EP1572858A1 - Grossvolumige wasch- oder reinigungsmittelformk rper - Google Patents

Grossvolumige wasch- oder reinigungsmittelformk rper

Info

Publication number
EP1572858A1
EP1572858A1 EP03813110A EP03813110A EP1572858A1 EP 1572858 A1 EP1572858 A1 EP 1572858A1 EP 03813110 A EP03813110 A EP 03813110A EP 03813110 A EP03813110 A EP 03813110A EP 1572858 A1 EP1572858 A1 EP 1572858A1
Authority
EP
European Patent Office
Prior art keywords
acid
preferred
agents
weight
acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03813110A
Other languages
English (en)
French (fr)
Other versions
EP1572858B1 (de
Inventor
Willi Buchmeier
Thomas Juckel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1572858A1 publication Critical patent/EP1572858A1/de
Application granted granted Critical
Publication of EP1572858B1 publication Critical patent/EP1572858B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets

Definitions

  • the present invention relates to detergent tablets which have an optimized shape.
  • the present invention relates to detergent tablets for machine dishwashing, which are used in household dishwashers.
  • the automatic cleaning of dishes in household dishwashers usually comprises a pre-wash cycle, a main wash cycle and a rinse cycle, the latter being interrupted by intermediate rinse cycles.
  • the pre-wash for heavily soiled dishes can be switched on or is switched on automatically by means of certain turbidity sensors.
  • normal programs are selected by the consumer without a pre-rinse cycle, so that in most cases a main rinse cycle, an intermediate rinse cycle with pure water and a rinse cycle are carried out.
  • the object of the present invention was to provide a space-optimized form of supply for detergents or cleaning agents which has the largest possible volume and at the same time can be used in as many metering chambers as possible in the dishwashers on the European market.
  • the present application relates to detergent tablets, characterized in that it has at least two lateral boundary surfaces, at least one of which is not vertical over at least half of its height.
  • the term “detergent tablets” denotes a solid which contains detergent or cleaning substances.
  • This solid can be a tablet, for example, which has the advantage of high density.
  • Shaped bodies are for the purposes of the present invention but also bodies which have a wrapping which contains, for example, powdery or liquid active substances, this wrapping - if appropriate only in conjunction with the active substances enclosed by it - must be dimensionally stable in such a way that the shape according to the invention can be achieved deform their own weight are therefore not suitable according to the invention.
  • the term “molded body” therefore includes within the scope of the present invention an inherent dimensional stability of the body, so that the body can only be influenced by external influences that are beyond normal handling during manufacture packaging and handling go beyond being deformed.
  • the shape of the moldings according to the invention is selected so that they have at least two lateral boundary surfaces.
  • the term "lateral boundary surface” denotes the surface that connects the horizontal boundary surfaces of the shaped body (in short: top and bottom).
  • a conventional cylindrical tablet accordingly has two horizontal boundary surfaces (the circular top and bottom) and a side boundary surface ( At least two lateral boundary surfaces can be achieved, for example, by dividing a cylindrical tablet vertically into two halves, and the resulting bodies in turn have two horizontal boundary surfaces (the semicircular top and bottom) and two lateral boundary surfaces (a semicircular cylinder jacket) and a vertical side surface which is rectangular in plan view.)
  • the cylindrical tablet would have to be divided diagonally, ie the sectional plane w re off the vertical.
  • the side surface which is rectangular in plan view is tilted to the horizontal with respect to the perpendicular and is therefore no longer vertical.
  • the entire boundary surface is not vertical. Rather, certain vertical components do not lead out of the advantages according to the invention.
  • a “half disk” from the vertically divided cylinder could therefore be placed on the cylinder that is diagonally divided according to the invention have the same height, exactly half of the lateral boundary surface is vertical, while the other half is not vertical.
  • the height of the lateral boundary surface is consequently the distance between the top and bottom and thus equal to the height of the molded body.
  • This height is independent of the inclination of the lateral boundary surface with respect to the vertical: While the length of the distance that has to be covered from the top to the bottom of the lateral boundary surface increases as the angle between the horizontal and the side surface decreases, the height remains the same .
  • the vertical or non-vertical parts of the height can be determined by plumbing the vertical (height) and determining the respective part of the total height.
  • Shaped or detergent tablets preferred according to the invention are characterized in that at least one lateral boundary surface is not vertical over at least 60%, preferably over at least 70%, particularly preferably over at least 75% and in particular over at least 80% of their height.
  • the at least one non-vertical lateral boundary surface forms an angle ⁇ with the horizontal. This angle lies above or below 90 °, depending on whether the non-vertical lateral boundary surface tilts “inwards” (ie the shaped body tapers upwards) or “outwards” (ie the shaped body widens upwards) , Since the molded body can be turned by simply turning it over, i.e. Exchanging the top and bottom, which can form different angles, the angles are given within the scope of the present application, which are below 90 °. According to the invention, a non-vertical boundary surface is preferred, which includes an angle with the horizontal that deviates from the right angle by at least approximately 5-10 °.
  • Particularly preferred detergent tablets according to the invention are characterized in that a lateral boundary surface is not vertical over at least half of its height and is at an angle with the horizontal of 30 ° to 80 °, preferably 35 ° to 75 °, particularly preferably 40 ° up to 70 ° and in particular from 50 ° to 60 °.
  • Preferred values for the angle ⁇ are, for example, 40 °, 41 °, 42 °, 43 °, 44 °, 45 °, 46 °, 47 °, 48 °, 49 °, 50 °, 51 °, 52 °, 53 °, 54 °, 55 °, 56 °, 57 °, 58 °, 59 °, 60 °, 61 °, 62 °, 63 °, 64 ° or 65 °.
  • Values of 48 °, 49 °, 50 °, 51 °, 52 °, 53 °, 54 °, 55 °, 56 °, 57 °, 58 °, 59 °, 60 °, 61 °, 62 ° are particularly preferred or non-integer values between these integer values.
  • the shape and number of side surfaces of the shaped bodies according to the invention can vary.
  • the upper and lower horizontal boundary surface have different basic shapes.
  • rectangular horizontal boundary surfaces are preferred. For aesthetic and / or mechanical reasons, these can have rounded corners.
  • the curves can in turn be derived from circular sections, the radii of which can preferably be between 5 and 15% of the height of the shaped body.
  • the two horizontal boundary surfaces have the same length £ but different widths b. If two lateral boundary surfaces are not vertical over at least half of their height, then these non-vertical side surfaces can lie opposite each other, so that the two horizontal boundary surfaces have, for example, the same length p but different widths b. Touch the two non-vertical side surfaces, i.e. if they are "over corners", the two horizontal delimitation surfaces have different lengths i and different widths b.
  • preferred detergent tablets according to the invention are characterized in that they have four lateral boundary surfaces, one of which is not vertical over at least half of their height, whereby detergent tablets according to the invention are particularly preferred, which are delimited by two horizontal surfaces with a rectangular cross section which have the same length £ and a different width b.
  • the corners of the detergent tablets according to the invention can be rounded for reasons of mechanical stability or aesthetics. Edges can also be chamfered, ie beveled.
  • the radius of a corner bevel is preferably a maximum of 1/10 of the length of the shortest side which borders on the corner.
  • the width of the chamfer is preferably at most 1/10 of the width of the narrower side abutting this edge.
  • detergent tablets according to the invention are preferred in which the corners of the tablet are rounded are.
  • Shaped or detergent tablets are also particularly preferred, which are characterized in that the edges of the tablet have a chamfer.
  • the detergent tablets according to the invention preferably have a height of 10 to 30 mm.
  • Particularly preferred detergent tablets according to the invention have, for example, heights of 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or 24 mm or values between these integer values.
  • the length of the moldings according to the invention is preferably between 25 and 60 mm, particularly preferably between 30 and 55 mm, in particular between 30 and 55 mm.
  • Particularly preferred lengths of 32 mm, 33 mm, 34 mm, 35 mm, 36 mm, 37 mm, 38 mm, 39 mm, 40 mm, 41 mm or 42 mm may be mentioned here by way of example, the values also lying between these integer values can.
  • the maximum width of the detergent tablets according to the invention i.e. the width of the larger horizontal boundary surface is preferably 20 to 60 mm, particularly preferably 25 to 50 mm.
  • Examples of particularly preferred widths of 30 mm, 31 mm, 32 mm, 33 mm, 34 mm, 35 mm, 36 mm, 37 mm, 38 mm, 39 mm, 40 mm, 41 mm or 42 mm may be mentioned here, the values also can lie between these integer values.
  • FIG. 1 shows a shaped detergent or cleaning product according to the invention which has two rectangular horizontal boundary surfaces which have the length l and the width b 0 b en and b below .
  • the two surfaces are at a distance h, corresponding to the height of the molded body.
  • a lateral boundary surface is designed such that it is not vertical over at least half of its height (here: over the entire height). This lateral boundary surface forms an angle with the horizontal.
  • Figure 2 shows a detergent tablet according to the invention, which has two rectangular horizontal boundary surfaces which have the length £ and the width b o en or below .
  • the two surfaces are at a distance h, corresponding to the height of the molded body.
  • a lateral boundary surface is designed such that it is not vertical over at least half of its height.
  • the lateral boundary surface which is not vertical over at least half of its height, is not vertical over the entire height. Rather, there is a vertical area of partial height x, which makes up a quarter of the total height, making the lateral Boundary area over 75% of its height is not vertical.
  • This lateral boundary surface forms an angle ⁇ with the horizontal.
  • particularly preferred shaped bodies according to the invention which can be represented by FIG. 2 or FIG. 3, are listed with their values length ,, width b 0be ⁇ or b bottom n as well as height h, partial height x and angle ⁇ :
  • the partial height x is shown vertically.
  • this partial height section is rounded, particularly preferably a partial circle, the radius of which is 2.5 to 15%, preferably 5 to 12.5% and in particular 6 to 10% of the height h Shaped body is.
  • Such a preferred molded body is shown in FIG. 3.
  • the molded body according to the invention can preferably be produced from materials which fulfill a function in the washing or cleaning process, the tableting of active substance mixtures taking on an outstanding role.
  • greater shape variability can result from using materials that do not perform a specific function in the washing or cleaning process.
  • water-soluble or water-dispersible polymers are of outstanding importance.
  • the disadvantage that additional "ballast" is used is compensated for by the advantage of greater variability in terms of shape and possible ingredients and by a high aesthetic standard.
  • Preferred variants for the production of the detergent tablets according to the invention are therefore characterized in that the production comprises pressing a particulate premix into a pressed part.
  • a further preferred embodiment are processes for the production of detergent tablets according to the invention, which are characterized in that the tablet is formed by deep drawing and / or casting and / or injection molding and / or blow molding of a water-soluble or dispersible polymer or polymer mixture.
  • the detergent tablets according to the invention correspond in particular to the shape shown in FIG. 2 if they have been obtained by tableting. It is procedurally difficult to produce tablets of the type shown in FIG. 1 by tableting, since the press ram would run the risk of touching the die of the tablet press at the edge where the lateral non-vertical boundary surface and the top meet, and thereby closing the press to damage.
  • a particularly preferred shaped body according to the invention is therefore characterized in that it is a tablet.
  • the shaped body has a high specific weight.
  • Detergent tablets which are characterized in that they have a density above 1000 kgm "3 , preferably above 1025 kgm “ 3 , particularly preferably above 1050 kgm “3 and in particular above 1100 kgm “ 3 are preferred according to the invention , The tableting process is explained below:
  • the premix to be compressed into tablets meets certain physical criteria.
  • Preferred methods are, for example characterized in that the particulate premix has a bulk density of at least 500 g / l, preferably at least 600 g / l and in particular at least 700 g / l.
  • the particle size of the compressed premix preferably also meets certain criteria: Methods in which the particulate premix has particle sizes between 100 and 2000 ⁇ m, preferably between 200 and 1800 ⁇ m, particularly preferably between 400 and 1600 ⁇ m and in particular between 600 and 1400 ⁇ m are according to the invention prefers. A further narrowed particle size in the premixes to be pressed can be adjusted in order to obtain advantageous molded body properties.
  • the compressed particulate premix has a particle size distribution in which less than 10% by weight, preferably less than 7.5% by weight and in particular less than 5% by weight of the particles are larger than 1600 ⁇ m or smaller than Are 200 ⁇ m. Narrower particle size distributions are further preferred here.
  • the compressed particulate premix has a particle size distribution in which more than 30% by weight, preferably more than 40% by weight and in particular more than 50% by weight of the particles have a particle size between 600 and have 1000 ⁇ m.
  • the method can also be expanded to the effect that multilayered shaped bodies are produced in a manner known per se by preparing two or more premixes which are pressed together.
  • the premix which was filled in first, is lightly pressed out of / in order to obtain a smooth upper surface which runs parallel to the shaped body bottom, and, after filling in the second premix, is finally pressed into the finished shaped body.
  • a further pre-compression is carried out after each addition of the premix before the molded article is finally pressed after the addition of the last premix.
  • the moldings according to the invention are first produced by dry mixing the constituents, which may be wholly or partially pregranulated, and then providing information, in particular pressing them into tablets, using conventional methods.
  • the premix is compacted in a so-called die between two punches to form a solid compressed product.
  • This process which is briefly referred to below as tableting, is divided into four sections: metering, compression (elastic deformation), plastic deformation and ejection.
  • the premix is introduced into the die, the filling quantity and thus the weight and the shape of the molding being formed being determined by the position of the lower punch and the shape of the pressing tool.
  • the constant metering, even at high molding throughputs, is preferably achieved by volumetric metering of the premix.
  • the upper punch touches the premix and lowers further towards the lower punch.
  • the particles of the premix are pressed closer together, the void volume within the filling between the punches continuously decreasing.
  • the plastic deformation begins, in which the particles flow together and the molded body is formed.
  • some of the premix particles are also crushed and sintering of the premix occurs at even higher pressures.
  • the phase of elastic deformation is shortened further and further, so that the resulting shaped bodies can have more or less large cavities.
  • the finished molded body is pressed out of the die by the lower punch and transported away by subsequent transport devices. At this point in time, only the weight of the molded body is finally determined, since the compacts can still change their shape and size due to physical processes (stretching, crystallographic effects, cooling, etc.).
  • Tableting takes place in commercially available tablet presses, which can in principle be equipped with single or double punches. In the latter case, not only is the upper stamp used to build up pressure, the lower stamp also moves towards the upper stamp during the pressing process, while the upper stamp presses down.
  • eccentric tablet presses are preferably used, in which the stamp or stamps are fastened to an eccentric disc, which in turn is mounted on an axis with a certain rotational speed. The movement of these rams is comparable to that of a conventional four-stroke engine.
  • the pressing can take place with one upper and one lower punch, but several punches can also be attached to one eccentric disc, the number of die holes being correspondingly increased.
  • the throughputs of eccentric presses vary depending on the type from a few hundred to a maximum of 3000 tablets per hour.
  • rotary tablet presses are selected in which a larger number of matrices are arranged in a circle on a so-called die table.
  • the number of matrices varies between 6 and 55 depending on the model, although larger matrices are also commercially available.
  • Each die on the die table is assigned an upper and lower stamp, whereby again the pressure can only be built up by the upper or lower stamp, but also by both stamps.
  • the die table and the stamps move about a common vertical axis, the stamps being brought into the positions for filling, compression, plastic deformation and ejection by means of rail-like curved tracks during the rotation.
  • these cam tracks are supported by additional low-pressure pieces, pull-down rails and lifting tracks.
  • the die is filled via a rigidly arranged feed device, the so-called filling shoe, which is connected to a storage container for the premix.
  • the pressing pressure on the premix can be individually adjusted via the pressing paths for the upper and lower punches, the pressure being built up by rolling the punch shaft heads past adjustable pressure rollers.
  • Rotary presses can also be provided with two filling shoes to increase the throughput, only a semicircle having to be run through to produce a tablet.
  • several filling shoes are arranged one behind the other without the slightly pressed first layer being ejected before further filling.
  • jacket and dot tablets can also be produced in this way, which have an onion-shell-like structure, the top side of the core or the core layers not being covered in the case of the dot tablets and thus remaining visible.
  • Rotary tablet presses can also be equipped with single or multiple tools, so that, for example, an outer circle with 50 and an inner circle with 35 holes can be used simultaneously for pressing.
  • the throughputs of modern rotary tablet presses are over one million tablets per hour.
  • Tableting processes preferred in the context of the present invention are characterized in that the compression is carried out at pressures of from 0.01 to 50 kNcm “2 , preferably from 0.1 to 40 kNcm “ 2 and in particular from 1 to 25 kNcm "2 .
  • Tableting machines suitable in the context of the present invention are available, for example, from the companies Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, Hörn & Noack Pharmatechnik GmbH, Worms, IMAmaschinessysteme GmbH Viersen, KILIAN, Cologne, KOMAGE, Kell am See, KORSCH Pressen AG, Berlin, and Romaco GmbH, Worms.
  • Other providers include Dr. Herbert Pete, Vienna (AU), Mapag Maschinenbau AG, Bern (CH), BWI Manesty, Liverpool (GB), I. Holand Ltd., Nottingham (GB), Courtoy NV, Halle (BE / LU) and Mediopharm Kamnik (Sl ).
  • the hydraulic double pressure press HPF 630 from LAEIS, D. Tablettierwerkmaschinee are, for example, from the companies Adams Tablettierwerkmaschinee, Dresden, Wilhelm Fett GmbH, Schwarzenbek, Klaus Hammer, Solingen, Herber% Söhne GmbH, Hamburg, Hofer GmbH, Weil, Hörn & Noack, Pharmatechnik GmbH, Worms, Ritter Pharamatechnik GmbH, Hamburg, Romaco, GmbH, Worms and Notter negligencebau, Tamm available.
  • Other providers are e.g. Senss AG, Reinach (CH) and Medicopharm, Kamnik (Sl).
  • the detergent tablet according to the invention can also be produced in a different way, the production of an appropriately shaped covering which can be filled being of outstanding importance. Accordingly, detergent tablets which are a filled and closed deep-drawn part and / or injection-molded part and / or blow-molded part are a further preferred embodiment of the present invention.
  • the manufacture of detergent tablets according to the invention by deep drawing and / or casting and / or injection molding and / or blow molding of a water-soluble or dispersible polymer or polymer mixture is explained below:
  • the melt leaving the extruder is blow molded.
  • Blow molding methods suitable according to the invention include extrusion blow molding, coextrusion blow molding, injection stretch blow molding and immersion blowing.
  • the wall thicknesses of the moldings can be produced differently in some areas by means of blow molding, by correspondingly varying the wall thicknesses of the preform, preferably along its vertical axis, preferably by regulating the amount of thermoplastic material, preferably by means of an adjusting spindle when the preform is removed from the extruder nozzle, formed.
  • the powder-filled or liquid-filled solid can be blow-molded with areas of different outer circumference and constant wall thickness by changing the wall thicknesses of the preform, preferably along its vertical axis, with different thicknesses, preferably by regulating the amount of thermoplastic material by means of an adjusting spindle when the preform is removed from the extruder nozzle.
  • bottles, balls, Santa Clauses, Easter bunnies or other figures can be blow molded, which can be filled with agents.
  • the molded body can be embossed and / or decorated in the blow mold during blow molding.
  • a motif can be transferred to the molded body in mirror image.
  • the surface of the molded body can be designed practically as desired.
  • information such as calibration marks, application instructions, hazard symbols, brands, weight, filling quantity, expiry date, pictures, etc. can be applied to the molded body in this way.
