EP1592923B1 - Verfahren und schaltungsanordnung zum zünden eines gasstromes - Google Patents

Verfahren und schaltungsanordnung zum zünden eines gasstromes Download PDF

Info

Publication number
EP1592923B1
EP1592923B1 EP04710374A EP04710374A EP1592923B1 EP 1592923 B1 EP1592923 B1 EP 1592923B1 EP 04710374 A EP04710374 A EP 04710374A EP 04710374 A EP04710374 A EP 04710374A EP 1592923 B1 EP1592923 B1 EP 1592923B1
Authority
EP
European Patent Office
Prior art keywords
ignition
gas stream
voltage
accordance
fact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04710374A
Other languages
English (en)
French (fr)
Other versions
EP1592923A1 (de
Inventor
Barbara Happe
Jürgen Blank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxitrol GmbH and Co KG
Original Assignee
Mertik Maxitrol GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mertik Maxitrol GmbH and Co KG filed Critical Mertik Maxitrol GmbH and Co KG
Priority to SI200431718T priority Critical patent/SI1592923T1/sl
Publication of EP1592923A1 publication Critical patent/EP1592923A1/de
Application granted granted Critical
Publication of EP1592923B1 publication Critical patent/EP1592923B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/10Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/10Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples
    • F23N5/102Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using thermocouples using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/02Starting or ignition cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/28Ignition circuits
    • F23N2227/30Ignition circuits for pilot burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/36Spark ignition, e.g. by means of a high voltage

