5 and are each supported with one of their ends on their associated locking body 7, whereas the other spring end is based on a fixedly provided with the yoke 2 abutment.
  • FIG. 4 shows how FIG. 2 An embodiment of the electromagnetic drive according to the invention, in which the soft magnetic yoke 2 is composed of two sections 2a and 2b and two air gaps 4 are formed.
  • the moving part 5 has two coil sections 6 which extend into one of the air gaps 4 in each case.
  • FIG. 2 has the moving part 5 according to FIG. 4 three locking body 7.
  • the moving member 5 is therefore 29iebar only between two end positions, in each of which two locking body 7 abut against the soft magnetic yoke 2, so that both air gaps 4 are bridged.
  • two compression springs 8 are provided, which face each other in the direction of movement of the moving part 5 and are supported on the one hand on the locking body 7 and on the other hand on a stationary abutment, not shown.
  • FIG. 4 is also shown schematically a vacuum switch 9, which is composed of a hollow cylindrical non-conductive ceramic portion 10 and metallic end faces 11 and 12.
  • the end face 11 is penetrated by a stationary fixed contact 13, which is arranged axially opposite to an axially movably guided moving contact 14.
  • the moving contact 14 is held by a conductive switching rod 15 which passes through a metallic bellows 16, through which the axial freedom of movement of the moving contact is provided.
  • a vacuum chamber 17 is formed in which a vacuum is applied.
  • the movement of the drive is introduced via a lever 19 and a transmission rod 20 made of non-conductive material in the vacuum switch, wherein the lever 19 is connected via schematically illustrated transmission means 21 to the drive 1.
  • a contact pressure spring is provided, which is arranged for example in the transmission rod 20.
  • FIG. 4 shows the vacuum switch 9 in an intermediate position.
  • the moving contact 14 contacts the fixed contact 13, so that a current flow is enabled.
  • the lowermost locking body 7 and the middle locking body 7 abuts against the yoke 2, so that the contact position of the vacuum switch 9 is locked.
  • the lifting of the moving contact 14 of the fixed contact 13 due to bottleneck forces is thus prevented.
  • the upper locking body 7 and the middle locking body 7, the latter In a disconnected position are the upper locking body 7 and the middle locking body 7, the latter, however, at the lower frame portion, on the yoke 2 at.
  • FIG. 5 shows a further embodiment of the electromagnetic drive according to the invention 1.
  • the electromagnetic drive 1 shown there comprises a magnetic body consisting of a soft magnetic yoke 2 and two permanent magnets 3, wherein the magnetic body is substantially frame-shaped and has two wedge-shaped projections facing each other 22 projections.
  • the projections 22 limit the air gap 4.
  • the moving part 5 is by means of a in FIG. 5 shaft not shown rotatably supported in the air gap 4 and provided with a trained as a winding conductor or, in other words, a coil 6, which is excitable here by only one phase of a rotary current.
  • the magnetic flux generated by the permanent magnet 3 selects the path of the least magnetic resistance and passes through the projections 22 and thus the moving part 5 and the coil 6. Due to the excitation of the coil 6 due to the Lorentz force to a rotational movement of the moving part 5 and on this way of generating a driving force for a vacuum interrupter of an electrical switchgear.
  • the opposing locking body 7 In a contact position of the switching contacts of the vacuum interrupter, the opposing locking body 7 abut against the projections 22, so that the magnetic flux, the projections 22, the locking body 7 and the moving part 5 passes through.
  • the locking body 7 are made of a ferromagnetic material, so that the magnetic resistance is reduced because of the bridging of the air gap 4. The end positions of the electromagnetic drive 1 are therefore locked by the reluctance force.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

According to the invention, an electromagnetic actuator (1) for a switch, operating in the medium voltage range, comprising at least one magnet body (2, 3), defining an air gap, a moving body (5), arranged in the air gap (4), guided to move relative to the magnet body (2, 3), at least one permanent magnet and at least one conductor (6), through which a current may flow, whereby the conductor(s) (6) extend(s) at least partly into a magnetic field generated by the permanent magnets on a movement of the moving body (5), may be produced such as to be able to be fixed in the end positions thereof in a simple manner, whereby the moving body (5) is fixed to at least one soft-magnetic locking body (7) and the magnetic field generated by the permanent magnet(s) (3) flows through the locking body (7) in an end position of the moving body (5) in which the air gap (4) for the magnetic field is bridged by the locking body (7).

Description

Die Erfindung betrifft einen Elektromagnetischer Antrieb für einen Schalter, insbesondere im Bereich der Mittelspannungstechnik, mit wenigstens einem Magnetkörper, der einen Luftspalt begrenzt, einem in dem Luftspalt angeordneten dem Magnetkörper gegenüber beweglich geführten Bewegteil, wenigstens einem Permanentmagneten und wenigstens einem mit Strom beaufschlagbaren Leiter, der zumindest teilweise in dem Luftspalt angeordnet ist, wobei sich der oder die Leiter bei einer Bewegung des Bewegteils zumindest teilweise in einem von dem oder von den Permanentmagneten erzeugten magnetischen Fluss erstreckt/erstrecken.The invention relates to an electromagnetic drive for a switch, in particular in the field of medium voltage technology, with at least one magnetic body which defines an air gap, arranged in the air gap the magnet body movably guided moving part, at least one permanent magnet and at least one conductor can be acted upon with electricity is at least partially disposed in the air gap, wherein the one or more conductors extend at a movement of the moving part at least partially in a magnetic flux generated by the or from the permanent magnets / extend.

Ein solcher elektromagnetischer Antrieb ist beispielsweise aus der DE 198 15 538 A1 bekannt. Der dort offenbarte Antrieb weist einen Drehstromlinearmotor auf, der aus mehreren Motormodulen zusammengesetzt ist. Das Motormodul weist eine bestimmte Anzahl von feststehenden Motorspulen sowie diesbezüglich längsbeweglich geführte Bewegteile mit Permanentmagneten auf. Durch die Erregung der Motorspulen entsteht ein magnetisches Feld, in dem die Permanentmagnete des Bewegteils angeordnet sind. Aufgrund der erzeugten Lorenzkraft kommt es zu einer Antriebsbewegung des Bewegteils, das über eine Schaltstange mit dem Bewegkontakt eines Schalters verbunden ist. Zum Einschalten des Vakuumschalters wird der Bewegkontakt durch den Drehstromlinearmotor gegen einen feststehenden Kontakt des Schalters gepresst, wobei das Bewegteil eine Endlage erreicht.Such an electromagnetic drive is for example from the DE 198 15 538 A1 known. The disclosed there drive has a three-phase linear motor, which is composed of several motor modules. The motor module has a certain number of fixed motor coils and in this regard longitudinally movably guided moving parts with permanent magnets. The excitation of the motor coils creates a magnetic field in which the permanent magnets of the moving part are arranged. Due to the Lorenzkraft generated, there is a drive movement of the moving part, which is connected via a switching rod with the moving contact of a switch. To switch on the vacuum switch, the moving contact is pressed by the three-phase linear motor against a fixed contact of the switch, wherein the moving part reaches an end position.

