EP1597405A1 - Verfahren und einrichtung zum schmelztauch-beschichten von metallbändern, insbesondere von stahlbändern - Google Patents

Verfahren und einrichtung zum schmelztauch-beschichten von metallbändern, insbesondere von stahlbändern

Info

Publication number
EP1597405A1
EP1597405A1 EP04710805A EP04710805A EP1597405A1 EP 1597405 A1 EP1597405 A1 EP 1597405A1 EP 04710805 A EP04710805 A EP 04710805A EP 04710805 A EP04710805 A EP 04710805A EP 1597405 A1 EP1597405 A1 EP 1597405A1
Authority
EP
European Patent Office
Prior art keywords
field
correction
metal strip
coils
guide channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04710805A
Other languages
English (en)
French (fr)
Inventor
Holger Behrens
Rolf Brisberger
Bodo Falkenhahn
Hans-Georg Hartung
Bernhard Tenckhoff
Walter Trakowski
Michael Zielenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Demag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10312939A external-priority patent/DE10312939A1/de
Application filed by SMS Demag AG filed Critical SMS Demag AG
Publication of EP1597405A1 publication Critical patent/EP1597405A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/24Removing excess of molten coatings; Controlling or regulating the coating thickness using magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0036Crucibles
    • C23C2/00361Crucibles characterised by structures including means for immersing or extracting the substrate through confining wall area
    • C23C2/00362Details related to seals, e.g. magnetic means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes

