EP1577307A2 - Herstellung von Thiazolen - Google Patents

Herstellung von Thiazolen Download PDF

Info

Publication number
EP1577307A2
EP1577307A2 EP05013434A EP05013434A EP1577307A2 EP 1577307 A2 EP1577307 A2 EP 1577307A2 EP 05013434 A EP05013434 A EP 05013434A EP 05013434 A EP05013434 A EP 05013434A EP 1577307 A2 EP1577307 A2 EP 1577307A2
Authority
EP
European Patent Office
Prior art keywords
formula
alkyl
compound
isomers
isomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05013434A
Other languages
English (en)
French (fr)
Other versions
EP1577307A3 (de
Inventor
Thomas Pitterna
Henry Szcpepanski
Peter Maienfisch
Ottmar Franz Hueter
Thomas Repold
Marcel Senn
Thomas Gobel
Anthony Cornelius O' Sullivan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Syngenta Participations AG
Original Assignee
Syngenta Participations AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syngenta Participations AG filed Critical Syngenta Participations AG
Publication of EP1577307A2 publication Critical patent/EP1577307A2/de
Publication of EP1577307A3 publication Critical patent/EP1577307A3/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/08Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D277/12Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/16Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/36Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/68Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D277/70Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/68Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
    • C07D277/70Sulfur atoms
    • C07D277/74Sulfur atoms substituted by carbon atoms