Definitions

  • the invention relates to a method for igniting a gas stream and a circuit arrangement for carrying out this method, as they can be used in particular for gas control valves for a gas heating furnace.
  • Possibilities for igniting a gas stream are available in a variety of designs.
  • the ignition device comprises a solenoid which actuates a gas valve, an igniter for electrically igniting the gas flow and a remote control, which is connected via a low-voltage line to the solenoid and the ignition on.
  • the remote control includes a power supply and a timer for the timely provision of low voltage.
  • a valve device for controlling the ignition of a gas burner is known.
  • An actuating spindle is moved by hand to the ignition position, the ignition safety valve is opened.
  • the actuating spindle need only be kept in this position for a short time, since during the movement of the actuating spindle, a micro switch is turned on. This causes a power supply to provide a voltage to hold the magnetic insert. Ignition is via a piezoelectric spark ignition.
  • the power supply is switched off when the thermo-current supplied by a thermocouple is sufficient to hold the pilot-operated safety valve in the open position.
  • thermoelectric fuse for gas burners of heating systems described.
  • This multi-function valve uses the existing mains power supply of a room for its operation.
  • a solenoid valve is energized via a pushbutton, whereby the ignition safety valve is opened.
  • the ignition of the gas flow A thermocouple located in the area of the ignited gas flame is heated and brings about the resulting thermo-current a magnetic insert in the excited state.
  • the magnet holds an anchor and thus also connected to the armature ignition safety valve in the open position. Now the push button can be released and the solenoid valve de-energized.
  • the invention is based on the problem to develop a method for fully automatic ignition of a gas stream and a circuit arrangement for carrying out this method, which have such a low power consumption that an integrable voltage source can be used while ensuring a sufficient life. Furthermore, the structure should be as simple and inexpensive as possible.
  • the problem is solved in terms of the method by activating a transverter which generates a higher voltage from a DC voltage provided by a voltage source with which a storage capacitor and a starting capacitor serving to provide the ignition voltage are charged.
  • a per se known Zünd Anlagensmagnet is activated with a holding current provided by the voltage source, at the same time an existing between the Zünd Anlagensmagneten and one influenced by the gas flame thermocouple circuit is interrupted via a relay.
  • the storage capacitor is then discharged suddenly, with a surge is generated, which serves for short-term excitation of an electromagnet to open a per se known Zündtechnischsventil while applying the armature of the Zündtechnischsmagneten.
  • the armature Due to the activated by the holding current Zünd Anlagensmagneten the armature is held after its successful installation in this position and one with the ignition capacitor via an ignition transformer connected ignition electrode in a known manner generates a spark for igniting the outflowing gas. Subsequently, further ignition processes are initiated by the ignition capacitor recharged and after charging a renewed spark is generated. After a predetermined time, the ignition is stopped. The current flowing from the voltage source to the Zünd Anlagensmagneten holding current is interrupted and closed between the Zündtechnischsmagneten and the thermocouple existing circuit via the relay again.
  • thermoelectric voltage when the presence of a thermoelectric voltage is measured, wherein in the absence of thermoelectric voltage further ignition processes, as described above, are initiated. If there is a detectable thermoelectric voltage, however, the ignition is terminated. Once the from the measured thermoelectric voltage electronically calculated thermo-current is sufficient to hold the armature on the Zünd Anlagensmagneten, the current flowing from the voltage source to the Zünd Anlagensmagneten holding current is interrupted and closes the existing between the Zündtechnischsmagneten and the thermocouple circuit via the relay again.
  • the storage capacitor and the ignition capacitor are relatively easily charged via a respective associated transverter to different voltages.
  • the method if from the voltage source provided by the DC voltage higher AC voltage is generated by a power oscillator instead of the transverter is used and the storage capacitor until the initiation of the ignition to a power oscillator downstream first stage of a multiple cascade is switched, after which the storage capacitor and the electrically connected to the second stage of the multiple cascade ignition capacitor are charged by the higher AC voltage through the cascade to predetermined higher DC voltages. After reaching the predetermined higher DC voltages of the power oscillator is turned off and turned on when initiating further ignitions again.
  • the holding current provided by the voltage source for holding the armature simultaneously via the Zündêtsmagneten and the relay flow, wherein at the time of closing the between Zündtechnischsmagnet and thermocouple existing circuit briefly an additional current is generated to reliably prevent the armature during Switching the relay due to the momentary power interruption at intermediate position the switching contacts of the relay drops.
  • the voltage of the holding current provided by the voltage source it is also conceivable for the voltage of the holding current provided by the voltage source to be provided to the ignition fuse magnet to be converted into the millivolt range via an additional transverter.
  • thermoelectric voltage is measured by means of an analogue amplifier
  • a method step which interrupts the excitation of the Zünd Anlagensmagneten via the voltage source in addition by one or more independent series-connected and timed safety shutdown after a defined period of time.
  • the period between the first ignition and the following ignition is kept as short as possible, it is favorable for energy saving reasons, if the storage capacitor is switched off from the cascade before further cyclic charging of the ignition capacitor.
  • a gas control valve for carrying out the method for igniting a gas stream is used in a gas control valve.
  • This gas control valve is a switching and control device, which is preferably intended for installation in a gas-fired stove or the like. It enables the operation and monitoring of a burner by controlling the amount of gas flowing to the burner.
  • the gas control valve has a pilot burner 1 and an ignition valve 2. The structure and function of the pilot burner 1 and the Zündschsventils 2 are familiar to the expert and are therefore not explained here.
  • microcomputer module which is in this embodiment, together with a voltage source 10 in a separate location-independent housing also not shown the receiver part of a remote control.
  • voltage source 10 serves as voltage source 10, as shown in the drawing, commercially available batteries, in this case the size R6.
  • a power oscillator 11 described in more detail below which can be controlled by the microcomputer module via a port J, is connected to the voltage source 10. It is followed by a cascade 12/13 which serves to control and supply a downstream storage capacitor C1 and to control and supply a downstream ignition capacitor C2. Since the voltage required to charge the storage capacitor C1 is significantly less than the voltage required to charge the ignition capacitor C2, the cascade circuit 12/13 is implemented as a multiple cascade connection.
  • the first stage of the cascade 12 is used to control and supply the downstream storage capacitor C1.
  • an electromagnet 5 which, as shown schematically in the illustration, for actuating a known Zünd Anlagensventils 2 is used. Due to the only short-term load in this case a thermally undersized so-called pulse magnet 5 is sufficient.
  • the second stage of the cascade 13 serves to control and supply the downstream ignition capacitor C2, which is part of a known per se, and therefore not explained in more detail here ignition device. Via a port C, the ignition capacitor C2 can be controlled by the microcomputer module for ignition. Furthermore, the second stage of the cascade 13 is connected to a voltage monitoring element 14. At the same time, the element 14 serves to limit the occurring maximum voltage in order to prevent the destruction of components. In this case, an additional voltage monitoring for the storage capacitor C1 can be dispensed with since, after the ignition capacitor C2 has been charged, it can also be assumed that the storage capacitor C1 has been charged up. For feedback to the microcomputer module is the Port D.
  • the power oscillator 11 consists of a CMOS circuit 15, which is known per se to a person skilled in the art, with at least four gates. These gates can be NOR gates, NAND gates, simple inverters or similar. Subordinate to them is a complementary field effect power stage 16, which is followed by an LC series resonant circuit consisting of coil L1 and HF capacitor C3. For feedback and phase adjustment serves as a so-called phase shifter 19, an RC element.
  • an ignition fuse 6 associated Zünd Anlagensmagnet 6 is connected to a thermocouple 4.
  • the opener of a monostable relay 17 is additionally arranged, whereas in the energized state this circuit is open and the ignition safety magnet 6 is energized by the voltage source 10 formed by the batteries.
  • a switching element in this case a transistor T1, which can be controlled by the microcomputer module via port G, is connected on the one hand to the voltage source 10 and on the other hand to the relay 17.
  • a resistor R1 is additionally arranged, since the holding current required for the Zündtechnischsmagneten 6 is higher than the current flowing through the relay 17 current.
  • there are two series-connected timed safety shutdowns 18 in this circuit which are connected via the ports H and M in terms of control with the microcomputer module.
  • a transistor T2 and a transistor T3 are connected to this circuit. While the transistor T2, which is preceded by a resistor R3, connected to the negative terminal of the voltage source 10 and can be controlled via the port F from the microcomputer module, the transistor T3 is connected to the positive terminal of the voltage source 10 and can via the port E from the microcomputer module be controlled.
  • an analog amplifier 20 is connected in parallel with the thermocouple 4.
  • This analog amplifier 20 has the task of measuring and amplifying a DC voltage of the thermocouple 4 which occurs in the millivolt range and to convert it into a variable that can be processed for the microcomputer module. Since the DC amplifiers otherwise customary for such cases require, on the one hand, an additional auxiliary voltage lying above the operating voltage and, on the other hand, drift deviations, for example due to temperature influences, the analog amplifier 20 is designed as an AC amplifier.
  • the reference potential is formed by the positive voltage in order to eliminate fluctuations in the on-board voltage.
  • the repeater V2 the reference potential is formed by mass.
  • Both amplifiers V1 / V2 and a trigger TR are put into operation via the port K of the microcomputer module, since they are put out of operation as a power saving measure when not in use.
  • the trigger TR located behind the postamplifier V2 is in turn connected to the microcomputer module via port 1.
  • the command for igniting is given to the microcomputer module via the remote control.
  • the activated via port K analog amplifier 20 is checked whether the thermocouple 4 is applied a thermoelectric voltage and given the appropriate information via port I to the microcomputer module. While in the presence of a thermoelectric voltage, which is synonymous with a burning pilot flame, the ignition process is stopped, the voltage divider of the analog amplifier 20 is controlled by the microcomputer module via port L in the absence of a thermal voltage. By a single circuit of the voltage divider, the present at the thermocouple 4 DC voltage is converted into an AC voltage pulse. Via the coupling capacitor C4, the pulse reaches the preamplifier V1.
  • the signal coming from the preamplifier V1 is coupled via the coupling capacitor C5 to the post-amplifier V2 and amplified again.
  • This analogue signal coming from the postamplifier V2 is triggered by the trigger TR at fixed trigger points, as in the Fig. 3 associated diagram, digitized.
  • the curve of the voltage U over the time t is plotted.
  • the trigger TR is in a predetermined voltage level SE at the Initiation of the pulse signal IS at the time TL, a first trigger point TR1 and the fall of the voltage of the pulse signal IS set a second trigger point TR2, which is assigned a time TE.
  • the time interval between the two times TL and TE is a measurement signal MS.
  • the measurement signal MS thus obtained from the existing thermal voltage passes through the port I to the microcomputer module for evaluation.
  • the length of the measuring signal MS is directly proportional to the thermoelectric voltage present on the thermocouple 4.
  • the resonant circuit By activating the power oscillator 11, the resonant circuit begins to oscillate via the feedback member, i. the resonant circuit is the self-oscillating and frequency-determining power oscillator 11.
  • the resonant circuit is the self-oscillating and frequency-determining power oscillator 11.
  • the storage capacitor C1 and the ignition capacitor C2 are charged with the aid of the two cascade stages 12/13 of the multiple cascade until the voltage monitoring and limiting of the maximum voltage occurring element 14 responds and sends a signal to the microcomputer module via the port D, which then via the port J the power oscillator 11 turns off.
  • the time-controlled safety shutdown 18 are activated via the port M and supplied via the port T G driven transistor T1 of the Zündtechnischsmagnet 6 with a coming from the voltage source 10 holding current by the relay 17 is energized and so the circuit between the Zündtechnischsmagneten 6 and the thermocouple 4 is opened.
  • the port B the storage capacitor C1 is discharged suddenly.
  • the storage capacitor C1 is disconnected from the cascade stage 12 via port A.
  • the pulse magnet 5 is briefly energized by this surge and a plunger 7 is moved against the force of a closing spring 8 until the armature 3 comes to rest on the Zündtechnischsmagneten 6. Due to the flowing holding current of the armature 3 is held in this position and thus the Zündtechnischsventil 2 in the open position.
  • the gas can flow through the gas control valve to the pilot burner 1.
  • the energization of the Zündtechnischsmagneten 6 via the voltage source 10 is additionally interrupted by one or more independent series-connected and timed safety shutdown 18 after a defined period of time and the Zündtechnischsventil 2 does not remain in the open position, but is closed by the closing spring 8 again.
  • Via port C is activated by the microcomputer module, the ignition device, the ignition capacitor C2 discharges and it comes to the ignition electrode 9 to skip the spark, causing the outflowing gas is ignited.
  • the analog amplifier 20 is activated via the ports K and L and it is checked whether the thermocouple 4 due to the incipient heating by the burning pilot flame already a detectable voltage, i. at least approx. 1 mV.
  • thermocouple 4 In the presence of the minimum voltage, of course, no further ignition operations are initiated, but the existing no-load voltage of the thermocouple 4 is further checked until the size of the electronically calculated therefrom current is sufficient as holding current for the Zünd Anlagensmagneten 6. Thereafter, the analog amplifier 20 is deactivated via port K and interrupted via port G of the current flowing from the voltage source 10 to the Zünd Anlagensmagneten 6 current. The relay 17 is de-energized and the switching contacts of the relay 17 close the circuit between the thermocouple 4 and Zündtechnischsmagneten 6. The armature 3 is now held by the thermo-current.
  • the transistor T2 is activated for a short time at the time of switching over the port F and an additional one is also present for a short time via the resistor R3 Electricity generated, the above Fall of the anchor prevented with certainty.
  • the command for switching off is given to the microcomputer module via the remote control.
  • the switching contacts thus briefly lift off.
  • the holding current flowing between the thermocouple 4 and Zünd Anlagenungsmagneten 6 is interrupted.
  • the armature 3 is no longer held by the Zündtechnischsmagneten 6 and under the action of the closing spring 8 closes the Zündtechnischsventil 2.
  • the gas supply to the pilot burner 1 and of course to the main burner, not shown, is interrupted and the gas flame goes out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Combustion (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Es sollen ein Verfahren und eine Schaltungsanordnung zum vollautomatischen Zünden eines Gasstromes geschaffen werden. Desweiteren soll der notwendige Stromverbrauch so gering gehalten werden, dass eine integrierbare Spannungsquelle zum Einsatz kommen kann. Dazu wird nach Aktivierung einer elektronischen Steuereinheit ein thermoelektrisches Zündsicherungsventil (2) durch einen über Stromstoß kurzzeitig erregten Elektromagneten (5) geöffnet, mittels eines von einer Spannungsquelle (10) bereitgestellten Haltestromes über einen Zündsicherungsmagneten (6) in Offenstellung gehalten und das ausströmende Gas entzündet. Nachdem ein Thermoelement (4) den notwendigen Haltestrom zur Verfügung stellt, wird die Spannungsquelle (10) abgeschaltet. Beim Auftreten eines Havariefalles wird das Verfahren automatisch abgebrochen.