  • the walls of the hollow bodies produced by blow molding have a wall thickness of between 0.05 and 5 mm, preferably between 0.06 and 2 mm, preferably between 0.07 and 1.5 mm, more preferably between 0.08 and 1 , 2 mm, more preferably between 0.09-1 mm and most preferably between 0.1-0.6 mm.
  • the filling opening of the hollow body after filling can be closed in a liquid-tight manner, it being preferred to provide corresponding edges around the filling opening during blow molding.
  • the melt of water-soluble polymer blend leaving the extruder is shaped by means of an injection molding process.
  • the injection molding is carried out according to methods known per se at high pressures and temperatures with the steps of closing the mold connected to the extruder for injection molding, injecting the polymer at high temperature and high pressure, cooling the injection-molded molding, opening the mold and removing the molded blank , Further optional steps such as the application of release agents, demolding etc. are known to the person skilled in the art and can be carried out using technology known per se.
  • injection molding is carried out at up to 5000 bar, preferably between 2 and 2500 bar, particularly preferably between 5 and 2000 bar, more preferably between 10 and 1500 and in particular between 100 and 1250 bar.
  • the temperature of the material to be injection molded is preferably above the melting or softening point of the material and thus also depends on the type and composition of the polymer blend. In preferred processes according to the invention, injection molding is carried out at temperatures between 100 and 250 ° C., preferably between 120 and 200 ° C. and in particular between 140 and 180 ° C.
  • the tools that hold the materials are preferably preheated and have temperatures above room temperature, temperatures between 25 and 60 ° C. and in particular from 35 to 50 ° C. being preferred.
  • the thickness of the wall can be varied.
  • the wall should be chosen so thin that rapid dissolution or disintegration is achieved and the ingredients are quickly released into the application liquor, but a certain minimum thickness is also required in order to give the hollow shape the desired stability, in particular shape stability.
  • Preferred wall thicknesses of injection molded articles are in the range from 100 to 5000 ⁇ m, preferably from 200 to 3000 ⁇ m, particularly preferably from 300 to 2000 ⁇ m and in particular from 500 to 1500 ⁇ m.
  • the molded body produced by injection molding regularly does not have closed walls on all sides and is open on at least one of its sides due to the manufacturing process.
  • One or more preparation (s) are / are filled through the remaining opening into the compartment (s) formed in the interior of the molded body. This also takes place in a manner known per se, for example in the context of production processes known from the confectionery industry; Procedures that run in several steps are also conceivable.
  • a one-step procedure is particularly preferred if, in addition to solid preparations, preparations (dispersions or emulsions, suspensions) comprising liquid components or even preparations (foams) comprising gaseous components are to be introduced into moldings.
  • a film made of the appropriate material is placed over a mold which has depressions, heated if necessary and then drawn into the depression by means of negative pressure.
  • the film can be pressed into the mold by applying pressure from the top or by means of a stamp.
  • Preferred wall thicknesses of deep-drawn moldings are in the range from 100 to 5000 ⁇ m, preferably from 200 to 3000 ⁇ m, particularly preferably from 300 to 2000 ⁇ m and in particular from 500 to 1500 ⁇ m.
  • All polymers which can also be used for an optionally used sealing film can be considered as materials for the hollow bodies made of water-soluble or water-dispersible polymers. These are described below.
  • the polymers used as film materials can consist of a single material or a blend of different materials.
  • Preferred film materials come from the group (optionally acetalized) polyvinyl alcohol (PVAL) and / or PVAL copolymers, Polyvinylpyrrolidone, polyethylene oxide, polyethylene glycol, gelatin and / or copolymers and mixtures thereof.
  • Polyvinyl alcohols are particularly preferred in the context of the present invention.
  • Polyvinyl alcohols (abbreviation PVAL, occasionally also PVOH) is the name for polymers of the general structure
  • polyvinyl alcohols which are offered as white-yellowish powders or granules with degrees of polymerization in the range from approximately 100 to 2500 (molar masses from approximately 4000 to 100,000 g / mol), have degrees of hydrolysis of 98-99 or 87-89 mol%. , therefore still contain a residual content of acetyl groups.
  • the manufacturers characterize the polyvinyl alcohols by stating the degree of polymerization of the starting polymer, the degree of hydrolysis, the saponification number and the solution viscosity.
  • polyvinyl alcohols are soluble in water and a few strongly polar organic solvents (formamide, dimethylformamide, dimethyl sulfoxide); They are not attacked by (chlorinated) hydrocarbons, esters, fats and oils.
  • Polyvinyl alcohols are classified as toxicologically safe and are at least partially biodegradable. The water solubility can be reduced by post-treatment with aldehydes (acetalization), by complexing with Ni or Cu salts or by treatment with dichromates, boric acid or borax.
  • Polyvinyl alcohol is largely impervious to gases such as oxygen, nitrogen, helium, hydrogen, carbon dioxide, but allows water vapor to pass through.
  • the film material comprises polyvinyl alcohols and / or PVAL copolymers whose degree of hydrolysis is 70 is up to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular 82 to 88 mol%.
  • Polyvinyl alcohols of a certain molecular weight range are preferably used, with processes according to the invention being preferred in which the film comprises polyvinyl alcohols and / or PVAL copolymers whose molecular weight is in the range from 3,500 to 100,000 gmol " , preferably from 10,000 to 90,000 gmol “ 1 , particularly preferably from 12,000 to 80,000 gmol “1 and in particular from 13,000 to 70,000 gmol " 1 .
  • the degree of polymerization of such preferred polyvinyl alcohols is between approximately 200 to approximately 2100, preferably between approximately 220 to approximately 1890, particularly preferably between approximately 240 to approximately 1680 and in particular between approximately 260 to approximately 1500.
  • the film comprises polyvinyl alcohols and / or PVAL copolymers whose average degree of polymerization is between 80 and 700, preferably between 150 and 400, particularly preferably between 180 and 300 and / or their molecular weight ratio MG (50%) to MG (90%) is between 0.3 and 1, preferably between 0.4 and 0.8 and in particular between 0.45 and 0.6.
  • polyvinyl alcohols described above are widely available commercially, for example under the trade name Mowiol ® (Clariant).
  • Mowiol ® Commercially, for example under the trade name Mowiol ® (Clariant).
  • particularly suitable polyvinyl alcohols are, for example, Mowiol ® 3-83, Mowiol ® 4-88, Mowiol ® 5-88 and Mowiol ® 8-88.
  • ELVANOL ® 51-05, 52-22, 50-42, 85-82, 75-15, T-25, T-66, 90-50 (trademark of Du Pont)
  • ALCOTEX ® 72.5, 78, B72, F80 / 40, F88 / 4, F88 / 26, F88 / 40, F88 / 47 (trademark of Harlow Chemical Co.)
  • Gohsenol ® NK-05, A-300, AH-22, C -500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11Q, KZ-06 (trademark of Nippon Gohsei KK ).
  • ERKOL types from Wacker are also suitable.
  • polyvinylpyrrolidones are sold, for example, under the name Luviskol ® (BASF).
  • Polyvinylpyrrolidones [poly (1-vinyl-2-pyrrolidinone)], abbreviation PVP, are polymers of the general formula (A)
  • polyvinylpyrrolidones which are produced by free-radical polymerization of 1-vinylpyrrolidone by solution or suspension polymerization using free-radical formers (peroxides, azo compounds) as initiators.
  • the ionic polymerization of the monomer only provides products with low molecular weights.
  • Commercial polyvinylpyrrolidones have molar masses in the range from approx. 2500-750000 g / mol, which are characterized by the K values and, depending on the K value, have glass transition temperatures of 130-175 °. They are presented as white, hygroscopic powders or as aqueous ones. Solutions offered. Polyvinylpyrrolidones are readily soluble in water and a variety of organic solvents (alcohols, ketones, glacial acetic acid, chlorinated hydrocarbons, phenols, etc.).
  • copolymers of vinylpyrrolidone with other monomers in particular vinylpyrrolidone / Vinylester copolymers, as are marketed, for example under the trademark Luviskol ® (BASF).
  • Luviskol ® VA 64 and Luviskol ® VA 73, each vinylpyrrolidone / vinyl acetate copolymers, are particularly preferred nonionic polymers.
  • the vinyl ester polymers are polymers accessible from vinyl esters with the grouping of the formula (B) CH 2 - CH-
  • the vinyl esters are polymerized by free radicals using various processes (solution polymerization, suspension polymerization, emulsion polymerization,
  • Copolymers of vinyl acetate with vinyl pyrrolidone contain monomer units of the formulas (A) and (B)
  • PEG polyethylene glycols
  • C formula (C)
  • n can have values between 5 and> 100,000.
  • PEGs are manufactured industrially by anionic ring opening polymerization of ethylene oxide (oxirane), usually in the presence of small amounts of water. Depending on how the reaction is carried out, they have molar masses in the range of approximately 200-5,000,000 g / mol, corresponding to degrees of polymerization of approximately 5 to> 100,000.
  • the products with molar masses ⁇ approx. 25,000 g / mol are liquid at room temperature and are referred to as the actual polyethylene glycols, abbreviation PEG.
  • These short chain PEGs can in particular be other water soluble polymers e.g. Polyvinyl alcohols or cellulose ethers can be added as plasticizers.
  • the polyethylene glycols which can be used according to the invention and are solid at room temperature are referred to as polyethylene oxides, abbreviation PEOX.
  • High molecular weight polyethylene oxides have an extremely low concentration of reactive hydroxy end groups and therefore only show weak glycol properties.
  • gelatin is also suitable as a film material, this preferably being used together with other polymers.
  • Gelatin is a polypeptide (molecular weight: approx. 15,000 to> 250,000 g / mol), which is primarily produced by hydrolysis in the skin and bones of animals contained collagen is obtained under acidic or alkaline conditions.
  • the amino acid composition of the gelatin largely corresponds to that of the collagen from which it was obtained and varies depending on its provenance.
  • the use of gelatin as a water-soluble coating material is extremely widespread, particularly in pharmacy in the form of hard or soft gelatin capsules. In the form of films, gelatin is used only to a minor extent because of its high price in comparison to the abovementioned polymers.
  • Cellulose ethers such as hydroxypropyl cellulose, hydroxyethyl cellulose and
  • Methylhydroxypropylcellulose such as are for example sold under the trademark Culminal® ® and Benecel ® (AQUALON).
  • Cellulose ethers can be described by the general formula (D)
  • R represents H or an alkyl, alkenyl, alkynyl, aryl or alkylaryl radical.
  • at least one R in formula (III) is -CH 2 CH 2 CH 2 -OH or -CH 2 CH 2 -OH.
  • Cellulose ethers are produced industrially by etherification of alkali cellulose (eg with ethylene oxide). Cellulose ethers are characterized by the average degree of substitution DS or the molar degree of substitution MS, which indicate how many hydroxyl groups of an anhydroglucose unit of cellulose have reacted with the etherification reagent or how many moles of etherification reagent have been attached to an anhydroglucose unit on average.
  • Hydroxyethyl celluloses are soluble in water from a DS of approx. 0.6 or an MS of approx. 1. Commercial hydroxyethyl or hydroxypropyl celluloses have degrees of substitution in the range of 0.85-1.35 (DS) and 1.5-3 (MS). Hydroxyethyl and propyl celluloses are marketed as yellowish-white, odorless and tasteless powders in widely varying degrees of polymerization. Hydroxyethyl and propyl celluloses are soluble in cold and hot water and in some (water-containing) organic solvents, but insoluble in most (water-free) organic solvents; their aqueous solutions are relatively insensitive to changes in pH or electrolyte addition.
  • polymers suitable according to the invention are water-soluble amphopolymers.
  • Ampho-polymers are amphoteric polymers, ie polymers that contain both free amino groups and free -COOH or S0 3 H groups in the molecule and are capable of forming internal salts, zwitterionic polymers that contain quaternary ammonium groups and - Contain COO " - or -S0 3 " groups, and summarized those polymers which contain -COOH or S0 3 H groups and quaternary ammonium groups.
  • amphopolymer suitable is that available under the name Amphomer ® acrylic resin which is a copolymer of tert-butylaminoethyl methacrylate, N- (1,1,3,3-tetramethylbutyl) -acrylamide and two or more monomers from the group of acrylic acid, Methacrylic acid and its simple esters.
  • preferred amphopolymers consist of unsaturated carboxylic acids (e.g. acrylic and methacrylic acid), cationically derivatized unsaturated carboxylic acids (e.g.
  • acrylamidopropyltrimethylammonium chloride and optionally further ionic or nonionic monomers together terpolymers of acrylic acid, methyl acrylate and methacrylamidopropyltriammonium chloride, as described under the name Merquat ® 2001 N are commercially available, according to the invention are particularly preferred amphopolymers.
  • Other suitable amphoteric polymers are for example those available under the names Amphomer ® and Amphomer ® LV-71 (DELFT NATIONAL) octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers.
  • Suitable water-soluble anionic polymers according to the invention include a .:
  • Vinyl acetate / crotonic acid copolymers such as are commercially available for example under the names Resyn ® (National Starch), Luviset ® (BASF) and Gafset ® (GAF).
  • Resyn ® National Starch
  • Luviset ® BASF
  • Gafset ® GAF
  • these polymers also have monomer units of the general formula (E):
  • Vinyl pyrrolidone / vinyl acrylate copolymers available, for example, under the trademark
  • Luviflex ® (BASF).
  • BASF Luviflex ®
  • VBM-35 Luviflex ®
  • BASF available vinyl pyrrolidone / acrylate terpolymers.
  • Acrylic acid / ethyl acrylate / N-tert-butyl acrylamide terpolymers for example, under the
  • Ultrahold ® strong (BASF) are sold.
  • Such grafted polymers of vinyl esters, esters of acrylic acid or methacrylic acid, alone or in a mixture with other copolymerizable compounds Polyalkylene glycols are obtained by hot polymerization in a homogeneous phase by stirring the polyalkylene glycols into the monomers of the vinyl esters, esters of acrylic acid or methacrylic acid, in the presence of free-radical formers.
  • Suitable vinyl esters are, for example, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl benzoate and as esters of acrylic acid or methacrylic acid, those which are used with low molecular weight aliphatic alcohols, in particular ethanol, propanol, isopropanol, 1-butanol, 2-butanol, 2-methyl 1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 3-pentanol, 2,2-dimethyl-1-propanol, 3-methyl-1-butanol; 3-methyl-2-butanol, 2-methyl-2-butanol, 2-methyl-1-butanol, 1-hexanol, are available.
  • PPG Polypropylene glycols
  • n can take values between 1 (propylene glycol) and several thousand.
  • the vinyl acetate copolymers grafted onto polyethylene glycols and the polymers of vinyl acetate and crotonic acid grafted onto polyethylene glycols can be used.
  • the polyethylene glycol used has a molecular weight between 200 and more
  • Millions preferably between 300 and 30,000.
  • the non-ionic monomers can be of very different types and the following are preferred: vinyl acetate, vinyl stearate, vinyl laurate, vinyl propionate, allyl stearate,
  • the non-ionic monomers can likewise be of very different types, of which crotonic acid, allyloxyacetic acid, Vinyl acetic acid, maleic acid, acrylic acid and methacrylic acid are contained in the graft polymers.
  • Ethylene glycol dimethacrylate, diallyl phthalate, ortho-, meta- and para-divinylbenzene, tetraallyloxyethane and polyallylsucrose with 2 to 5 allyl groups per molecule of saccharin are preferably used as crosslinkers.
  • the grafted and crosslinked copolymers described above are preferably formed from: i) 5 to 85% by weight of at least one monomer of the nonionic type, ii) 3 to 80% by weight of at least one monomer of the ionic type, iii) 2 to 50% by weight, preferably 5 to 30% by weight, of polyethylene glycol and iv) 0.1 to 8% by weight of a crosslinking agent, the percentage of the crosslinking agent being determined by the
  • Ratio of the total weights of i), ii) and iii) is formed.
  • short-chain carboxylic acids or alcohols are to be understood as those having 1 to 8 carbon atoms, the carbon chains of these compounds optionally being interrupted by double-bonded hetero groups such as -O-, -NH-, -S-.
  • Terpolymers of crotonic acid, vinyl acetate and an allyl or methallyl ester contain monomer units of the general formulas (D) and (E) (see above) and monomer units of one or more allyl or methallyl esters of the formula (G):
  • the above-mentioned terpolymers preferably result from the copolymerization of 7 to 12% by weight crotonic acid, 65 to 86% by weight, preferably 71 to 83% by weight.
  • cationic polymers which can preferably be used according to the invention as film material are cationic polymers.
  • the permanent cationic polymers are preferred among the cationic polymers.
  • "permanently cationic" means those polymers which have a cationic group irrespective of the pH. These are generally polymers which contain a quaternary nitrogen atom, for example in the form of an ammonium group.
  • Preferred cationic polymers are, for example, quaternized cellulose Derivatives as commercially available under the names Celquat ® and Polymer JR ® The compounds Celquat ® H 100, Celquat ® L 200 and Polymer JR ® 400 are preferred quaternized cellulose derivatives.
  • Polysiloxanes with quaternary groups such as, for example, the commercially available products Q2-7224 (manufacturer: Dow Corning; a stabilized trimethylsilylamodimethicone), Dow Corning® 929 emulsion (containing a hydroxylamino-modified silicone, which is also referred to as amodimethicone), SM -2059 (manufacturer: General Electric), SLM-55067 (manufacturer: Wacker) and Abil ® -Quat 3270 and 3272 (manufacturer: Th. Goldschmidt; di-quaternary polydimethylsiloxane, Quaternium-80),
  • Cationic guar derivatives such as in particular the products sold under the trade names Cosmedia ® Guar and Jaguar ® ,
  • Polymeric dimethyldiallylammonium salts and their copolymers with esters and amides of acrylic acid and methacrylic acid Under the names Merquat ® 100 (Poly (dimethyldiallylammonium chloride)) and Merquat ® 550 (dimethyldiallylammonium chloride-acrylamide copolymer) are examples of such cationic polymers.
  • Such compounds are commercially available under the names Gafquat ® 734 and Gafquat ® 755.
  • Vinylpyrrolidone-methoimidazolinium chloride copolymers as are offered under the name Luviquat ® .
  • the polymers mentioned are named according to the so-called INCI nomenclature, with detailed information in the CTFA International Cosmetic Ingredient Dictionary and Handbook, 5 th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997, to which express reference is made here becomes.
  • Cationic polymers preferred according to the invention are quaternized cellulose derivatives and polymeric dimethyldiallylammonium salts and their copolymers.
  • Cationic cellulose derivatives, in particular the commercial product Polymer ® JR 400, are very particularly preferred cationic polymers.
  • the moldings according to the invention are produced by tableting or by other processes, they contain active substances for a washing or cleaning process.
  • various active substances can already be contained in the tablets.
  • the hollow body already contains active substance (for example dyes, enzymes, optical brighteners, redispersants, complexing agents etc., so-called small components), but the main amount of the active substance will be in the Filling.
  • washing and cleaning-active substances from the group of bleaching agents, bleach activators, polymers, builders, surfactants, enzymes, Disintegration aids, electrolytes, pH regulators, fragrances, perfume carriers, dyes, hydrotropes, foam inhibitors, anti-redeposition agents, optical brighteners,
  • Graying inhibitors anti-shrink agents, anti-crease agents, color transfer inhibitors, antimicrobial agents, germicides, fungicides, antioxidants, corrosion inhibitors, antistatic agents, phobicants and impregnating agents, swelling and anti-slip agents, non-aqueous solvents, fabric softeners, and UV hydrolyzate.