Aus der WO 95/07542 ist ein elektromagnetischer Antrieb bekannt, der ein rahmenförmig geschlossen verlaufenes Joch aus weichmagnetischem Material aufweist, das zur Vermeidung von Wirbelströmen aus Lamellen stapelweise zusammengesetzt ist. Das Joch bildet einen Hohlraum aus, in dem ein aus weichmagnetischem Material bestehender Anker zwischen zwei Endlagen beweglich geführt ist. In jeder Endlage kontaktiert der Anker mit einer seiner Stirnseiten das weichmagnetische Joch, wobei zwischen der anderen, der Kontaktstelle gegenüberliegenden Stirnseite des Ankers und dem geschlossen umlaufenden Joch ein Luftspalt definiert ist. In dem Hohlraum des Joches sind ferner zwei Spulen befestigt, die jeweils eine der Stirnseiten des Ankers umgeben. Zwischen den Spulen sind Permanentmagnete zur Erzeugung eines magnetischen Flusses vorgesehen. Aufgrund des Luftspaltes bleibt der Anker in der jeweiligen Endlage fixiert. Durch die Erregung der Spule, welche die luftspaltenseitige Stirnseite umschließt, wird in dem Luftspalt ein so hoher magnetischer Fluss erzeugt, dass zur Verringerung des magnetischen Widerstandes der Anker vom Joch abgerissen und unter Schließung des Luftspaltes in seine zweite stabile Endlage überführt wird, in der er mit seiner anderen Stirnseite, die zuvor den Luftspalt begrenzte, an dem Joch anliegt. Der Erregerstrom der Spule kann nunmehr unterbrochen werden, da der Anker auch in dieser Endlage fixiert ist.From the WO 95/07542 is known an electromagnetic drive, which is a frame-shaped closed yoke having soft magnetic material which is stacked to avoid eddy currents from lamellae. The yoke forms a cavity in which an existing of soft magnetic material anchor is movably guided between two end positions. In each end position, the armature contacts the soft-magnetic yoke with one of its end faces, an air gap being defined between the other end face of the armature opposite the contact point and the closed circumferential yoke. In the cavity of the yoke further two coils are fixed, each surrounding one of the end faces of the armature. Between the coils permanent magnets for generating a magnetic flux are provided. Due to the air gap, the anchor remains fixed in the respective end position. Due to the excitation of the coil, which encloses the air-gap side end, in the air gap, a high magnetic flux is generated that demolished to reduce the magnetic resistance of the armature yoke and is transferred with closure of the air gap in its second stable end position in which he with its other end face, which previously limited the air gap, rests against the yoke. The exciting current of the coil can now be interrupted, since the armature is fixed in this end position.

Die beiden zuvor beschriebenen vorbekannten Magnetantriebe fußen auf unterschiedlichen physikalischen Effekten. Der elektromagnetische Antrieb gemäß der DE 198 15 538 A1 nutzt zur Erzeugung der Antriebswirkung die sogenannte Lorentz-kraft, die bei Bewegung geladener Teilchen in einem Magnetfeld entsteht. Die Wirkung eines elektromagnetischen Antriebes gemäß der WO 95/07542 ist auf den physikalischen Effekt zurückzuführen, dass sich ein magnetisches Feld bevorzugt in einem Material mit einer hohen magnetischen Permeabilität oder, mit anderen Worten, in einem Material mit einem geringen magnetischen Widerstand ausbreitet. Durch die Verschiebung des Ankers wird das Gesamtsystem von einem energetisch ungünstigen Zustand mit einem hohen magnetischen Potential in einen energetisch günstigeren Zustand überführt, in dem ein Luftspalt geschlossen ist und der magnetische Fluss nahezu ausschließlich ein Material mit geringem magnetischen Widerstand durchsetzt. Die Kraft zur Überführung des Systems in den energetisch günstigen Zustand ergibt sich durch Gradientenbildung. Antriebe, die auf einem solchen Effekt basieren, werden auch Reluktanzantriebe genannt.The two prior art magnetic drives described above are based on different physical effects. The electromagnetic drive according to the DE 198 15 538 A1 uses the so-called Lorentz force to generate the driving effect, which arises when moving charged particles in a magnetic field. The effect of an electromagnetic drive according to the WO 95/07542 is due to the physical effect that a magnetic field preferably in a material with a high magnetic permeability or, in other words, propagates in a material having a low magnetic resistance. As a result of the displacement of the armature, the entire system is converted from an energetically unfavorable state with a high magnetic potential into an energetically more favorable state in which an air gap is closed and the magnetic flux passes almost exclusively through a material with low magnetic resistance. The power to transfer the system into the energetically favorable state results from the formation of gradients. Drives based on such an effect are also called reluctance drives.

Elektromagnetische Antriebe, die auf der Lorenzkraft basieren, weisen eine hohe Dynamik auf und können darüber hinaus auf einfache Art und Weise, nämlich über den durch das Magnetfeld geführten Strom, gesteuert werden. Nachteilig ist jedoch, dass diese Antriebe keine stabilen Endlagen oder Zwischenstellungen einnehmen, sondern erforderlichenfalls durch zusätzliche Mittel in den jeweils vorgesehenen Endlagen fixiert werden müssen. Hierzu werden üblicherweise Federn, Klinken oder dergleichen eingesetzt, deren Kraftwirkung nur mit Aufwand aufzuheben ist. Reluktanzantriebe zeichnen sich in der Regel durch eine stabile Endlagenfixierung aus. Ihnen haftet jedoch der Nachteil einer stark unlinearen Weg-Kraft-Kennlinie an, die entweder nur schwer oder aber zu Lasten der Haltekraft in den Endlagen oder zu Lasten des Bauraumes beeinflusst werden kann.Electromagnetic actuators based on the Lorentz force have a high dynamic and can moreover be controlled in a simple manner, namely via the current conducted through the magnetic field. The disadvantage, however, that these drives do not occupy stable end positions or intermediate positions, but if necessary, must be fixed by additional means in the respective intended end positions. For this purpose, springs, pawls or the like are usually used, the force effect is to be lifted only with effort. Reluctance drives are usually characterized by a stable end position fixation. However, they are liable to the disadvantage of a highly non-linear path-force curve, which can either be difficult or at the expense of the holding force in the end positions or at the expense of space can be influenced.

Aus der US 6,373,675 B1 ist ein weiterer Reluktanzantrieb bekannt. Der dort gezeigte elektromagnetische Antrieb weist einen einen Spalt begrenzenden Magnetkörper mit einem Permanentmagneten auf. In einer Trennstellung durchsetzt das Magnetfeld des Permanentmagneten einen Luftspalt, in den sich ein fest mit dem Bewegteil verbundener Verriegelungskörper erstreckt. In einer Kontaktstellung wird das Magnetfeld des Permanentmagneten über den Verriegelungskörper und das Bewegteil statt über den Luftspalt geführt, wobei jedoch ein neuer Magnetkreis ausgebildet wird. Auf dem Bewegteil ist ferner eine Spule angeordnet, das zum Schwächen des Magnetfelds des Permanentmagneten dient, so dass das Bewegteil zwischen Kontaktstellung und Trennstellung hin und her bewegt werden kann.From the US 6,373,675 B1 Another reluctance drive is known. The electromagnetic drive shown there has a gap limiting magnetic body with a permanent magnet. In a disconnected position, the magnetic field of the permanent magnet passes through an air gap into which a locking body connected fixedly to the moving part extends. In a contact position, the magnetic field of the permanent magnet is guided via the locking body and the moving part instead of over the air gap, wherein, however, a new magnetic circuit is formed. On the moving part, a coil is further arranged, which serves to weaken the magnetic field of the permanent magnet, so that the moving part between contact position and separation position can be moved back and forth.

In der EP 1 124 244 A2 ist wiederum ein Reluktanzantrieb offenbart, wobei wieder Elektromagneten zum Schwächen des Magnetfelds eines Permanentmagneten eingerichtet sind.In the EP 1 124 244 A2 In turn, a reluctance drive is disclosed, wherein again electromagnets are set up to weaken the magnetic field of a permanent magnet.