Definitions

  • the invention relates to a method and a device for hot-dip coating of metal strips, in particular steel strips, which are passed obliquely or vertically from bottom to top through the liquid coating metal in a coating station and the coating thickness is checked after emerging, the thin metal tape, which tends to vibrate, is still sealed down in the liquid state of the coating at variable belt speed via an electromagnetic sealing field in the guide channel and is guided laterally against ferromagnetic attraction by a correction field.
  • the method for band stabilization described in the introduction can also be found in DE 195 35 854 C2.
  • the electromagnetic sealing field works there as an electromagnetic traveling field.
  • a controllable magnetic field superimposed on the modulation of the electromagnetic traveling field is applied in the region of the guide channel, the field strength and / or frequency of which can be set as a function of the sensor-detected strip position in the coating channel.
  • the device used for this purpose consists of pairs of magnetic coils, which are arranged one behind the other in the direction of tape travel. Additional coils are also provided around the guide channel.
  • the magnet coil pairs that can be controlled with regard to field strength and / or frequency can be adapted to different strip materials or strip thicknesses.
  • the method described above or the device cannot be used for very thin metal strips or for different bandwidths.
  • the invention has for its object to propose an electromagnetic seal together with a lateral ferromagnetic attraction for all currently known magnetic sealing fields.
  • one or more main coils generate a sealing field with their electromagnetic field and are designed as an electromagnetic traveling field, as a blocking field or as a pump field, and several correction fields are arranged in a selected configuration, their position and Number can be individually determined at least according to different width levels of the metal strip.
  • the advantage is the possibility of adapting to a large number of criteria, to which center deviations could previously arise due to the ferromagnetic attraction of the metal strip in the guide channel.
  • changed thickness, band waves such as, for example, center curvatures, quarterbuckles, crossbows, S-shapes and the like.
  • the main advantage is that a change in width in width steps can already be taken into account when designing the inductors, i.e. a number and the location of the correction fields are matched to a fixed metal bandwidth.
  • the expansion of the magnets can be taken into account by selecting the type of sealing using a traveling field, blocking field or pump field.
  • correction fields are distributed in position and number depending on a production program. Different metal strip widths can be coated using the same process.
  • the correction fields are controlled by separate power supply devices which are operated in phase and clock synchronism with the respective inductor.
  • Correction steps of the correction field compared to the main coil field will be simpler in that the correction fields are operated with direct current.
  • correction fields are operated locally within the sealing field in a field-strengthening or field-weakening manner.
  • the lateral position of the metal strip in the guide channel is queried via measuring coils, measurements being made within the correction fields and / or outside the Correction fields are carried out.
  • the device for hot-dip coating the metal strip is designed for a change in the width of the metal strip in such a way that the inductor has a sealing field with at least two opposing magnetic yoke surfaces with one or more main coils for an electromagnetic traveling field, a blocking field or a pump field and with a plurality of correction coils distributed in the magnetic yoke surface in a selected configuration, the number and position of which is determined in accordance with different widths and / or thicknesses of the metal strip.
  • the influences of the correction coils on the main coil field can be controlled for different bandwidths and / or thicknesses in that the correction coils are arranged in the corners of a polygon as a function of a production program.
  • correction coils are connected to separate power supply sources which are controlled in phase and clock synchronism with the respective main coils
  • the current position of the metal strip in the guide channel can also be recorded for changing speeds of the strip run by providing measuring coils inside and / or outside the correction coils for determining the current strip position within the guide channel.
  • a very precise measurement can be achieved by measuring the lateral position of the metal strip in the guide channel by means of non-contact measuring devices.
  • the correction coils can also be connected to a direct current source.
  • Fig. 3 shows the coating station with the system of the pump field
  • Fig. 4 is a front view of a sealing field with the main coil, the correction coils and the measuring coils.
  • the metal strip 1 is preheated out of an oven via deflection rollers as strip guides 2 at an angle or vertically upwards through the liquid coating metal 3 into a coating station 4.
  • the coating thickness 5 is checked in a stripping system 6.
  • the relatively thin metal strip 1 tends to vibrate, with fluctuations in the strip speed or strip speeds changed according to the selected dimensions while the coating 7 is still liquid, sealing the metal strip 1 downward via an electromagnetic sealing field 13 in the guide channel 8 and is guided laterally against ferromagnetic attraction by a correction field 14.
  • the desired constant central position of the metal strip 1 in the guide channel 8 represents an unstable equilibrium because of the action between magnetic field inductors 9 from two sides and directions. Only in the middle of the guide channel 8 is the sum of the magnetic attraction forces acting on the metal strip 1 Zero. As soon as the metal strip 1 is deflected from its central position, the distance to both inductors 9 changes. The metal strip 1 approaches one of the sealing fields 13 and moves away from the other. A solution to make the two magnetic fields of the inductors 9 so strong to rule out any displacement is ruled out because of the strong heating of the metal strip 1 associated therewith.
  • the central position of the metal strip 1 is now taken into account together with other criteria by generating a sealing field 13 in an inductor 9 with a main coil 9a and as an electromagnetic traveling field 10 (FIG. 1), as a blocking field 11 (FIG. 2) or as a pump field 12 (Fig. 3) selected.
  • Several correction fields 14 are arranged distributed in a selected configuration (FIG. 4), the position and number being individually determined at least according to different width levels of the metal strip 1. 4
  • the correction coils 14a can be arranged within the magnetic yoke surface 15, which is surrounded by the main coil 9a, in a triangular shape or, as drawn, as a polygon. In Fig. 4, both horizontal triangular shapes and vertical triangular shapes are formed.
  • the correction coils 14a or the correction fields 14 form the corners 17 of a polygon and the polygon 18 can represent a triangle, a square up to an n-corner.
  • the size of the correction coils 14a influences their position and distribution.
  • the distribution of the correction coils 14a or the correction fields 14 takes place in position and number in dependence on the selected metal strip width steps analogous to a production program.
  • the lateral or central position of the metal strip 1 in the guide channel 8 can be measured continuously using non-contact measuring devices.
  • the measuring coils 16 lie (FIG. 4) inside or outside the correction coils 14a, so that a measurement image is produced over the entire metal bandwidth. As a result, the anomalies of the metal strip shape or the position described above are detected.
  • the choice of the electromagnetic traveling field 10 or an electromagnetic blocking field 11 or an electromagnetic pump field 12 is made via the material parameters (strength, structural structure) of the metal strip 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Coating Apparatus (AREA)

Abstract

Ein Verfahren zum Schmelztauch-Beschichten von Metallband (1), insbesondere von Stahlband (1a), das durch eine Beschichtungsstation (4) hindurchgeführt wird, wobei das Metallband (1) mit Beschichtungsmetall (3) beschichtet wird, hält das Metallband (1) mittig in einem Führungskanal (8) in einem elektromagnetischen Abdichtfeld (13), das den Führungskanal (8) nach unten abdichtet und führt das Metallband (1) seitlich gegen ferromagnetische Anziehung durch ein Korrekturfeld (14). Um eine seitliche Abdichtung bei Verwendung beliebiger Abdichtfelder (13) passend auszuwählen, wird vorgeschlagen, dass das Abdichtfeld (13) als elektromagnetisches Wanderfeld (10), als Sperrfeld (11) oder als Pumpfeld (12) ausgeführt wird und mehrere Korrekturfelder (14) in einer ausgewählten Konfiguration verteilt angeordnet werden, deren Lage und Anzahl zumindest nach verschiedenen Breitenstufen des Metallbandes (1) individuell festgelegt werden.