Definitions

  • the invention relates to a process for the preparation of a compound of the formula and, where applicable, its E/Z-isomers, mixtures of E/Z-isomers and/or tautomers, in each case in free form or in salt form, wherein
  • the invention relates also to a process for the preparation of compounds of the formula and, where applicable, their E/Z-isomers, mixtures of E/Z-isomers and/or tautomers and acid addition products thereof, in each case in free form or in salt form, wherein
  • the present invention relates also to a process for the preparation of a compound of formula (C) and, where applicable, its E/Z-isomers, mixtures of E/Z-isomers and/or tautomers and acid addition products thereof, in each case in free form or in salt form, which comprises reacting a compound of the formula (I) with a compound of the formula (B); and a process for the preparation of a compound of formula (A) and, where applicable, its E/Z-isomers, mixtures of E/Z-isomers and/or tautomers and acid addition products thereof, in each case in free form or in salt form, which comprises reacting a compound of the formula (C) with a halogenating agent.
  • Some compounds of formulae (I) to (VIII) and (A) to (C) defined hereinbefore and hereinafter contain asymmetric carbon atoms, as a result of which the compounds may occur in optically active form.
  • the corresponding formulae are intended to include all those possible isomeric forms as well as mixtures thereof, for example racemates or mixtures of E/Z-isomers.
  • carbon-containing groups and compounds each contain from 1 up to and including 8, preferably from 1 up to and including 6, especially from 1 up to and including 4, more especially 1 or 2, carbon atoms.
  • Alkyl - both as a group per se and as a structural element of other groups and compounds, such as haloalkyl, arylalkyl or hydroxyalkyl - is preferably, in each case giving due consideration to the number of carbon atoms contained in the group or compound in question, either straight-chained, i.e. methyl, ethyl, propyl, butyl, pentyl or hexyl, or branched, for example isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl or isohexyl.
  • Alkenyl - both as a group per se and as a structural element of other groups and compounds, such as haloalkenyl or arylalkenyl - is, in each case giving due consideration to the number of carbon atoms contained in the group or compound in question, either straight-chained, for example vinyl, 1-methylvinyl, allyl, 1-butenyl or 2-hexenyl, or branched, for example isopropenyl.
  • Alkynyl - both as a group per se and as a structural element of other groups and compounds, such as haloalkynyl - is, in each case giving due consideration to the number of carbon atoms contained in the group or compound in question, either straight-chained, for example propargyl, 2-butynyl or 5-hexynyl, or branched, for example 2-ethynylpropyl or 2-propargylisopropyl.
  • Cycloalkyl is cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, especially cyclohexyl.
  • Aryl is phenyl or naphthyl, especially phenyl.
  • Heteroaryl is understood as being a five- to seven-membered monocyclic aromatic ring that contains from one to three hetero atoms selected from the group consisting of N, O and S, especially N and S, or a bicyclic heteroaryl that may contain either in only one ring - such as, for example, in quinolinyl, quinoxalinyl, indolinyl, benzothiophenyl or benzofuranyl - or in both rings - such as, for example, in pteridinyl or purinyl - independently of one another, one or more hetero atoms selected from N, O and S.
  • Preference is given to pyridyl, pyrimidinyl, thiazolyl and benzothiazolyl, especially thiazolyl.
  • Halogen - both as a group per se and as a structural element of other groups and compounds, such as haloalkyl, haloalkenyl and haloalkynyl - is fluorine, chlorine, bromine or iodine, especially fluorine, chlorine or bromine, more especially chlorine or bromine, very especially chlorine.
  • Halo-substituted carbon-containing groups and compounds such as haloalkyl or haloalkenyl, may be partially halogenated or perhalogenated, the halogen substituents in the case of multi-halogenation being the same or different.
  • haloalkyl - both as a group per se and as a structural element of other groups and compounds, such as haloalkenyl - are methyl substituted from one to three times by fluorine, chlorine and/or by bromine, such as CHF 2 or CF 3 ; ethyl substituted from one to five times by fluorine, chlorine and/or by bromine, such as CH 2 CF 3 , CF 2 CF 3 , CF 2 CCl 3 , CF 2 CHCl 2 , CF 2 CHF 2 , CF 2 CFCl 2 , CF 2 CHBr 2 , CF 2 CHClF, CF 2 CHBrF or CClFCHClF; propyl or isopropyl substituted from one to seven times by fluorine, chlorine and/or by bromine, such as CH 2 CHBrCH 2 Br, CF 2 CHFCF 3 , CH 2 CF 2 CF 3 or CH(CF 3 ) 2 ; and butyl
  • Some compounds of formulae (I) to (VIII) and (A) to (C) may be in the form of tautomers. Therefore, hereinbefore and hereinafter those compounds are to be understood as inclu ding also the corresponding tautomers, even if the latter are not mentioned specifically in every case.