  • Bleaching agents and bleach activators can be included in the agents according to the invention as important components of detergents and cleaning agents.
  • the compounds which serve as bleaching agents and supply H 2 0 2 in water sodium percarbonate and sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Further useful bleaching agents are, for example, peroxypyrophosphates, citrate perhydrates and H 2 0 2 -supplying peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperic acid or diperdodecanedioic acid.
  • Detergent tablets for automatic dishwashing can also contain bleaches from the group of organic bleaches.
  • Typical organic bleaching agents are the diacyl peroxides, such as dibenzoyl peroxide.
  • Other typical organic bleaching agents are peroxy acids, examples of which include alkyl peroxy acids and aryl peroxy acids.
  • Preferred representatives are (a) peroxybenzoic acid and its ring-substituted derivatives, such as aikylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidopercapacid
  • PAP Phthaloiminoperoxyhexanoic acid
  • o-carboxybenzamidoperoxycaproic acid N-nonenylamidoperadipic acid and N-nonenylamidopersuccinate
  • aliphatic and araliphatic peroxydicarboxylic acids such as 1,12-diperoxycarboxylic acid, 1,9-diperoxyazelaic acid, diperoxyacid, diperoxyacid, diperoxyacid, diperoxyacid, diperoxacid, Decyldiperoxybutane-1,4-diacid, N, N-terephthaloyl-di (6-aminopercaproic acid) can be used.
  • bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid. Suitable substances are those which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • Multi-acylated alkylenediamines in particular tetraacetylethylene diamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, especially N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, especially n-nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, especially phthalic anhydride, acylated polyhydric alcohols, especially triacetin, ethylene glycol diacetate and 2,5-diacetoxy-2,5-dihydrofuran.
  • TAED tetraacetylethylene
  • bleach activators which are preferably used in the context of the present application are compounds from the group of the cationic nitriles, in particular cationic nitrile of the formula
  • R 1 for -H, -CH 3 a C 2 . 24 alkyl or alkenyl radical, a substituted C 2 . 24 alkyl or alkenyl radical with at least one substituent from the group -Cl, -Br, -OH, -NH 2 , -CN, an alkyl or alkenylaryl radical with a C 1-4 alkyl group, or for a substituted alkyl or alkenylaryl radical with a C ⁇ .
  • a particularly preferred agent according to the invention is a cationic nitrile of the formula
  • bleach catalysts can also be incorporated into the agents.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo salt complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands as well as Co, Fe, Cu and Ru amine complexes can also be used as bleaching catalysts ,
  • the surfactants include in particular the anionic surfactants in acid form, aqueous solutions or pastes of the neutralized anionic surfactant acids, nonionic surfactants and / or cationic surfactants or amphoteric surfactants.
  • surfactant-containing agents according to the invention can be used, for example, in the removal of grease or oil soiling, their field of use extending from textile cleaning to the removal of oil soiling in nature.
  • granules are preferred which have a surfactant content of 1 to 70% by weight, particularly preferably 2 to 60% by weight, particularly preferably 4 to 50% by weight, in each case based on the total weight of the compositions , exhibit.
  • builders are other important ingredients of detergents.
  • Preferred agents according to the invention can contain all builders commonly used in cleaning agents, in particular thus zeolites, silicates, carbonates, organic cobuilders and - where there are no ecological concerns about their use - also the phosphates.
  • the builders mentioned can of course also be used in surfactant-free compressed products.
  • Suitable crystalline, layered sodium silicates have the general formula NaMSi x 0 2x + ⁇ ⁇ 2 0, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2, 3 or 4.
  • Preferred crystalline layered silicates of the formula given are those in which M represents sodium and x assumes the values 2 or 3.
  • both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 0 5 'yH 2 0 are preferred.
  • the dissolution delay compared to conventional amorphous sodium silicates can be done in various ways, for example by surface treatment, compounding, compacting / compression or by overdrying have been caused.
  • the term “amorphous” is also understood to mean “X-ray amorphous”.
  • silicates in X-ray diffraction experiments do not provide sharp X-ray reflections, as are typical for crystalline substances, but at most one or more maxima of the scattered X-rays, which have a width of several degree units of the diffraction angle.
  • it can very well lead to particularly good builder properties if the silicate particles provide washed-out or even sharp diffraction maxima in electron diffraction experiments.
  • This is to be interpreted as meaning that the products have microcrystalline areas of size 10 to a few hundred nm, values up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates also have a delay in dissolution compared to conventional water glasses. Compacted / compacted amorphous silicates, compounded amorphous silicates and over-dried X-ray amorphous silicates are particularly preferred.
  • the finely crystalline, synthetic and bound water-containing zeolite that can be used is preferably zeolite A and / or P.
  • zeolite P zeolite MAP® (commercial product from Crosfield) is particularly preferred.
  • zeolite X and mixtures of A, X and / or P are also suitable.
  • Commercially available and can preferably be used in the context of the present invention for example a co-crystallizate of zeolite X and zeolite A (about 80% by weight of zeolite X) ), which is sold by CONDEA Augusta SpA under the brand name VEGOBOND AX ® and by the formula
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution; measurement method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • phosphates as builder substances, provided that such use should not be avoided for ecological reasons.
  • the sodium salts of orthophosphates, pyrophosphates and in particular tripolyphosphates are particularly suitable.
  • Alkali metal phosphates is the summary name for the alkali metal (especially sodium and potassium) salts of the various phosphoric acids, in which one can distinguish between metaphosphoric acids (HP0 3 ) n and orthophosphoric acid H 3 P0 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: They act as alkali carriers, prevent limescale deposits on machine parts or on washware surfaces and also contribute to cleaning performance.
  • Sodium dihydrogen phosphate, NaH 2 P0 4 disodium hydrogen phosphate (secondary
  • Sodium and potassium phosphates, in which one can differentiate between cyclic representatives, the sodium and potassium metaphosphates and chain-like types, the sodium and potassium polyphosphates, as well as the pentasodium triphosphate, Na 5 P 3 O 10 (sodium tripolyphosphate) are further within the scope of the present Registration with advantage used builders.
  • Usable organic builders are, for example, the polycarboxylic acids that can be used in the form of their alkali and in particular sodium salts, such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), provided that such use is not objectionable for ecological reasons and mixtures from these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures of these.
  • Alkali carriers can be present as further constituents.
  • Alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogen carbonates, alkali metal sesquicarbonates, alkali silicates, alkali metal silicates, and mixtures of the abovementioned substances are considered to be alkali carriers, alkali metal carbonates, in particular sodium carbonate, in particular sodium bicarbonate or sodium sesquicarbonate being used for the purposes of this invention.
  • water-soluble builders are preferred since they generally have less tendency to form insoluble residues on dishes and hard surfaces.
  • Common builders are the low molecular weight polycarboxylic acids and their salts, the homopolymeric and copolymeric polycarboxylic acids and their salts, the carbonates, phosphates and silicates.
  • Trisodium citrate and / or pentasodium tripolyphosphate and / or sodium carbonate and / or sodium bicarbonate and / or gluconates and / or silicate builders from the class of disilicate and / or metasilicate are preferably used for the production of tablets for machine dishwashing.
  • a builder system containing a mixture of tripolyphosphate and sodium carbonate is particularly preferred.
  • a builder system which contains a mixture of tripolyphosphate and sodium carbonate and sodium disilicate is also particularly preferred.
  • Organic cobuilders which can be used in the cleaning agents in the context of the present invention are, in particular, polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, Polyacetals, dextrins, other organic cobuilders (see below) and phosphonates can be used. These classes of substances are described below.
  • Usable organic builders are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids being understood to mean those carboxylic acids which carry more than one acid function.
  • these are citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), provided that such use is not objectionable for ecological reasons and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, methylglycinediacetic acid, sugar acids and mixtures of these.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH value of detergents or cleaning agents.
  • Citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any mixtures thereof can be mentioned in particular.
  • Polymeric polycarboxylates are also suitable as builders; these are, for example, the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those with a relative molecular weight of 500 to 70,000 g / mol.
  • the molecular weights given for polymeric polycarboxylates are weight-average molecular weights M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used.
  • GPC gel permeation chromatography
  • the measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship to the polymers investigated. This information differs significantly from the molecular weight information for which polystyrene sulfonic acids are used as standard.
  • the molecular weights measured against polystyrene sulfonic acids are generally significantly higher than the molecular weights given in this document.
  • Suitable polymers are, in particular, polyacrylates, which preferably have a molecular weight of 1000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates which have molar masses from 1000 to 10000 g / mol, and particularly preferably from 1200 to 4000 g / mol, can in turn be preferred from this group. Both polyacrylates and copolymers of unsaturated carboxylic acids, monomers containing sulfonic acid groups and optionally other ionic or nonionic monomers are particularly preferably used in the agents according to the invention. The copolymers containing sulfonic acid groups are described in detail below.
  • agents according to the invention which, as so-called “3in1” products, combine the conventional cleaners, rinse aids and a salt replacement function.
  • automatic dishwashing agents according to the invention are preferred which additionally contain 0.1 to 70% by weight of copolymers out
  • these copolymers have the effect that the dishes can be washed with higher water hardness when using these agents, i.e. that up to a certain tap water hardness, no regeneration salt needs to be used and become significantly cleaner than tableware, which under these circumstances was washed using conventional means.
  • R 1 to R 3 independently of one another are -H -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with -NH 2 , -OH or - COOH substituted alkyl or alkenyl radicals as defined above or represents -COOH or - COOR 4 , where R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
  • R 3 CH 3
  • Preferred among these monomers are those of the formulas IIa, IIb and / or IIc,
  • H 2 C CH-X-S0 3 H (Ila),
  • H 2 C C (CH 3 ) -X-S0 3 H (llb),
  • Suitable ionic or nonionic monomers are, in particular, ethylenically unsaturated compounds.
  • the content of monomers of group iii) in the polymers used according to the invention is preferably less than 20% by weight, based on the polymer.
  • Polymers to be used with particular preference consist only of monomers of groups i) and ii).
  • copolymers are made of
  • R 1 to R 3 independently of one another are -H -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, with -NH 2 , -OH or - COOH substituted alkyl or alkenyl radicals as defined above or represents -COOH or - COOR 4 , where R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms,
  • Particularly preferred copolymers consist of
  • H 2 C CH-X-S0 3 H (Ila),
  • H 2 C C (CH 3 ) -X-S0 3 H (llb),
  • the copolymers contained in the compositions can contain the monomers from groups i) and ii) and optionally iii) in varying amounts, all representatives from group i) with all representatives from group ii) and all representatives from group iii) can be combined.
  • Particularly preferred polymers have certain structural units, which are described below.
  • agents according to the invention are preferred which are characterized in that they contain one or more copolymers which have structural units of the formula III
  • These polymers are produced by copolymerization of acrylic acid with an acrylic acid derivative containing sulfonic acid groups.
  • the acrylic acid derivative containing sulfonic acid groups is copolymerized with methacrylic acid, another polymer is obtained, the use of which in the agents according to the invention is also preferred and is characterized in that the agents contain one or more copolymers which have structural units of the formula IV
  • acrylic acid and / or methacrylic acid can also be copolymerized with methacrylic acid derivatives containing sulfonic acid groups, as a result of which the structural units in the molecule are changed.
  • Agents according to the invention which contain one or more copolymers which have structural units of the formula V
  • maleic acid can also be used as a particularly preferred monomer from group i).
  • preferred agents according to the invention are obtained which are characterized in that they contain one or more copolymers, the structural units of the formula VII
  • automatic dishwashing agents which contain, as ingredient b), one or more copolymers which have structural units of the formulas III and / or IV and / or V and / or VI and / or VII and / or VIII
  • - 296 -
  • maleic acid can also be used as a particularly preferred monomer from group i).
  • preferred agents according to the invention are obtained which are characterized in that they contain one or more copolymers, the structural units of the formula VII
  • automatic dishwashing agents which contain, as ingredient b), one or more copolymers which have structural units of the formulas III and / or IV and / or V and / or VI and / or VII and / or VIII
  • All or part of the sulfonic acid groups in the polymers may be in neutralized form, i.e. that the acidic hydrogen atom of the sulfonic acid group in some or all sulfonic acid groups can be replaced by metal ions, preferably alkali metal ions and in particular by sodium ions.
  • Corresponding agents which are characterized in that the sulfonic acid groups in the copolymer are partially or fully neutralized are preferred according to the invention.
  • the monomer distribution of the copolymers used in the agents according to the invention is preferably 5 to 95% by weight i) or ii), particularly preferably 50 to 90% by weight, in the case of copolymers which contain only monomers from groups i) and ii). % Of monomer from group i) and from 10 to 50% by weight of monomer from group ii), in each case based on the polymer.
  • terpolymers those which contain 20 to 85% by weight of monomer from group i), 10 to 60% by weight of monomer from group ii) and 5 to 30% by weight of monomer from group iii) are particularly preferred ,
  • the molar mass of the polymers used in the agents according to the invention can be varied in order to adapt the properties of the polymers to the intended use.
  • Preferred automatic dishwashing detergents are characterized in that the copolymers have molar masses from 2000 to 200,000 gmol "1 , preferably from 4000 to 25,000 gmol " 1 and in particular from 5000 to 15,000 gmol "1 .
  • the content of one or more copolymers in the agents according to the invention can vary depending on the intended use and the desired product performance, preferred dishwasher detergents according to the invention being characterized in that they contain the copolymer (s) in amounts of 0.25 to 50% by weight. %, preferably from 0.5 to 35% by weight, particularly preferably from 0.75 to 20% by weight and in particular from 1 to 15% by weight.
  • polyacrylates As already mentioned further above, it is particularly preferred to use both polyacrylates and the above-described copolymers of unsaturated carboxylic acids, monomers containing sulfonic acid groups and, if appropriate, further ionic or nonionic monomers in the agents according to the invention.
  • the polyacrylates were described in detail above. Combinations of the above-described copolymers containing sulfonic acid groups with low molecular weight polyacrylates, for example in the range between 1000 and 4000 daltons, are particularly preferred.
  • Such polyacrylates are commercially available under the trade names Sokalan ® PA15 or Sokalan ® PA25 (BASF). - 298 -
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids, is generally 2,000 to 100,000 g / mol, preferably 20,000 to 90,000 g / mol and in particular 30,000 to 80,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of (co) polymeric polycarboxylates in the agents is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
  • the polymers can also contain allylsulfonic acids, such as, for example, allyloxybenzenesulfonic acid and methallylsulfonic acid, as monomers.
  • allylsulfonic acids such as, for example, allyloxybenzenesulfonic acid and methallylsulfonic acid, as monomers.
  • Biodegradable polymers of more than two different monomer units are also particularly preferred, for example those which contain salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives as monomers or those which contain salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives as monomers ,
  • Anionic surfactants in acid form are preferably one or more substances from the group of carboxylic acids, sulfuric acid half-esters and sulfonic acids, preferably from the group of fatty acids, fatty alkyl sulfuric acids and alkylarylsulfonic acids.
  • the compounds mentioned should have longer-chain hydrocarbon radicals, that is to say they should have at least 6 carbon atoms in the alkyl or alkenyl radical.
  • the C chain distributions of the anionic surfactants are usually in the range from 6 to 40, preferably 8 to 30 and in particular 12 to 22 carbon atoms.
  • Carboxylic acids which are used as soaps in detergents and cleaning agents in the form of their alkali metal salts, are technically largely obtained from native fats and oils by hydrolysis. While the alkaline saponification that was carried out in the past century led directly to the alkali salts (soaps), today only water is used on an industrial scale that splits the fats into glycerol and the free fatty acids. Large-scale processes are, for example, cleavage in an autoclave or continuous high-pressure cleavage.
  • Carboxylic acids which can be used as an anionic surfactant in acid form in the context of the present invention are, for example, hexanoic acid (caproic acid), heptanoic acid (enanthic acid), octanoic acid (caprylic acid), nonanoic acid (pelargonic acid), decanoic acid (capric acid), undecanoic acid, etc.
  • preference is given to Use of fatty acids such as dodecanoic acid (lauric acid), tetradecanoic acid (myristic acid), - 299 -
  • Hexadecanoic acid (palmitic acid), octadecanoic acid (stearic acid), eicosanoic acid (arachic acid), docosanoic acid (behenic acid), tetracosanoic acid (lignoceric acid), hexacosanoic acid (cerotinic acid), triacotanoic acid (melissic acid) and the unsaturated species 9c-hexmitolecenoic acid (petcidecenoic acid) petacidecenoic acid (6c-hexadecenoic acid) petacidecenoic acid (6c-hexadolecenoic acid) ), 6t-octadecenoic acid (petroselaidic acid), 9c-octadecenoic acid (oleic acid), 9t-octadecenoic acid ((elaidic acid), 9c, 12c-octadecadienoic acid (linoleic
  • coconut oil fatty acid (about 6 wt .-% C 8, 6 parts by weight 10% C, 48 wt .-% C 12 18 wt .-% C14, 10 wt .-% C 16, 2 wt .-% C18, 8 wt .-% C 18 - 1 wt .-% C 1fr ), palm kernel oil fatty acid (approx.
  • soybean oil fatty acid (approx. 2% by weight C 14 , 15% by weight C 16 , 5% by weight C 18 , 25% by weight C 18 -, 45% by weight C 18 -, 7 wt .-% C 18 -).
  • Sulfuric acid semiesters of longer-chain alcohols are also anionic surfactants in their acid form and can be used in the context of the present invention.
  • Their alkali metal, in particular sodium salts, the fatty alcohol sulfates are commercially available from fatty alcohols which are reacted with sulfuric acid, chlorosulfonic acid, amidosulfonic acid or sulfur trioxide to give the alkyl sulfuric acids concerned and are subsequently neutralized.
  • the fatty alcohols are obtained from the fatty acids or fatty acid mixtures concerned by high-pressure hydrogenation of the fatty acid methyl esters.
  • the most important industrial process in terms of quantity for the production of fatty alkyl sulfuric acids is the sulfonation of the alcohols with SO 3 / air mixtures in special cascade, falling film or tube bundle reactors.
  • alkyl ether sulfuric acids the salts of which, the alkyl ether sulfates, are distinguished by a higher water solubility and lower sensitivity to water hardness (solubility of the Ca salts) compared to the alkyl sulfates.
  • alkyl ether sulfuric acids are synthesized from fatty alcohols which are reacted with ethylene oxide to give the fatty alcohol ethoxylates in question.
  • ethylene oxide propylene oxide can also be used.
  • the subsequent sulfonation with gaseous sulfur trioxide in short-term sulfonation reactors yields over 98% of the alkyl ether sulfuric acids concerned. - 300 -
  • Alkanesulfonic acids and olefin sulfonic acids can also be used as anionic surfactants in acid form in the context of the present invention.
  • Alkanesulfonic acids can contain the sulfonic acid group in a terminal bond (primary alkanesulfonic acids) or along the carbon chain (secondary alkanesulfonic acids), only the secondary alkanesulfonic acids being of commercial importance. These are made by sulfochlorination or sulfoxidation of linear hydrocarbons.
  • n-paraffins are reacted with sulfur dioxide and chlorine under irradiation with UV light to give the corresponding sulfochlorides, which, when hydrolysed with alkalis, provide the alkanesulfonates directly, and when reacted with water, the alkanesulfonic acids.
  • di- and polysulfochlorides and chlorinated hydrocarbons can occur as by-products of the radical reaction in the sulfochlorination, the reaction is usually carried out only up to degrees of conversion of 30% and then terminated.