Description

    Technisches Gebiet
  • Die Erfindung betrifft ein Verfahren zum Zünden eines Gasstromes und eine Schaltungsanordnung zur Durchführung dieses Verfahrens, wie sie insbesondere bei Gasregelarmaturen für einen Gasheizofen benutzt werden können.
  • Stand der Technik
  • Möglichkeiten zur Zündung eines Gasstromes gibt es in einer Vielzahl von Ausführungen.
  • So ist in der US 5 722 823 A eine Zündvorrichtung zum Zünden von Gasen beschrieben. Die Zündvorrichtung weist eine Magnetspule, die ein Gasventil betätigt, einen Zünder zur elektrischen Zündung des Gasstromes und eine Fernbedienung, die über eine Niederspannungsleitung mit der Magnetspule und der Zündung verbunden ist, auf. Dabei schließt die Fernbedienung eine Energieversorgung und eine Zeitschaltung für die zeitlich gesteuerte Bereitstellung der Niederspannung ein.
  • Diese Ausführung benötigt zum Zünden des Gasstromes sehr viel Energie. So werden drei Relaisspulen versorgt, die eine relativ hohe Leistungsaufnahme bedeuten. Desweiteren wird während des Zündvorganges ständig das Magnetventil erregt, was eine hohe Stromaufnahme zur Folge hat. Zur Energieversorgung kommt deshalb nur eine Netzversorgung in Frage. Ein weiterer Nachteil ist, dass innerhalb der Schaltung auftretende Fehler zu einem die Sicherheit beeinflussenden Zustand führen können.
  • Aus der GB 2 351 341 A ist eine Ventileinrichtung zur Steuerung der Zündung eines Gasbrenners bekannt. Eine Betätigungsspindel wird per Hand in die Zündstellung bewegt, wobei das Zündsicherungsventil geöffnet wird. Die Betätigungsspindel braucht nur kurze Zeit in dieser Stellung gehalten werden, da bei der Bewegung der Betätigungsspindel ein Mikroschalter eingeschaltet wird. Das bewirkt, dass über ein Netzteil eine Spannung zum Halten des Magneteinsatzes bereitgestellt wird. Die Zündung erfolgt über eine piezoelektrische Funkenzündung. Das Netzteil wird ausgeschaltet, wenn der von einem Thermoelement bereitgestellte Thermostrom zum Halten des Zündsicherungsventils in Offenstellung ausreicht.
  • Auch bei dieser Lösung ist es von Nachteil, dass ein Netzteil verwendet wird. Außerdem ist ein zusätzlicher Aufwand für die Durchführung der piezoelektrischen Funkenzündung notwendig. Insbesondere bei einem größeren leitungsmäßigen Abstand zwischen Zündsicherungsventil und Brenneröffnung besteht das Problem, dass zum Zeitpunkt der Zündung noch kein zündfähiges Gasgemisch an der Brenneröffnung vorliegen kann, da der Zeitraum zwischen der Öffnung des Zündsicherungsventils und dem Zünden relativ gering ist.
  • Desweiteren ist in der DE 93 07 895 U ein Mehrfunktionsventil mit thermoelektrischer Sicherung für Gasbrenner von Heizungsanlagen beschrieben. Dieses Mehrfunktionsventil nutzt zu seiner Betätigung die vorhandene Netzstromversorgung eines Raumes. Um den Gasstrom zu zünden, wird über einen Drucktaster ein Magnetventil erregt, wodurch das Zündsicherungsventil geöffnet wird. Gleichzeitig erfolgt die Zündung des Gasstromes. Ein im Bereich der entzündeten Gasflamme befindliches Thermoelement wird erwärmt und bringt über den dadurch entstehenden Thermostrom einen Magneteinsatz in den erregten Zustand. Der Magnet hält einen Anker fest und somit ebenfalls das mit dem Anker verbundene Zündsicherungsventil in Offenstellung. Nunmehr kann der Drucktaster losgelassen und das Magnetventil entregt werden.
  • Hier ist es von Nachteil, dass der Drucktaster so lange gehalten werden muss, bis durch den Thermostrom das Zündsicherungsventil in Offenstellung gehalten wird. Ebenfalls von Nachteil ist, dass auf Grund dessen, dass das Magnetventil diese Zeit über die Netzstromversorgung erregt bleiben muss, der Stromverbrauch relativ hoch und somit eine Netzstromversorgung notwendig ist.
  • Die beiden in der GB 2 351 341 A und in der DE 93 07 895 U beschriebenen Lösungen weisen außerdem noch den Nachteil auf, dass sie nicht vollautomatisch betrieben werden können, sondern dass eine Handbetätigung erforderlich ist. Weitere Verfahren und Anordnungen zum Zünden eines Gasstromes sind aus DE 3126639A und aus DE 28 09 843 A bekannt.
  • Darstellung der Erfindung
  • Der Erfindung liegt das Problem zugrunde, ein Verfahren zum vollautomatischen Zünden eines Gasstromes und eine Schaltungsanordnung zur Durchführung dieses Verfahrens zu entwickeln, die einen so geringen Stromverbrauch aufweisen, dass unter Gewährleistung einer ausreichenden Lebensdauer eine integrierbare Spannungsquelle zum Einsatz kommen kann. Weiterhin soll der Aufbau möglichst einfach und kostengünstig gestaltet sein.
  • Erfindungsgemäß wird das Problem verfahrensseitig dadurch gelöst, dass ein Transverter aktiviert wird, der aus einer von einer Spannungsquelle zur Verfügung gestellten Gleichspannung eine höhere Spannung erzeugt, mit der ein Speicherkondensator und ein zur Bereitstellung der Zündspannung dienender Zündkondensator aufgeladen werden. Ein an sich bekannter Zündsicherungsmagnet wird mit einem von der Spannungsquelle zur Verfügung gestellten Haltestrom aktiviert, wobei gleichzeitig ein zwischen dem Zündsicherungsmagneten und einem von der Gasflamme beeinflussbaren Thermoelement bestehender Stromkreis über ein Relais unterbrochen wird. Über ein Schaltelement wird nun der Speicherkondensator schlagartig entladen, wobei ein Stromstoß erzeugt wird, der zur kurzzeitigen Erregung eines Elektromagneten dient, um ein an sich bekanntes Zündsicherungsventil zu öffnen und dabei gleichzeitig den Anker des Zündsicherungsmagneten anzulegen. Auf Grund des durch den Haltestrom aktivierten Zündsicherungsmagneten wird der Anker nach seiner erfolgten Anlage in dieser Stellung gehalten und über eine mit dem Zündkondensator über einen Zündtransformator verbundene Zündelektrode in bekannter Weise ein Zündfunken zum Entzünden des ausströmenden Gases erzeugt. Nachfolgend werden weitere Zündvorgänge eingeleitet, indem der Zündkondensator wieder aufgeladen und nach erfolgter Aufladung ein erneuter Zündfunken erzeugt wird. Nach einer vorgegebenen Zeit wird das Zünden beendet. Der von der Spannungsquelle zum Zündsicherungsmagneten fließende Haltestrom wird unterbrochen und der zwischen dem Zündsicherungsmagneten und dem Thermoelement bestehende Stromkreis über das Relais wieder geschlossen.
  • Damit wurde eine Lösung gefunden, mit der die weiter oben genannten Nachteile des Standes der Technik beseitigt wurden. Durch eine kurze Betätigung der elektronischen Steuereinheit ist eine Zündung des Gasstromes möglich. Dabei ergibt sich auf Grund der unabhängig von der Dauer der Betätigung der Steuerungseinheit nur impulsartigen Betätigung des Elektromagneten ein sehr geringer Strombedarf. Weiterhin ist es möglich zur Erzeugung des Zündfunkens auf die Spannungsquelle zurückzugreifen, so dass der zusätzliche Aufwand für eine piezoelektrische Zündeinrichtung entfallen kann.
  • Vorteilhafte Ausgestaltungen der Erfindung gehen aus den anderen Patentansprüchen hervor.