  • Compounds of formulae (I) to (VIII) and (A) to (C) that have at least one basic centre are able to form, for example, acid addition salts. These are formed, for example, with strong inorganic acids, such as mineral acids, for example perchloric acid, sulfuric acid, nitric acid, nitrous acid, a phosphoric acid or a hydrohalic acid, with strong organic carboxylic acids, such as unsubstituted or substituted, for example halo-substituted, C 1 -C 4 alkane-carboxylic acids, for example acetic acid, saturated or unsaturated dicarboxylic acids, for example oxalic, malonic, succinic, maleic, fumaric or phthalic acid, hydroxycarboxylic acids, for example ascorbic, lactic, malic, tartaric or citric acid, or benzoic acid, or with organic sulfonic acids, such as unsubstituted or substituted, for example halo
  • salts with bases are, for example, metal salts, such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts, or salts with ammonia or an organic amine, such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower alkylamine, for example ethyl-, diethyl-, triethyl- or dimethyl-propyl-amine, or a mono-, di- or tri-hydroxy-lower alkylamine, for example mono-, di- or tri-ethanolamine.
  • metal salts such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts
  • salts with ammonia or an organic amine such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower alkylamine, for example ethyl-, diethyl-, triethyl- or dimethyl-propyl-amine,
  • Acid addition products are understood as being products which are obtainable by the addition of an acid, preferably an inorganic acid, to a double bond, especially to a double bond of a heterocycle.
  • an acid preferably an inorganic acid
  • a compound of the formula (I) as defined above may result in the compound of the formula
  • an acid HX 1 can easily be split off from the said acid addition product; e.g. the compound of the formula (IX) can be converted into the compound of the formula (I). Therefore, the compounds of formula (I), (III), (IV), (VI) to (VIII), (A) and (C) are herein before and hereinafter to be understood as being both the compounds of the formulae (I), (III), (IV), (VI) to (VIII), (A) and (C) and the corresponding acid addition products, in free from and the salts thereof, even if not all the forms are specifically mentioned in every case.
  • a leaving group is understood as being any removable group that is customarily suitable in chemical reactions, such as is known to the person skilled in the art; for example halides, especially chloride or bromide, H 2 O, SH, CN, sulfonates, sulfinates, NO 3 , NO 2 ⁇ or SO 3 ; special preference is given to chloride or bromide and sulfonates.
  • halides especially chloride or bromide, H 2 O, SH, CN, sulfonates, sulfinates, NO 3 , NO 2 ⁇ or SO 3 ; special preference is given to chloride or bromide and sulfonates.
  • Especially preferred leaving groups are mentioned in the individual processes.
  • the present invention relates also to a process for the preparation of a compound of formula (II) and, where applicable, its E/Z-isomers, mixtures of E/Z-isomers and/or tautomers, in each case in free form or in salt form, which comprises
  • the reactions of variants a) to h) described hereinbefore and hereinafter are carried out in a manner known per se, for example in the absence or, customarily, in the presence of a suitable solvent or diluent or of a mixture thereof, the reactions being carried out, as required, with cooling, at room temperature or with heating, for example in a temperature range of approximately from -80°C to the boiling temperature of the reaction medium, preferably from approximately -20°C to approximately +120°C, especially from 20°C to 80°C, and, if necessary, in a closed vessel, under pressure, under an inert gas atmosphere and/or under anhydrous conditions.
  • Especially advantageous reaction conditions can be taken from the Examples.
  • the reactants can in each case be reacted with one another as such, i.e. without the addition of a solvent or diluent, for example in the molten state.
  • a solvent or diluent for example in the molten state.
  • the addition of an inert solvent or diluent or of a mixture thereof is in most cases advantageous.
  • solvents and diluents aromatic, aliphatic and alicyclic hydrocarbons and halogenated hydrocarbons, such as benzene, toluene, xylene, mesitylene, Tetralin, chlorobenzene, dichlorobenzene, bromobenzene, petroleum ether, hexane, cyclohexane, dichloromethane, trichloromethane, tetrachloromethane, dichloroethane, trichloroethene or tetrachloroethene; esters, such as ethyl acetate; ethers, such as diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, tert-butyl methyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, dimethoxy
  • bases such as triethylamine, pyridine, N-methylmorpholine or N,N-diethylaniline in excess may also serve as solvent or diluent.
  • acids for example strong organic carboxylic acids, such as unsubstituted or substituted, e.g. halo-substituted, C 1 -C 4 alkanecarboxylic acids, for example formic acid, acetic acid or propionic acid, in excess may also serve as solvent or diluent.
  • Suitable solvents for the reaction in question can be taken from the Examples given below.