Aufgabe der Erfindung ist es, einen elektromagnetischen Antrieb der eingangs genannten Art bereitzustellen, der in seinen Endlagen auf einfache Art und Weise fixiert werden kann, wobei jedoch die einfache Steuerung der Antriebsbewegung erhalten bleibt.The object of the invention is to provide an electromagnetic drive of the type mentioned, which can be fixed in its end positions in a simple manner, but the simple control of the drive movement is maintained.

Die Erfindung löst diese Aufgabe dadurch, dass das Bewegteil fest mit wenigstens einem weichmagnetischen Verriegelungskörper verbunden ist und dass der von dem/den Permanentmagneten erzeugte magnetische Fluss den Verriegelungskörper in einer Endlage des Bewegteils durchsetzt, wobei der Luftspalt durch den Verriegelungskörper für den magnetischen Fluss überbrückt ist.The invention achieves this object by virtue of the fact that the moving part is fixedly connected to at least one soft-magnetic locking body and that the magnetic flux generated by the permanent magnet (s) passes through the locking body in an end position of the moving part, the air gap being bridged by the magnetic flux locking body ,

Der erfindungsgemäße elektromagnetische Antrieb macht sich sowohl die Lorenzkraft als auch die aus einer Herabsetzung des magnetischen Widerstandes resultierende Kraftwirkung oder mit anderen Worten die Reluktanzkraft zunutze. Dazu wird in zumindest einer Endlage durch den Verriegelungskörper ein Luftspalt überbrückt, der den magnetischen Widerstand für den magnetischen Fluss erhöht. Das Bewegteil hat somit einen energetisch günstigen Zustand eingenommen. Nach dem Ablösen des Verriegelungskörpers aus seiner Endlage ist der magnetische Fluss gezwungen, über den in dem Magnetkörper vorgesehenen Luftspalt oder aber über zwischen dem Magnetkörper und dem Verriegelungskörper ausgebildete und sich vergrößernde Luftspalte zu fließen, wodurch sich der magnetische Widerstand erhöht. Auf diese Weise ist im Hinblick auf die Endlage ein magnetisch ungünstigerer Zustand eingestellt. Es entsteht eine dem Ablösen entgegenwirkende Magnetkraft. Das Bewegteil ist über eine zweckmäßige Mechanik, beispielsweise Antriebsstangen und Kraftübertragungshebel, mit einem beweglichen Schaltkontakt eines Schalters, insbesondere eines Vakuumschalters, verbindbar. Dabei ist in einer Endlage des Antriebes der bewegliche Schaltkontakt fest im Kontakt mit einem ortsfesten Kontaktstück des Schalters.The electromagnetic drive according to the invention makes use of both the Lorentz force and the force effect resulting from a reduction of the magnetic resistance or, in other words, the reluctance force. For this purpose, an air gap is bridged in at least one end position by the locking body, which increases the magnetic resistance for the magnetic flux. The moving part has thus taken an energetically favorable state. After detaching the locking body from its end position, the magnetic flux is forced to flow over the air gap provided in the magnetic body or via air gaps formed and enlarged between the magnetic body and the locking body, thereby increasing the magnetic resistance. In this way, a magnetically unfavorable state is set with regard to the end position. The result is a counteracting the detachment magnetic force. The moving part can be connected via a suitable mechanism, such as drive rods and power transmission lever, with a movable switching contact of a switch, in particular a vacuum switch. In this case, in an end position of the drive, the movable switching contact is firmly in contact with a fixed contact piece of the switch.

Bei einem Stromfluss über die Kontakte des Schalters werden durch die sich an den Kontakten ausbildenden Engstellen einander abstoßende Kräfte erzeugt. Durch die Verriegelung der Endlage des Antriebs ist ein Abheben der Kontakte voneinander und damit die Ausbildung eines energiereichen Lichtbogens, insbesondere im Kurzschlussfall, vermieden.When a current flows through the contacts of the switch, mutually repulsive forces are generated by the constrictions forming at the contacts. By locking the end position of the drive is a lifting of the contacts from each other and thus the formation of a high-energy arc, especially in the event of short circuit, avoided.

Die auf die Verringerung des magnetischen Widerstandes für den magnetischen Fluss beruhende Kraftwirkung weist eine stark nichtlineare Charakteristik auf, da bei kleinen Abständen des Verriegelungskörpers von dem Magnetkörper hohe Kräfte erzeugt werden. Bei mittleren Weglagen, in denen der Verriegelungskörper von dem Joch weiter beabstandet ist, erfolgt der Antrieb nahezu ausschließlich über Lorenzkräfte. Der erfindungsgemäße elektromagnetische Antrieb kann daher in den mittleren Weglagen des Bewegteils auf einfache Art und Weise, nämlich entweder über zweckmäßige Speisung des Leiters mit Strom oder durch Änderung des elektromagnetisch mittels Spulen erzeugten magnetischen Flusses gesteuert werden. In den Endlagen ist jedoch gleichzeitig eine ausreichend hohe Verriegelungskraft bereitgestellt, um das Abheben eines beweglichen Schaltkontaktes von einem ortsfesten Gegenkontakt auch im Kurzschlussfall zu vermeiden.The force effect due to the reduction of the magnetic flux for the magnetic flux has a highly non-linear characteristic, since high forces are generated at small distances of the locking body from the magnetic body. In middle position, in which the locking body is further spaced from the yoke, the drive is almost exclusively Lorenzkräfte. The electromagnetic drive according to the invention can therefore be controlled in the middle positions of the moving part in a simple manner, namely either via appropriate power supply of the conductor or by changing the magnetic flux generated electromagnetically by means of coils. In the end positions, however, a sufficiently high locking force is provided at the same time in order to avoid the lifting of a movable switching contact from a stationary mating contact even in the event of a short circuit.

Dabei ist keineswegs notwendig, dass der Verriegelungskörper zur Überbrückung an den den Luftspalt begrenzenden Bereichen des oder der Magnetkörpers/er anliegt. Vielmehr kann der Verriegelungskörper auch mit einem geringen Abstand zu diesen Bereichen gehalten werden, so dass in diesen Fällen beispielsweise eine permanente Andruckskraft für den Schaltkontakt gegen den Festkontakt des Schalters erzeugbar ist. Wesentlich ist jedoch, dass der magnetische Widerstand in der Endlage gegenüber anderen möglichen Weglagen minimiert ist.In this case, it is by no means necessary for the locking body to bear against the areas of the magnetic body or the magnetic body delimiting the air gap. Rather, the locking body can be held with a small distance to these areas, so that in these cases, for example, a permanent Andruckskraft for the switching contact against the fixed contact of the switch can be generated. It is essential, however, that the magnetic resistance in the end position is minimized compared to other possible paths.

An dem Bewegteil sind beispielsweise Permanentmagnete befestigt, wobei der von ihnen und möglicherweise auch der von dem Leiter erzeugte magnetische Fluss in einer Endstellung des Verriegelungskörpers teilweise über den Verriegelungskörper fließt, so dass der Widerstand des gesamten Magnetkreises in der Endstellung minimiert ist.For example, permanent magnets are attached to the moving part, and the magnetic flux generated by them and possibly also the conductor generated by the conductor partially flows over the locking body in an end position of the locking body, so that the resistance of the entire magnetic circuit in the end position is minimized.