  • So erweist es sich als günstig, wenn zuerst durch die elektronische Steuereinheit nach ihrer Aktivierung zum Zünden des Gasstromes eine Prüfung erfolgt, ob eine Gasflamme brennt. Bei einer Positivinformation wird der Zündvorgang abgebrochen, wohingegen bei einer Negativinformation die oben aufgeführten Verfahrensschritte durchgeführt werden.
  • Weiterhin ergibt sich eine vorteilhafte Ausgestaltung des Verfahrens, wenn das Vorhandensein einer Thermospannung gemessen wird, wobei bei fehlender Thermospannung weitere Zündvorgänge, wie weiter oben beschrieben, eingeleitet werden. Bei vorhandener nachweisbarer Thermospannung wird hingegen das Zünden beendet. Sobald der aus der gemessenen Thermospannung elektronisch berechnete Thermostrom ausreicht, um den Anker auf dem Zündsicherungsmagneten zu halten, wird der von der Spannungsquelle zum Zündsicherungsmagneten fließende Haltestrom unterbrochen und der zwischen dem Zündsicherungsmagneten und dem Thermoelement bestehende Stromkreis über das Relais wieder geschlossen.
  • Denkbar ist es auch, dass der Speicherkondensator und der Zündkondensator relativ einfach über jeweils einen ihnen zugeordneten Transverter auf unterschiedliche Spannungen aufgeladen werden.
  • Desweiteren ergibt sich eine günstige Ausgestaltung des Verfahrens, wenn aus der von der Spannungsquelle zur Verfügung gestellten Gleichspannung eine höhere Wechselspannung erzeugt wird, indem statt des Transverters ein Leistungsoszillator eingesetzt wird und der Speicherkondensator erst bei Einleitung des Zündvorganges an eine dem Leistungsoszillator nachgeschaltete erste Stufe einer Mehrfachkaskade geschaltet wird, woraufhin der Speicherkondensator und der elektrisch leitend mit der zweiten Stufe der Mehrfachkaskade verbundene Zündkondensator mittels der höheren Wechselspannung über die Kaskadenschaltung auf vorgegebene höhere Gleichspannungen aufgeladen werden. Nach dem Erreichen der vorgegebenen höheren Gleichspannungen wird der Leistungsoszillator ausgeschaltet und bei Einleitung weiterer Zündvorgänge wieder eingeschaltet.
  • Um den Strombedarf noch weiter zu verringern, was sich als besonders günstig erweist, wenn die Spannungsquelle aus einer Batterie besteht, die von den Abmessungen her so klein ausgeführt sein kann, dass sie sich zusammen mit der elektronischen Steuereinheit in dem Gehäuse eines Empfängerteiles einer Fernbedienung befinden kann, kann der von der Spannungsquelle bereitgestellte Haltestrom zum Halten des Ankers gleichzeitig über den Zündsicherungsmagneten und das Relais fließen, wobei zum Zeitpunkt des Schließens des zwischen Zündsicherungsmagnet und Thermoelement bestehenden Stromkreises kurzzeitig ein zusätzlicher Strom generiert wird, um sicher zu verhindern, dass der Anker beim Umschalten des Relais auf Grund der kurzzeitigen Stromunterbrechung bei Zwischenstellung der Schaltkontakte des Relais abfällt. Andererseits ist es auch denkbar, dass die Spannung des dem Zündsicherungsmagneten von der Spannungsquelle zur Verfügung gestellten Haltestromes über einen zusätzlichen Transverter in den Millivoltbereich transvertiert wird.
  • Weiterhin ist es vorteilhaft, wenn das Vorhandensein einer Thermospannung mittels eines Analogverstärkers gemessen wird,
  • Zur Erhöhung der Sicherheit des Verfahrens, zum Beispiel beim Auftreten eines Havariefalles, dient ein Verfahrensschritt, der nach Ablauf einer definierten Zeitdauer die Erregung des Zündsicherungsmagneten über die Spannungsquelle zusätzlich durch einen oder mehrere unabhängige in Reihe geschaltete und zeitgesteuerte Sicherheitsabschaltungen unterbricht.
  • Damit die Zeitdauer zwischen dem ersten Zündvorgang und den folgenden Zündvorgängen möglichst kurz gehalten wird, ist es aus Energiespargründen günstig, wenn vor weiteren zyklischen Aufladungen des Zündkondensators der Speicherkondensator von der Kaskade abgeschaltet wird.
  • Seitens der Schaltungsanordnung wird das Problem erfindungsgemäß durch die im Patentanspruch 12 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen sind den dazugehörigen Unteransprüchen zu entnehmen.
  • Ausführungsbeispiel
  • Das erfindungsgemäße Verfahren und die erfindungsgemäße Schaltungsanordnung zum Zünden eines Gasstromes werden nachstehend an einem Ausführungsbeispiel näher erläutert. Die einzelnen Darstellungen zeigen:
    • Fig. 1 eine schematische Darstellung der Schaltungsanordnung,
    • Fig. 2 eine detaillierte Darstellung des Leistungsoszillators
    • Fig. 3 eine detaillierte Darstellung des Analogverstärkers.
  • Die in Fig. 1 dargestellte beispielhafte erfindungsgemäße Schaltungsanordnung zur Durchführung des Verfahrens zum Zünden eines Gasstromes wird bei einer Gasregelarmatur eingesetzt. Diese Gasregelarmatur ist ein Schalt- und Regelgerät, das vorzugsweise für den Einbau in einen gasbeheizten Kaminofen oder dergleichen bestimmt ist. Sie ermöglicht die Bedienung und Überwachung eines Brenners, indem die zum Brenner strömende Gasmenge gesteuert wird. Neben für die Erfindung nicht wesentlichen und daher in diesem Ausführungsbeispiel nicht dargestellten Baugruppen, besitzt die Gasregelarmatur einen Zündbrenner 1 und ein Zündsicherungsventil 2. Der Aufbau und die Funktion des Zündbrenners 1 und des Zündsicherungsventils 2 sind dem Fachmann geläufig und werden deshalb hier nicht näher erläutert.
  • Zur Ansteuerung dient als elektronische Steuereinheit ein nicht dargestelltes Mikrorechnermodul, das sich in diesem Ausführungsbeispiel zusammen mit einer Spannungsquelle 10 in einem ebenfalls nicht dargestellten separaten ortsunabhängigen Gehäuse des Empfängerteiles einer Fernbedienung befindet. Als Spannungsquelle 10 dienen, wie in der Zeichnung dargestellt, handelsübliche Batterien, in diesem Fall der Größe R6.
  • Ein weiter unten näher beschriebener Leistungsoszillator 11 der über einen Port J von dem Mikrorechnermodul angesteuert werden kann, ist mit der Spannungsquelle 10 verbunden. Ihm nachgeschaltet ist eine Kaskadenschaltung 12/13 die zur Ansteuerung und Versorgung eines nachgeordneten Speicherkondensators C1 und zur Ansteuerung und Versorgung eines nachgeordneten Zündkondensators C2 dient. Da die zum Aufladen des Speicherkondensators C1 benötigte Spannung bedeutend geringer als die zum Aufladen des Zündkondensators C2 benötigte Spannung ist, ist die Kaskadenschaltung 12/13 als mehrfache Kaskadenschaltung ausgeführt.
  • Hierbei dient die erste Stufe der Kaskade 12 zur Ansteuerung und Versorgung des nachgeordneten Speicherkondensators C1. Diesem ist wiederum ein Elektromagnet 5 nachgeordnet, der, wie in der Darstellung schematisch gezeigt, zur Betätigung eines an sich bekannten Zündsicherungsventils 2 dient. Auf Grund der nur kurzzeitigen Belastung ist hierbei ein thermisch unterdimensionierter sogenannter Impulsmagnet 5 ausreichend.