  • the reaction is preferably carried out in a temperature range of from -20 to 160°C, especially from 0 to 100°C, customarily at from 25 to 50°C.
  • Suitable solvents are especially: aliphatic and aromatic hydrocarbons, halogenated hydrocarbons, esters, nitriles, ethers; for example: petroleum ether, pentane, hexane, heptane, chlorobenzene, methylene chloride, ethylene chloride, bromochloromethane, chloroform, carbon tetrachloride, tetrachloroethylene, ethyl acetate, acetonitrile, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane; or a mixture thereof; especially methylene chloride.
  • reagents especially water-removing, halide-containing agents, such as thionyl chloride (SOCl 2 ), thionyl bromide (SOBr 2 ), phosphorus oxychloride (POCl 3 ), phosphorus oxybromide (POBr 3 ), phosphorus pentachloride or a sulfonic acid chloride or bromide; thionyl chloride is preferred.
  • SOCl 2 thionyl chloride
  • SOBr 2 thionyl bromide
  • POCl 3 phosphorus oxychloride
  • POBr 3 phosphorus oxybromide
  • thionyl chloride is preferred.
  • Water or a base may be added to the reaction mixture, if desired; especially suitable bases are, for example, alkali metal or alkaline earth metal carbonates, alkali metal or alkaline earth metal hydrogen carbonates or alkali metal or alkaline earth metal hydroxides, or a tertiary amine; in a preferred form the reaction is carried out without the addition of a base.
  • suitable bases are, for example, alkali metal or alkaline earth metal carbonates, alkali metal or alkaline earth metal hydrogen carbonates or alkali metal or alkaline earth metal hydroxides, or a tertiary amine; in a preferred form the reaction is carried out without the addition of a base.
  • the reaction is preferably carried out in a temperature range of from -20 to 160°C, especially from 0 to 100°C, customarily from 0 to 25°C.
  • Suitable solvents are especially: aliphatic and aromatic hydrocarbons, halogenated hydrocarbons, esters, nitriles, ethers; for example: petroleum ether, pentane, hexane, heptane, chlorobenzene, methylene chloride, ethylene chloride, bromochloromethane, chloroform, carbon tetrachloride, tetrachloroethylene, ethyl acetate, acetonitrile, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane; or a mixture thereof; methylene chloride is preferred.
  • Reagents halide-containing water-removing agent, or sulfonylating agent; for example: thionyl chloride, phosphorus oxychloride, phosphorus pentachloride, phosphorus oxytribromide, triphenylphosphine + bromine; or a sulfonic acid chloride or anhydride; customarily: thionyl chloride, triphenylphosphine + bromine, toluenesulfonyl chloride, methanesulfonyl chloride, trifluoromethanesulfonyl chloride or methanesulfonyl anhydride.
  • Water or a base may be added to the reaction mixture, if desired; especially suitable bases are, for example, alkali metal or alkaline earth metal carbonates, alkali metal or alkaline earth metal hydrogen carbonates or alkali metal or alkaline earth metal hydroxides, or a tertiary amine; in a preferred form the reaction is carried out without additives.
  • suitable bases are, for example, alkali metal or alkaline earth metal carbonates, alkali metal or alkaline earth metal hydrogen carbonates or alkali metal or alkaline earth metal hydroxides, or a tertiary amine; in a preferred form the reaction is carried out without additives.
  • the reaction is preferably carried out in a temperature range of from -20 to 160°C, especially from 0 to 100°C, preferably from 50 to 70°C.
  • Suitable solvents are especially: aliphatic and aromatic hydrocarbons, halogenated hydrocarbons, esters, nitriles, ethers; for example: petroleum ether, pentane, hexane, heptane, chlorobenzene, methylene chloride, ethylene chloride, bromochloromethane, chloroform, carbon tetrachloride, tetrachloroethylene, ethyl acetate, acetonitrile, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane; or a mixture thereof; tetrahydrofuran is especially preferred.
  • the reaction is preferably carried out in a temperature range of from -20 to 160°C, especially from 0 to 100°C, preferably from 0 to 25°C.
  • Suitable solvents are especially: aliphatic and aromatic hydrocarbons, halogenated hydrocarbons, esters, amides, nitriles, ethers, alcohols, water; for example: petroleum ether, pentane, hexane, heptane, chlorobenzene, methylene chloride, ethylene chloride, bromochloromethane, chloroform, carbon tetrachloride, tetrachloroethylene, ethyl acetate, acetonitrile, diethyl ether, dimethylformamide, dimethylacetamide, diisopropyl ether, tetrahydrofuran, dioxane, ethanol, methanol, isopropanol, water; or a mixture thereof; a mixture of water and ethanol is preferred.
  • An acid, a base or a buffer may be added to the reaction mixture, if desired; preference is given to a buffer having a pH of from 6 to 8, especially a phosphate buffer having a pH value of 7.
  • the reaction is preferably carried out in a temperature range of from -20 to 160°C, especially from 0 to 100°C, preferably from 25 to 50°C.