Description

Verfahren und Einrichtung zum Schmelztauch-Beschichten von Metallbändern, insbesondere von Stahlbändern
Die Erfindung betrifft ein Verfahren und eine Einrichtung zum Schmelztauch-Beschichten von Metallbändern, insbesondere von Stahlbändern, die schräg oder vertikal von unten nach oben durch das flüssige Beschichtungsmetall hindurch in einer Beschichtungsstation geführt werden und nach dem Austreten die Be- schichtungsdicke kontrolliert wird, wobei das dünne, zu Schwingungen neigende Metallband noch im flüssigen Zustand der Beschichtung bei veränderlicher Bandgeschwindigkeit über ein elektromagnetisches Abdichtfeld im Führungskanal nach unten abgedichtet und seitlich gegen ferromagnetische Anziehung durch ein Korrekturfeld geführt wird.
Ein derartiges Verfahren und die zugehörige Einrichtung, insbesondere das elektromagnetische Abdichtfeld im Führungskanal, das nach unten abdichtet und seitlich gegen eine ferromagnetische Anziehung wirkt, ist ohne ein Korrekturfeld aus der EP 0 776 382 B1 bekannt.
Das eingangs bezeichnete Verfahren zur Bandstabilisierung ist außerdem aus der DE 195 35 854 C2 zu entnehmen. Das elektromagnetische Abdichtfeld arbeitet dort als elektromagnetisches Wanderfeld. Dabei ist im Bereich des Führungskanals ein der Aussteuerung des elektromagnetischen Wanderfeldes überlagertes steuerbares Magnetfeld aufgebracht, dessen Feldstärke und / oder Frequenz in Abhängigkeit von der sensorisch erfassten Bandlage im Beschich- tungskanal einstellbar ist. Die hierzu verwendete Einrichtung besteht allerdings aus Paaren von Magnetspulen, die in Bandlaufrichtung hintereinander angeordnet sind. Zusätzlich sind um den Führungskanal herum weitere Spulen vor- gesehen. Dadurch sind die hinsichtlich Feldstärke und / oder Frequenz steuerbaren Magnetspulenpaare an unterschiedliche Bandmaterialien oder Banddik- ken anzupassen. Das vorstehend beschriebene Verfahren oder die Einrichtung sind jedoch weder für sehr dünne Metallbänder noch für unterschiedliche Bandbreiten einsetzbar.
Der Erfindung liegt die Aufgabe zugrunde, eine elektromagnetische Abdichtung zusammen mit einer gegen seitliche ferromagnetische Anziehung für alle derzeit bekannten magnetischen Abdichtungsfelder vorzuschlagen.
Die gestellte Aufgabe wird erfindungsgemäß dadurch gelöst, dass in jeweils einem Induktor eine oder mehrere Hauptspulen mit ihrem elektromagnetischen Feld ein Abdichtfeld erzeugt und als elektromagnetisches Wanderfeld, als Sperrfeld oder als Pumpfeld ausgeführt wird und mehrere Korrekturfelder in einer ausgewählten Konfiguration verteilt angeordnet werden, deren Lage und Anzahl zumindest nach verschiedenen Breitenstufen des Metallbandes individuell festgelegt werden. Der Vorteil ist neben der Vermeidung des Einflusses der ferromagnetischen Anziehung eine Anpassungsmöglichkeit an eine Vielzahl von Kriterien, zu denen bisher Mittenabweichungen durch die ferromagnetische Anziehung des Metallbandes im Führungskanal entstehen konnten. Als Beispiele mögen genannt werden: veränderte Dicke, Bandwellen, wie bspw. Mittenwölbungen, Quarterbuckles, Crossbows, S-Formen u. dgl. Der Hauptvorteil ist jedoch, dass eine Breitenänderung in Breitenstufen schon bei der Konstruktion der Induktoren berücksichtigt werden können, d.h. eine Anzahl und die Lage der Korrekturfelder auf eine feste Metallbandbreite abgestimmt sind. Dabei können die Ausdehnung der Magnete durch Wahl der Abdichtungsart durch Wanderfeld, Sperrfeld oder Pumpfeld berücksichtigt werden.