  • Die zweite Stufe der Kaskade 13 dient zur Ansteuerung und Versorgung des nachgeordneten Zündkondensators C2, der Teil einer an sich bekannten, und deshalb hier nicht näher erläuterten Zündeinrichtung ist. Über einen Port C ist der Zündkondensator C2 von dem Mikrorechnermodul zur Zündung ansteuerbar. Desweiteren ist die zweite Stufe der Kaskade 13 mit einem Element 14 zur Spannungsüberwachung verbunden. Gleichzeitig dient das Element 14 zur Begrenzung der auftretenden Maximalspannung, um eine Zerstörung von Bauteilen zu verhindern. Auf eine zusätzliche Spannungsüberwachung für den Speicherkondensator C1 kann hierbei verzichtet werden, da nach dem erfolgten Aufladen des Zündkondensators C2 auch von einer erfolgten Aufladung des Speicherkondensators C1 ausgegangen werden kann. Zur Rückmeldung an das Mikrorechnermodul dient der Port D.
  • In Fig. 2 ist die Schaltung des zum Einsatz kommenden Leistungsoszillators 11 detailliert dargestellt. Der Leistungsoszillator 11 besteht aus einem dem Fachmann an sich bekannten CMOS - Schaltkreis 15 mit mindestens vier Gattern. Diese Gatter können NOR-Gatter, NAND - Gatter, einfache Negatoren o.ä.. sein. Ihnen nachgeordnet ist eine Komplementär - Feldeffekt - Leistungsstufe 16, der sich ein LC - Reihenschwingkreis, bestehend aus Spule L1 und HF - Kondensator C3 anschließt. Zur Rückkopplung und Phaseneinstellung dient als so genannter Phasenschieber 19 ein RC - Glied.
  • Wie in Fig. 1 weiter dargestellt, ist ein zum Zündsicherungsventil 2 zugehöriger Zündsicherungsmagnet 6 mit einem Thermoelement 4 verbunden. In diesem Stromkreis ist zusätzlich der Öffner eines monostabilen Relais 17 angeordnet, wohingegen im erregten Zustand dieser Stromkreis geöffnet ist und der Zündsicherungsmagnet 6 von der durch die Batterien gebildeten Spannungsquelle 10 bestromt wird. Dazu ist ein Schaltelement, in diesem Fall ein Transistor T1, der über Port G vom Mikrorechnermodul angesteuert werden kann, einerseits mit der Spannungsquelle 10 und andererseits mit dem Relais 17 verbunden. Parallel zum Relais 17 ist zusätzlich ein Widerstand R1 angeordnet, da der für den Zündsicherungsmagneten 6 benötigte Haltestrom höher ist, als der über das Relais 17 fließende Strom. Weiterhin befinden sich in diesem Stromkreis zwei in Reihe geschaltete zeitgesteuerte Sicherheitsabschaltungen 18, die über die Ports H und M steuerungsmäßig mit dem Mikrorechnermodul verbunden sind.
  • Zwischen Relais 17 und Sicherheitsabschaltungen 18 sind an diesen Stromkreis zwei weitere Schaltelemente, ein Transistor T2 und ein Transistor T3, angebunden. Während der Transistor T2, dem ein Widerstand R3 vorgeschaltet ist, mit dem Minuspol der Spannungsquelle 10 verbunden ist und über den Port F vom Mikrorechnermodul angesteuert werden kann, ist der Transistor T3 mit dem Pluspol der Spannungsquelle 10 verbunden und kann über den Port E vom Mikrorechnermodul angesteuert werden.
  • In der Schaltungsanordnung ist desweiteren ein Analogverstärker 20 parallel zum Thermoelement 4 geschaltet. Dieser Analogverstärker 20 hat die Aufgabe eine im Millivoltbereich auftretende Gleichspannung des Thermoelementes 4 zu messen, zu verstärken und in eine für das Mikrorechnermodul verarbeitbare Größe umzuwandeln. Da die ansonsten für solche Fälle üblichen Gleichstromverstärker einerseits eine zusätzliche über der Betriebsspannung liegende Hilfsspannung benötigen und andererseits Driftabweichungen, beispielsweise auf Grund von Temperatureinflüssen, aufweisen, ist der Analogverstärker 20 als Wechselspannungsverstärker ausgelegt.
  • Nachfolgend wird der Analogverstärker, wie auch in Fig. 3 dargestellt, folgendermaßen beschrieben:
    • Ein vom Mikrorechnermodul über Port L ansteuerbarer Feldeffekttransistor T4 und
    • ein Widerstand R2 bilden einen steuerbaren Spannungsteiler. Dem Spannungsteiler sind ein Vorverstärker V1 und ein Nachverstärker V2 nachgeordnet, denen jeweils ein Koppelkondensator C4 / C5 zugeordnet ist.
  • Beim Vorverstärker V1 wird das Bezugspotential durch die Plusspannung gebildet, um Schwankungen der Bordspannung zu eliminieren. Demgegenüber wird beim Nachverstärker V2 das Bezugspotential durch Masse gebildet. Beide Verstärker V1 / V2 und ein Trigger TR werden über den Port K vom Mikrorechnermodul in Betrieb genommen, da sie als Stromsparmaßnahme bei Nichtbedarf außer Betrieb gesetzt sind. Der hinter dem Nachverstärker V2 befindliche Trigger TR ist seinerseits über Port 1 mit dem Mikrorechnermodul verbunden.
  • Zur Durchführung des Verfahrens wird über die Fernbedienung an das Mikrorechnermodul der Befehl zum Zünden gegeben. Durch den über Port K aktivierten Analogverstärker 20 wird überprüft, ob am Thermoelement 4 eine Thermospannung anliegt und die entsprechende Information über Port I an das Mikrorechnermodul gegeben. Während beim Vorliegen einer Thermospannung, was gleichbedeutend mit einer brennenden Zündflamme ist, der Zündvorgang abgebrochen wird, wird beim Nichtvorliegen einer Thermospannung der Spannungsteiler des Analogverstärkers 20 vom Mikrorechnermodul über Port L angesteuert. Durch einmalige Schaltung des Spannungsteilers wird die zu diesem Zeitpunkt am Thermoelement 4 vorhandene Gleichspannung in einen Wechselspannungsimpuls umgewandelt. Über den Koppelkondensator C4 gelangt der Impuls zu dem Vorverstärker V1. Das aus dem Vorverstärker V1 kommende Signal wird über den Koppelkondensator C5 an den Nachverstärker V2 gekoppelt und nochmals verstärkt. Dieses vom Nachverstärker V2 kommende analoge Signal wird vom Trigger TR an festgelegten Triggerpunkten, wie in dem zur Fig. 3 zugehörigen Diagramm ersichtlich, digitalisiert.
  • In dem Diagramm ist der Verlauf der Spannung U über der Zeit t aufgetragen. Durch den Trigger TR wird in einer vorgegebenen Spannungsebene SE bei der Einleitung des Impulssignals IS zum Zeitpunkt TL ein erster Triggerpunkt TR1 und beim Abfall der Spannung des Impulssignals IS ein zweiter Triggerpunkt TR2 gesetzt, dem ein Zeitpunkt TE zugeordnet ist. Der zeitliche Abstand zwischen den beiden Zeitpunkten TL und TE ist ein Messsignal MS.
  • Das so aus der vorhandenen Thermospannung gewonnene Messsignal MS gelangt über den Port I zum Mikrorechnermodul zur Auswertung. Dabei ist die Länge des Messsignals MS direkt proportional der am Thermoelement 4 vorhandenen Thermospannung.
  • Während beim Vorliegen einer Thermospannung, d.h. einer bereits brennenden Zündflamme, der Zündvorgang abgebrochen wird, werden beim Nichtvorliegen einer Thermospannung durch das Mikrorechnermodul über Port J der Leistungsoszillator 11 aktiviert und über Port A der Speicherkondensator C1 an die erste Stufe 12 der Mehrfachkaskade geschaltet.
  • Durch die Aktivierung des Leistungsoszillators 11 beginnt der Schwingkreis über das Rückkopplungsglied zu schwingen, d.h. der Schwingkreis wird zum selbstschwingenden und frequenzbestimmenden Leistungsoszillator 11. Damit liegt am Ausgang des Leistungsoszillators 11 eine gegenüber der durch die Batterien am Eingang vorgegebenen niedrigen Gleichspannung eine mehrfach höhere Wechselspannung an. Mit dieser Wechselspannung werden mit Hilfe der beiden Kaskadenstufen 12 / 13 der Mehrfachkaskade der Speicherkondensator C1 und der Zündkondensator C2 aufgeladen, bis das zur Spannungsüberwachung und Begrenzung der auftretenden Maximalspannung dienende Element 14 anspricht und über den Port D ein Signal an das Mikrorechnermodul schickt, das daraufhin über den Port J den Leistungsoszillator 11 abschaltet.