Abweichend davon weist das Bewegteil wenigstens eine Spule mit einem Träger auf, der von dem Leiter umwickelt ist, wobei jeder Verriegelungskörper mit einer Stirnseite der Spule verbunden ist. Gemäß dieser zweckmäßigen Weiterentwicklung der Erfindung ist der elektromagnetische Antrieb ein Hubantrieb, wobei der Hub des elektromagnetischen Antriebes der Länge der Spule oder Spulen im Wesentlichen entspricht. Die Verriegelungskörper können einseitig oder beidseitig einer Spule angeordnet sein. Weist das Bewegteil beispielsweise zwei Verriegelungskörper und eine Spule auf, ist es in zwei Endlagen fixiert. Der Einfluss des Verriegelungskörpers auf die Kraft-Weg-Kennlinie des Antriebes ist gegenüber der Variante mit einem Verriegelungskörper erhöht.Deviating from this, the moving part has at least one coil with a carrier, which is wrapped by the conductor, wherein each locking body is connected to an end face of the coil. According to this expedient development of the invention, the electromagnetic drive is a lifting drive, wherein the stroke of the electromagnetic drive corresponds to the length of the coil or coils substantially. The locking body may be arranged on one side or on both sides of a coil. If the moving part has, for example, two locking bodies and a coil, it is fixed in two end positions. The influence of the locking body on the force-displacement characteristic of the drive is increased compared to the variant with a locking body.

Gemäß einer weiteren vorteilhaften Weiterentwicklung umfasst der Magnetkörper neben dem oder den Permanentmagneten ein weichmagnetisches Joch, wobei der von jedem Permanentmagneten erzeugte magnetische Fluss das Joch durchsetzt. Die Verwendung eines Joches zum Führen des magnetischen Flusses hilft Kosten zu senken, da der Luftspalt nicht in einen großen und damit kostenträchtigen Permanentmagneten eingebracht werden muss. Vielmehr reicht die Verwendung eines kleineren Permanentmagneten aus. Das Joch ist vorteilhafterweise ringförmig oder rahmenförmig ausgebildet, wobei durch den beispielsweise rechteckigen Rahmen ein Magnetkreis ausgebildet ist, der lediglich durch einen den Rahmenverlauf unterbrechenden Luftspalt unterbrochen ist. Zur Vermeidung von Wirbelströmen ist das Joch aus Lamellen stapelweise zusammengesetzt. Der Magnetkörper und damit der oder die Permanentmagnete sind bezüglich des Bewegteils ortsfest. Da das Bewegteil bei der Erzeugung der Antriebsbewegung in den Luftspalt eintaucht wird diese Weiterentwicklung der Erfindung auch als ein auf dem Tauchspulenprinzip basierender Antrieb bezeichnet. Ein solcher Antrieb kommt gegenüber Antrieben nach dem Drehstrom-Linearmotorenprinzip mit einer Gleichspannung aus, die aus nur einer Phase eines Drehstromnetzes gewonnen werden kann.According to a further advantageous development of the magnetic body comprises in addition to the permanent magnet or magnets, a soft magnetic yoke, wherein the magnetic flux generated by each permanent magnet passes through the yoke. The use of a yoke to guide the magnetic flux helps to reduce costs because the air gap does not have to be placed in a large and therefore expensive permanent magnet. Rather, the use of a smaller permanent magnet is sufficient. The yoke is advantageously annular or frame-shaped, wherein by the example rectangular frame, a magnetic circuit is formed, the only is interrupted by an interrupting the frame course air gap. To avoid eddy currents, the yoke is composed of lamellae in batches. The magnetic body and thus the one or more permanent magnets are stationary with respect to the moving part. Since the moving part immersed in the generation of the drive movement in the air gap, this development of the invention is also referred to as a drive based on the Tauchspulenprinzip. Such a drive is compared to drives on the three-phase linear motor principle with a DC voltage, which can be obtained from only one phase of a three-phase network.

In einem bevorzugten Ausführungsbeispiel liegt jeder Verriegelungskörper in der ihm zugeordneten Endlage an dem weichmagnetischen Joch an. Ein Luftspalt zwischen dem Verriegelungskörper und dem Magnetkörper in der Endlage ist somit vermieden. Der Magnetfluss geht von dem Magnetkörper direkt in den Verriegelungskörper über, wodurch der magnetische Widerstand des Magnetkreises minimiert ist. Das Bewegteil ist in der Endlage somit besonders fest verriegelt.In a preferred embodiment, each locking body abuts in the end position associated with it on the soft magnetic yoke. An air gap between the locking body and the magnetic body in the end position is thus avoided. The magnetic flux passes from the magnetic body directly into the locking body, whereby the magnetic resistance of the magnetic circuit is minimized. The moving part is thus firmly locked in the end position.

Vorteilhafterweise ist zum Ablösen des Bewegteils aus seiner Endlage eine Feder vorgesehen. Die Haltekraft in der jeweiligen Endlage kann durch ein geeignetes Bestromen der Spule reduziert oder sogar aufgehoben werden. Die Feder unterstützt jedoch das Ablösen des Bewegteils aus der Endlage. Als Federn eignen sich beispielsweise Druckfedern, die an einem ortsfesten Widerlager einerseits, sowie an dem von der Spule abgewandten Ende des Verriegelungskörpers abgestützt sind.Advantageously, a spring is provided for detaching the moving part from its end position. The holding force in the respective end position can be reduced or even eliminated by a suitable energizing of the coil. However, the spring supports the detachment of the moving part from the end position. Suitable springs are, for example, compression springs, which are supported on a stationary abutment on the one hand, as well as on the end facing away from the coil of the locking body.

Bei einer abweichenden Weiterentwicklung der Erfindung ist das Bewegteil auf einer Welle gelagert und rotierbar, wobei jeder Verriegelungskörper in einer Endlage an mit dem Magnetkörper verbundenen Anschlägen anliegt. Bei dieser erfindungsgemäßen Weiterentwicklung ist der elektromagnetische Antrieb kein Linearmotor, sondern erzeugt eine Drehbewegung, die über die Welle also in Form einer Drehbewegung nach außen getragen wird. Gemäß dieser Weiterentwicklung kann der Magnetkörper Elektromagnete aufweisen, die ein magnetisches Wanderfeld erzeugen.In a different development of the invention, the moving part is mounted on a shaft and rotatable, each locking body in an end position with with the magnetic body connected attacks. In this development according to the invention, the electromagnetic drive is not a linear motor, but generates a rotational movement, which is thus carried over the shaft in the form of a rotational movement to the outside. According to this further development, the magnetic body may comprise electromagnets which generate a traveling magnetic field.

Bevorzugt weist der Magnetkörper jedoch ein Joch mit einem Permanentmagneten auf, wobei der von dem Permanentmagneten erzeugte magnetische Fluss die in dem Magnetkörper ausgebildete Ausnehmung oder, mit anderen Worten, den Luftspalt durchsetzt. Das Bewegteil ist im Wesentlichen passend zu dem hohlzylindrischen Luftspalt ausgebildet und in diesem drehbar mittels der Welle gelagert. Durch Erregung des Leiters des Bewegteils wird eine Drehbewegung erzeugt. Der Leiter kann beispielsweise als Wicklung ausgebildet sein, die von einer Stromphase gespeist ist. Der Leiter kann jedoch auch durch mehrere Wicklungen realisiert sein, die von mehreren Stromphasen erregt werden, so dass ein Wanderfeld entsteht. Die Endlagen werden durch die Positionierung von zwei Anschlägen definiert, die fest mit dem Magnetkörper verbunden sind. Im Endlagenbereich schlägt der beispielsweise stabförmig ausgebildete Verriegelungskörper mit seinen gegenüberliegenden Endbereichen an die Anschläge an, so dass in der Endlage eine Überbrückung der Anschläge durch den Verriegelungskörper bereitgestellt ist. Der magnetische Fluss ist nun nicht mehr gezwungen, den Luftspalt zu durchsetzen, sondern gelangt gegen geringeren magnetischen Widerstand über den Verriegelungskörper von einem Anschlag zum anderen.However, the magnetic body preferably has a yoke with a permanent magnet, wherein the magnetic flux generated by the permanent magnet intersperses the recess formed in the magnetic body or, in other words, the air gap. The moving part is formed substantially matching the hollow cylindrical air gap and rotatably supported therein by means of the shaft. By energizing the head of the moving part, a rotational movement is generated. The conductor may for example be formed as a winding which is fed by a current phase. However, the conductor can also be realized by a plurality of windings, which are energized by a plurality of current phases, so that a traveling field is formed. The end positions are defined by the positioning of two stops, which are firmly connected to the magnetic body. In the end position range, for example, the rod-shaped locking body strikes with its opposite end portions of the stops, so that in the end position, a bridging of the stops is provided by the locking body. The magnetic flux is no longer forced to pass through the air gap, but passes against lower magnetic resistance across the locking body from one stop to another.