  • Suitable solvents are especially: aliphatic and aromatic hydrocarbons, halogenated hydrocarbons, esters, amides, nitriles, ethers, alcohols, water; for example: petroleum ether, pentane, hexane, heptane, chlorobenzene, methylene chloride, ethylene chloride, bromochloromethane, chloroform, carbon tetrachloride, tetrachloroethylene, ethyl acetate, acetonitrile, diethyl ether, dimethylformamide, dimethylacetamide, diisopropyl ether, tetrahydrofuran, dioxane, ethanol, methanol, isopropanol, water; or a mixture thereof; a mixture of water and ethanol is preferred.
  • Preferred acids for carrying out the reaction are inorganic acids, such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, perchloric acid, tetrafluoroboric acid; carboxylic acids, such as trifluoroacetic acid; or sulfonic acids, such as toluenesulfonic acid, benzenesulfonic acid, camphorsulfonic acid; hydrochloric acid is preferred.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, perchloric acid, tetrafluoroboric acid
  • carboxylic acids such as trifluoroacetic acid
  • sulfonic acids such as toluenesulfonic acid, benzenesulfonic acid, camphorsulfonic acid
  • hydrochloric acid is preferred.
  • the reaction is preferably carried out in a temperature range of from -20 to 160°C, especially from 0 to 100°C, preferably from 0 to 25°C.
  • Suitable solvents are especially: hydrocarbons, esters, amides, nitriles, ethers, water; petroleum ether, pentane, hexane, heptane, ethyl acetate, acetonitrile, diethyl ether, dimethylformamide, dimethylacetamide, diisopropyl ether, tetrahydrofuran, dioxane, water; or a mixture thereof; ethyl acetate is preferred.
  • Suitable hydrogenation catalysts are, for example: metals or metal oxides, especially those of transition metals, especially also those on an inert support material; platinum oxide and nickel, especially platinum oxide, are preferred.
  • a Lewis acid is customarily added to the reaction mixture; especially suitable are halides of transition metals, especially iron(II) chloride.
  • the reaction is preferably carried out in a temperature range of from -20 to 160°C, especially from 0 to 100°C, preferably from 50 to 80°C.
  • Suitable solvents are especially: aliphatic and aromatic hydrocarbons, halogenated hydrocarbons, esters, amides, nitriles, ethers, alcohols, water; for example: petroleum ether, pentane, hexane, heptane, chlorobenzene, methylene chloride, ethylene chloride, bromochloromethane, chloroform, carbon tetrachloride, tetrachloroethylene, ethyl acetate, acetonitrile, diethyl ether, dimethylformamide, dimethylacetamide, diisopropyl ether, tetrahydrofuran, dioxane, ethanol, methanol, isopropanol, water; or a mixture thereof; acetonitrile is preferred.
  • Suitable alkylating agents are especially unsubstituted or substituted alkyl halides or sulfonates; substituted or unsubstituted benzyl chloride, bromide, mesylate or tosylate; substituted or unsubstituted allyl chloride, bromide, mesylate or tosylate; substituted or unsubstituted propargyl chloride, bromide, mesylate or tosylate; esters or amides of bromoacetic acid or chloroacetic acid; especially benzyl chloride, benzyl bromide, ethyl chloroacetate, ethyl bromoacetate, allyl chloride, propargyl chloride; benzyl bromide is especially preferred.
  • Bases may be added to the reaction medium, if desired.
  • the reaction is preferably carried out in a temperature range of from -20 to 160°C, especially from 0 to 100°C, preferably from 25 to 50°C.
  • Suitable solvents are especially: aliphatic and aromatic hydrocarbons, halogenated hydrocarbons, ethers; for example: petroleum ether, pentane, hexane, heptane, chlorobenzene, methylene chloride, ethylene chloride, bromochloromethane, chloroform, carbon tetrachloride, tetrachloroethylene, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane; or a mixture thereof; it is especially preferred to carry out the process without a solvent.
  • ethers for example: petroleum ether, pentane, hexane, heptane, chlorobenzene, methylene chloride, ethylene chloride, bromochloromethane, chloroform, carbon tetrachloride, tetrachloroethylene, diethyl ether, diisopropyl ether, tetrahydrofuran, dio
  • reagent a mixture of phosphorus oxychloride and dimethylformamide.
  • Salts of compounds of formulae (I), (II), (III), (IV), (VI) and (A) to (C) can be prepared in a manner known per se.
  • acid addition salts are obtained by treatment with a suitable acid or a suitable ion exchange reagent
  • salts with bases are obtained by treatment with a suitable base or a suitable ion exchange reagent.
  • Salts of compounds of formulae (I) to (IV), (VI) to (VIII) and (A) to (C) can be converted into the corresponding free compounds in customary manner; acid addition salts, for example, by treatment with a suitable basic agent or a suitable ion exchange reagent, and salts with bases, for example, by treatment with a suitable acid or a suitable ion exchange reagent.
  • Salts of compounds of formulae (I) to (IV), (VI) to (VIII) and (A) to (C) can be converted into different salts of compounds of the corresponding formulae in a manner known per se; acid addition salts, for example, can be converted into different acid addition salts, for example by treating a salt of an inorganic acid, such as a hydrochloride, with a suitable metal salt, such as a sodium, barium or silver salt, of an acid, for example silver acetate, in a suitable solvent in which an inorganic salt that forms, for example silver chloride, is insoluble and therefore separates out of the reaction mixture.