Eine Ausgestaltung sieht vor, dass die Korrekturfelder in Lage und Anzahl in Abhängigkeit eines Produktionsprogrammes verteilt werden. Nach ein und demselben Verfahren können unterschiedliche Metallband-Breiten beschichtet werden. Zur günstigen Steuerung der Magnetfelder von Hauptspule und Korrekturspule ist auch vorteilhaft, dass die Korrekturfelder von getrennten Stromversorgungseinrichtungen angesteuert werden, die phasen- und taktsynchron mit dem jeweiligen Induktor betrieben werden.
Dabei werden Korrekturschritte des Korrekturfeldes gegenüber dem Hauptspulenfeld dadurch einfacher ablaufen, dass die Korrekturfelder mit Gleichstrom betrieben werden.
Eine weitere Maßnahme zur besseren Beeinflussung der Hauptfelder ist da- durch gegeben, dass die Korrekturfelder lokal innerhalb des Abdichtfeldes feldverstärkend oder feldschwächend betrieben werden.
Da das Bestimmen der momentanen Lage des Metallbandes im Führungskanal eine Voraussetzung für die Steuerung der Korrekturfelder ist, wird weiter vorge- schlagen, dass die seitliche Lage des Metallbandes im Führungskanal über Mess-Spulen abgefragt wird, wobei Messungen innerhalb der Korrekturfelder und / oder außerhalb der Korrekturfelder durchgeführt werden.
Es besteht dazu auch die Alternative, dass die seitliche Lage des Metallbandes im Führungskanal kontinuierlich über berührungslose Messverfahren, wie bspw. Laser-Strahlen, gemessen wird.
Die Einrichtung zur Schmelztauch-Beschichtung des Metallbandes, insbesondere des Stahlbandes, ist für einen Metallband-Breitenwechsel dahingehend ausgebildet, dass der Induktor jeweils zumindest an zwei gegenüberliegenden Magnetjochflächen jeweils ein Abdichtfeld mit einer oder mehreren Hauptspulen für ein elektromagnetisches Wanderfeld, ein Sperrfeld oder ein Pumpfeld und mit mehreren in der Magnetjochfläche in einer ausgewählten Konfiguration verteilten Korrekturspulen aufweist, deren Anzahl und Lage entsprechend ver- schiedener Breiten und / oder Dicken des Metallbandes festgelegt ist. Dazu können für verschiedene Bandbreiten und / oder Dicken die Einflüsse der Korrekturspulen auf das Hauptspulenfeld dadurch gesteuert werden, dass die Korrekturspulen in Abhängigkeit eines Produktionsprogrammes in den Ecken eines Polygons angeordnet sind.
Als Unterstützung für diese Gestaltung dient dabei, dass die Korrekturspulen an getrennte Stromversorgungsquellen angeschlossen sind, die phasen- und taktsynchron mit den jeweiligen Hauptspulen angesteuert sind
Die momentane Lage des Metallbandes im Führungskanal kann auch für wech- selnde Geschwindigkeiten des Bandlaufs erfasst werden, indem innerhalb und / oder außerhalb der Korrekturspulen Mess-Spulen für die Bestimmung der momentanen Bandposition innerhalb des Führungskanals vorgesehen sind.
Im allgemeinen ist eine sehr genaue Messung dadurch erzielbar, dass die seit- liehe Lage des Metallbandes im Führungskanal mittels berührungslos arbeitenden Messmitteln gemessen wird.
Die Korrekturspulen können auch an eine Gleichstromquelle angeschlossen sein.
In der Zeichnung sind Ausführungsformen der Erfindung dargestellt, die nachstehend näher beschrieben werden.
Es zeigen: Fig. 1 die Beschichtungsstation mit dem Magnetsystem des Wanderfeldes,
Fig. 2 die Beschichtungsstation mit dem System des Sperrfeldes,
Fig. 3 die Beschichtungsstation mit dem System des Pumpfeldes und
Fig. 4 eine Vorderansicht eines Abdichtfeldes mit der Hauptspule , den Korrekturspulen und den Mess-Spulen. Bei dem Verfahren zum Schmelztauch-Beschichten von Metallbändern 1, insbesondere von Stahlbändern 1a, wird das Metallband 1 vorgewärmt aus einem Ofen über Umlenkrollen als Bandführungen 2 schräg oder vertikal von unten nach oben durch das flüssige Beschichtungsmetall 3 hindurch in eine Beschichtungsstation 4 geführt. Nach dem Austreten aus der Beschichtungsstati- on 4 wird die Beschichtungsdicke 5 in einem Abstreifsystem 6 kontrolliert.