  • alkanesulfonic acids Another process for the production of alkanesulfonic acids is sulfoxidation, in which n-paraffins are reacted with sulfur dioxide and oxygen under irradiation with UV light.
  • This radical reaction produces successive alkylsulfonyl radicals, which react further with oxygen to form the alkylpersulfonyl radicals.
  • the reaction with unreacted paraffin provides an alkyl radical and the alkyl persulfonic acid, which breaks down into an alkyl peroxysulfonyl radical and a hydroxyl radical.
  • the reaction of the two radicals with unreacted paraffin gives the alkylsulfonic acids or water, which reacts with alkylpersulfonic acid and sulfur dioxide to give sulfuric acid.
  • this reaction is usually carried out only up to degrees of conversion of 1% and then stopped.
  • Olefin sulfonates are produced industrially by the reaction of ⁇ -olefins with sulfur trioxide. Intermediate hermaphrodites are formed, which cyclize to form so-called sultans. Under suitable conditions (alkaline or acidic hydrolysis), these sultones react to give hydroxylalkanesulfonic acids or alkenesulfonic acids, both of which can also be used as anionic surfactant acids.
  • alkylbenzenesulfonates as powerful anionic surfactants have been known since the 1930s. At that time, alkylbenzenes were produced by monochlorination of kogasin fractions and subsequent Friedel-Crafts alkylation, which were sulfonated with oleum and neutralized with sodium hydroxide solution.
  • propylene was tetramerized to give branched ⁇ -dodecylene and the product was converted to tetrapropylene benzene via a Friedel-Crafts reaction using aluminum trichloride or hydrogen fluoride, which was subsequently sulfonated and neutralized. This - 301 -
  • TPS tetrapropylene benzene sulfonates
  • Linear alkylbenzenesulfonates are made from linear alkylbenzenes, which in turn are accessible from linear olefins.
  • petroleum fractions with molecular sieves are separated on an industrial scale into the n-paraffins of the desired purity and dehydrated to the n-olefins, resulting in both ⁇ - and i-olefins.
  • C 8 are preferred according to the invention as anionic surfactants in acid form. 16 -, preferably C 9 - 3 alkylbenzenesulfonic acids. It is within the scope of the present invention further preferably, C 8 . ⁇ 6 -, preferably C. 9 13 - to use alkylbenzenesulfonic acids which are derived from alkylbenzenes and which have a tetralin content below 5% by weight, based on the alkylbenzene. It is further preferred to use alkylbenzenesulfonic acids whose alkylbenzenes have been prepared by the HF process, so that the C 8 . 16 -, preferably C 9 - 3 alkylbenzenesulfonic acids have a 2-phenyl isomer content below 22% by weight, based on the alkylbenzenesulfonic acid.
  • anionic surfactants in their acid form can be used alone or in a mixture with one another.
  • the anionic surfactant in acid form, before addition to the carrier material (s) contains further, preferably acidic, ingredients of detergents and cleaning agents in amounts of 0.1 to 40% by weight, preferably of 1 to 15 wt .-% and in particular from 2 to 10 wt .-%, each based on the weight of the mixture to be reacted.
  • Suitable acidic reactants in the context of the present invention are, in addition to the “surfactant acids”, also the fatty acids, phosphonic acids, polymer acids or partially neutralized polymer acids as well as “builder acids” and “complex builder acids” (details later in the text) as well as in any mixtures.
  • surfactant acids also the fatty acids, phosphonic acids, polymer acids or partially neutralized polymer acids as well as “builder acids” and “complex builder acids” (details later in the text) as well as in any mixtures.
  • phosphonic acids which in neutralized form (phosphonates) are components of many detergents and cleaning agents as incrustation inhibitors.
  • anionic surfactants partially or fully neutralized. These salts can then be present as a solution, suspension or emulsion in the granulating liquid, but can also be part of the solid bed as a solid.
  • ammonium and mono-, di- or triethanolalkonium ions are suitable cations for such anionic surfactants.
  • the analog representatives of mono-, di- or trimethanolamine or those of the alkanolamines of higher alcohols can also be quaternized and present as a cation.
  • Cationic surfactants can also be used with advantage as active substances.
  • the delivery form of the cationic surfactant can be added directly to the mixer, or it can be sprayed onto the solid carrier in the form of a liquid to pasty form of cationic surfactant.
  • Such cationic surfactant preparation forms can be prepared, for example, by mixing commercially available cationic surfactants with auxiliaries such as nonionic surfactants, polyethylene glycols or polyols. Lower alcohols such as ethanol and isopropanol can also be used, the amount of such lower alcohols in the liquid cationic surfactant preparation form being below 10% by weight for the reasons mentioned above.
  • the agents according to the invention can contain one or more cationic, fabric softening agents of the formulas X, XI or XII as cationic active substances with fabric softening effect:
  • the solid (s) additionally contain nonionic surfactant (s) as active substance.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol residue can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 12 . 14 -alcohols with 3 EO or 4 EO, C 9 . ⁇ alcohol with 7 EO, C 13 . 15 -alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 - ⁇ 8 - alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12. - ⁇ 4 - alcohol with 3 EO and C ⁇ 2 . 18 alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants which have alternating ethylene oxide and alkylene oxide units have proven to be particularly preferred nonionic surfactants.
  • surfactants with EO-AO-EO-AO blocks are preferred, one to ten EO or AO groups being bonded to one another before a block follows from the other groups.
  • Agents according to the invention which contain nonionic surfactant (s) of the general formula XIV are preferred here
  • R 1 for a straight-chain or branched, saturated or mono- or polyunsaturated C 6 .
  • 2 alkyl or alkenyl radical each group R 2 or R 3 is independently selected from -CH 3 ; -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 and the indices w, x, y, z independently represent integers from 1 to 6.
  • the preferred nonionic surfactants of the formula XIV can be prepared by known methods from the corresponding alcohols R 1 -OH and ethylene or alkylene oxide.
  • the radical R 1 in the above formula XIV can vary depending on the origin of the alcohol. If native sources are used, the radical R 1 has an even number of carbon atoms and is generally unbranched, the linear radicals being of alcohols of native origin with 12 to 18 carbon atoms, for example coconut, palm, tallow or Oleyl alcohol are preferred.
  • Alcohols accessible from synthetic sources are, for example, the Guerbet alcohols or in the mixture methyl-branched or linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • compositions according to the invention are preferred in which R 1 in formula XIV for an alkyl radical having 6 to 24, preferably 8 to 20, particularly preferably 9 to 15 and in particular 9 to 11 carbon atoms.
  • butylene oxide is particularly suitable as the alkylene oxide unit which is present in the preferred nonionic surfactants in alternation with the ethylene oxide unit.
  • R 2 or R 3 are selected independently of one another from -CH 2 CH 2 -CH 3 or CH (CH 3 ) 2 are also suitable.
  • Preferred agents are characterized in that R 2 or R 3 for a radical -CH 3 , w and x independently of one another stand for values of 3 or 4 and y and z independently of one another for values of 1 or 2.
  • non-ionic surfactants which have a C 9 of L . ⁇ 5 alkyl radical having 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units, followed of L to 4 ethylene oxide followed to 4 propylene oxide units.
  • the specified C chain lengths and degrees of ethoxylation or degrees of alkoxylation represent statistical mean values which can be an integer or a fractional number for a specific product. Due to the manufacturing process, commercial products of the formulas mentioned usually do not consist of an individual representative, but of mixtures, which can result in mean values and fractional numbers both for the C chain lengths and for the degrees of ethoxylation or alkoxylation. - 306 -
  • alkyl glycosides of the general formula RO (G) x can also be used as further nonionic surfactants, in which R denotes a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, C atoms and G is the symbol which stands for a glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; x is preferably 1.2 to 1.4.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl ester.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides can also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
  • Suitable surfactants are polyhydroxy fatty acid amides of the formula XV,
  • RCO stands for an aliphatic acyl radical with 6 to 22 carbon atoms
  • R 1 for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms
  • [Z] for a linear or branched polyhydroxyalkyl radical with 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula XVI,
  • R represents a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 represents a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms
  • R 2 represents a linear, branched or cyclic alkyl radical or an aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, C 1 -C 4 -alkyl or phenyl radicals being preferred
  • [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives thereof residue.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • the ratio of anionic surfactant (s) to nonionic surfactant (s) is between 10: 1 and 1:10, preferably between 7.5: 1 and 1: 5 and in particular between 5: 1 and 1: 2 is.
  • Containers according to the invention which contain surfactant (s), preferably anionic (s) and / or nonionic (s) surfactant (s), are preferred in amounts of 5 to 80% by weight, preferably 7.5 to 70% by weight. %, particularly preferably from 10 to 60% by weight and in particular from 12.5 to 50% by weight, in each case based on the weight of the enclosed solids.
  • surfactants in cleaning agents for automatic dishwashing is preferably limited to the use of nonionic surfactants in small amounts. If the containers according to the invention are intended to enclose such agents, these agents preferably contain only certain nonionic surfactants, which are described below. Usually only weakly foaming nonionic surfactants are used as surfactants in automatic dishwashing detergents. By contrast, representatives from the groups of anionic, cationic or amphoteric surfactants are of lesser importance.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol residue can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues of alcohols of native origin with 12 to 18 carbon atoms, for example from coconut, palm, tallow or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol are particularly preferred.
  • the preferred ethoxylated alcohols include, for example, C 12 -alcohols with 3 EO or 4 EO, C 9 . 1 alcohol with - 308 -
  • nonionic surfactant which has a melting point above room temperature, preferably a nonionic surfactant with a melting point above 20 ° C.
  • Nonionic surfactants to be used preferably have melting points above 25 ° C, particularly preferred nonionic surfactants have melting points between 25 and 60 ° C, in particular between 26.6 and 43.3 ° C.
  • Suitable nonionic surfactants which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which can be solid or highly viscous at room temperature. If nonionic surfactants which are highly viscous at room temperature are used, it is preferred that they have a viscosity above 20 Pas, preferably above 35 Pas and in particular above 40 Pas. Nonionic surfactants that have a waxy consistency at room temperature are also preferred.
  • Preferred nonionic surfactants to be used at room temperature originate from the groups of alkoxylated nonionic surfactants, in particular ethoxylated primary alcohols, and mixtures of these surfactants with structurally more complicated surfactants such as
  • Polyoxypropylene / Polyoxyethylene / Polyoxypropylene (PO / EO / PO) surfactants are also characterized by good foam control.
  • the nonionic surfactant with a melting point above room temperature is an ethoxylated nonionic surfactant which results from the reaction of a monohydroxyalkanol or alkylphenol having 6 to 20 carbon atoms with preferably at least 12 mol, particularly preferably at least 15 mol, in particular at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol has resulted.
  • a particularly preferred solid at room temperature, non-ionic surfactant is selected from a straight chain fatty alcohol having 16 to 20 carbon atoms (C16. 2, o alcohol), preferably a C 18 alcohol and at least 12 moles, preferably at least 15 mol and in particular - 309 -
  • the nonionic surfactant which is solid at room temperature, preferably has additional propylene oxide units in the molecule.
  • Such PO units preferably make up up to 25% by weight, particularly preferably up to 20% by weight and in particular up to 15% by weight of the total molar mass of the nonionic surfactant.
  • Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
  • the alcohol or alkylphenol part of such nonionic surfactant molecules preferably makes up more than 30% by weight, particularly preferably more than 50% by weight and in particular more than 70% by weight of the total molar mass of such nonionic surfactants.
  • nonionic surfactants with melting points above room temperature contain 40 to 70% of a polyoxypropylene / polyoxyethylene / polyoxypropylene block polymer blend which comprises 75% by weight of an inverted block copolymer of polyoxyethylene and polyoxypropylene with 17 mol of ethylene oxide and 44 mol of propylene oxide and 25% by weight.
  • Nonionic surfactants that may be used with particular preference are available, for example under the name Poly Tergent ® SLF-18 from Olin Chemicals.
  • Another preferred surfactant can be represented by the formula
  • R 1 represents a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof
  • R 2 denotes a linear or branched hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof
  • x denotes values between 0.5 and 1
  • y represents a value of at least 15.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula
  • R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 3 is H or one - 310 -
  • x stands for values between 1 and 30, k and j for values between 1 and 12, preferably between 1 and 5. If the value x ⁇ 2, each R 3 in the above formula can be different.
  • R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, radicals having 8 to 18 carbon atoms being particularly preferred.
  • H, -CH 3 or -CH 2 CH 3 are particularly preferred for the radical R 3 .
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula can be different if x ⁇ 2.
  • the value 3 for x has been chosen here by way of example and may well be larger, the range of variation increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
  • R 1 , R 2 and R 3 are as defined above and x stands for numbers from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18. Particularly preferred are surfactants in which the radicals R 1 and R 2 has 9 to 14 C atoms, R 3 represents H and x assumes values from 6 to 15.
  • Preferred agents according to the invention which are used as automatic dishwashing detergents, also contain amphoteric or cationic polymers in addition to the surfactants mentioned to improve the rinse aid result.
  • Agents according to the invention can contain enzymes to increase the washing or cleaning performance, it being possible in principle to use all the enzymes established in the prior art for these purposes. These include in particular proteases, amylases, lipases, hemicellulases, cellulases or oxidoreductases, and preferably their mixtures. These enzymes are in the - 311 -
  • Agents according to the invention preferably contain enzymes in total amounts of 1 x 10 "6 to 5 percent by weight based on active protein.
  • the protein concentration can be determined using known methods, for example the BCA method (bichinchoninic acid; 2,2'-bichinolyl-4,4 '-dicarboxylic acid) or the biuret method can be determined.
  • subtilisin type those of the subtilisin type are preferred.
  • subtilisins BPN 'and Carlsberg the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the enzymes thermitase, proteinase K and that which can no longer be assigned to the subtilisins in the narrower sense Proteases TW3 and TW7.
  • Subtilisin Carlsberg is available in a further developed form under the trade name Alcalase ® from Novozymes A / S, Bagsvasrd, Denmark.
  • subtilisins 147 and 309 are sold under the trade names Esperase ®, or Savinase ® from Novozymes.
  • the variants listed under the name BLAP ® are derived from the protease from Bacillus lentus DSM 5483.
  • proteases are, for example, under the trade names Durazym ®, relase ®, Everlase® ®, Nafizym, Natalase ®, Kannase® ® and Ovozymes ® from Novozymes, under the trade names Purafect ®, Purafect ® OxP and Properase.RTM ® by the company Genencor, which is sold under the trade name Protosol ® by Advanced Biochemicals Ltd., Thane, India, which is sold under the trade name Wuxi ® by Wuxi Snyder Bioproducts Ltd., China, and in the trade name Proleather ® and Protease P ® by the company Amano Pharmaceuticals Ltd., Nagoya, Japan, and the enzyme available under the name Proteinase K-16 from Kao Corp., Tokyo, Japan.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, from ⁇ . amyloliquefaciens or from ß. stearothermophilus and its further developments for use in detergents and cleaning agents.
  • the enzyme from ß. licheniformis is available from Novozymes under the name Termamyl ® and from Genencor under the name Purastar ® ST. Development products of this ⁇ -amylase are available from Novozymes under the trade names Duramyl ® and Termamyl ® ultra, from Genencor under the name Purastar® ® OxAm and from Daiwa Seiko Inc., Tokyo, Japan, as Keistase ®.
  • the ⁇ -amylase from ß. Amyloliquefaciens is sold by Novozymes under the name BAN ® , and derived variants from the ⁇ -amylase from ⁇ . stearothermophilus under the names BSG ® and Novamyl ® , also from Novozymes. - 312 -
  • ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and the cyclodextrin glucanotransferase (CGTase) from ß. highlight agaradherens (DSM 9948); fusion products of the molecules mentioned can also be used.
  • Agents according to the invention can contain lipases or cutinases, in particular because of their triglyceride-cleaving activities, but also in order to generate peracids in situ from suitable precursors.
  • lipases or cutinases include, for example, the lipases originally obtainable from Humicola lanuginosa (Thermomyces lanuginosus) or further developed, in particular those with the amino acid exchange D96L. They are sold, for example, by Novozymes under the trade names Lipolase ® , Lipolase ® Ultra, LipoPrime ® , Lipozyme ® and Lipex ® .
  • the cutinases can be used, which were originally isolated from Fusarium solani pisi and Humicola insolens.
  • lipases are available from Amano under the designations Lipase CE ®, Lipase P ®, Lipase B ®, or lipase CES ®, Lipase AKG ®, Bacillis sp. Lipase ® , Lipase AP ® , Lipase M-AP ® and Lipase AML ® available.
  • the Genencor company can use the lipases or cutinases whose starting enzymes were originally isolated from Pseudomonas mendocina and Fusarium solanii.
  • Agents according to the invention can contain cellulases, depending on the purpose, as pure enzymes, as enzyme preparations or in the form of mixtures in which the individual components advantageously complement one another with regard to their various performance aspects.
  • These performance aspects include, in particular, contributions to the primary washing performance, to the secondary washing performance of the agent (anti-deposition effect or graying inhibition) and finish (tissue effect), up to the exertion of a “stone washed” effect.
  • EG endoglucanase
  • Carezyme ® also available from Novozymes, are based on the 50 kD-EG and the 43 kD-EG from H. insolens, respectively - 313 -
  • DSM 1800 Other possible commercial products from this company are Cellusoft ® and Renozyme ® .
  • Other commercial products from AB Enzymes are Econase ® and Ecopulp ® .
  • Another suitable cellulase from Bacillus sp. CBS 670.93 is available from Genencor under the trade name Puradax ® .
  • Other commercial products from Genencor are "Genencor detergent cellulase L" and IndiAge ® Neutra.
  • Suitable mannanases are available, for example under the name Gamanase ® and Pektinex AR ® from Novozymes, under the name Rohapec ® B1 L from AB Enzymes and under the name Pyrolase® ® from Diversa Corp., San Diego, CA, USA , The from ß. subtilis .beta.-glucanase obtained is available under the name Cereflo ® from Novozymes.
  • washing or cleaning agents can use oxidoreductases, for example oxidases, oxygenases, catalases, peroxidases, such as halo-, chloro-, bromo-, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) contain.
  • oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo-, chloro-, bromo-, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) contain.
  • Suitable commercial products are Denilite ® 1 and 2 from Novozymes.
  • organic, particularly preferably aromatic, compounds interacting with the enzymes are additionally added in order to increase the activity of the oxidoreductases in question (enhancers) or to ensure the flow of electrons (mediators) in the case of greatly different redox potentials between the oxidizing enzymes and the soiling.
  • the enzymes used in agents according to the invention either originate from microorganisms, such as the genera Bacillus, Streptomyces, Humicola, or Pseudomonas, and / or are produced by biotechnological processes known per se by suitable microorganisms, for example by transgenic expression hosts of the genera Bacillus or filamentous fungi.
  • the enzymes in question are advantageously purified by methods which are in themselves established, for example by means of precipitation, sedimentation, concentration, filtration of the liquid phases, microfiltration, ultrafiltration, exposure to chemicals, deodorization or suitable combinations of these steps. - 314 -
  • Agents according to the invention can be added to the enzymes in any form established according to the prior art. These include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, particularly in the case of liquid or gel-like agents, solutions of the enzymes, advantageously as concentrated as possible, low in water and / or with stabilizers.
  • the enzymes can be encapsulated both for the solid and for the liquid administration form, for example by spray drying or extrusion of the enzyme solution together with a, preferably natural, polymer or in the form of capsules, for example those in which the enzyme is enclosed in a solidified gel are or in those of the core-shell type, in which an enzyme-containing core is coated with a protective layer impermeable to water, air and / or chemicals.