  • a salt of an inorganic acid such as a hydrochloride
  • a suitable metal salt such as a sodium, barium or silver salt
  • an acid for example silver acetate
  • the compounds of formulae (I) to (IV), (VI) to (VIII) and (A) to (C) having salt-forming properties can be obtained in free form or in the form of salts.
  • the compounds of formulae (I) to (IV), (VI) to (VIII) and (A) to (C) and in each case, where applicable, their tautomers, in each case in free form or in salt form, may be in the form of one of the possible isomers or in the form of a mixture thereof, for example, depending on the number of asymmetric carbon atoms occurring in the molecule and their absolute and relative configuration, and/or depending on the configuration of non-aromatic double bonds occurring in the molecule, in the form of pure isomers, such as antipodes and/or diastereoisomers, or in the form of mixtures of isomers, such as mixtures of enantiomers, for example racemates, mixtures of diastereoisomers or mixtures of racemates; the invention relates both to the pure isomers and to all possible mixtures of isomers and is to be interpreted as such hereinbefore and hereinafter, even if stereochemical details are not mentioned specifically in every case.
  • pure diastereoisomers and enantiomers can be obtained according to the invention also by generally known methods of diastereoselective and enantioselective synthesis, for example by carrying out the process according to the invention using starting materials having correspondingly suitable stereochemistry.
  • the compounds of formulae (I) to (IV), (VI) to (VIII) and (A) to (C) and their salts can also be obtained in the form of their hydrates and/or include other solvents, for example solvents that may have been used for the crystallisation of compounds that occur in solid form.
  • the invention relates to all those forms of the process according to which a compound obtainable as starting material or intermediate at any stage of the process is used as starting material and all or some of the remaining steps are carried out, or a starting material is used in the form of a derivative or salt and/or in the form of its racemates or antipodes or, especially, is formed under the reaction conditions.
  • the invention relates especially to the preparation processes described in preparation processes P1 to P5.
  • the present invention relates also to the compounds of formula (II) and, where applicable, their E/Z-isomers, mixtures of E/Z-isomers and/or tautomers, in each case in free form or in salt form, wherein R is as defined above for formula (I).
  • the present invention relates also to the compounds of formula (III) and, where applicable, their E/Z-isomers, mixtures of E/Z-isomers and/or tautomers, in each case in free form or in salt form, wherein R is as defined above for formula (I).
  • the present invention relates also to the compounds of formula (IV) and, where applicable, their E/Z-isomers, mixtures of E/Z-isomers and/or tautomers, in each case in free form or in salt form, wherein R, R 2 and R 3 are as defined above.
  • R 2 and R 3 are each independently of the other C 1 -C 4 alkyl or two radicals R 2 and R 3 , together with the nitrogen atom to which they are bonded, form a five- or six-membered ring in which a CH 2 group has optionally been replaced by a hetero atom selected from the group consisting of O and S, or by NH, and wherein the five- to seven-membered ring is unsubstituted or is mono- or di-substituted by C 1 -C 4 alkyl; especially, R 2 and R 3 together form (CH 2 ) 5 or -(CH 2 ) 2 -O-(CH 2 ) 2 -.
  • the present invention relates also to the compounds of formula (VI) and, where applicable, their E/Z-isomers, mixtures of E/Z-isomers and/or tautomers, in each case in free form or in salt form, wherein R is as defined above for formula (I), with the proviso that R is not unsubstituted C 1 -C 2 alkyl.
  • Example P1 b The other compounds listed in Table 1 can also be prepared in a manner analogous to that described in Example P1a.
  • Example P2b The other compounds listed in Table 2 can also be prepared in a manner analogous to that described in Example P2a.
  • Example P3c The other compounds listed in Table 3 can also be prepared in a manner analogous to that described in Examples P3a and P3b.
  • Example P4b The other compounds listed in Table 4 can also be prepared in a manner analogous to that described in Example P4a.
  • Example P5d The other compounds listed in Table 5 can also be prepared in a manner analogous to that described in Examples P5a to P5c.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
EP05013434A 1996-12-19 1997-12-17 Herstellung von Thiazolen Withdrawn EP1577307A3 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CH312596 1996-12-19
CH312596 1996-12-19
EP97954817A EP0946532B1 (de) 1996-12-19 1997-12-17 Herstellung von thiazolen
EP01129478A EP1201662B1 (de) 1996-12-19 1997-12-17 Herstellung von Thiazolen