  • Anschließend werden über den Port M die zeitgesteuerten Sicherheitsabschaltungen 18 aktiviert und über den durch Port G angesteuerten Transistor T1 der Zündsicherungsmagnet 6 mit einem von der Spannungsquelle 10 kommenden Haltestrom versorgt, indem das Relais 17 erregt und so der Stromkreis zwischen dem Zündsicherungsmagneten 6 und dem Thermoelement 4 geöffnet wird. Durch die dann folgende Ansteuerung des Port B wird der Speicherkondensator C1 schlagartig entladen. Danach wird über Port A der Speicherkondensator C1 von der Kaskadenstufe 12 getrennt. Der Impulsmagnet 5 wird durch diesen Stromstoß kurzzeitig erregt und ein Stößel 7 wird gegen die Kraft einer Schließfeder 8 so weit bewegt, bis der Anker 3 auf dem Zündsicherungsmagneten 6 zur Anlage kommt. Auf Grund des fließenden Haltestromes wird der Anker 3 in dieser Stellung und damit das Zündsicherungsventil 2 in der Offenstellung gehalten. Das Gas kann durch die Gasregelarmatur zum Zündbrenner 1 strömen.
  • Beim Auftreten eines Havariefalles, beispielsweise Ausfall eines Bauelementes o.ä., wird nach Ablauf einer definierten Zeitdauer die Erregung des Zündsicherungsmagneten 6 über die Spannungsquelle 10 zusätzlich durch einen oder mehrere unabhängige in Reihe geschaltete und zeitgesteuerte Sicherheitsabschaltungen 18 unterbrochen und das Zündsicherungsventil 2 bleibt nicht in der Offenstellung, sondern wird durch die Schließfeder 8 wieder geschlossen.
  • Über Port C wird durch das Mikrorechnermodul die Zündeinrichtung aktiviert, der Zündkondensator C2 entlädt sich und es kommt an der Zündelektrode 9 zum Überspringen des Zündfunkens, wodurch das ausströmende Gas entzündet wird. Nach Ablauf einer vorgegebenen Zeit, in diesem Beispiel ca. 1 Sekunde, wird der Analogverstärker 20 über die Ports K und L aktiviert und es erfolgt eine Prüfung, ob am Thermoelement 4 auf Grund der beginnenden Erwärmung durch die brennende Zündflamme bereits eine nachweisbare Spannung, d.h. mindestens ca. 1 mV anliegt.
  • Wenn dies nicht der Fall ist, werden weitere Zündvorgänge eingeleitet, indem, wie bereits weiter oben ausführlich erläutert, der Leistungsoszillator 11 aktiviert, der Zündkondensator C2 geladen und unter Entstehung eines erneuten Zündfunkens wieder entladen wird. Dabei bleibt bei diesen folgenden Zündvorgängen zur Leistungseinsparung der Speicherkondensator C1 von der Kaskadenstufe 12 getrennt, da eine weitere Aufladung des Speicherkondensators C1 nicht mehr notwendig ist. Sollte innerhalb einer festgelegten Frist keine Entzündung des Gases erfolgen, so wird durch das Mikrorechnermodul der Vorgang Zünden beendet.
  • Beim Vorliegen der Mindestspannung werden selbstredend keine weiteren Zündvorgänge eingeleitet, sondern die vorhandene Leerlaufspannung des Thermoelementes 4 wird weiter überprüft, bis die Größe des daraus elektronisch errechneten Stromes als Haltestrom für den Zündsicherungsmagneten 6 ausreicht. Daraufhin wird der Analogverstärker 20 über Port K entaktiviert und über Port G der von der Spannungsquelle 10 zum Zündsicherungsmagneten 6 fließende Strom unterbrochen. Das Relais 17 wird entregt und die Schaltkontakte des Relais 17 schließen den Stromkreis zwischen Thermoelement 4 und Zündsicherungsmagneten 6. Der Anker 3 wird nun durch den Thermostrom gehalten.
  • Um zu verhindern, dass auf Grund der beim Umschalten der Schaltkontakte des Relais 17 an sich auftretenden kurzen Unterbrechung des Haltestromes der Anker 3 abfällt, wird zum Zeitpunkt des Umschaltens über den Port F der Transistor T2 kurzzeitig aktiviert und über den Widerstand R3 ebenfalls kurzzeitig ein zusätzlicher Strom generiert, der das o.g. Abfallen des Ankers mit Sicherheit verhindert.
  • Soll die Gasregelarmatur ausgeschaltet werden, so wird über die Fernbedienung an das Mikrorechnermodul der Befehl zum Ausschalten gegeben. Durch kurzzeitige Aktivierung von Port G und Port E wird unter Umgehung der Sicherheitsabschaltungen 18 und des Zündsicherungsmagneten 6 ein Stromstoß durch das Relais 17 geschickt, dessen Schaltkontakte dadurch kurz abheben. Damit wird der zwischen Thermoelement 4 und Zündsicherungsmagneten 6 fließende Haltestrom unterbrochen. Der Anker 3 wird nicht mehr durch den Zündsicherungsmagneten 6 gehalten und unter der Wirkung der Schließfeder 8 schließt das Zündsicherungsventil 2. Die Gaszufuhr zum Zündbrenner 1 und natürlich auch zum nicht dargestellten Hauptbrenner ist unterbrochen und die Gasflamme erlischt.
  • Das erfindungsgemäße Verfahren und die Schaltungsanordnung zur Durchführung dieses Verfahrens sind selbstredend nicht auf das dargestellte Ausführungsbeispiel beschränkt. Vielmehr sind Änderungen, Abwandlungen und Kombinationen möglich, ohne den Rahmen der Erfindung zu verlassen.
  • So versteht es sich, dass die Übermittlung der Steuersignale, wie bei Fernbedienungen allgemein bekannt, mittels Kabel, Infrarot, Funkwellen, Ultraschall o.ä. erfolgen kann. Desweiteren ist es möglich, dass keine Fernbedienung verwendet wird, und dass sich alle notwendigen Bauelemente an bzw. in der Gasregelarmatur befinden. Möglich ist auch, dass nur ein Hauptbrenner vorhanden ist, der direkt gezündet wird. Ebenso kann statt der Batterien als-Spannungsquelle (10) ein kleines Steckernetzteil verwendet werden, das dann günstigerweise angesteckt wird.
  • Aufstellung der Bezugszeichen
  • 1
    Zündbrenner
    2
    Zündsicherungsventil
    3
    Anker
    4
    Thermoelement
    5
    Impulsmagnet
    6
    Zündsicherungsmagnet
    7
    Stößel
    8
    Schließfeder
    9
    Zündelektrode
    10
    Spannungsquelle
    11
    Leistungsoszillator
    12
    Kaskadenstufe 1
    13
    Kaskadenstufe 2
    14
    Element zur Spannungs- überwachung und -begren- zung
    15
    CMOS - Schaltkreis
    16
    Komplementär - Feldeffekt - Leistungsstufe
    17
    Relais
    18
    Sicherheitsabschaltung
    19
    Phasenschieber
    20
    Analogverstärker
    A bis M
    Ports
    C1
    Speicherkondensator
    C2
    Zündkondensator
    C3
    HF - Kondensator
    C4
    Koppelkondensator
    C5
    Koppelkondensator
    IS
    Impulssignal
    L1
    Spule
    LS
    Impulssignal
    MS
    Messsignal
    R1
    Widerstand
    R2
    Widerstand
    R3
    Widerstand
    SE
    Spannungsebene
    TE
    Zeitpunkt bei TR2
    TL
    Zeitpunkt bei TR1
    TR
    Trigger
    TR1
    Triggerpunkt
    TR2
    Triggerpunkt
    T1
    Transistor
    T2
    Transistor
    T3
    Transistor
    T4
    Feldeffekttransistor
    V1
    Vorverstärker
    V2
    Nachverstärker
    MS
    Messsignal