Zweckmäßigerweise ist das Bewegteil rotationssymmetrisch und der Leiter als wenigstens eine Wicklung auf dem Bewegteil ausgebildet.Conveniently, the moving part is rotationally symmetrical and the conductor is designed as at least one winding on the moving part.

Weitere zweckmäßige Ausgestaltungen und Vorteile der Erfindung sind Gegenstand der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezug auf die Figuren der Zeichnung, wobei sich entsprechende Bauteile mit dem gleichen Bezugszeichen versehen sind und

Figur 1
ein Ausführungsbeispiel des erfindungsgemäßen elektromagnetischen Antriebes in einer schematischen Darstellung,
Figur 2
ein weiteres Ausführungsbeispiel eines erfindungsgemäßen elektromagnetischen Antriebes in einer schematischen Darstellung,
Figur 3
ein weiteres Ausführungsbeispiel des erfindungsgemäßen elektromagnetischen Antriebes in einer schematischen Darstellung und
Figur 4
ein weiteres Ausführungsbeispiel des erfindungsgemäßen elektromagnetischen Antriebes in einer schematischen Darstellung und
Figur 5
ein weiteres Ausführungsbeispiel des erfindungsgemäßen elektromagnetischen Antriebes in einer schematischen Darstellung zeigen.
Further expedient embodiments and advantages of the invention are the subject of the following description of embodiments with reference to the figures of the drawing, wherein corresponding components are provided with the same reference numerals and
FIG. 1
An embodiment of the electromagnetic drive according to the invention in a schematic representation,
FIG. 2
a further embodiment of an electromagnetic drive according to the invention in a schematic representation,
FIG. 3
a further embodiment of the electromagnetic drive according to the invention in a schematic representation and
FIG. 4
a further embodiment of the electromagnetic drive according to the invention in a schematic representation and
FIG. 5
show a further embodiment of the electromagnetic drive according to the invention in a schematic representation.

Figur 1 zeigt ein Ausführungsbeispiel des erfindungsgemäßen elektromagnetischen Antriebes 1 in einer schematischen Darstellung. Der gezeigte elektromagnetische Antrieb weist einen aus einem Joch 2 sowie einem Permanentmagneten 3 bestehenden Magnetkörper auf, in dem ein Luftspalt 4 vorgesehen ist. Der Magnetkörper 2, 3 und der Luftspalt 4 bilden einen Magnetkreis für den vom Permanentmagneten 3 erzeugten magnetischen Fluss, wobei der Luftspalt 4 im Vergleich mit dem Magnetkörper 2, 3 einen Bereich mit erhöhtem magnetischem Widerstand darstellt. In den von einem magnetischen Fluss oder Magnetfeld durchsetzten Luftspalt 4 ragt ein Bewegteil 5 hinein, das aus einer Spule 6 sowie einem Verriegelungskörper 7 zusammengesetzt ist. Die Spule 6 verfügt über einen nicht leitenden Spulenträger, beispielsweise aus Kunststoff, der mit sich berührenden und gegeneinander nach außen isolierten Leiter umwickelt ist. Der in den Luftspalt 4 hineinragende Abschnitt der Spule 6 ist dem von dem Permanentmagneten 3 erzeugten magnetischen Fluss ausgesetzt, so dass durch Erregung der Spule mit Strom eine Lorenzkraft erzeugt wird, die je nach Stromrichtung das Bewegteil 5 in den Luftspalt 4 hinein oder aus diesem heraus bewegt. Auf diese Weise wird eine Hubbewegung bereitgestellt, die als Antriebsbewegung beispielsweise für die Unterbrechereinheit in einer Leistungsschaltanlage im Mittelspannungsbereich einsetzbar ist. FIG. 1 shows an embodiment of the electromagnetic drive 1 according to the invention in a schematic representation. The electromagnetic drive shown has a consisting of a yoke 2 and a permanent magnet 3 existing magnetic body in which an air gap 4 is provided. The magnetic body 2, 3 and the air gap 4 form a magnetic circuit for the magnetic flux generated by the permanent magnet 3, wherein the air gap 4 in comparison with the magnetic body 2, 3 represents an area with increased magnetic resistance. In the air gap 4 penetrated by a magnetic flux or magnetic field, a moving part 5 projects, which is composed of a coil 6 and a locking body 7. The coil 6 has a non-conductive coil carrier, for example made of plastic, which is wrapped with contacting and mutually outwardly insulated conductor. The projecting into the air gap 4 portion of the coil 6 is exposed to the magnetic flux generated by the permanent magnet 3, so that a Lorenzkraft is generated by energizing the coil with current, depending on the current direction of the moving part 5 in the air gap 4 into or out of this emotional. In this way, a lifting movement is provided, which can be used as a drive movement, for example, for the interrupter unit in a power switchgear in the medium voltage range.

Wird das Bewegteil 5 aufgrund der Lorenzkraft in den Luftspalt 4 hineingezogen und ist der doppelte Abstand zwischen dem Verriegelungskörper 7 und dem Joch 2 geringer als der Durchmesser des Luftspaltes 4, wird der magnetische Widerstand des Magnetkreises abgesenkt. Der Luftspalt 4 wird durch den Verriegelungskörper 7 überbrückt. Liegt der Verriegelungskörper 7 vollständig an dem weichmagnetischen Joch 2 an, ist ein geschlossener magnetischer Fluss ausschließlich über Stoffe ermöglicht, die eine hohe Permeabilität und somit einen geringen magnetischen Widerstand aufweisen. Dieser Zustand ist somit energetisch gegenüber einem Magnetkreis mit Luftspalt begünstigt. Einer Verschiebung des Bewegteils 5 in eine Stellung, in der der Verriegelungskörper 7 von dem Joch 2 beabstandet ist, wirkt daher ein Kraftgradient entgegen. Der Verriegelungskörpers 7 ist an dem Joch 2 verriegelt.If the moving part 5 is drawn into the air gap 4 due to the Lorenz force and twice the distance between the locking body 7 and the yoke 2 is less than the diameter of the air gap 4, the magnetic resistance of the magnetic circuit is lowered. The air gap 4 is bridged by the locking body 7. If the locking body 7 completely engages the soft-magnetic yoke 2, a closed magnetic flux is made possible exclusively via substances which have a high permeability and thus a low magnetic resistance. This state is thus energetic with respect to a magnetic circuit Air gap favors. A displacement of the moving member 5 in a position in which the locking body 7 is spaced from the yoke 2, therefore counteracts a force gradient. The locking body 7 is locked to the yoke 2.