Während des Beschichtens mit Beschichtungsmetall 3 neigt das relativ dünne Metallband 1 zu Schwingungen, wobei noch Schwankungen in der Bandgeschwindigkeit oder jeweils nach den gewählten Abmessungen veränderte Bandgeschwindigkeiten bei noch flüssigem Zustand der Beschichtung 7 das Metallband 1 über ein elektromagnetisches Abdichtfeld 13 im Führungskanal 8 nach unten abgedichtet und seitlich gegen ferromagnetische Anziehung durch ein Korrekturfeld 14 geführt wird.
Die anzustrebende konstante Mittenlage des Metallbandes 1 im Führungskanal 8 stellt wegen der Einwirkung zwischen Magnetfeld-Induktoren 9 von zwei Seiten und Richtungen her, ein labiles Gleichgewicht dar. Nur in der Mitte des Führungskanals 8 ist die Summe der auf das Metallband 1 einwirkenden magnetischen Anziehungskräfte gleich Null. Sobald das Metallband 1 aus seiner Mittenlage ausgelenkt wird, verändert sich der Abstand zu beiden Induktoren 9. Dabei nähert sich das Metallband 1 einem der Abdichtfelder 13 an und entfernt sich vom anderen. Eine Lösung, die beiden Magnetfelder der Induktoren 9 derart stark zu gestalten, um jegliche Verlagerung auszuschließen, scheidet wegen der damit verbundenen starken Erwärmung des Metallbandes 1 aus. Die Mittenlage des Metallbandes 1 wird zusammen mit anderen Kriterien nunmehr durch die Erzeugung eines Abdichtfeldes 13 in jeweils einem Induktor 9 mit einer Hauptspule 9a berücksichtigt und als elektromagnetisches Wanderfeld 10 (Fig. 1), als Sperrfeld 11 ( Fig. 2) oder als Pumpfeld 12 (Fig. 3) gewählt. Mehrere Korrekturfelder 14 werden in einer ausgewählten Konfiguration (Fig. 4) verteilt angeordnet, wobei Lage und Anzahl zumindest nach verschiedenen Breitenstufen des Metallbandes 1 individuell festgelegt werden. Gemäß Fig. 4 können die Korrekturspulen 14a innerhalb der Magnetjochfläche 15, die von der Hauptspule 9a umgeben wird in Dreiecksform oder wie gezeichnet als Polygon angeordnet werden. In Fig. 4 sind sowohl horizontale Dreiecksformen als auch vertikale Dreiecksformen gebildet. Die Korrekturspulen 14a oder die Korrekturfelder 14 bilden die Ecken 17 eines Polygons und das Polygon 18 kann ein Dreieck, ein Viereck bis hin zu einem n-Eck darstellen. Die Größe der Korrekturspulen 14a beeinflusst dabei ihre Lage und Verteilung.
Die Verteilung der Korrekturspulen 14a oder der Korrekturfelder 14 erfolgt in Lage und Anzahl in Abhängigkeit der ausgewählten Metallband-Breitenstufen analog zu einem Produktionsprogramm.
Die seitliche bzw. mittige Lage des Metallbandes 1 im Führungskanal 8 kann kontinuierlich über berührungslose Mess-Vorrichtungen gemessen werden. Die Mess-Spulen 16 liegen (Fig. 4) innerhalb oder außerhalb der Korrekturspulen 14a, so dass ein Messbild über die gesamte Metallbandbreite entsteht. Dadurch werden die vorstehend beschriebenen Anomalien der Metallbandform oder der Lage erfasst.
Die Wahl des elektromagnetischen Wanderfeldes 10 oder eines elektromagne- tischen Sperrfeldes 11 oder eines elektromagnetischen Pumpfeldes 12 erfolgt über die Materialkennwerte ( Festigkeit, Gefügestruktur ) des Metallbandes 1.
Bezugszeichenliste
1 Metallband
1a Stahlband
2 Bandführung
3 Beschichtungsmetall
4 Beschichtungsstation
4a Vorratsbehälter
5 Beschichtungsdicke
6 Abstreifsystem
7 Beschichtung
8 Führungskanal
9 Induktor
9a Hauptspule
10 elektromagnetisches Wanderfeld
11 elektromagnetisches Sperrfeld
12 elektromagnetisches Pumpfeld
13 Abdichtfeld
14 Korrekturfeld
14a Korrekturspule
15 Magnetjochfläche
16 Mess-Spule
17 Ecken eines Polygons
18 Polygon