  • Additional active ingredients for example stabilizers, emulsifiers, pigments, bleaching agents or dyes, can additionally be applied in superimposed layers.
  • Capsules of this type are applied by methods known per se, for example by shaking or roll granulation or in fluid-bed processes. Such granules are advantageously low in dust, for example by applying polymeric film formers, and are stable on storage due to the coating.
  • a protein and / or enzyme contained in an agent according to the invention can be protected, particularly during storage, against damage such as inactivation, denaturation or disintegration, for example by physical influences, oxidation or proteolytic cleavage.
  • damage such as inactivation, denaturation or disintegration, for example by physical influences, oxidation or proteolytic cleavage.
  • the proteins and / or enzymes are obtained microbially, inhibition of proteolysis is particularly preferred, in particular if the agents also contain proteases.
  • Agents according to the invention can contain stabilizers for this purpose; the provision of such agents is a preferred embodiment of the present invention.
  • a group of stabilizers are reversible protease inhibitors.
  • Benzamidine hydrochloride, borax, boric acids, boronic acids or their salts or esters are frequently used, including above all derivatives with aromatic groups, for example ortho, meta- or para-substituted phenylboronic acids, or their salts or esters.
  • Peptide aldehydes, ie oligopeptides with a reduced C-terminus are also suitable. Ovomucoid and leupeptin may be mentioned as peptide protease inhibitors; an additional option is the formation of fusion proteins from proteases and peptide inhibitors. - 315 -
  • Further enzyme stabilizers are amino alcohols such as mono-, di-, triethanol- and -propanolamine and their mixtures, aliphatic carboxylic acids up to C 12 , such as succinic acid, other dicarboxylic acids or salts of the acids mentioned. End group-capped fatty acid amide alkoxylates can also be used as stabilizers.
  • Di-glycerol phosphate also protects against denaturation by physical influences.
  • Calcium salts are also used, such as calcium acetate or calcium formate, and magnesium salts.
  • Polyamide oligomers or polymeric compounds such as lignin, water-soluble vinyl copolymers or, such as cellulose ethers, acrylic polymers and / or polyamides, stabilize the enzyme preparation, inter alia, against physical influences or pH fluctuations.
  • Polymers containing polyamine-N-oxide act simultaneously as enzyme stabilizers and as color transfer inhibitors.
  • Other polymeric stabilizers are the linear C 8 -C 18 polyoxyalkylenes.
  • Alkyl polyglycosides can also stabilize the enzymatic components of the agent according to the invention and even increase their performance.
  • Crosslinked N-containing compounds fulfill a double function as soil release agents and as enzyme stabilizers.
  • Reducing agents and antioxidants such as sodium sulfite or reducing sugars increase the stability of the enzymes against oxidative breakdown.
  • Combinations of stabilizers are preferably used, for example made of polyols, boric acid and / or borax, the combination of boric acid or borate, reducing salts and succinic acid or other dicarboxylic acids or the combination of boric acid or borate with polyols or polyamino compounds and with reducing salts.
  • the action of peptide-aldehyde stabilizers can be increased by the combination with boric acid and / or boric acid derivatives and polyols and can be further enhanced by the additional use of divalent cations, such as calcium ions.
  • liquid enzyme formulations is particularly preferred in the context of the present invention.
  • Agents according to the invention are preferred here which additionally contain enzymes and / or enzyme preparations, preferably solid and / or liquid protease preparations and / or amylase preparations, in amounts of 1 to 5% by weight, preferably of 1.5 to 4.5 and in particular from 2 to 4% by weight, based in each case on the total composition.
  • enzymes and / or enzyme preparations preferably solid and / or liquid protease preparations and / or amylase preparations, in amounts of 1 to 5% by weight, preferably of 1.5 to 4.5 and in particular from 2 to 4% by weight, based in each case on the total composition.
  • enzymes and / or enzyme preparations preferably solid and / or liquid protease preparations and / or amylase preparations
  • these compresses can contain disintegration aids, so-called tablet disintegrants.
  • tablet disintegrants and disintegration accelerators are understood as auxiliary substances which are necessary for the rapid disintegration of Tablets in water or gastric juice and ensure the release of the pharmaceuticals in an absorbable form.
  • preferred disintegration aids are cellulose-based disintegration aids, preferably in granular, cogranulated or compacted form.
  • Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and, formally speaking, is a ß-1, 4-polyacetal of cellobiose, which in turn is made up of two molecules of glucose. Suitable celluloses consist of approximately 500 to 5000 glucose units and consequently have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrants which can be used in the context of the present invention are also cellulose derivatives which can be obtained from cellulose by polymer-analogous reactions. Such chemically modified celluloses include, for example, products from esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • celluloses in which the hydroxyl groups have been replaced by functional groups which are not bound via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali celluloses, carboxymethyl cellulose (CMC), cellulose esters and ethers and aminocelluloses.
  • the cellulose derivatives mentioned are preferably not used alone as a cellulose-based disintegrant, but are used in a mixture with cellulose.
  • the content of cellulose derivatives in these mixtures is preferably below 50% by weight, particularly - 317 -
  • microcrystalline cellulose can be used as a further cellulose-based disintegrant or as a component of this component. This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which only attack and completely dissolve the amorphous areas (approx. 30% of the total cellulose mass) of the celluloses, but leave the crystalline areas (approx. 70%) undamaged.
  • microcrystalline celluloses which have primary particle sizes of approximately 5 ⁇ m and can be compacted, for example, into granules with an average particle size of 200 ⁇ m.
  • the agents according to the invention can contain a gas-releasing system composed of organic acids and carbonates / hydrogen carbonates.
  • the solid mono-, oligo- and polycarboxylic acids can be used as organic acids which release carbon dioxide from the carbonates / bicarbonates in aqueous solution. From this group, preference is again given to citric acid, tartaric acid, succinic acid, malonic acid, adipic acid, maleic acid, fumaric acid, oxalic acid and polyacrylic acid.
  • Organic sulfonic acids such as amidosulfonic acid can also be used.
  • Sokalan ® DCS (trademark of BASF), a mixture of succinic acid (max. 31% by weight), glutaric acid (max. 50% by weight) and adipic acid (commercially available and also preferably used as an acidifying agent in the context of the present invention) max. 33% by weight).
  • a detergent and cleaning agent compact preferred in the context of the present invention additionally contains a shower system.
  • the gas-developing shower system consists of carbonates and / or bicarbonates in addition to the organic acids mentioned.
  • the alkali metal salts are clearly preferred among representatives of this class of substances.
  • the sodium and potassium salts are clearly preferred over the other salts for reasons of cost.
  • hydrogen carbonates are used; rather, mixtures of different carbonates and hydrogen carbonates may be preferred.
  • a wide number of different salts can be used as electrolytes from the group of inorganic salts.
  • Preferred cations are the alkali and alkaline earth metals, preferred anions are the halides and sulfates. From a production point of view, the use of NaCl or MgCl 2 in the granules according to the invention is preferred.
  • pH adjusting agents In order to bring the pH of solutions of the water-soluble containers according to the invention into the desired range, the use of pH adjusting agents can be indicated. All known acids or bases can be used here, provided that their use is not prohibited for application-related or ecological reasons or for reasons of consumer protection. The amount of these adjusting agents usually does not exceed 1% by weight of the total formulation.
  • fragrance compounds e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type are used.
  • Fragrance compounds of the ester type are e.g. Benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate,
  • the ethers include, for example, benzyl ethyl ether, the aldehydes e.g. the linear alkanals with 8-18 C atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones e.g.
  • the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • perfume oils can also contain natural fragrance mixtures as are available from plant sources, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • muscatel sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, olibanum oil, galbanum oil and labdanum oil as well as orange blossom oil, neroliol, orange peel oil and sandalwood oil.
  • fragrance In order to be perceptible, a fragrance must be volatile, in addition to the nature of the functional groups and the structure of the chemical compound, the molar mass also plays an important role plays. Most have that - 319 -
  • fragrances When composing perfumes, more volatile fragrances can be bound to certain fixatives, for example, which prevents them from evaporating too quickly. In the subsequent classification of the fragrances into "more volatile” or “adherent” fragrances, nothing is said about the odor impression and whether the corresponding fragrance is perceived as a top or heart note.
  • the smell of the water-soluble containers according to the invention or the solids contained in them (product fragrance) and, after the cleaning and care process has ended, the laundry fragrance can also be influenced by a suitable selection of the fragrances or perfume oils mentioned. Due to their design, in particular due to the openings in the outer wall, water-soluble containers according to the invention are particularly suitable in comparison to completely closed containers to ensure an unmistakable product fragrance even when using smaller amounts of fragrance, whereby in particular also more volatile fragrances can be used, while To achieve a sufficient scent of laundry, the use of stronger odoriferous substances is advantageous.
  • Adhesive odoriferous substances which can be used in the context of the present invention are, for example, the essential oils such as angelica root oil, anise oil, arnica flower oil, basil oil, bay oil, bergamot oil, champagne flower oil, noble fir oil, noble pine cone oil, elemi oil, eucalyptus oil, fennel oil, geranium oil, spruce oil, spruce oil, spruce oil, oil spruce oil, spruce oil, oil spruce oil, spruce oil, spruce oil, spruce oil, spruce oil guaiac wood oil, gurjun balsam oil, Helichrysumöl, Ho oil, ginger oil, iris oil, cajeput oil, calamus oil, camomile oil, camphor oil, Kanagaöl, cardamom oil, cassia oil, pine needle oil, Kopa ⁇ vabalsamöl, coriander oil, spearmint oil, car
  • the higher-boiling or solid odorants of natural or synthetic origin can also be used in the context of the present invention as adherent odorants or odorant mixtures, that is to say fragrances.
  • adherent odorants or odorant mixtures that is to say fragrances.
  • fragrances include the compounds mentioned below and mixtures of - 320 -
  • ambrettolide ⁇ -amyl cinnamaldehyde, anethole, anisaldehyde, anis alcohol, anisole, anthranilic acid methyl ester, acetophenone, benzylacetone, benzaldehyde, benzoic acid ethyl ester, benzophenone, benzyl alcohol, benzyl acetate, benzyl benzoate, benzyl formate, benzyl valenyl bromyl styrene, n-dodecyl aldehyde, eugenol, eugenol, eucalyptol, farnesol, fenchone, fenchyl acetate, geranyl acetate, geranyl formate, heliotropin, Heptincarbonklarmethylester, heptaldehyde, hydroquinone dimethyl ether, Hydroxyzimtaldehyd
  • Salicylic acid methyl ester salicylic acid hexyl ester, salicylic acid cyclohexyl ester, santalol, skatol, terpineol, thymen, thymol, ⁇ -undelactone, vaniline, veratrum aldehyde, cinnamaldehyde, cimate alcohol, cinnamic acid, cinnamic acid ethyl ester, cinnamic acid ethyl ester, cinnamic acid ester.
  • the more volatile fragrances include, in particular, the lower-boiling fragrances of natural or synthetic origin, which can be used alone or in mixtures.
  • Examples of more volatile fragrances are alkyisothiocyanates (alkyl mustards), butanedione, limonene, linalool, linaylacetate and propionate, menthol, menthone, methyl-n-heptenone, phellandrene, phenylacetaldehyde, terpinylacetate, citral, citronellal.
  • the agents according to the invention can be colored with suitable dyes.
  • Preferred dyes the selection of which is not difficult for the person skilled in the art, have a high storage stability and are insensitive to the other ingredients of the compositions and to light. If the containers according to the invention contain detergents and cleaning agents for textile cleaning, the dyes used should furthermore have no pronounced substantivity towards textile fibers in order not to stain them.
  • Hydrotropes or solubilizers are substances that, through their presence, make other compounds that are practically insoluble in a certain solvent soluble or emulsifiable in this solvent (solubilization). There are solubilizers that form a molecular compound with the poorly soluble substance and those that work through micell formation. It can also be said that solubilizers only give a so-called latent solvent its solvency. When water is used as a (latent) solvent, one speaks mostly of hydrotropes instead of solubilizers, in some cases better of emulsifiers. - 321 -
  • Foam inhibitors which can be used in the agents according to the invention include soaps, oils, fats, paraffins or silicone oils, which can optionally be applied to carrier materials.
  • Suitable carrier materials are, for example, inorganic salts such as carbonates or sulfates, cellulose derivatives or silicates and mixtures of the aforementioned materials.
  • Agents preferred in the context of the present application contain paraffins, preferably unbranched paraffins (n-paraffins) and / or silicones, preferably linear-polymeric silicones, which are structured according to the scheme (R 2 SiO) x and are also referred to as silicone oils. These silicone oils are usually clear, colorless, neutral, odorless, hydrophobic liquids with a molecular weight between 1000-150,000, and viscosities between 10 u. 1,000,000 mPa • s.
  • Suitable anti-redeposition agents which are also referred to as soil repellents, are, for example, nonionic cellulose ethers such as methyl cellulose and methylhydroxypropyl cellulose with a proportion of methoxy groups of 15 to 30% by weight and of hydroxypropyl groups of 1 to 15% by weight, in each case based on the nonionic cellulose ether and the polymers of phthalic acid and / or terephthalic acid or their derivatives known from the prior art, in particular polymers of ethylene terephthalates and / or
  • Optical brighteners can be added to the agents according to the invention in order to eliminate graying and yellowing of the treated textiles. These substances attach to the fibers and bring about a brightening and simulated bleaching effect by converting invisible ultraviolet radiation into visible longer-wave light, wherein the absorbed from sunlight ultraviolet light is radiated as pale bluish fluorescence and produces the yellow shade of the grayed or yellowed laundry pure white.
  • Suitable compounds originate, for example stilbenedisulfonic from the substance classes of the 4,4 'diamino-2,2' ( Flavonic acids), 4,4'-distyryl-biphenyls, methylumbelliferones, coumarins, dihydroquinolinones, 1, 3-diarylpyrazolines, naphthalic acid imides, benzoxazole, benzisoxazole and benzimidazole systems and the pyrene derivatives substituted by heterocycles.
  • 4,4 'diamino-2,2' Flavonic acids
  • 4,4'-distyryl-biphenyls 4,4'-distyryl-biphenyls, methylumbelliferones, coumarins, dihydroquinolinones, 1, 3-diarylpyrazolines, naphthalic acid imides, benzoxazole, benzisoxazole and benzimidazole systems and the pyrene derivatives
  • Graying inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being re-absorbed.
  • Water-soluble colloids of mostly organic nature are suitable for this, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether sulfonic acids of starch or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • Water-soluble polyamides containing acidic groups are also suitable for this purpose.
  • soluble starch preparations and starch products other than those mentioned above can be used, e.g. degraded starch, aldehyde starches, etc.
  • Polyvinylpyrrolidone can also be used.
  • graying inhibitors are cellulose ethers such as carboxymethyl cellulose (Na salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof.
  • the agents according to the invention can contain synthetic anti-crease agents. These include, for example, synthetic products based on fatty acids, fatty acid esters. Fatty acid amides, alkylol esters, alkylolamides or fatty alcohols, which are mostly reacted with ethylene oxide, or products based on lecithin or modified phosphoric acid esters.
  • a substance that is particularly suitable for textile finishing and care is cottonseed oil, which can be produced, for example, by pressing out the brown, cleaned cottonseed and refining it with about 10% sodium hydroxide or by extraction with hexane at 60-70 ° C.
  • cotton oils contain 40 to 55% by weight of linoleic acid, 16 to 26% by weight of oleic acid and 20 to 26% by weight of palmitic acid.
  • Further agents which are particularly preferred for fiber smoothing and fiber care are the glycerides, in particular the monoglycerides of fatty acids such as, for example, glycerol monooleate or glycerol monostearate.
  • the agents according to the invention can contain antimicrobial agents.
  • antimicrobial agents Depending on the antimicrobial spectrum and mechanism of action, a distinction is made between bacteriostatics and bactericides, fungistatics and fungicides, etc.
  • Important substances from these groups are, for example, benzalkonium chlorides, alkylarlylsulfonates, halogenophenols and phenol mercuriacetate, and these compounds can also be dispensed with entirely in the agents according to the invention.
  • the agents according to the invention can contain antioxidants.
  • This class of compounds includes, for example, substituted phenols, hydroquinones, pyrocatechols and aromatic amines as well as organic sulfides, polysulfides, dithiocarbamates, phosphites and phosphonates.
  • Antistatic agents increase the surface conductivity and thus enable the flow of charges that have formed to improve.
  • External antistatic agents are generally substances with at least one hydrophilic molecular ligand and give a more or less hygroscopic film on the surfaces. These mostly surface-active antistatic agents can be divided into nitrogen-containing (amines, amides, quaternary ammonium compounds), phosphorus-containing (phosphoric acid esters) and sulfur-containing (alkyl sulfonates, alkyl sulfates) antistatic agents. Lauryl (or stearyl) dimethylbenzylammonium chlorides are also suitable as antistatic agents for textiles or as an additive to detergents, with an additional finishing effect.
  • Phobing and impregnation processes are used to provide textiles with substances that prevent dirt from accumulating or make it easier to wash out.
  • Preferred waterproofing and impregnating agents are perfluorinated fatty acids, also in the form of their aluminum and. Zirconium salts, organic silicates, silicones, polyacrylic acid esters with perfluorinated alcohol component or polymerizable compounds coupled with perfluorinated acyl or sulfonyl radical.
  • Antistatic agents can also be included.
  • the dirt-repellent finish with phobing and impregnating agents is often classified as an easy-care finish.
  • the penetration of the impregnating agent in the form of solutions or emulsions of the active substances in question can be facilitated by adding wetting agents which reduce the surface tension.
  • Another area of application of waterproofing and impregnating agents is the water-repellent finishing of textiles, tents, tarpaulins, leather, etc., which, in contrast to waterproofing, does not close the fabric pores, which means that the fabric remains breathable (hydrophobic).
  • the hydrophobizing agents used for hydrophobizing coat textiles, leather, paper, wood etc. with a very thin layer of hydrophobic groups, such as longer alkyl chains or siloxane groups.
  • Suitable water repellents are e.g. B. paraffins, waxes, metal soaps, etc.
  • the non-aqueous solvents which can be used in the agents according to the invention include, in particular, the organic solvents, of which only the most important can be listed here: alcohols (methanol, ethanol, propanols, butanols, octanols, cyclohexanol), glycols (ethylene glycol, diethylene glycol) ), Ether and the like Glycol ethers (diethyl ether, dibutyl ether, anisole, dioxane, tetrahydrofuran, mono-, di-, tri-, polyethylene glycol ether), ketones (acetone, butanone, cyclohexanone), esters (acetic acid esters, glycol esters), amides and other nitrogen compounds (dimethylformamide, pyridine, N-methylpyrrolidone, acetonitrile), sulfur compounds - 324 -
  • alcohols methanol, ethanol, propanols, butanols, oc
  • Such a solvent mixture which is particularly preferred in the context of the present application, is, for example, benzine, a mixture of various hydrocarbons suitable for chemical cleaning, preferably with a content of C12 to C14 hydrocarbons above 60% by weight, particularly preferably above 80% by weight and in particular above 90% by weight, based in each case on the total weight of the mixture, preferably with a boiling range from 81 to 110 ° C.
  • the agents according to the invention can contain fabric softeners to care for the textiles and to improve the textile properties such as a softer "handle” (softening) and reduced electrostatic charging (increased wearing comfort).