Zum Abreißen des Verriegelungskörpers 7 vom Joch 2 ist eine in Figur 1 nur schematisch dargestellte Feder 8 vorgesehen, die beispielsweise als Schraubenfeder ausgebildet ist und sich einerseits am Joch 2 und andererseits an der Spule 6 abstützt. Liegt der Verriegelungskörper 7 am Joch 2 an, ist die Feder 8 vorgespannt. Durch Speisen der Spule 6 mit Strom wird das die Haltekraft erzeugende permanentmagnetische Feld so weit geschwächt, dass die Feder 8 das Bewegteil 5 aus der Endlage heraus beschleunigt. Die Feder 8 kann darüber hinaus zur Erzeugung einer permanenten Andruckkraft für einen Bewegkontakt einer Vakuumschaltröhre an deren ortsfesten Festkontakt eingesetzt werden, wobei der Bewegkontakt über eine zweckmäßige Stangen- und Hebelanordnung mit dem Bewegteil 5 mechanisch verbunden ist, um die Bewegung des Bewegteils in den Bewegkontakt einzuleiten.For tearing off the locking body 7 from the yoke 2 is an in FIG. 1 only schematically illustrated spring 8 is provided, which is for example designed as a helical spring and is supported on the one hand on the yoke 2 and on the other hand on the coil 6. If the locking body 7 on the yoke 2, the spring 8 is biased. By energizing the coil 6 with current, the permanent magnetic field generating the holding force is weakened so much that the spring 8 accelerates the moving part 5 out of the end position. The spring 8 can also be used to generate a permanent pressure force for a moving contact of a vacuum interrupter at the stationary fixed contact, the moving contact via a suitable rod and lever assembly with the moving part 5 is mechanically connected to initiate the movement of the moving part in the moving contact ,

Figur 2 zeigt ein weiteres Ausführungsbeispiel eines erfindungsgemäßen elektromagnetischen Antriebes 1. In dem gezeigten Ausführungsbeispiel weist das aus zwei Teilstücken 2a und 2b bestehende Joch 2 zwei Luftspalte 4 auf, wobei das Bewegteil 5 sich mit zwei Spulen 6 in jeweils einen der Luftspalte 4 hinein erstreckt. Auf diese Art und Weise ist der Anteil der Lorenzkraft gegenüber der Kraftwirkung aus der Herabsetzung des magnetischen Widerstandes erhöht. FIG. 2 shows a further embodiment of an electromagnetic drive according to the invention 1. In the illustrated embodiment, the yoke 2 consisting of two sections 2a and 2b two air gaps 4, wherein the moving part 5 extends with two coils 6 in each one of the air gaps 4 inside. In this way, the proportion of the Lorenz force to the force effect from the reduction of the magnetic resistance is increased.

Figur 3 zeigt ein weiteres Ausführungsbeispiel des erfindungsgemäßen elektromagnetischen Antriebes 1 in einer schematischen Darstellung. Wie in Figur 1 ist in dem weichmagnetischen Joch 2 nur ein Luftspalt 4 vorgesehen. Im Gegensatz zu dem in Figur 1 gezeigten Ausführungsbeispiel weist das Bewegteil 5 jedoch zwei Verriegelungskörper 7 auf, die beidseitig der Spule 6 angeordnet sind. Die Bewegung des Bewegteils 5 daher beidseitig begrenzt, so dass zwei Endlagen definiert sind, in denen einer der Verriegelungskörper 7 an dem weichmagnetischen Joch 2 anliegt und das Bewegteil 5 sich in der Verriegelungsstellung befindet. Zum Abreißen beider Verriegelungskörper sind zwei Federn 8 vorgesehen, die einander in Bewegungsrichtung des Bewegteils 5 gegenüberliegend angeordnet sind und jeweils mit einem ihrer Enden an dem ihnen zugeordneten Verriegelungskörper 7 abgestützt sind, wohingegen das andere Federende auf einem fest mit dem Joch 2 versehenen Widerlager fußt. FIG. 3 shows a further embodiment of the electromagnetic drive 1 according to the invention in a schematic representation. As in FIG. 1 is in the soft magnetic Yoke 2 only one air gap 4 is provided. Unlike the in FIG. 1 shown embodiment, the moving part 5, however, two locking body 7, which are arranged on both sides of the coil 6. The movement of the moving part 5 is therefore limited on both sides, so that two end positions are defined, in which one of the locking bodies 7 rests against the soft-magnetic yoke 2 and the moving part 5 is in the locking position. For tearing off both locking body two springs 8 are provided, which are arranged opposite each other in the direction of movement of the Bewegteils 5 and are each supported with one of their ends on their associated locking body 7, whereas the other spring end is based on a fixedly provided with the yoke 2 abutment.

Figur 4 zeigt wie Figur 2 ein Ausführungsbeispiel des erfindungsgemäßen elektromagnetischen Antriebes, bei dem das weichmagnetische Joch 2 aus zwei Teilstücken 2a und 2b zusammengesetzt ist und zwei Luftspalte 4 ausgebildet sind. Das Bewegteil 5 weist zwei Spulenabschnitte 6 auf, die sich in jeweils einen der Luftspalte 4 hinein erstrecken. Im Gegensatz zu Figur 2 weist das Bewegteil 5 gemäß Figur 4 drei Verriegelungskörper 7 auf. Das Bewegteil 5 ist daher nur zwischen zwei Endlagen verschiebar, in denen jeweils zwei Verriegelungskörper 7 an dem weichmagnetischen Joch 2 anliegen, so dass beide Luftspalte 4 überbrückt sind. Zum Abreißen der Verriegelungskörper 7 sind wiederum zwei Druckfedern 8 vorgesehen, die einander in Bewegungsrichtung des Bewegteils 5 gegenüberliegen und jeweils einerseits am Verriegelungskörper 7 und andererseits an einem ortsfesten nicht gezeigten Widerlager abgestützt sind. FIG. 4 shows how FIG. 2 An embodiment of the electromagnetic drive according to the invention, in which the soft magnetic yoke 2 is composed of two sections 2a and 2b and two air gaps 4 are formed. The moving part 5 has two coil sections 6 which extend into one of the air gaps 4 in each case. In contrast to FIG. 2 has the moving part 5 according to FIG. 4 three locking body 7. The moving member 5 is therefore verschiebar only between two end positions, in each of which two locking body 7 abut against the soft magnetic yoke 2, so that both air gaps 4 are bridged. For tearing off the locking body 7, in turn, two compression springs 8 are provided, which face each other in the direction of movement of the moving part 5 and are supported on the one hand on the locking body 7 and on the other hand on a stationary abutment, not shown.