Claims (18)

  1. Verfahren zum Zünden eines Gasstromes, wobei durch eine elektronische Steuereinheit nach ihrer Aktivierung zum Zünden des Gasstromes
    - ein Transverter aktiviert wird, der aus einer von einer Spannungsquelle (10) zur Verfügung gestellten Gleichspannung eine höhere Spannung erzeugt,
    - ein Speicherkondensator (C1) und ein zur Bereitstellung der Zündspannung dienender Zündkondensator (C2) mittels der höheren Spannung aufgeladen werden,
    - ein an sich bekannter Zündsicherungsmagnet (6) mit einem von der Spannungsquelle (10) zur Verfügung gestellten Haltestrom aktiviert wird, wobei gleichzeitig ein zwischen dem Zündsicherungsmagneten (6) und einem von der Gasflamme beeinflussbaren Thermoelement (4) bestehender Stromkreis über ein Relais (17) unterbrochen wird,
    - der Speicherkondensator (C1) über ein Schaltelement schlagartig entladen wird, wobei ein Stromstoß erzeugt wird, der zur kurzzeitigen Erregung eines Elektromagneten (5) dient, um ein an sich bekanntes Zündsicherungsventil (2) zu öffnen und dabei gleichzeitig den Anker (3) des Zündsicherungsmagneten (6) anzulegen, wobei der Anker (3) auf Grund des durch den Haltestrom aktivierten Zündsicherungsmagneten (6) nach seiner erfolgten Anlage in dieser Stellung gehalten wird,
    - über eine mit dem Zündkondensator (C2) über einen Zündtransformator verbundene Zündelektrode (9) in bekannter Weise ein Zündfunken zum Entzünden das ausströmenden Gases erzeugt wird,
    - weitere Zündvorgänge eingeleitet werden, indem
    • der Zündkondensator (C2) wieder aufgeladen wird,
    • nach erfolgter Aufladung ein erneuter Zündfunken erzeugt wird,
    - nach einer vorgegebenen Zeit das Zünden beendet wird,
    - der von der Spannungsquelle (10) zum Zündsicherungsmagneten (6) fließende Haltestrom unterbrochen und der zwischen dem Zündsicherungsmagneten (6) und dem Thermoelement (4) bestehende Stromkreis über das Relais (17) wieder geschlossen wird.
  2. Verfahren zum Zünden eines Gasstromes nach Patentanspruch 1, dadurch gekennzeichnet, dass durch die elektronische Steuereinheit nach ihrer Aktivierung zum Zünden des Gasstromes eine Prüfung erfolgt, ob eine Gasflamme brennt, wobei bei einer Positivinformation der Zündvorgang abgebrochen wird.
  3. Verfahren zum Zünden eines Gasstromes nach einem der Patentansprüche 1 oder 2, dadurch gekennzeichnet, dass
    - das Vorhandensein einer Thermospannung gemessen wird, wobei bei fehlender Thermospannung weitere Zündvorgänge eingeleitet werden, indem
    • der Zündkondensator (C2) wieder aufgeladen wird,
    • nach erfolgter Aufladung ein erneuter Zündfunken erzeugt wird,
    wohingegen bei vorhandener Thermospannung das Zünden beendet wird,
    - der von der Spannungsquelle (10) zum Zündsicherungsmagneten (6) fließende Haltestrom unterbrochen und der zwischen dem Zündsicherungsmagneten (6) und dem Thermoelement (4) bestehende Stromkreis über das Relais (17) wieder geschlossen wird, sobald der aus der vorhandenen Thermospannung berechnete Thermostrom ausreicht, um den Anker (3) auf dem Zündsicherungsmagneten (6) zu halten.
  4. Verfahren zum Zünden eines Gasstromes nach einem der Patentansprüche 1 bis 3, dadurch gekennzeichnet, dass der Speicherkondensator (C1) und der Zündkondensator (C2) über jeweils einen ihnen zugeordneten Transverter aufgeladen werden.
  5. Verfahren zum Zünden eines Gasstromes nach einem der Patentansprüche 1 bis 3, dadurch gekennzeichnet, dass
    - aus der von der Spannungsquelle (10) zur Verfügung gestellten Gleichspannung eine höhere Wechselspannung erzeugt wird, indem statt des Transverters ein Leistungsoszillator (11) eingesetzt wird,
    - der Speicherkondensator (C1) an eine dem Leistungsoszillator (11) nachgeschaltete erste Stufe (12) einer Mehrfachkaskade geschaltet und auf eine vorgegebene höhere Gleichspannung aufgeladen wird,
    - der Zündkondensator (C2), der elektrisch leitend mit der zweiten Stufe (13) der Mehrfachkaskade verbunden ist, auf eine vorgegebene höhere Gleichspannung aufgeladen wird.
  6. Verfahren zum Zünden eines Gasstromes nach Patentanspruch 5, dadurch gekennzeichnet, dass nach dem Erreichen der vorgegebenen höheren Gleichspannungen der Leistungsoszillator (11) ausgeschaltet und bei Einleitung weiterer Zündvorgänge wieder eingeschaltet wird.
  7. Verfahren zum Zünden eines Gasstromes nach einem der Patentansprüche 1 bis 6, dadurch gekennzeichnet, dass der von der Spannungsquelle (10) bereitgestellte Haltestrom zum Halten des Ankers (3) gleichzeitig über den Zündsicherungsmagneten (6) und das Relais (17) fließt, und dass zum Zeitpunkt des Schließens des zwischen Zündsicherungsmagneten (6) und Thermoelement (4) bestehenden Stromkreises durch Schließen des Relais (17) kurzzeitig ein zusätzlicher Strom generiert wird.
  8. Verfahren zum Zünden eines Gasstromes nach einem der Patentansprüche 1 bis 6, dadurch gekennzeichnet, dass die Spannung des dem Zündsicherungsmagneten (6) von der Spannungsquelle (10) zur Verfügung gestellten Haltestromes in den Millivoltbereich transvertiert wird.
  9. Verfahren zum Zünden eines Gasstromes nach einem oder mehreren der Patentansprüche 1 bis 8, dadurch gekennzeichnet, dass das Vorhandensein einer Thermospannung mittels eines Analogverstärkers (20) gemessen wird.
  10. Verfahren zum Zünden eines Gasstromes nach einem oder mehreren der Patentansprüche 1 bis 9, dadurch gekennzeichnet, dass zur Sicherheit nach Ablauf einer definierten Zeitdauer die Erregung des Zündsicherungsmagneten (6) über die Spannungsquelle (10) durch einen oder mehrere in Reihe geschaltete und zeitgesteuerte Sicherheitsabschaltungen (18) zwangsläufig unterbrochen wird.
  11. Verfahren zum Zünden eines Gasstromes nach Patentanspruch 5 oder 6, dadurch gekennzeichnet, dass bei dem ersten Zündvorgang folgenden Zündvorgängen vor Aufladung des Zündkondensators (C2) der Speicherkondensator (C1) von der Kaskade (12) abgeschaltet wird.
  12. Schaltungsanordnung zur Durchführung des Verfahrens zum Zünden eines Gasstromes nach einem der Ansprüche 1 bis 11 mit
    - einem mit einer Spannungsquelle (10) verbundenen Transverter,
    - einem dem Transverter nachgeordneten Speicherkondensator (C1), der mit einem Elektromagneten (5) zur Betätigung eines an sich bekannten Zündsicherungsventils (2) verbunden ist, und einem Zündkondensator (C2), der in bekannter Weise über einen Zündtransformator mit einer Zündelektrode (9) verbunden ist,
    - einem an sich bekannten Zündsicherungsmagneten (6), der über ein Relais (17) entweder mit der Spannungsquelle (10) oder einem Thermoelement (4) verbunden ist,
    - mindestens einer zwischen Spannungsquelle (10) und Zündsicherungsmagnet (6) angeordneten zeitgesteuerten Sicherheitsabschaltung (18),
    - einem Element zum Messen der Spannung des Thermoelementes (4),
    wobei die anzusteuernden Elemente über ihnen zugeordnete Ports mit einer elektronischen Steuereinrichtung verbunden sind.
  13. Schaltungsanordnung zum elektronischen Zünden eines Gasstromes nach Patentanspruch 12, dadurch gekennzeichnet, dass der Speicherkondensator (C1) ein ihm zugeordnetes Element (14) zur Spannungsüberwachung und Spannungsbegrenzung und einen ihm zugeordneten Transverter besitzt.
  14. Schaltungsanordnung zum elektronischen Zünden eines Gasstromes nach Patentanspruch 12, dadurch gekennzeichnet, dass der Zündkondensator (C2) ein ihm zugeordnetes Element (14) zur Spannungsüberwachung und Spannungsbegrenzung und einen ihm zugeordneten Transverter besitzt.
  15. Schaltungsanordnung zum elektronischen Zünden eines Gasstromes nach Patentanspruch 13 und/oder 14, dadurch gekennzeichnet, dass
    - statt des Transverters ein Leistungsoszillator (11) mit der Spannungsquelle (10) verbundenen ist,
    - dem Leistungsoszillator (11) eine Kaskade (12/13) nachgeschaltet ist,
    - nach der Kaskade (12/13) das Element (14) zur Spannungsüberwachung und Spannungsbegrenzung angeordnet ist.
  16. Schaltungsanordnung zum elektronischen Zünden eines Gasstromes nach Patentanspruch 13, dadurch gekennzeichnet, dass der Leistungsoszillator (11) aus einem CMOS - Schaltkreis (15), der mindestens vier Gatter aufweist, die entweder als NOR-Gatter oder NAND-Gatter oder einfache Negatoren ausgebildet sind, und von denen mindestens ein Gatter den anderen parallel geschalteten Gattern vorgelagert ist, oder aus mehreren CMOS - Schaltkreisen, einer den Gattern nachgeordneten Komplementär - Feldeffekt - Leistungsstufe (16), einem derselben nachgeordneten LC - Schwingkreis (L1/C3), und einem als Phasenschieber (19) dienenden RC - Glied besteht.
  17. Schaltungsanordnung zum elektronischen Zünden eines Gasstromes nach einem oder mehreren der Patentansprüche 12-16, dadurch gekennzeichnet, dass das Element zum Messen der Spannung des Thermoelementes (4) ein Analogverstärker (20) ist.
  18. Schaltungsanordnung zum elektronischen Zünden eines Gasstromes nach Patentanspruch 17, dadurch gekennzeichnet, dass der Analogverstärker (20) ein Wechselspannungsverstärker ist, dem ein getakteter Spannungsteiler vorgeschaltet ist.
EP04710374A 2003-02-13 2004-02-12 Verfahren und schaltungsanordnung zum zünden eines gasstromes Expired - Lifetime EP1592923B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200431718T SI1592923T1 (sl) 2003-02-13 2004-02-12 Postopek in vezalna razmestitev za vĹľiganje toka plina