  • the active ingredients in fabric softener formulations are "esterquats", quaternary ammonium compounds with two hydrophobic residues, such as For example, the disteraryldimethylammonium chloride, which, however, because of its insufficient biodegradability, is increasingly being replaced by quaternary ammonium compounds which contain ester groups as predetermined breaking points for biodegradation in their hydrophobic residues and / or triethanolamine esterified with fatty acids and the reaction products are then quaternized in a manner known per se with alkylating agents, and Dime is also suitable as a finish thylolethylenhamstoff.
  • silicone derivatives can be used in the agents according to the invention. These additionally improve the rinsing behavior of the agents according to the invention due to their foam-inhibiting properties.
  • Preferred silicone derivatives are, for example, polydialkyl or alkylarylsiloxanes in which the alkyl groups have one to five carbon atoms and are wholly or partially fluorinated.
  • Preferred silicones are polydimethylsiloxanes, which can optionally be derivatized and are then amino-functional or quaternized or have Si-OH, Si-H and / or Si-Cl bonds.
  • silicones are the polyalkylene oxide-modified polysiloxanes, ie polysiloxanes which have, for example, polyethylene glycols and the polyalkylene oxide-modified dimethyl polysiloxanes. - 325 -
  • protein hydrolyzates are further active substances preferred in the field of detergents and cleaning agents in the context of the present invention.
  • Protein hydrolyzates are product mixtures that are obtained by acidic, basic or enzymatically catalyzed breakdown of proteins (proteins).
  • protein hydrolyzates of both vegetable and animal origin can be used.
  • Animal protein hydrolyzates are, for example, elastin, collagen, keratin, silk and milk protein protein hydrolyzates, which can also be in the form of salts.
  • the use of protein hydrolysates of plant origin e.g. B. soy, almond, rice, pea, potato and wheat protein hydrolyzates.
  • amino acid mixtures or individual amino acids such as arginine, lysine, histidine or pyrroglutamic acid, which have otherwise been obtained, can optionally be used in their place. It is also possible to use derivatives of the protein hydrolyzates, for example in the form of their fatty acid condensation products.
  • the agents according to the invention can also contain UV absorbers, which absorb onto the treated textiles and improve the light resistance of the fibers.
  • Compounds which have these desired properties are, for example, the compounds and derivatives of benzophenone which are active by radiationless deactivation and have substituents in the 2- and / or 4-position.
  • Substituted benzotriazoles, phenyl-substituted acrylates (cinnamic acid derivatives), optionally with cyano groups in the 2-position, salicylates, organic Ni complexes and natural substances such as umbelliferone and the body's own urocanoic acid are also suitable.
  • Detergents for automatic dishwashing can contain corrosion inhibitors to protect the items to be washed or the machine, silver protection agents and glass corrosion inhibitors in particular being particularly important in the field of automatic dishwashing.
  • the known substances of the prior art can be used.
  • silver protection agents selected from the group of the triazoles, the benzotriazoles, the bisbenzotriazoles, the aminotriazoles, the alkylaminotriazoles and the transition metal salts or complexes can be used in particular.
  • Benzotriazole and / or alkylaminotriazole are particularly preferably to be used.
  • detergent formulations often contain agents containing active chlorine, which can significantly reduce the corroding of the silver surface.
  • oxygen- and nitrogen-containing organic redox-active compounds such as di- and trihydric phenols, e.g. B. hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglucinol, pyrogallol or derivatives of these classes of compounds.
  • Salt-like and complex-like inorganic compounds such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce, are also frequently used. Preferred are the - 326 -
  • Transition metal salts which are selected from the group of manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (ammine) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes, the chlorides of the Cobalt or manganese and the manganese sulfate and the manganese complexes
  • At least one silver protective agent from the group of the triazoles, the benzotriazoles, the bisbenzotriazoles, the aminotriazoles, the alkylaminotriazoles, preferably benzotriazole and / or alkylaminotriazole, in amounts of 0.001 to 1% by weight, preferably from 0.01 to 0.5% by weight and in particular from 0.05 to 0.25% by weight, in each case based on the total weight of the solids enclosed in the water-soluble containers according to the invention.
  • agents according to the invention can also contain one or more substances for reducing glass corrosion.
  • additives of zinc and / or inorganic and / or organic zinc salts and / or silicates for example the layered crystalline sodium disilicate SKS 6 from Clariant GmbH, and / or water-soluble glasses, for example glasses, which have a loss in mass of at least 0 , 5 mg under the conditions specified in DIN ISO 719, preferred to reduce glass corrosion.
  • Particularly preferred agents contain at least one zinc salt of an organic acid, preferably selected from the group zinc oleate, zinc stearate, zinc gluconate, zinc acetate, zinc lactate and zinc citrate. - 327 -
  • Table 1 shows that, according to the invention, the volume can be increased significantly without sacrificing accuracy of fit.
  • the table shows that the shaped bodies according to the invention either fit in significantly more metering chambers with the same volume (E4) or fit in the same number of metering chambers with significantly higher volumes (E6) as the comparative example. With a slightly increased volume, a higher fit can also be achieved ( E5).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Washing And Drying Of Tableware (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

„Großvolumige Wasch- oder Reinigungsmittelformkörper"
Die vorliegende Erfindung betrifft Wasch- oder Reinigungsmittelformkörper, welche eine optimierte Gestalt aufweisen. Insbesondere betrifft die vorliegende Erfindung Reinigungsmittelformkörper für das maschinelle Geschirrspülen, welche in Haushaltsgeschirrspülmaschinen eingesetzt werden.
Das maschinelle Reinigen von Geschirr in Haushaltsgeschirrspülmaschinen umfaßt üblicherweise einen Vorspüigang, einen Hauptspülgang und einen Klarspülgang, wobei die letzteren von Zwischenspülgängen unterbrochen werden. Bei einigen Programmen in den meistens höherpreisigen Maschinen ist der Vorspüigang für stark verschmutztes Geschirr zuschaltbar oder wird mittels bestimmter Trübungssensoren automatisch zugeschaltet. In der Regel werden, vom Verbraucher jedoch Normalprogramme ohne Vorspüigang gewählt, so daß in den meisten Fällen ein Hauptspülgang, ein Zwischenspülgang mit reinem Wasser und ein Klarspülgang durchgeführt werden.
Üblicherweise wird im Hauptspülgang zunächst Wasser in den Innenraum der Maschine eingelassen und umgewälzt, wobei das Wasser aufgeheizt wird. Nach einigen Minuten wird das Dosierkästchen der Maschine geöffnet und setzt den Inhalt frei, der sich im angewärmten Wasser auflöst. Es sind Mittel im Markt befindlich, die nicht über das Dosierkästchen dosiert werden sollen oder können. Diese Mittel sind nicht zusammen mit einem Vorspüigang einsetzbar, da im Vorspüigang zuviel des Mittels gelöst und aus der Maschine abgepumpt wird - konfektioniert man das Mitte! entsprechend schlechter löslich, kann es zu Löslichkeitsproblemen im Hauptspülgang und damit zu verschlechterten Reinigungsergebnissen kommen. Moderne Mittel, die auch in Verbindung mit einem Vorspülprogramm einsetzbar sind, müssen daher nach wie vor über das Dosierkästchen dosierbar sein.
Auf der anderen Seite ist der Raum innerhalb des Dosierkästchens aufgrund von ökologischen Überlegungen der Gerätehersteller bzw. einfach aus Platzgründen begrenzt. Der Trend in den letzten Jahren ging daher zu einer zunehmenden Komprimierung der Inhaltsstoffe, um möglichst viel Reinigungsmittel in den Hauptspülgang bringen zu können. Hochverdichtete Reinigungsmitteltabletten haben daher im Bereich des maschinellen Geschirrspülens in einigen Ländern bereits Marktanteile weit oberhalb von 80 % des gesamten Reinigermarktes.
Aus ästhetischen Gründen und zur Visualisierung von Produktvorteilen werden neuerdings neben der Tablette andere Formkörper angeboten, welche zum Teil mehrere Phasen aufweisen. Hier sind beispielsweise Beutel aus wasserlöslichen Materialien zu nennen, welche verdickte flüssige Reinigungsmittelzusammensetzungen in Verbindung mit groben partikulären Anteilen enthalten. In der Patentliteratur werden mit noch mehr Aufwand hergestellte Formkörper aus wasserlöslichen Polymeren beschrieben, welche durch Spritzguß, Blasformen, Tiefziehen usw. hergestellt und anschließend mit flüssigen, pulverförmigen, granulären oder tablettierten Reinigungsmitteln befüllt werden.
Der Nachteil dieser Angebotsformen liegt darin, daß ihre Dichte deutlich geringer ist als die von Reinigungsmitteltabletten. Während übliche Reinigungsmitteltabletten für das maschinelle Geschirrspülen Dichten deutlich oberhalb von 1 gern"3 aufweisen (beispielsweise ca. 1 ,25 gern"3), liegt die Dichte der genannten Zusammensetzungen in wasserlöslichen Behältnissen deutlich unterhalb von 1 gern"3. Dies führt dazu, daß die entsprechenden Formkörper bei gleichem Volumen weniger Reinigungsmittel beinhalten, welches für die Reinigungsleistung zur Verfügung steht. Bei gegebenem Volumen des Dosierkästchens weisen solche Produkte gegenüber Tabletten daher meist ein deutliches Leistungsdefizit auf.
Verschärft wird diese Problematik noch dadurch, daß ein Produkt in den unterschiedlichsten Geschirrspülmaschinen einsetzbar sein muß. Da die Form der Dosierkästchen nicht normiert ist, hat jeder Hersteller von Geschirrspülmaschinen ein eigenes Konzept, welches sich hinsichtlich Form und Inhalt von dem anderer Herstteller unterscheidet. Da die Lebensdauer von Geschirrspülmaschinen zudem je nach Auslastung durchaus mehrere Jahrzehnte betragen kann und sich auch die Dosierkammern eines Herstellers von Modell zu Modell bzw. von Modelljahr zu Modelljahr unterscheiden können, muß oft der „kleinste gemeinsame Nenner" gesucht werden, um sicher zu stellen, daß ein Reinigungsmittel in die Dosierkammern der wichtigsten Geräte des jeweiligen Marktes paßt.
Insbesondere im Hinblick auf die Verringerung der Dichte bei optisch reizvollen neuartigen Angebotsformen ist daher eine möglichst hohe Raumausnutzung erwünscht, ohne daß dabei die vorstehend genannten Probleme der mangelnden Einsetzbarkeit in die Dosierkammern generiert werden.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, eine raumoptimierte Angebotsform für Wasch- oder Reinigungsmittel bereitzustellen, welche ein möglichst großes Volumen besitzt und gleichzeitig in möglichst viele Dosierkammern der auf dem europäischen Markt befindlichen Geschirrspülmaschinen einsetzbar ist.
Es wurde nun gefunden, daß Formkörper, welche ein möglichst hohes Volumen und eine Paßgenauigkeit in möglichst viele Dosierkammern vereinen, mindestens eine über mindestens die Hälfte ihrer Höhe nicht vertikale Begrenzungsfläche aufweisen . Gegenstand der vorliegenden Anmeldung sind in einer ersten Ausführungsform Wasch- oder Reinigungsmittelformkörper, dadurch gekennzeichnet, daß er mindestens zwei seitliche Begrenzungsflächen aufweist, von denen mindestens eine über mindestens die Hälfte ihrer Höhe nicht vertikal ist.
Der Begriff „Wasch- oder Reinigungsmittelformkörper" kennzeichnet im Rahmen der vorliegenden Erfindung einen Festkörper, der wasch- oder reinigungsaktive Substanzen enthält. Dieser Festkörper kann beispielsweise eine Tablette sein, was den Vorteil einer hohen Dichte mit sich bringt. Formkörper im Sinne der vorliegenden Erfindung sind aber auch Körper, welche eine Umhüllung aufweisen, die beispielsweise pulverförmige oder flüssige Aktivsubstanzen beinhaltet. Diese Umhüllung muß dabei - gegebenenfalls erst in Verbindung mit den von ihr umschlossenen Aktivsubstanzen - so formstabil sein, daß sich die erfindungsgemäße Form verwirklichen läßt. Schlauchbeutel, welche sich unter ihrem Eigengewicht verformen, sind daher erfindungsgemäß nicht geeignet. Der Begriff „Formkörper" schließt daher im Rahmen der vorliegenden Erfindung eine Eigen-Formstabilität des Körpers ein, so daß der Körper nur durch äußere Einflüsse, die über die normale Handhabung bei der Herstellung, Verpackung und Handhabung hinausgehen, verformt wird.
Die Gestalt der erfindungsgemäßen Formkörper ist so gewählt, daß sie mindestens zwei seitliche Begrenzungsflächen aufweisen. Der Begriff „seitliche Begrenzungsfläche" kennzeichnet dabei die Fläche, welche die horizontalen Begrenzungsflächen des Formkörpers (kurz: Ober- und Unterseite) miteinander verbindet. Eine herkömmliche zylinderförmige Tablette weist demnach zwei horizontale Begrenzungsflächen (die kreisförmige Ober- und Unterseite) sowie eine seitliche Begrenzungsfläche (den Zylindermantel) auf. Mindestens zwei seitliche Begrenzungsflächen lassen sich beispielsweise dadurch erreichen, daß eine zylinderförmige Tablette senkrecht in zwei Hälften geteilt wird. Die resultierenden Körper haben wiederum zwei horizontale Begrenzungsflächen (die halbkreisförmige Ober- und Unterseite) sowie zwei seitliche Begrenzungsflächen (einen halbkreisförmigen Zylindermantel sowie eine senkrechte, in der Aufsicht rechteckige Seitenfläche). Um in diesem Beispiel zu einem erfindungsgemäßen Formkörper zu gelangen, müßte die zylinderförmige Tablette schräg durchteilt werden, d.h. die Schnittebene wäre von der Vertikalen abweichend. Hierdurch wird die in der Aufsicht rechteckige Seitenfläche gegenüber dem Lot auf die Horizontale verkippt und ist demnach nicht mehr vertikal.
Es ist erfindungsgemäß nicht vonnöten, daß die gesamte Begrenzungsfläche nicht vertikal ist. Vielmehr führen bestimmte vertikale Anteile nicht aus den erfindungsgemäßen Vorteilen hinaus. Im oben genannten Beispiel könnte daher eine „Halbscheibe" aus dem vertikal durchteilten Zylinder auf den erfindungsgemäß schräg durchteilten Zylinder gesetzt werden. Wenn beide Zylinder vorher die gleiche Höhe aufweisen, ist exakt die Hälfte der seitlichen Begrenzungsfläche vertikal, während die andere Hälfte nicht vertikal ist. Die Höhe der seitlichen Begrenzungsfläche ist folglich der Abstand zwischen Ober- und Unterseite und damit gleich der Höhe des Formkörpers. Diese Höhe ist unabhängig von der Neigung der seitlichen Begrenzungsfläche gegenüber der Vertikalen: Während die Länge der Strecke, die man von der Unter- zur Oberseite auf der seitlichen Begrenzungsfläche zurücklegen muß, mit kleiner werdendem Winkel zwischen Horizontaler und der Seitenfläche steigt, bleibt die Höhe gleich. Die vertikalen bzw. nicht-vertikalen Anteile der Höhe lassen sich durch Lotbildung auf die Vertikale (Höhe) und Bestimmen des jeweiligen Anteils an der Gesamt-Hohe ermitteln. Selbstverständlich ist es erfindungsgemäß möglich, eine Seitenfläche so auszugestalten, daß sie zunächst einen vertikalen Anteil aufweist, dann einen nicht-vertikalen Anteil, der wiederum in einen vertikalen Anteil mündet. Dies kann bei Tabletten herstellungs- und stabilitätsbedingt sogar deutlich bevorzugt sein.
Erfindungsgemäß bevorzugte Wasch- oder Reinigungsmittelformkörper sind dadurch gekennzeichnet, daß mindestens eine seitliche Begrenzungsfläche über mindestens 60%, vorzugsweise über mindestens 70%, besonders bevorzugt über mindestens 75% und insbesondere über mindestens 80% ihrer Höhe nicht vertikal ist.
Die mindestens eine nicht-vertikale seitliche Begrenzungsfläche schließt mit der Horizontalen einen Winkel α ein. Je nachdem, ob die nicht-vertikale seitliche Begrenzungsfläche nach „innen" (d.h. der Formkörper verjüngt sich nach oben) oder nach „außen" (d.h. der Formkörper wird nach oben hin breiter) kippt, liegt dieser Winkel oberhalb bzw. unterhalb von 90°. Da der Formkörper durch einfaches Umdrehen, d.h. Vertauschen von Ober- und Unterseite, den jeweilig anderen Winkel bilden kann, werden im Rahmen der vorliegenden Anmeldung die Winkel angegeben, welche unter 90° liegen. Erfindungsgemäß bevorzugt ist eine nicht-vertikale Begrenzungsfläche, welche mit der Horizontalen einen Winkel einschließt, der um mindestens ca. 5 - 10° vom rechten Winkel abweicht. Besonders bevorzugte erfindungsgemäße Wasch- oder Reinigungsmittelformkörper sind dadurch gekennzeichnet, daß eine seitliche Begrenzungsfläche über mindestens die Hälfte ihrer Höhe nicht vertikal ist und mit der Horizontalen einen Winkel von 30° bis 80°, vorzugsweise von 35° bis 75°, besonders bevorzugt von 40° bis 70° und insbesondere von 50° bis 60° einschließt.
Bevorzugte Werte für den Winkel α sind beispielsweise 40°, 41°, 42°, 43°, 44°, 45°, 46°, 47°, 48°, 49°, 50°, 51°, 52°, 53°, 54°, 55°, 56°, 57°, 58°, 59°, 60°, 61°, 62°, 63°, 64° oder 65°. Besonders bevorzugt sind dabei Werte von 48°, 49°, 50°, 51°, 52°, 53°, 54°, 55°, 56°, 57°, 58°, 59°, 60°, 61°, 62° bzw. nicht-ganzzahligen Werten zwischen diesen ganzzahligen Werten.
Je nach der Form der horizontalen Begrenzungsflächen kann die Form und Anzahl der Seitenflächen der erfindungsgemäßen Formkörper variieren. Es ist selbstverständlich auch möglich, daß die obere und untere horizontale Begrenzungsfläche unterschiedliche Grundformen aufweisen. Im Hinblick auf die Zielsetzung der vorliegenden Erfindung, eine möglichst hohe Raumausnutzung zu realisieren, sind allerdings rechteckige horizontale Begrenzungsflächen bevorzugt. Diese können aus ästhetischen und/oder mechanischen Gründen durchaus abgerundete Ecken aufweisen. Die Rundungen können wiederum von Kreisabschnitten abgeleitet werden, deren Radien vorzugsweise zwischen 5 und 15 % der Höhe des Formkörpers liegen können. Bei zwei rechteckigen horizontalen Begrenzungsflächen ergeben sich vier seitliche Begrenzungsflächen. Ist mindestens eine davon erfindungsgemäß über mindestens die Hälfte ihrer Höhe nicht vertikal, so ergibt sich zwingend, daß die Unterseite der erfindungsgemäßen Formkörper kleiner ist als die Oberseite.