In Figur 4 ist ferner schematisch ein Vakuumschalter 9 dargestellt, der aus einem hohlzylindrischen nicht leitenden Keramikabschnitt 10 sowie aus metallischen Stirnseiten 11 und 12 zusammengesetzt ist. Die Stirnseite 11 wird von einem ortsfesten Festkontakt 13 durchgriffen, dem ein axial beweglich geführter Bewegkontakt 14 axial gegenüberliegend angeordnet ist. Der Bewegkontakt 14 ist von einer leitenden Schaltstange 15 gehalten, die einen metallischen Faltenbalg 16 durchgreift, durch den die axiale Bewegungsfreiheit des Bewegkontakts bereitgestellt ist. Zwischen dem Keramikabschnitt 10, den Stirnwandungen 11 und 12 sowie dem Metallfaltenbalg 16 ist eine Vakuumkammer 17 ausgebildet, in der ein Vakuum angelegt ist. Zum Stromanschluss dienen nur schematisch dargestellte Klemmen 18. Die Bewegung des Antriebs wird über einen Hebel 19 sowie eine aus nicht leitendem Material hergestellte Übertragungsstange 20 in den Vakuumschalter eingeleitet, wobei der Hebel 19 über schematisch dargestellte Übertragungsmittel 21 mit dem Antrieb 1 verbunden ist. Zur Erzeugung der notwendigen Andruckkraft für die Kontakte ist eine Kontaktandruckfeder vorgesehen, die beispielsweise in der Übertragungsstange 20 angeordnet ist.In FIG. 4 is also shown schematically a vacuum switch 9, which is composed of a hollow cylindrical non-conductive ceramic portion 10 and metallic end faces 11 and 12. The end face 11 is penetrated by a stationary fixed contact 13, which is arranged axially opposite to an axially movably guided moving contact 14. The moving contact 14 is held by a conductive switching rod 15 which passes through a metallic bellows 16, through which the axial freedom of movement of the moving contact is provided. Between the ceramic section 10, the end walls 11 and 12 and the metal bellows 16, a vacuum chamber 17 is formed in which a vacuum is applied. The movement of the drive is introduced via a lever 19 and a transmission rod 20 made of non-conductive material in the vacuum switch, wherein the lever 19 is connected via schematically illustrated transmission means 21 to the drive 1. To generate the necessary pressure force for the contacts a contact pressure spring is provided, which is arranged for example in the transmission rod 20.

Figur 4 zeigt den Vakuumschalter 9 in einer Zwischenstellung. In einer nicht gezeigten Kontaktstellung hingegen kontaktiert der Bewegkontakt 14 den Festkontakt 13, so dass ein Stromfluss ermöglicht ist. Dabei liegt der unterste Verriegelungskörper 7 sowie der mittlere Verriegelungskörper 7 an dem Joch 2 an, so dass die Kontaktstellung des Vakuumschalters 9 verriegelt ist. Das Abheben des Bewegkontaktes 14 von dem Festkontakt 13 aufgrund von Engstellenkräften ist somit verhindert. In einer Trennstellung liegen der obere Verriegelungskörper 7 und der mittlere Verriegelungskörper 7, letzterer jedoch am unteren Rahmenabschnitt, an dem Joch 2 an. FIG. 4 shows the vacuum switch 9 in an intermediate position. In a contact position, not shown, however, the moving contact 14 contacts the fixed contact 13, so that a current flow is enabled. In this case, the lowermost locking body 7 and the middle locking body 7 abuts against the yoke 2, so that the contact position of the vacuum switch 9 is locked. The lifting of the moving contact 14 of the fixed contact 13 due to bottleneck forces is thus prevented. In a disconnected position are the upper locking body 7 and the middle locking body 7, the latter, however, at the lower frame portion, on the yoke 2 at.

Bei den in Figur 3 und Figur 4 gezeigten Ausführungsbeispielen ist der Einfluss der Verriegelungskörper 7 und somit der Anteil der Reluktanzkraft gegenüber der Lorenzkraft erhöht.At the in FIG. 3 and FIG. 4 the embodiments shown, the influence of the locking body 7 and thus the proportion of the reluctance force against the Lorentz force is increased.

Figur 5 zeigt ein weiteres Ausführungsbeispiel des erfindungsgemäßen elektromagnetischen Antriebes 1. Der dort gezeigte elektromagnetische Antrieb 1 weist einen aus einem weichmagnetischen Joch 2 sowie zwei Permanentmagneten 3 bestehenden Magnetkörper auf, wobei der Magnetkörper im Wesentlichen rahmenförmig ausgebildet ist und zwei keilstumpfförmig aufeinander zuweisende Vorsprünge 22 aufweist. Die Vorsprünge 22 begrenzen den Luftspalt 4. Das Bewegteil 5 ist mittels einer in Figur 5 nicht gezeigten Welle in dem Luftspalt 4 drehbar gelagert und mit einem als Wicklung ausgebildeten Leiter oder, mit anderen Worten, einer Spule 6 versehen, die hier durch lediglich eine Phase eines Drehstroms erregbar ist. FIG. 5 shows a further embodiment of the electromagnetic drive according to the invention 1. The electromagnetic drive 1 shown there comprises a magnetic body consisting of a soft magnetic yoke 2 and two permanent magnets 3, wherein the magnetic body is substantially frame-shaped and has two wedge-shaped projections facing each other 22 projections. The projections 22 limit the air gap 4. The moving part 5 is by means of a in FIG. 5 shaft not shown rotatably supported in the air gap 4 and provided with a trained as a winding conductor or, in other words, a coil 6, which is excitable here by only one phase of a rotary current.

An dem Bewegteil 5 sind ferner zwei ebenfalls keilstumpfförmig ausgebildeten Verriegelungskörpern 7 vorgesehen, die an einander gegenüberliegenden Seiten des Bewegteils 5 fest mit diesem verbunden sind.At the moving part 5 also two likewise wedge-shaped locking bodies 7 are provided, which are connected on opposite sides of the moving part 5 fixed thereto.

Der von dem Permanentmagneten 3 erzeugte magnetische Fluss wählt den Weg des geringsten magnetischen Widerstandes und durchsetzt die Vorsprünge 22 und damit das Bewegteil 5 sowie die Spule 6. Durch Erregung der Spule 6 kommt es aufgrund der Lorentz-Kraft zu einer Drehbewegung des Bewegteils 5 und auf diese Weise zur Erzeugung einer Antriebskraft für eine Vakuumschaltröhre einer elektrischen Schaltanlage. In einer Kontaktstellung der Schaltkontakte der Vakuumschaltröhre liegen die einander gegenüberliegenden Verriegelungskörper 7 an den Vorsprüngen 22 an, so dass der magnetische Fluss die Vorsprünge 22, die Verriegelungskörper 7 sowie das Bewegteil 5 durchsetzt. Dabei sind die Verriegelungskörper 7 aus einem ferromagnetischen Material hergestellt, so dass der magnetische Widerstand wegen der Überbrückung des Luftspaltes 4 herabgesetzt ist. Die Endlagen des elektromagnetischen Antriebes 1 sind daher durch die Reluktanzkraft verriegelt.The magnetic flux generated by the permanent magnet 3 selects the path of the least magnetic resistance and passes through the projections 22 and thus the moving part 5 and the coil 6. Due to the excitation of the coil 6 due to the Lorentz force to a rotational movement of the moving part 5 and on this way of generating a driving force for a vacuum interrupter of an electrical switchgear. In a contact position of the switching contacts of the vacuum interrupter, the opposing locking body 7 abut against the projections 22, so that the magnetic flux, the projections 22, the locking body 7 and the moving part 5 passes through. In this case, the locking body 7 are made of a ferromagnetic material, so that the magnetic resistance is reduced because of the bridging of the air gap 4. The end positions of the electromagnetic drive 1 are therefore locked by the reluctance force.