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10305928A DE10305928B3 (de) 2003-02-13 2003-02-13 Verfahren und Schaltungsanordnung zum Zünden eines Gasstromes
DE10305928 2003-02-13
PCT/EP2004/001300 WO2004072555A1 (de) 2003-02-13 2004-02-12 Verfahren und schaltungsanordnung zum zünden eines gasstromes

Publications (2)

Publication Number Publication Date
EP1592923A1 EP1592923A1 (de) 2005-11-09
EP1592923B1 true EP1592923B1 (de) 2011-05-04

Family

ID=32863802

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04710374A Expired - Lifetime EP1592923B1 (de) 2003-02-13 2004-02-12 Verfahren und schaltungsanordnung zum zünden eines gasstromes

Country Status (19)

Country Link
EP (1) EP1592923B1 (de)
JP (1) JP4495719B2 (de)
KR (1) KR101050934B1 (de)
CN (1) CN1748109A (de)
AR (1) AR043183A1 (de)
AT (1) ATE508329T1 (de)
AU (1) AU2004211492B2 (de)
CA (1) CA2515944C (de)
DE (2) DE10305928B3 (de)
DK (1) DK1592923T3 (de)
ES (1) ES2366088T3 (de)
HK (1) HK1088657A1 (de)
PL (1) PL207731B1 (de)
PT (1) PT1592923E (de)
RU (1) RU2334915C2 (de)
SI (1) SI1592923T1 (de)
TW (1) TW200506285A (de)
UA (1) UA86931C2 (de)
WO (1) WO2004072555A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2477509C2 (ru) * 2008-11-21 2013-03-10 Сименс Акциенгезелльшафт Способ и устройство измерения для определения состояния электрического воспламенителя горелки газовой турбины, а также устройство зажигания для горелки газовой турбины
DE102010019960B4 (de) * 2010-05-05 2012-09-13 Mertik Maxitrol Gmbh & Co. Kg Gasregelarmatur
CN102494353B (zh) * 2011-12-07 2013-08-21 何林 燃气灶电子连续点火器
CN107192735B (zh) * 2017-06-12 2019-08-09 公安部天津消防研究所 一种可调超高能扩散点火能量发生装置及控制方法
TWI783745B (zh) * 2021-10-22 2022-11-11 台灣櫻花股份有限公司 瓦斯爐點火控制系統及其瓦斯爐點火控制方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US572282A (en) * 1896-12-01 Hyacinths trenta
CH325654A (de) * 1953-06-09 1957-11-15 Hegwein Georg Sicherheitseinrichtung für Brenner
CA1096464A (en) * 1977-03-07 1981-02-24 Russell B. Matthews Fuel ignition system having interlock protection and electronic valve leak detection
DE3126639A1 (de) * 1981-07-06 1983-01-20 Philipp Kreis GmbH & Co Truma-Gerätebau, 8000 München "sicherheitsschaltung fuer mit einem geblaese betriebenen brenner fuer gasfoermige oder fluessige brennstoffe"
EP0108032A3 (de) * 1982-10-23 1985-01-09 Joh. Vaillant GmbH u. Co. Steuervorrichtung für eine brennstoffbeheizte Wärmequelle
JPS59120344U (ja) * 1983-01-28 1984-08-14 パロマ工業株式会社 ガス燃焼器の燃焼制御装置
JPS60189764U (ja) * 1984-05-25 1985-12-16 株式会社村田製作所 点火装置
JPS641271U (de) * 1987-06-22 1989-01-06
IT1255275B (it) * 1992-05-26 1995-10-25 Valvola multifunzionale a sicurezza termoelettrica per bruciatori-gas di apparecchi di riscaldamento in genere
GB9423271D0 (en) * 1994-11-18 1995-01-11 Hodgkiss Neil J Gas ignition devices
JPH09159154A (ja) * 1995-12-13 1997-06-20 Matsushita Electric Ind Co Ltd ガス機器の安全装置
JP3533302B2 (ja) * 1996-12-29 2004-05-31 東京瓦斯株式会社 燃焼装置
GB9907071D0 (en) * 1999-03-29 1999-05-19 Concentric Controls Ltd Valve assembly

Also Published As

Publication number Publication date
SI1592923T1 (sl) 2011-09-30
JP4495719B2 (ja) 2010-07-07
AU2004211492A1 (en) 2004-08-26
DE502004012469D1 (de) 2011-06-16
KR20050098307A (ko) 2005-10-11
ATE508329T1 (de) 2011-05-15
PL378019A1 (pl) 2006-02-20
WO2004072555A1 (de) 2004-08-26
RU2334915C2 (ru) 2008-09-27
UA86931C2 (ru) 2009-06-10
RU2005127960A (ru) 2006-01-27
CA2515944A1 (en) 2004-08-26
DK1592923T3 (da) 2011-08-29
KR101050934B1 (ko) 2011-07-20
TWI308204B (de) 2009-04-01
EP1592923A1 (de) 2005-11-09
DE10305928B3 (de) 2004-10-07
HK1088657A1 (en) 2007-01-26
CA2515944C (en) 2012-01-31
AR043183A1 (es) 2005-07-20
JP2006517646A (ja) 2006-07-27
TW200506285A (en) 2005-02-16
CN1748109A (zh) 2006-03-15
AU2004211492B2 (en) 2009-03-26
PT1592923E (pt) 2011-07-13
PL207731B1 (pl) 2011-01-31
ES2366088T3 (es) 2011-10-17

Similar Documents

Publication Publication Date Title
DE2552666A1 (de) Logische schaltung
EP1592923B1 (de) Verfahren und schaltungsanordnung zum zünden eines gasstromes
DE10309469B3 (de) Gasregelarmatur
DE2805113A1 (de) Zuendsystem fuer gasbetriebene brenneinrichtungen
EP1592922B1 (de) Verfahren und anordnung zum zunden eines gasstromes
DE10107194C1 (de) Stromsparendes Gasventil
EP1564487A2 (de) Steuereinrichtung für einen netzunabhängigen Gasbrenner
US20060068348A1 (en) Method and circuit for igniting a gas flow
DE3022635A1 (de) Steuerschaltung fuer eine feuerungsanlage
DE2917584C2 (de)
DE3016711C2 (de)
DE1119968B (de) Elektrische Steuervorrichtung, insbesondere fuer Brenner u. dgl.
AT398242B (de) Schaltungsanordnung zur zeitgesteuerten abschaltung eines gasbrenners
EP0314610B1 (de) Feuerungsautomat
AT212165B (de) Schaltvorrichtung für mit strömendem Brennstoff betriebene Heizungen, insbesondere Fahrzeugheizungen
DE895078C (de) Elektrische Zuendvorrichtung, insbesondere fuer Verbrennungs- und Strahlturbinen
EP0585478B1 (de) Steuereinrichtung für Gasbrenner
DE102004062729B4 (de) Verfahren und Schaltungsanordnung zur Datenübermittlung mittels Infrarot-Fernsteuerung
DE102004007310B4 (de) Steuereinrichtung für einen netzunabhängigen Gasbrenner
DE2423974A1 (de) Schaltungsanordnung eines feuerungsautomaten
DE2230939B2 (de) Flammenüberwachungsvorrichtung für einen Feuerungsautomaten
DE3841084A1 (de) Feuerungsautomat
CH347497A (de) Verfahren und Vorrichtung zum Anzünden und Sichern eines Brenners
DE2433447A1 (de) Zuendeinrichtung fuer gasbrenngeraete
DE1526234A1 (de) Elektronische Zuendsicherungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050803

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1088657

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BLANK, JUERGEN

Inventor name: HAPPE, BARBARA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004012469

Country of ref document: DE

Date of ref document: 20110616

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004012469

Country of ref document: DE

Effective date: 20110616

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20110706

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP WENGER RYFFEL AG

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20110401725

Country of ref document: GR

Effective date: 20110829

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2366088

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111017

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1088657

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E011917

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20111213

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20111212

Year of fee payment: 9

26N No opposition filed

Effective date: 20120207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20120119

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004012469

Country of ref document: DE

Effective date: 20120207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20120224

Year of fee payment: 9

Ref country code: FI

Payment date: 20120206

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20130122

Year of fee payment: 10

Ref country code: CZ

Payment date: 20130115

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20130114

Year of fee payment: 10

Ref country code: AT

Payment date: 20130227

Year of fee payment: 10

BERE Be: lapsed

Owner name: MERTIK MAXITROL G.M.B.H. & CO. KG

Effective date: 20130228

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20110401725

Country of ref document: GR

Effective date: 20130904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130212

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130213

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130904

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20131017

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130212

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130212

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20140225

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120212

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20140812

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140501

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 508329

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140213

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140812

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20150228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004012469

Country of ref document: DE

Owner name: MAXITROL GMBH & CO. KG, DE

Free format text: FORMER OWNER: MERTIK MAXITROL GMBH & CO. KG, 06502 THALE, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: MAXITROL GMBH & CO. KG

Effective date: 20210315

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: MAXITROL GMBH & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: MERTIK MAXITROL GMBH & CO. KG

Effective date: 20210312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220128

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220201

Year of fee payment: 19

Ref country code: FR

Payment date: 20220128

Year of fee payment: 19

Ref country code: ES

Payment date: 20220307

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230227

Year of fee payment: 20

Ref country code: GB

Payment date: 20230120

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230117

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004012469

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230901

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20240211

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240211

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230213

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240211