Claims

Patentansprüche
1. Verfahren zum Schmelztauch-Beschichten von Metallbändern (1 ), insbesondere von Stahlbändern (1a), die schräg oder vertikal von unten nach oben durch das flüssige Beschichtungsmetall (3) hindurch in einer Be- schichtungsstation (4) geführt werden und nach dem Austreten die Beschichtungsdicke (5) kontrolliert wird, wobei das dünne, zu Schwingungen neigende Metallband (1 ) noch im flüssigen Zustand der Beschichtung (7) bei veränderlicher Bandgeschwindigkeit über ein elektromagnetisches Abdichtfeld (13) im Führungskanal (8) nach unten abgedichtet und seitlich gegen ferromagnetische Anziehung durch ein Korrekturfeld (14) geführt wird, dadurch gekennzeichnet, dass in jeweils einem Induktor (9) eine oder mehrere Hauptspulen (9a) mit ihrem elektromagnetischen Feld (10, 1 1 , 12) ein Abdichtfeld (13) erzeugt und als elektromagnetisches Wanderfeld (10), als Sperrfeld (11 ) oder als Pumpfeld (12) ausgeführt wird und mehrere Korrekturfelder (14) in einer ausgewählten Konfiguration verteilt angeordnet werden, deren Lage und Anzahl zumindest nach verschiedenen Breitenstufen des Metallbandes (1 ) individuell festgelegt werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Korrekturfelder (14) in Lage und Anzahl in Abhängigkeit eines Pro- duktionsprogrammes verteilt werden.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Korrekturfelder (14) von getrennten Stromversorgungseinrichtungen angesteuert werden, die phasen-. und taktsynchron mit dem jeweiligen Induktor (9) betrieben werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Korrekturfelder (14) mit Gleichstrom betrieben werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Korrekturfelder (14) lokal innerhalb des Abdichtfeldes (13) feldverstärkend oder feldschwächend betrieben werden.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die seitliche Lage des Metallbandes (1 ) im Führungskanal (8) über Mess-Spulen (16) abgefragt wird, wobei Messungen innerhalb der Korrekturfelder (14) und / oder außerhalb der Korrekturfelder (14) durchgeführt werden.
7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die seitliche Lage des Metallbandes (1 ) im Führungskanal (8) kontinu- ierlich über berührungslose Messverfahren gemessen wird.
8. Einrichtung zur Schmelztauch-Beschichtung von Metallband (1 ), insbesondere von Stahlband (1a), mit einer schräg oder vertikal von unten nach oben verlaufenden Bandführung (2), einer Beschichtungsstation (4), einem an die Beschichtungsstation (4) unten an den Vorratsbehälter (4a) angeschlossenen Führungskanal (8) für das Metallband (1 ), der mittels eines Induktors (9) zum Abdichten nach unten umgeben ist, mit Korrekturspulen (14a) für eine mittige Lage des Metallbands (1 ) im Führungskanal (8) , und mit einem Abstreifsystem (6) über dem Vorratsbehälter (4a), dadurch gekennzeichnet, dass der Induktor (9) jeweils zumindest an zwei gegenüberliegenden Magnetjochflächen (15) jeweils ein Abdichtfeld (13) mit einer oder mehreren Hauptspulen (9a) für ein elektromagnetisches Wanderfeld (10), ein Sperrfeld (11 ) oder ein Pumpfeld (12) und mit mehreren in der Magnetjochfläche (15) in einer ausgewählten Konfiguration verteilten Korrekturspulen (14a) auf- weist, deren Anzahl und Lage entsprechend verschiedenen Breiten und / oder Dicken des Metallbandes (1) festgelegt ist.
9. Einrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Korrekturspulen (14a) in Abhängigkeit eines Produktionsprogramms in den Ecken (17) eines Polygons (18) angeordnet sind.
10. Einrichtung nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die Korrekturspulen (14a) an getrennte Stromversorgungsquellen angeschlossen sind, die phasen- und taktsynchron mit den jeweiligen Hauptspulen (9a) angesteuert sind.
1 1. Einrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass innerhalb und / oder außerhalb der Korrekturspulen (14a) Mess-Spulen (16) für die Bestimmung der momentanen Bandposition innerhalb des Führungskanals (8) vorgesehen sind.
12. Einrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die seitliche Lage des Metallbandes (1 ) im Führungskanal (8) mittels berührungslos arbeitenden Messmitteln gemessen wird.
13. Einrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass die Korrekturspulen (14a) an eine Gleichstromquelle angeschlossen sind.
EP04710805A 2003-02-27 2004-02-13 Verfahren und einrichtung zum schmelztauch-beschichten von metallbändern, insbesondere von stahlbändern Withdrawn EP1597405A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10308834 2003-02-27
DE10308834 2003-02-27
DE10312939 2003-03-22
DE10312939A DE10312939A1 (de) 2003-02-27 2003-03-22 Verfahren und Einrichtung zum Schmelztauch-Beschichten von Metallbändern, insbesondere von Stahlbändern
PCT/EP2004/001341 WO2004076707A1 (de) 2003-02-27 2004-02-13 Verfahren und einrichtung zum schmelztauch-beschichten von metallbändern, insbesondere von stahlbändern