Bei den bevorzugten erfindungsgemäßen Formkörpern mit rechteckigen horizontalen Begrenzungs-flächen kann nur eine seitliche Begrenzungsfläche über mindestens die Hälfte ihrer Höhe nicht vertikal sein. In diesem Fall haben die beiden horizontalen Begrenzungsflächen beispielsweise die gleiche Länge £, aber unterschiedliche Breiten b. Sind zwei seitliche Begrenzungsflächen über mindestens die Hälfte ihrer Höhe nicht vertikal, so können diese nichtvertikalen Seitenflächen gegenüberliegen, so daß wiederum die beiden horizontalen Begrenzungsflächen beispielsweise die gleiche Länge £, aber unterschiedliche Breiten b aufweisen. Berühren sich die beiden nicht-vertikalen Seitenflächen, d.h. stehen sie „über Eck", so haben die beiden horizontalen Begrenzungsfiächen sowohl unterschiedliche Längen i, als auch unterschiedliche Breiten b.
Zusammenfassend sind bevorzugte erfindungsgemäße Wasch- oder Reinigungsmittelformkörper dadurch gekennzeichnet, daß sie vier seitliche Begrenzungsflächen aufweisen, von denen eine über mindestens die Hälfte ihrer Höhe nicht vertikal ist, wobei erfindungsgemäße Wasch- oder Reinigungsmittelformkörper besonders bevorzugt sind, die von zwei horizontalen Flächen mit rechteckigem Querschnitt begrenzt werden, die die gleiche Länge £ und eine unterschiedliche Breite b aufweisen.
Wie bereits vorstehend erwähnt, können aus Gründen der mechanischen Stabilität bzw. der Ästhetik die Ecken der erfindungsgemäßen Wasch- oder Reinigungsmittelformkörper abgerundet sein. Auch können Kanten eine Fase aufweisen, d.h. abgeschrägt sein. Vorzugsweise beträgt der Radius einer Eckenabschrägung maximal 1/10 der Länge der kürzesten Seite, die an die Ecke grenzt. Bei Kanten mit Fase beträgt die Breite der Fase vorzugsweise maximal 1/10 der Breite der schmaleren an diese Kante stoßenden Seite. Zusammenfassend sind erfindungsgemäße Waschoder Reinigungsmittelformkörper bevorzugt, bei denen die Ecken des Formkörpers abgerundet sind. Besonders bevorzugt sind weiterhin Wasch- oder Reinigungsmittelformkörper, die dadurch gekennzeichnet sind, daß die Kanten des Formkörpers eine Fase aufweisen.
Die erfindungsgemäßen Wasch- oder Reinigungsmittelformkörper weisen vorzugsweise eine Höhe von 10 bis 30 mm auf. Besonders bevorzugte erfindungsgemäße Wasch- oder Reinigungsmittelformkörper besitzen beispielsweise Höhen von 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 oder 24 mm bzw. Werte zwischen diesen ganzzahligen Werten. Die Länge der erfindungsgemäßen Formkörper liegt vorzugsweise zwischen 25 und 60 mm, besonders bevorzugt zwischen 30 und 55 mm, insbesondere zwischen 30 und 55 mm. Beispielhaft seien hier besonders bevorzugte Längen von 32 mm, 33 mm, 34 mm, 35 mm, 36 mm, 37 mm, 38 mm, 39 mm, 40 mm, 41 mm oder 42 mm genannt, wobei die Werte auch zwischen diesen ganzzahligen Werten liegen können.
Die maximale Breite der erfindungsgemäßen Wasch- oder Reinigungsmittelformkörper, d.h. die Breite der größeren horizontalen Begrenzungsfläche beträgt vorzugsweise 20 bis 60 mm, besonders bevorzugt 25 bis 50 mm. Beispielhaft seien hier besonders bevorzugte Breiten von 30mm, 31 mm, 32 mm, 33 mm, 34 mm, 35 mm, 36 mm, 37 mm, 38 mm, 39 mm, 40 mm, 41 mm oder 42 mm genannt, wobei die Werte auch zwischen diesen ganzzahligen Werten liegen können.
Die Zeichnungen zeigen beispielhaft Ausgestaltungen der erfindungsgemäßen Formkörper . Dabei zeigt Figur 1 einen erfindungsgemäßen Wasch- oder Reinigungsmittelformkörper, der zwei rechteckige horizontale Begrenzungsflächen aufweist, die die Länge £ und die Breite b0ben bzw. bunten aufweisen. Die beiden Flächen befinden sich im Abstand h, entsprechend der Höhe des Formkörpers voneinander. Erfindungsgemäß ist eine seitliche Begrenzungsfläche so ausgebildet, daß sie über mindestens die Hälfte ihrer Höhe (hier: über die gesamte Höhe) nicht vertikal ist. Diese seitliche Begrenzungsfläche schließt mit der Horizontalen einen Winkel ein.
In der nachstehenden Tabelle sind besonders bevorzugte erfindungsgemäße Formkörper, die sich durch Figur 1 darstellen lassen, mit ihren Werten Länge £, Breite boben bzw. bunten sowie Höhe h und Winkel aufgeführt:
o
90 C5
C5
O o α. ω
H U α.
O o o o
Figur 2 zeigt einen erfindungsgemäßen Wasch- oder Reinigungsmittelformkörper, der zwei rechteckige horizontale Begrenzungsflächen aufweist, die die Länge £ und die Breite bo en bzw. unten aufweisen. Die beiden Flächen befinden sich im Abstand h, entsprechend der Höhe des Formkörpers voneinander. Erfindungsgemäß ist eine seitliche Begrenzungsfläche so ausgebildet, daß sie über mindestens die Hälfte ihrer Höhe nicht vertikal ist. Im Gegensatz zu dem in Figur 1 dargestellten Formkörper ist die seitlich Begrenzungsfläche, die über mindestens die Hälfte ihrer Höhe nicht vertikal ist, nicht über die gesamte Höhe nicht-vertikal. Vielmehr existiert ein vertikaler Bereich der Teilhöhe x, welcher ein Viertel der gesamten Höhe ausmacht, wodurch die seitliche Begrenzungsfläche über 75 % ihrer Höhe nicht vertikal ist. Diese seitliche Begrenzungsfläche schließt mit der Horizontalen einen Winkel α ein.
In der nachstehenden Tabelle sind besonders bevorzugte erfindungsgemäße Formkörper, die sich durch Figur 2 bzw. Figur 3 darstellen lassen, mit ihren Werten Länge £, Breite b0beπ bzw. bunten sowie Höhe h, Teilhöhe x und Winkel α aufgeführt:
©
05 C5
© © α. ω
H U α.
©
O
©
05 C5
P.
© © α. ω
H U α.
co
CD
©
© ©
O
In Figur 2 ist die Teilhöhe x vertikal dargestellt, In bevorzugten Formkörpern ist dieser Teilhöhenabschnitt allerdings abgerundet, besonders bevorzugt ein Teilkreis, dessen Radius 2,5 bis 15 %, vorzugsweise 5 bis 12,5 % und insbesondere 6 bis 10 % der Höhe h des Formkörpers beträgt. Ein solcher bevorzugter Formkörperr ist in Figur 3 dargestellt. Die Herstellung des erfindungsgemäßen Formkörpers kann vorzugsweise aus Materialien erfolgen, welche im Wasch- bzw. Reinigungsprozeß eine Funktion erfüllen, wobei die Tablettierung von Aktivsubstanzgemischen eine herausragende Rolle einnimmt. Eine größere Formvariabilität kann allerdings daraus resultieren, Materialien einzusetzen, welche im Wasch- oder Reinigungsprozeß keine spezifische Funktion erfüllen. Hierbei haben wasserlösliche oder -dispergierbare Polymere eine herausragende Bedeutung. Der Nachteil, daß zusätzlicher „Ballast" eingesetzt wird, wird durch den Vorteil der größeren Variabilität in Form und möglichen Inhaltsstoffen sowie durch einen hohen ästhetischen Anspruch kompensiert.
Bevorzugte Varianten zur Herstellung der erfindungsgemäßen Wasch- oder Reinigungsmittelformkörper sind daher dadurch gekennzeichnet, daß die Herstellung das Verpressen eines teilchenförmigen Vorgemischs zu einem verpreßten Teil umfaßt.
Eine weitere bevorzugte Ausführungsform sind Verfahren zur Herstellung erfindungsgemäßer Wasch- oder Reinigungsmittelformkörper, die dadurch gekennzeichnet sind, daß der Formkörper durch Tiefziehen und/oder Gießen und/oder Spritzgießen und/oder Blasformen eines wasserlöslichen oder -dispergierbaren Polymers oder Polymergemisches erfolgt.
Die erfindungsgemäßen Wasch- oder Reinigungsmittelformkörper entsprechen insbesondere dann der in Figur 2 dargestellten Form, wenn sie durch Tablettierung erhalten wurden. Es ist verfahrenstechnisch schwierig, Formkörper der in Figur 1 gezeigten Art durch Tablettierung herzustellen, da der Preßstempel Gefahr liefe, an der Kante, an der die seitliche nicht-vertikale Begrenzungsfläche und die Oberseite aneinanderstoßen, die Matrize der Tablettenpress zu berühren und dabei die Presse zu beschädigen.
Ein besonders bevorzugter erfindungsgemäßer Formkörper ist daher dadurch gekennzeichnet, daß er eine Tablette ist.
Der Formkörper besitzt in bevorzugten Ausführungsformen der vorliegenden Erfindung ein hohes spezifisches Gewicht. Wasch- und Reinigungsmittelformkörper, die dadurch gekennzeichnet sind, daß sie eine Dichte oberhalb von 1000 kgm"3, vorzugsweise oberhalb von 1025 kgm"3, besonders bevorzugt oberhalb von 1050 kgm"3 und insbesondere oberhalb von 1100 kgm"3 aufweisen, sind erfindungsgemäß bevorzugt. Nachstehend wird das Verfahren der Tablettierung erläutert:
Es hat sich als vorteilhaft erwiesen, wenn das zu Tabletten zu verpressende Vorgemisch bestimmten physikalischen Kriterien genügt. Bevorzugte Verfahren sind beispielsweise dadurch gekennzeichnet, daß das teilchenförmige Vorgemisch ein Schüttgewicht von mindestens 500 g/l, vorzugsweise mindestens 600 g/l und insbesondere mindestens 700 g/l aufweist.
Auch die Partikelgröße des verpreßten Vorgemischs genügt vorzugsweise bestimmten Kriterien: Verfahren, bei denen das teilchenförmige Vorgemisch Teilchengrößen zwischen 100 und 2000 μm, vorzugsweise zwischen 200 und 1800 μm, besonders bevorzugt zwischen 400 und 1600 μm und insbesondere zwischen 600 und 1400μm, aufweist, sind erfindungsgemäß bevorzugt. Eine weiter eingeengte Partikelgröße in den zu verpressenden Vorgemischen kann zur Erlangung vorteilhafter Formkörpereigenschaften eingestellt werden. In bevorzugten Tablettierverfahren weist das verpreßte teilchenförmige Vorgemisch eine Teilchengrößenverteilung auf, bei der weniger als 10 Gew.-%, vorzugsweise weniger als 7,5 Gew.-% und insbesondere weniger als 5 Gew.-% der Teilchen größer als 1600 μm oder kleiner als 200 μm sind. Hierbei sind engere Teilchengrößenverteilungen weiter bevorzugt. Besonders vorteilhafte Verfahrensvarianten sind dabei dadurch gekennzeichnet, daß das verpreßte teilchenförmige Vorgemisch eine Teilchengrößenverteilung aufweist, bei der mehr als 30 Gew.-%, vorzugsweise mehr als 40 Gew.- % und insbesondere mehr als 50 Gew.-% der Teilchen eine Teilchengröße zwischen 600 und 1000 μm aufweisen.
Bei der Durchführung der Tablettierung ist man nicht darauf beschränkt, daß lediglich ein teilchenförmiges Vorgemisch zu einem Formkörper verpreßt wird. Vielmehr läßt sich das Verfahren auch dahingehend erweitern, daß man in an sich bekannter Weise mehrschichtige Formkörper herstellt, indem man zwei oder mehrere Vorgemische bereitet, die aufeinander verpreßt werden. Hierbei wird das zuerst eingefüllte Vorgemisch leicht von/erpreßt, um eine glatte und parallel zum Formkörperboden verlaufende Oberseite zu bekommen, und nach Einfüllen des zweiten Vorgemischs zum fertigen Formkörper endverpreßt. Bei drei- oder mehrschichtigen Formkörpern erfolgt nach jeder Vorgemisch-Zugabe eine weitere Vorverpressung, bevor nach Zugabe des letzten Vorgemischs der Formkörper endverpreßt wird.
Die Herstellung der erfindungsgemäßen Formkörper erfolgt zunächst durch das trockene Vermischen der Bestandteile, die ganz oder teilweise vorgranuliert sein können, und anschließendes Informbringen, insbesondere Verpressen zu Tabletten, wobei auf herkömmliche Verfahren zurückgegriffen werden kann. Zur Herstellung der erfindungsgemäßen Formkörper wird das Vorgemisch in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung (elastische Verformung), plastische Verformung und Ausstoßen. Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formkörpers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formkörperdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempels ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formkörpers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zerdrückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formkörper mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formkörper durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formkörpers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können.
Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfach- oder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Verpressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde.
Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an denen eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Niederzugschienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.
Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Formkörper werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formkörper pro Stunde.
Bei der Tablettierung mit Rundläuferpressen hat es sich als vorteilhaft erwiesen, die Tablettierung mit möglichst geringen Gewichtschwankungen der Tablette durchzuführen. Auf diese Weise lassen sich auch die Härteschwankungen der Tablette reduzieren. Geringe Gewichtschwankungen können auf folgende Weise erzielt werden:
- Verwendung von Kunststoffeinlagen mit geringen Dickentoleranzen
- Geringe Umdrehungszahl des Rotors
- Große Füllschuhe
- Abstimmung des Füllschuhflügeldrehzahl auf die Drehzahl des Rotors
- Füllschuh mit konstanter Pulverhöhe
- Entkopplung von Füllschuh und Pulvervorlage Zur Verminderung von Stempelanbackungen bieten sich sämtliche aus der Technik bekannte Antihaftbeschichtungen an. Besonders vorteilhaft sind Kunststoffbeschichtungen, Kunststoffeinlagen oder Kunststoffstempel. Auch drehende Stempel haben sich als vorteilhaft erwiesen, wobei nach Möglichkeit Ober- und Unterstempel drehbar ausgeführt sein sollten. Bei drehenden Stempeln kann auf eine Kunststoffeinlage in der Regel verzichtet werden. Hier sollten die Stempeloberflächen elektropoliert sein.
Es zeigte sich weiterhin, daß lange Preßzeiten vorteilhaft sind. Diese können mit Druckschienen, mehreren Druckrollen oder geringen Rotordrehzahlen eingestellt werden. Da die Härteschwankungen der Tablette durch die Schwankungen der Preßkräfte verursacht werden, sollten Systeme angewendet werden, die die Preßkraft begrenzen. Hier können elastische Stempel, pneumatische Kompensatoren oder federnde Elemente im Kraftweg eingesetzt werden. Auch kann die Druckrolle federnd ausgeführt werden.
Im Rahmen der vorliegenden Erfindung bevorzugte Tablettierverfahren sind dadurch gekennzeichnet, daß die Verpressung bei Preßdrücken von 0,01 bis 50 kNcm"2, vorzugsweise von 0,1 bis 40 kNcm"2 und insbesondere von 1 bis 25 kNcm"2 erfolgt.
Im Rahmen der vorliegenden Erfindung geeignete Tablettiermaschinen sind beispielsweise erhältlich bei den Firmen Apparatebau Holzwarth GbR, Asperg, Wilhelm Fette GmbH, Schwarzenbek, Hofer GmbH, Weil, Hörn & Noack Pharmatechnik GmbH, Worms, IMA Verpackungssysteme GmbH Viersen, KILIAN, Köln, KOMAGE, Kell am See, KORSCH Pressen AG, Berlin, sowie Romaco GmbH, Worms. Weitere Anbieter sind beispielsweise Dr. Herbert Pete, Wien (AU), Mapag Maschinenbau AG, Bern (CH), BWI Manesty, Liverpool (GB), I. Holand Ltd., Nottingham (GB), Courtoy N.V., Halle (BE/LU) sowie Mediopharm Kamnik (Sl). Besonders geeignet ist beispielsweise die Hydraulische Doppeldruckpresse HPF 630 der Firma LAEIS, D. Tablettierwerkzeuge sind beispielsweise von den Firmen Adams Tablettierwerkzeuge, Dresden, Wilhelm Fett GmbH, Schwarzenbek, Klaus Hammer, Solingen, Herber % Söhne GmbH, Hamburg, Hofer GmbH, Weil, Hörn & Noack, Pharmatechnik GmbH, Worms, Ritter Pharamatechnik GmbH, Hamburg, Romaco, GmbH, Worms und Notter Werkzeugbau, Tamm erhältlich. Weitere Anbieter sind z.B. die Senss AG, Reinach (CH) und die Medicopharm, Kamnik (Sl).
Alternativ dazu kann der erfindungsgemäße Wasch- oder Reinigungsmittelformkörper auch auf andere Weise hergestellt werden, wobei die Herstellung eine entsprechend geformten Umhüllung, die befüllt werden kann, eine herausragende Bedeutung hat. Demnach sind Wasch- oder Reinigungsmittelformkörper, die ein befülltes und verschlossenes Tiefziehteil und/oder Spritzgußteil und/oder Blasformteil sind, eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung. Nachstehend wird die Herstellung erfindungsgemäßer Wasch- oder Reinigungsmittelformkörper durch Tiefziehen und/oder Gießen und/oder Spritzgießen und/oder Blasformen eines wasserlöslichen oder -dispergierbaren Polymers oder Polymergemisches erläutert:
Die Herstellung von befüllten oder unbefüllten Hohlkörpern durch formgebende Verarbeitung erfolgt nach den in der kunststoffverarbeitenden Industrie üblichen Verfahren, wobei insbesondere die Folienherstellung und -Weiterverarbeitung, das Blasformen und das Spritzgießen bevorzugt sind. Allen Verfahren ist gemeinsam, daß ein Kunststoffgranulat mit Hilfe eines Extruders aufgeschmolzen und formgebenden Werkzeugen zugeführt wird.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird die den Extruder verlassende Schmelze blasgeformt. Erfindungsgemäß geeignete Blasformverfahren umfassen Extrusionsblasen, Coextrusionsblasen, Spritz-Streckblasen und Tauchblasen. Die Wandstärken der Formkörper lassen sich mittels Blasformen bereichsweise unterschiedlich herstellen, indem man die Wandstärken des Vorformlings, vorzugsweise entlang seiner vertikalen Achse, entsprechend unterschiedlich dick, vorzugsweise durch Regulierung der Menge an thermoplastischen Material, vorzugsweise mittels einer Stellspindel beim Ausbringen des Vorformlings aus der Extruderdüse, ausbildet.
Den pulver- oder flüssigkeitsgefüllten Festkörper kann man mit Bereichen unterschiedlichen äußeren Umfangs und gleichbleibender Wandstärke blasformen, indem man die Wandstärken des Vorformlings, vorzugsweise entlang seiner vertikalen Achse, entsprechend unterschiedlich dick, vorzugsweise durch Regulierung der Menge an thermoplastischen Material mittels einer Stellspindel beim Ausbringen des Vorformlings aus der Extruderdüse, ausbildet.
Auf diese Weise lassen sich unterschiedliche geometrische Ausgestaltungen des Formkörpers mit und ohne Kompartimente blasformen. In einem einzigen Arbeitszyklus lassen sich so Flaschen, Kugeln, Weihnachtsmänner, Osterhasen oder andere Figuren blasformen, die mit Mittel gefüllt werden können.