Claims (7)

  1. Electromagnetic drive (1) for a switch, in particular in the medium-voltage sector, having at least one magnet body (2, 3) which delimits an air gap, a moving part (5) which is arranged in the air gap (4) and is guided such that it can move with respect to the magnet body (2, 3), at least one permanent magnet and at least one conductor (6) to which current can be supplied and which is arranged at least partially in the air gap, the conductor(s) (6) extending at least partially in a magnetic flux produced by the permanent magnet(s) in the event of a movement of the moving part (5),
    characterized in that
    the moving part (5) is fixedly connected to at least one soft-magnetic latching body (7), and in that the magnetic flux produced by the permanent magnet(s) (3) passes through the latching body (7) in an end position of the moving part (5), the air gap (4) being bridged by the latching body (7) for the magnetic flux.
  2. Electromagnetic drive (1) according to Claim 1,
    characterized in that
    the moving part (5) has at least one coil (6) having a former, which has the conductor wound around it, each latching body being connected to one end of the coil (6).
  3. Electromagnetic drive (1) according to Claim 1 or 2,
    characterized in that
    the magnet body comprises the permanent magnet(s) (3) and a soft-magnetic yoke (2), the magnetic flux produced by each permanent magnet (3) passing through the yoke (2).
  4. Electromagnetic drive (1) according to Claim 3,
    characterized in that
    each latching body (7) bears against the soft-magnetic yoke (2) in the end position associated with said latching body (7).
  5. Electromagnetic drive (1) according to one of the preceding claims,
    characterized in that
    at least one spring (8) is provided for the purpose of releasing the moving part (5) from an end position.
  6. Electromagnetic drive (1) according to Claim 1,
    characterized in that
    the moving part (5) is mounted on a shaft and can be rotated, and each latching body bears against stops, which are connected to the magnet body, in an end position of the moving part.
  7. Electromagnetic drive according to Claim 6,
    characterized in that
    the moving part (5) is designed to be rotationally symmetrical, and the conductor is in the form of at least one winding on the moving part (5).
EP03785595A 2002-12-19 2003-12-18 Electromagnetic actuator Expired - Fee Related EP1573766B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10261811 2002-12-19
DE10261811A DE10261811B4 (en) 2002-12-19 2002-12-19 Electromagnetic drive
PCT/DE2003/004205 WO2004057637A1 (en) 2002-12-19 2003-12-18 Electromagnetic actuator

Publications (2)

Publication Number Publication Date
EP1573766A1 EP1573766A1 (en) 2005-09-14
EP1573766B1 true EP1573766B1 (en) 2009-02-25

Family

ID=32519554

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03785595A Expired - Fee Related EP1573766B1 (en) 2002-12-19 2003-12-18 Electromagnetic actuator

Country Status (7)

Country Link
US (1) US20060049901A1 (en)
EP (1) EP1573766B1 (en)
JP (1) JP2006511047A (en)
CN (1) CN100334670C (en)
DE (2) DE10261811B4 (en)
RU (1) RU2322724C2 (en)
WO (1) WO2004057637A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877762B1 (en) * 2004-11-08 2007-07-13 Schneider Electric Ind Sas ELECTROMAGNETIC ACTUATOR WITH MOBILE COIL
DE202008015980U1 (en) * 2008-12-03 2010-04-29 Eto Magnetic Gmbh Electromagnetic actuator device
DE102011053289A1 (en) * 2011-09-06 2013-03-07 Contitech Vibration Control Gmbh actuator
CN103715009B (en) * 2013-12-12 2016-08-17 库柏爱迪生(平顶山)电子科技有限公司 A kind of bistable-state permanent magnet mechanism
KR101547029B1 (en) * 2013-12-27 2015-08-24 순천향대학교 산학협력단 Electro magnetic force driving device
KR101541226B1 (en) * 2013-12-27 2015-08-03 순천향대학교 산학협력단 Electro magnetic force driving device
US20180025824A1 (en) * 2015-02-01 2018-01-25 K.A. Advertising Solutions Ltd. Electromagnetic actuator
CN105129719B (en) * 2015-07-06 2017-02-01 中国科学院半导体研究所 Bidirectionally tandem MEMS actuator based on Lorentz force
JP6575343B2 (en) 2015-12-11 2019-09-18 オムロン株式会社 relay
JP6421745B2 (en) * 2015-12-11 2018-11-14 オムロン株式会社 relay
US10726985B2 (en) * 2018-03-22 2020-07-28 Schaeffler Technologies AG & Co. KG Multi-stage actuator assembly
FR3079341B1 (en) 2018-03-23 2023-01-27 Etna Ind ELECTROMECHANICAL ACTUATOR FOR A HIGH VOLTAGE ELECTRICAL INSTALLATION CIRCUIT BREAKER

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1019861A (en) * 1964-05-01 1966-02-09 Creed & Co Ltd Improvements in transducer arrangements
US4751487A (en) * 1987-03-16 1988-06-14 Deltrol Corp. Double acting permanent magnet latching solenoid
FR2625382A1 (en) * 1987-12-23 1989-06-30 Aerospatiale MAGNETIC LOCKED STOP
GB9318876D0 (en) * 1993-09-11 1993-10-27 Mckean Brian A bistable permanent magnet actuator for operation of circuit breakers
DE19815538A1 (en) * 1998-03-31 1999-10-07 Siemens Ag Drive devices for interrupter units of switching devices for energy supply and distribution
JP2000268683A (en) * 1999-01-14 2000-09-29 Toshiba Corp Operating device for switch
FR2793944B1 (en) * 1999-05-20 2001-07-13 Schneider Electric Ind Sa OPENING AND / OR CLOSING CONTROL DEVICE, PARTICULARLY FOR A BREAKING APPARATUS SUCH AS A CIRCUIT BREAKER, AND CIRCUIT BREAKER PROVIDED WITH SUCH A DEVICE
JP4223657B2 (en) * 2000-02-10 2009-02-12 株式会社東芝 Rotating operation mechanism of switch

Also Published As

Publication number Publication date
DE50311231D1 (en) 2009-04-09
DE10261811A1 (en) 2004-07-15
EP1573766A1 (en) 2005-09-14
CN1729548A (en) 2006-02-01
WO2004057637A1 (en) 2004-07-08
RU2322724C2 (en) 2008-04-20
RU2005122646A (en) 2006-02-10
DE10261811B4 (en) 2005-01-20
JP2006511047A (en) 2006-03-30
US20060049901A1 (en) 2006-03-09
CN100334670C (en) 2007-08-29

Similar Documents

Publication Publication Date Title
EP1843375B1 (en) Electromagnetic actuator for medium voltage circuit breaker
EP2686894B1 (en) Actuator
DE102011080065B4 (en) Electromagnetic linear actuator
DE4304921C1 (en) Bistable magnetic drive for an electrical switch
EP1573766B1 (en) Electromagnetic actuator
WO2007079767A1 (en) Method and device for operating a switching device
EP0898780B1 (en) Magnetically driven electric switch
DE19515322C2 (en) Drive device with an electric motor and a relay that switches the motor current
DE102012111851B4 (en) Electromagnetic actuator
DE10309697B3 (en) Magnetic linear drive
EP2885803B1 (en) Actuating device for a vacuum switching tube and separation arrangement
EP1132929B1 (en) Permanent magnetic drive for an electrical switching device
EP0796503A1 (en) Polarized relay
EP1671344B1 (en) Method for increasing current load capacity and for accelerating dynamic contact opening of power switches and associated switching device
EP1604445B1 (en) Magnetic linear drive
DE102011081893B3 (en) Magnetic actuator and method for its operation
EP1590822B1 (en) Electromagnetic drive for switching devices
EP1887594A2 (en) Drive for an electromechanical switch
DE102018216223B3 (en) Actuator and method for operating a high-voltage switch
DE19852530C1 (en) High voltage vacuum switch
DE10208703C1 (en) Magnetic drive for MV load switch has drive rod coupled to soft magnetic armature displaced parallel to magnetic field provided by stationary magnetic body
WO2005088659A2 (en) Breaker in particular a safety breaker for a battery/loom connection
EP3326190B1 (en) Magnet armature, contactor having a magnetic armature, and method for switching a contactor
DE10357001B4 (en) Magnetic linear actuator
DE202010013240U1 (en) Electromagnetic linear actuator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20061002

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50311231

Country of ref document: DE

Date of ref document: 20090409

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091126

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091218

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225