Publications (1)

Publication Number Publication Date
EP1597405A1 true EP1597405A1 (de) 2005-11-23

Family

ID=32928849

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04710805A Withdrawn EP1597405A1 (de) 2003-02-27 2004-02-13 Verfahren und einrichtung zum schmelztauch-beschichten von metallbändern, insbesondere von stahlbändern

Country Status (11)

Country Link
US (1) US20070036908A1 (de)
EP (1) EP1597405A1 (de)
JP (1) JP4518416B2 (de)
KR (1) KR20050107456A (de)
AU (1) AU2004215221B2 (de)
BR (1) BRPI0407909A (de)
CA (1) CA2517319A1 (de)
MX (1) MXPA05009170A (de)
PL (1) PL376865A1 (de)
RU (1) RU2344197C2 (de)
WO (1) WO2004076707A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005014878A1 (de) * 2005-03-30 2006-10-05 Sms Demag Ag Verfahren und Vorrichtung zur Schmelztauchbeschichtung eines Metallbandes

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128668A (en) * 1976-05-12 1978-12-05 National Steel Corporation Method of removing excess liquid coating from web edges in liquid coating thickness control
JPH06136502A (ja) * 1992-10-26 1994-05-17 Nisshin Steel Co Ltd 溶融金属めっき鋼帯の電磁力によるめっき付着量制御方法
JP2576196Y2 (ja) * 1992-11-27 1998-07-09 三菱重工業株式会社 非接触制振装置
DE4242380A1 (de) * 1992-12-08 1994-06-09 Mannesmann Ag Verfahren und Vorrichtung zum Beschichten der Oberfläche von strangförmigem Gut
DE19535854C2 (de) * 1995-09-18 1997-12-11 Mannesmann Ag Verfahren zur Bandstabilisierung in einer Anlage zum Beschichten von bandförmigem Gut
JPH1143751A (ja) * 1997-07-23 1999-02-16 Nisshin Steel Co Ltd 加工性,めっき密着性に優れた溶融めっき鋼帯の製造方法及び装置
JP3497353B2 (ja) * 1997-09-12 2004-02-16 Jfeスチール株式会社 溶融金属めっき方法および溶融金属めっき装置
DE10014867A1 (de) * 2000-03-24 2001-09-27 Sms Demag Ag Verfahren und Einrichtung zum Schmelztauchbeschichten von Metallsträngen, insbesondere von Stahlband
FR2816637B1 (fr) * 2000-11-10 2003-10-24 Lorraine Laminage Installation de revetement au trempe d'une bande metallique
RS50049B (sr) * 2000-11-10 2008-11-28 Sollac, Uređaj oblaganja sa namakanjem metalne trake
DE10210430A1 (de) * 2002-03-09 2003-09-18 Sms Demag Ag Vorrichtung zur Schmelztauchbeschichtung von Metallsträngen
DE10210429A1 (de) * 2002-03-09 2003-09-18 Sms Demag Ag Vorrichtung zur Schmelztauchbeschichtung von Metallsträngen
DE10254306A1 (de) * 2002-11-21 2004-06-03 Sms Demag Ag Verfahren und Vorrichtung zur Schmelztauchbeschichtung eines Metallstranges
DE10255994A1 (de) * 2002-11-30 2004-06-09 Sms Demag Ag Verfahren und Vorrichtung zur Schmelztauchbeschichtung eines Metallstranges
DE10255995A1 (de) * 2002-11-30 2004-06-09 Sms Demag Ag Vorrichtung und Verfahren zur Schmelztauchbeschichtung eines Metallstranges
DE10330656A1 (de) * 2003-07-08 2005-01-27 Sms Demag Ag Vorrichtung zur Schmelztauchbeschichtung eines Metallstranges