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP01129478A Division EP1201662B1 (de) 1996-12-19 1997-12-17 Herstellung von Thiazolen

Publications (2)

Publication Number Publication Date
EP1577307A2 true EP1577307A2 (de) 2005-09-21
EP1577307A3 EP1577307A3 (de) 2009-04-29

Family

ID=4249152

Family Applications (3)

Application Number Title Priority Date Filing Date
EP01129478A Expired - Lifetime EP1201662B1 (de) 1996-12-19 1997-12-17 Herstellung von Thiazolen
EP97954817A Expired - Lifetime EP0946532B1 (de) 1996-12-19 1997-12-17 Herstellung von thiazolen
EP05013434A Withdrawn EP1577307A3 (de) 1996-12-19 1997-12-17 Herstellung von Thiazolen

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP01129478A Expired - Lifetime EP1201662B1 (de) 1996-12-19 1997-12-17 Herstellung von Thiazolen
EP97954817A Expired - Lifetime EP0946532B1 (de) 1996-12-19 1997-12-17 Herstellung von thiazolen

Country Status (11)

Country Link
US (5) US6548676B1 (de)
EP (3) EP1201662B1 (de)
JP (1) JP4354533B2 (de)
KR (1) KR100521067B1 (de)
AT (2) ATE307807T1 (de)
AU (1) AU6205698A (de)
DE (2) DE69714076T2 (de)
DK (2) DK0946532T3 (de)
ES (2) ES2181059T3 (de)
IL (1) IL130293A0 (de)
WO (1) WO1998027075A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI359810B (en) * 2004-11-04 2012-03-11 Mitsubishi Tanabe Pharma Corp Carboxylic acid derivative containing thiazole rin
US10118890B2 (en) 2014-10-10 2018-11-06 The Research Foundation For The State University Of New York Trifluoromethoxylation of arenes via intramolecular trifluoromethoxy group migration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0192060A1 (de) * 1985-02-04 1986-08-27 Nihon Bayer Agrochem K.K. Heterocyclische Verbindungen
EP0446913A1 (de) * 1990-03-16 1991-09-18 Takeda Chemical Industries, Ltd. Verfahren zur Herstellung von Chlorothiazolderivaten
EP0462573A1 (de) * 1990-06-18 1991-12-27 Mitsubishi Chemical Corporation Pyrazolcarboxamidderivate sowie Insektizid-, Mitizid- und Fungizidzusammensetzungen zum Gebrauch in der Landwirtschaft und im Gartenbau
WO1997020829A1 (en) * 1995-12-01 1997-06-12 Novartis Ag Process for preparing 2-chlorothiazole compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US546167A (en) * 1895-09-10 Mills

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0192060A1 (de) * 1985-02-04 1986-08-27 Nihon Bayer Agrochem K.K. Heterocyclische Verbindungen
EP0446913A1 (de) * 1990-03-16 1991-09-18 Takeda Chemical Industries, Ltd. Verfahren zur Herstellung von Chlorothiazolderivaten
EP0462573A1 (de) * 1990-06-18 1991-12-27 Mitsubishi Chemical Corporation Pyrazolcarboxamidderivate sowie Insektizid-, Mitizid- und Fungizidzusammensetzungen zum Gebrauch in der Landwirtschaft und im Gartenbau
WO1997020829A1 (en) * 1995-12-01 1997-06-12 Novartis Ag Process for preparing 2-chlorothiazole compounds

Also Published As

Publication number Publication date
IL130293A0 (en) 2000-06-01
US20080076920A1 (en) 2008-03-27
US7538229B2 (en) 2009-05-26
US20030216579A1 (en) 2003-11-20
US20090198054A1 (en) 2009-08-06
EP1201662B1 (de) 2005-10-26
US7795442B2 (en) 2010-09-14
US6548676B1 (en) 2003-04-15
EP1201662A1 (de) 2002-05-02
ES2246985T3 (es) 2006-03-01
DE69734479D1 (de) 2005-12-01
DE69714076T2 (de) 2003-03-06
KR20000069614A (ko) 2000-11-25
ATE307807T1 (de) 2005-11-15
AU6205698A (en) 1998-07-15
EP0946532A1 (de) 1999-10-06
JP2001506255A (ja) 2001-05-15
DK1201662T3 (da) 2006-02-13
DE69734479T2 (de) 2006-06-29
ATE220670T1 (de) 2002-08-15
DK0946532T3 (da) 2002-11-11
JP4354533B2 (ja) 2009-10-28
EP0946532B1 (de) 2002-07-17
EP1577307A3 (de) 2009-04-29
ES2181059T3 (es) 2003-02-16
KR100521067B1 (ko) 2005-10-14
US7161011B2 (en) 2007-01-09
US20070055063A1 (en) 2007-03-08
DE69714076D1 (de) 2002-08-22
WO1998027075A1 (en) 1998-06-25
US7323564B2 (en) 2008-01-29

Similar Documents

Publication Publication Date Title
EP0946531B1 (de) Verfahren zur herstellung von thiazolederivaten
US6265585B1 (en) Process for the preparation of thiazole derivatives
US7323564B2 (en) Preparation of thiazoles
EP1311494B1 (de) Kontinuierliches verfahren zur herstellung von pestiziden chlorthiazolen
AU2001287699A1 (en) Continuous process for the preparation of pesticidal chlorothiazoles
EP1311495B1 (de) Katalytisches verfahren zur herstellung von thiazolderivaten
KR100525942B1 (ko) 티아졸의 제조
KR100525941B1 (ko) 티아졸의 제조
AU2005201052B2 (en) Continuous process for the preparation of pesticidal chlorothiazoles
US20010039351A1 (en) Novel process
US20010031876A1 (en) Novel process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 0946532

Country of ref document: EP

Kind code of ref document: P

Ref document number: 1201662

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI NL SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: O' SULLIVAN, ANTHONY CORNELIUS

Inventor name: GOBEL, THOMAS

Inventor name: SENN, MARCEL, SYNGENTA CROP PROTECTION

Inventor name: REPOLD, THOMAS, SYNGENTA CROP PROTECTION

Inventor name: HUETER, OTTMAR FRANZ

Inventor name: MAIENFISCH, PETER

Inventor name: SZCPEPANSKI, HENRY

Inventor name: PITTERNA, THOMAS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: O' SULLIVAN, ANTHONY CORNELIUS

Inventor name: GOBEL, THOMAS

Inventor name: SENN, MARCEL, SYNGENTA CROP PROTECTION

Inventor name: REPOLD, THOMAS, SYNGENTA CROP PROTECTION

Inventor name: HUETER, OTTMAR FRANZ

Inventor name: MAIENFISCH, PETER

Inventor name: SZCPEPANSKI, HENRY

Inventor name: PITTERNA, THOMAS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI NL SE

17P Request for examination filed

Effective date: 20091029

AKX Designation fees paid

Designated state(s): AT BE CH DE DK ES FI FR GB IE IT LI NL SE

17Q First examination report despatched

Effective date: 20120220

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120703