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004076707A1 *

Also Published As

Publication number Publication date
RU2344197C2 (ru) 2009-01-20
MXPA05009170A (es) 2005-10-20
CA2517319A1 (en) 2004-09-10
JP2006519306A (ja) 2006-08-24
WO2004076707A1 (de) 2004-09-10
PL376865A1 (pl) 2006-01-09
JP4518416B2 (ja) 2010-08-04
RU2005130001A (ru) 2006-02-10
KR20050107456A (ko) 2005-11-11
BRPI0407909A (pt) 2006-02-14
US20070036908A1 (en) 2007-02-15
AU2004215221A1 (en) 2004-09-10
AU2004215221B2 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
EP3221487B1 (de) Verfahren und vorrichtung zum beschichten eines metallbandes
WO2018036908A1 (de) Verfahren und beschichtungseinrichtung zum beschichten eines metallbandes
DE102005014878A1 (de) Verfahren und Vorrichtung zur Schmelztauchbeschichtung eines Metallbandes
DE10014867A1 (de) Verfahren und Einrichtung zum Schmelztauchbeschichten von Metallsträngen, insbesondere von Stahlband
EP1565590B1 (de) Verfahren und vorrichtung zur schmelztauchbeschichtung eines metallstranges
EP1597405A1 (de) Verfahren und einrichtung zum schmelztauch-beschichten von metallbändern, insbesondere von stahlbändern
DE10312939A1 (de) Verfahren und Einrichtung zum Schmelztauch-Beschichten von Metallbändern, insbesondere von Stahlbändern
EP3221486A1 (de) Verfahren und vorrichtung zum beschichten eines metallbandes mit einem zunächst noch flüssigen beschichtungsmaterial
DE2656524C3 (de) Verfahren zum einseitigen Beschichten eines Metallbandes mit schmelzflüssigem Metall
DE2525246C3 (de) Verfahren und Vorrichtung zum Beschichten von Aluminiumbändern
DE19917250B4 (de) Verfahren und Vorrichtung zum Vergleichmäßigen einer schmelzflüssigen Metallschicht
EP1483423A1 (de) Vorrichtung zur schmelztauchbeschichtung von metallsträngen
DE10210429A1 (de) Vorrichtung zur Schmelztauchbeschichtung von Metallsträngen
DE19808159A1 (de) Vorrichtung zum Vorhangbeschichten
EP1781834B1 (de) Verfahren zur führung eines bandes und verwendung für ein solches verfahren
DE10302745B4 (de) Verfahren und Einrichtung zum Schmelztauch-Beschichten von Metallbändern, insbesondere von Stahlbändern
EP1215300B1 (de) Abstreifer für Schmelztauchverfahren
EP1390551B1 (de) Verfahren und vorrichtung zum thermischen behandeln von metallsträngen, insbesondere von stahlband
DE2523888C2 (de) Magnetisches Führungssystem zur berührungsfreien Schwebeführung eines bewegten Fahrzeugs
DE3527490A1 (de) Vertikal-(elektro-)verzinkungsvorrichtung
DE4213632C1 (de) Verfahren zur thermischen Oberflächenmodifikation metallischer Bauteile mit Elektronenstrahlen
DE10261396A1 (de) Behandlungsstation für die galvanische Beschichtung von bandförmigen Substratträgern
DE10215057B4 (de) Vorrichtung zur Schmelztauchbeschichtung von Metallsträngen und Verfahren hierzu
DE4318991A1 (de) Verfahren und Vorrichtung zum Auftragen von Magnetstreifen auf Materialbahnen
DE10255995A1 (de) Vorrichtung und Verfahren zur Schmelztauchbeschichtung eines Metallstranges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZIELENBACH, MICHAEL

Inventor name: TRAKOWSKI, WALTER

Inventor name: TENCKHOFF, BERNHARD

Inventor name: HARTUNG, HANS-GEORG

Inventor name: FALKENHAHN, BODO

Inventor name: BRISBERGER, ROLF

Inventor name: BEHRENS, HOLGER

17Q First examination report despatched

Effective date: 20071107

R17C First examination report despatched (corrected)

Effective date: 20071115

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMS SIEMAG AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20100707