Besonders vorteilhaft ist, daß sich der Formkörper beim Blasformen in der Blasform prägen und/oder dekorieren lässt. Durch entsprechende Ausgestaltung der Blasform, lässt sich ein Motiv spiegelbildlich auf den Formkörper übertragen. Auf diese Weise lässt sich die Oberfläche des Formkörpers praktisch beliebig gestalten. Beispielsweise lassen sich so auf dem Formkörper Informationen, wie Eichstriche, Anwendungshinweise, Gefahrensymbole, Marken, Gewicht, Füllmenge, Verfallsdatum, Bilder usw. aufbringen. Die Wandungen der mittels Blasformung hergestellten Hohlkörper weisen eine Wandstärke von zwischen 0,05 - 5 mm, vorzugsweise von zwischen 0,06 - 2 mm, bevorzugt von zwischen 0,07 - 1,5 mm, weiter bevorzugt von zwischen 0,08 - 1,2 mm, noch bevorzugter von zwischen 0,09 - 1 mm und am meisten bevorzugt, von zwischen 0,1 - 0,6 mm, auf.
Die Befüll-Öffnung des Hohlkörpers nach dem Befüllen lässt sich flüssigkeitsdicht verschließen, wobei es bevorzugt ist, bei der Blasformung entsprechende Ränder um die Befüllöffnung vorzusehen..
In einer anderen bevorzugten Ausführungsform der vorliegenden Erfindung wird die den Extruder verlassende Schmelze aus wasserlöslichem Polymerblend mittels eines Spritzgußverfahrens formgebend verarbeitet. Das Spritzgießen erfolgt nach an sich bekannten Verfahrensweisen bei hohen Drücken und Temperaturen mit den Schritten des Schließens der an den Extruder zum Spritzgießen angeschlossenen Form, Einspritzen des Polymers bei hoher Temperatur und hohem Druck, Erkalten des spritzgegossenen Formlings, Öffnen der Form und Entnehmen des geformten Rohlings. Weitere optionale Schritte wie das Aufbringen von Trennmitteln, das Entformen usw. sind dem Fachmann bekannt und können nach an sich bekannter Technologie durchgeführt werden.
Die Vorteile der Verfahrensweise der Herstellung durch Spritzgießen liegen in der ausgereiften Technologie dieser Verfahrensweise, der hohen Flexibilität in Bezug auf die verwendbaren Materialien, der Möglichkeit, exakt gewünschte Wandstärken s des Formlings bzw. formstabilen Hohlkörpers zu erhalten und der Möglichkeit, in einem Schritt mit hoher Reproduzierbarkeit einen formstabilen Hohlkörper mit einer oder mehreren integralen Kompartimentierungs-Einrichtung(en) herzustellen
In bevorzugten Verfahren wird bei einem bis zu 5000 bar, vorzugsweise zwischen 2 und 2500 bar, besonders bevorzugt zwischen 5 und 2000 bar, noch bevorzugter zwischen 10 und 1500 und insbesondere zwischen 100 und 1250 bar spritzgegossen.
Die Temperatur des Materials, das spritzgegossen werden soll, liegt vorzugsweise oberhalb des Schmelz- bzw. Erweichungspunktes des Materials und hängt damit auch von der Art und Zusammensetzung des Polymerblends ab. In bevorzugten erfindungsgemäßen Verfahren wird bei Temperaturen zwischen 100 und 250°C, vorzugsweise zwischen 120 und 200 °C und insbesondere zwischen 140 und 180 °C, spritzgegossen.
Die Werkzeuge, die die Materialien aufnehmen, sind vorzugsweise vortemperiert und weisen Temperaturen oberhalb Raumtemperatur auf, wobei Temperaturen zwischen 25 und 60°C und insbesondere von 35 bis 50°C bevorzugt sind. Unabhängig vom eingesetzten Material für die Hohlkörper, aber abhängig von den gewünschten Auflöseeigenschaften kann die Dicke der Wandung variiert werden. Dabei sollte die Wandung einerseits so dünn gewählt werden, daß eine zügige Auflösung bzw. Desintegration erreicht wird und die Inhaltsstoffe zügig in die Anwendungsflotte freigesetzt werden, doch ist auch eine gewisse Mindestdicke erforderlich, um der Hohlform die gewünschte Stabilität, insbesondere Formstabilität, zu verleihen.
Bevorzugte Wandstärken spritzgegossener Formkörper liegen im Bereich von 100 bis 5000 μm, vorzugsweise von 200 bis 3000 μm, besonders bevorzugt von 300 bis 2000 μm und insbesondere von 500 bis 1500 μm.
Regelmäßig weist der durch Spritzgießen hergestellte Formkörper nicht auf allen Seiten geschlossene Wände auf und ist auf mindestens einer seiner Seiten herstellungsbedingt offen. Durch die verbliebene Öffnung wird/werden in das/die im Innern des Formkörpers gebildete(n) Kompartiment(e) eine oder mehrere Zubereitung(en) eingefüllt. Dies geschieht ebenfalls auf an sich bekanntem Weg, beispielsweise im Rahmen von aus der Süßwarenindustrie bekannten Herstellungsverfahren; denkbar sind auch in mehreren Schritten ablaufende Verfahrensweisen. Eine einstufige Verfahrensweise ist insbesondere dann bevorzugt, wenn neben festen Zubereitungen auch flüssige Komponenten umfassende Zubereitungen (Dispersionen oder Emulsionen, Suspensionen) oder sogar gasförmige Komponenten umfassende Zubereitungen (Schäume) in Formkörper eingebracht werden sollen.
Beim Tiefziehen wird eine Folie aus entsprechendem Material über eine Form, welche Vertiefungen aufweist, gelegt, gegebenenfalls erwärmt und dann mittel Unterdruck in die Vertiefung gezogen. Alternativ oder in Ergänzung hierzu kann die Folie durch Druckbeaufschlagung von der Oberseite oder durch einen Stempel in die Form gedrückt werden. Bevorzugte Wandstärken tiefgezogener Formkörper liegen im Bereich von 100 bis 5000 μm, vorzugsweise von 200 bis 3000 μm, besonders bevorzugt von 300 bis 2000 μm und insbesondere von 500 bis 1500 μm.
Als Materialien für die Hohlkörper aus wasserlöslichen oder -dispergierbaren Polymeren kommen sämtliche Polymere in Betracht, die auch für eine optional eingesetzte verschließende Folie genutzt werden können. Diese werden nachstehend beschrieben.
Die als Folienmaterialien eingesetzten Polymere können aus einem einzelnen Material oder einem Blend verschiedener Materialien bestehen. Bevorzugte Folienmaterialien stammen aus der Gruppe (gegebenenfalls acetalisierter) Polyvinylalkohol (PVAL) und/oder PVAL-Copolymere, Polyvinylpyrrolidon, Polyethylenoxid, Polyethylenglykol, Gelatine und/oder Copolymere sowie deren Mischungen.
Im Rahmen der vorliegenden Erfindung sind Polyvinylalkohole besonders bevorzugt. „Polyvinylalkohole" (Kurzzeichen PVAL, gelegentlich auch PVOH) ist dabei die Bezeichnung für Polymere der allgemeinen Struktur
die in geringen Anteilen (ca. 2%) auch Struktureinheiten des Typs
enthalten.
Handelsübliche Polyvinylalkohole, die als weiß-gelbliche Pulver oder Granulate mit Polymerisationsgraden im Bereich von ca. 100 bis 2500 (Molmassen von ca. 4000 bis 100.000 g/mol) angeboten werden, haben Hydrolysegrade von 98-99 bzw. 87-89 Mol-%, enthalten also noch einen Restgehalt an Acetyl-Gruppen. Charakterisiert werden die Polyvinylalkohole von Seiten der Hersteller durch Angabe des Polymerisationsgrades des Ausgangspolymeren, des Hydrolysegrades, der Verseifungszahl bzw. der Lösungsviskosität.
Polyvinylalkohole sind abhängig vom Hydrolysegrad löslich in Wasser und wenigen stark polaren organischen Lösungsmitteln (Formamid, Dimethylformamid, Dimethylsulfoxid); von (chlorierten) Kohlenwasserstoffen, Estern, Fetten und Ölen werden sie nicht angegriffen. Polyvinylalkohole werden als toxikologisch unbedenklich eingestuft und sind biologisch zumindest teilweise abbaubar. Die Wasserlöslichkeit kann man durch Nachbehandlung mit Aldehyden (Acetalisierung), durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure od. Borax verringern. Polyvinylalkohol ist weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Helium, Wasserstoff, Kohlendioxid, läßt jedoch Wasserdampf hindurchtreten.
Im Rahmen der vorliegenden Erfindung bevorzugte Verfahren sind dadurch gekennzeichnet, daß das Folienmaterial Polyvinylalkohole und/oder PVAL-Copolymere umfaßt, deren Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt.
Vorzugsweise werden Polyvinylalkohole eines bestimmten Molekulargewichtsbereichs eingesetzt, wobei erfindungsgemäße Verfahren bevorzugt sind, bei denen die Folie Polyvinylalkohole und/oder PVAL-Copolymere umfaßt, deren Molekulargewicht im Bereich von 3.500 bis 100.000 gmol" , vorzugsweise von 10.000 bis 90.000 gmol"1, besonders bevorzugt von 12.000 bis 80.000 gmol"1 und insbesondere von 13.000 bis 70.000 gmol"1 liegt.
Der Polymerisationsgrad solcher bevorzugten Polyvinylalkohole liegt zwischen ungefähr 200 bis ungefähr 2100, vorzugsweise zwischen ungefähr 220 bis ungefähr 1890, besonders bevorzugt zwischen ungefähr 240 bis ungefähr 1680 und insbesondere zwischen ungefähr 260 bis ungefähr 1500.
Erfindungsgemäß bevorzugte Verfahren sind dadurch gekennzeichnet, daß die Folie Polyvinylalkohole und/oder PVAL-Copolymere umfaßt, deren durchschnittlicher Polymerisationsgrad zwischen 80 und 700, vorzugsweise zwischen 150 und 400, besonders bevorzugt zwischen 180 bis 300 liegt und/oder deren Molekulargewichtsverhältnis MG(50%) zu MG(90%) zwischen 0,3 und 1, vorzugsweise zwischen 0,4 und 0,8 und insbesondere zwischen 0,45 und 0,6 liegt.
Die vorstehend beschriebenen Polyvinylalkohole sind kommerziell breit verfügbar, beispielsweise unter dem Warenzeichen Mowiol® (Clariant). Im Rahmen der vorliegenden Erfindung besonders geeignete Polyvinylalkohole sind beispielsweise Mowiol® 3-83, Mowiol® 4-88, Mowiol® 5-88 sowie Mowiol® 8-88.
Weitere als Folienmaterialien besonders geeignete Polyvinylalkohole sind der nachstehenden Tabelle zu entnehmen:
Weitere als Material für die Folie geeignete Polyvinylalkohole sind ELVANOL® 51-05, 52-22, 50-42, 85-82, 75-15, T-25, T-66, 90-50 (Warenzeichen der Du Pont), ALCOTEX® 72.5, 78, B72, F80/40, F88/4, F88/26, F88/40, F88/47 (Warenzeichen der Harlow Chemical Co.), Gohsenol® NK-05, A- 300, AH-22, C-500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11Q, KZ-06 (Warenzeichen der Nippon Gohsei K.K.). Auch geeignet sind ERKOL-Typen von Wacker.
Eine weiter bevorzugte Gruppe wasserlöslicher Polymere, die erfindungsgemäß als Folienmaterial dienen kann, sind die Polyvinylpyrrolidone. Diese werden beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben. Polyvinylpyrrolidone [Poly(1-vinyl-2-pyrrolidinone)], Kurzzeichen PVP, sind Polymere der allg. Formel (A)
die durch radikalische Polymerisation von 1-Vinylpyrrolidon nach Verfahren der Lösungs- oder Suspensionspolymerisation unter Einsatz von Radikalbildnern (Peroxide, Azo-Verbindungen) als Initiatoren hergestellt werden. Die ionische Polymerisation des Monomeren liefert nur Produkte mit niedrigen Molmassen. Handelsübliche Polyvinylpyrrolidone haben Molmassen im Bereich von ca. 2500-750000 g/mol, die über die Angabe der K-Werte charakterisiert werden und - K-Wert- abhängig - Glasübergangstemperaturen von 130-175° besitzen. Sie werden als weiße, hygroskopische Pulver oder als wäßrige. Lösungen angeboten. Polyvinylpyrrolidone sind gut löslich in Wasser und einer Vielzahl von organischen Lösungsmitteln (Alkohole, Ketone, Eisessig, Chlorkohlenwasserstoffe, Phenole u.a.).
Geeignet sind auch Copolymere des Vinylpyrrolidons mit anderen Monomeren, insbesondere Vinylpyrrolidon/Vinylester-Copolymere, wie sie beispielsweise unter dem Warenzeichen Luviskol® (BASF) vertrieben werden. Luviskol® VA 64 und Luviskol® VA 73, jeweils Vinylpyrrolidon/Vinylacetat-Copolymere, sind besonders bevorzugte nichtionische Polymere.
Die Vinylester-Polymere sind aus Vinylestern zugängliche Polymere mit der Gruppierung der Formel (B) CH2— CH-
O
C. o- R (Bl)
als charakteristischem Grundbaustein der Makromoleküle. Von diesen haben die Vinylacetat- Polymere (R = CH3) mit Polyvinylacetaten als mit Abstand wichtigsten Vertretern die größte technische Bedeutung.
Die Polymerisation der Vinylester erfolgt radikalisch nach unterschiedlichen Verfahren (Lösungspolymerisation, Suspensionspolymerisation, Emulsionspolymerisation,
Substanzpolymerisation.). Copolymere von Vinylacetat mit Vinylpyrrolidon enthalten Monomereinheiten der Formeln (A) und (B)
Weitere geeignete wasserlösliche Polymere sind die Polyethylenglykole (Polyethylenoxide), die kurz als PEG bezeichnet werden. PEG sind Polymere des Ethylenglycols, die der allgemeinen Formel (C)
H-(0-CH2-CH2)n-OH (C)
genügen, wobei n Werte zwischen 5 und > 100.000 annehmen kann.
PEGs werden technisch hergestellt durch anionische Ringöffnungspolymerisation von Ethylenoxid (Oxiran) meist in Gegenwart geringer Mengen Wasser. Sie haben je nach Reaktionsführung Molmassen im Bereich von ca. 200-5 000 000 g/mol, entsprechend Polymerisationsgraden von ca. 5 bis >100 000.
Die Produkte mit Molmassen < ca. 25 000 g/mol sind bei Raumtemperatur flüssig und werden als eigentliche Polyethylenglycole, Kurzzeichen PEG, bezeichnet. Diese kurzkettigen PEGs können insbesondere anderen wasserlöslichen Polymeren, z.B. Polyvinvlalkoholen oder Celluloseethern als Weichmacher zugesetzt werden. Die erfindungsgemäß einsetzbaren, bei Raumtemperatur festen Polyethylenglycole werden als Polyethylenoxide, Kurzzeichen PEOX, bezeichnet. Hochmolekulare Polyethylenoxide besitzen eine äußerst niedrige Konzentration an reaktiven Hydroxy-Endgruppen und zeigen daher nur noch schwache Glykol-Eigenschaften.
Weiter als Folienmaterial geeignet ist erfindungsgemäß auch Gelatine, wobei diese vorzugsweise mit anderen Polymeren zusammen eingesetzt wird. Gelatine ist ein Polypeptid (Molmasse: ca. 15.000 bis >250.000 g/mol), das vornehmlich durch Hydrolyse des in Haut und Knochen von Tieren enthaltenen Kollagens unter sauren oder alkalischen Bedingungen gewonnen wird. Die Aminosäuren-Zusammensetzung der Gelatine entspricht weitgehend der des Kollagens, aus dem sie gewonnen wurde und variiert in Abhängigkeit von dessen Provenienz. Die Verwendung von Gelatine als wasserlösliches Hüllmaterial ist insbesondere in der Pharmazie in Form von Hart- oder Weichgelatinekapseln äußerst weit verbreitet. In Form von Folien findet Gelatine wegen ihres im Vergleich zu den vorstehend genannten Polymeren hohen Preises nur geringe Verwendung.
Weitere erfindungsgemäß als Folienmaterial geeignete wasserlösliche Polymere werden nachstehend beschrieben:
Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und
Methylhydroxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) vertrieben werden. Celluloseether lassen sich durch die allgemeine Formel (D) beschreiben,
in R für H oder einen Alkyl-, Alkenyl-, Alkinyl-, Aryl- oder Alkylarylrest steht. In bevorzugten Produkten steht mindestens ein R in Formel (III) für -CH2CH2CH2-OH oder -CH2CH2-OH. Celluloseether werden technisch durch Veretherung von Alkalicellulose (z.B. mit Ethylenoxid) hergestellt. Celluloseether werden charakterisiert über den durchschnittlichen Substitutionsgrad DS bzw. den molaren Substitutionsgrad MS, die angeben, wieviele Hydroxy-Gruppen einer Anhydroglucose-Einheit der Cellulose mit dem Veretherungsreagens reagiert haben bzw. wieviel mol des Veretherungsreagens im Durchschnitt an eine Anhydroglucose-Einheit angelagert wurden. Hydroxyethylcellulosen sind ab einem DS von ca. 0,6 bzw. einem MS von ca. 1 wasserlöslich. Handelsübliche Hydroxyethyl- bzw. Hydroxypropylcellulosen haben Substitutionsgrade im Bereich von 0,85-1,35 (DS) bzw. 1,5-3 (MS). Hydroxyethyl- und -propylcellulosen werden als gelblich-weiße, geruch- und geschmacklose Pulver in stark unterschiedlichen Polymerisationsgraden vermarktet. Hydroxyethyl- und -propylcellulosen sind in kaltem und heißem Wasser sowie in einigen (wasserhaltigen) organischen Lösungsmitteln löslich, in den meisten (wasserfreien) organischen Lösungsmitteln dagegen unlöslich; ihre wäßrigen Lösungen sind relativ unempfindlich gegenüber Änderungen des pH-Werts oder Elektrolyt-Zusatz. Weitere erfindungsgemäß geeignete Polymere sind wasserlösliche Amphopolymere. Unter dem Oberbegriff Ampho-Polymere sind amphotere Polymere, d.h. Polymere, die im Molekül sowohl freie Aminogruppen als auch freie -COOH- oder S03H-Gruppen enthalten und zur Ausbildung innerer Salze befähigt sind, zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO"- oder -S03 "-Gruppen enthalten, und solche Polymere zusammengefaßt, die -COOH- oder S03H-Gruppen und quartäre Ammoniumgruppen enthalten. Ein Beispiel für ein erfindungsgemäß einsetzbares Amphopolymer ist das unter der Bezeichnung Amphomer® erhältliche Acrylharz, das ein Copolymer aus tert.-Butylaminoethylmethacrylat, N-(1,1,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Monomeren aus der Gruppe Acrylsäure, Methacrylsäure und deren einfachen Estern darstellt. Ebenfalls bevorzugte Amphopolymere setzen sich aus ungesättigten Carbonsäuren (z.B. Acryl- und Methacrylsäure), kationisch derivatisierten ungesättigten Carbonsäuren (z.B. Acrylamidopropyl-trimethyl-ammoniumchlorid) und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren zusammen Terpolymere von Acrylsäure, Methylacrylat und Methacrylamidopropyltriammoniumchlorid, wie sie unter der Bezeichnung Merquat®2001 N im Handel erhältlich sind, sind erfindungsgemäß besonders bevorzugte Ampho-Polymere. Weitere geeignete amphotere Polymere sind beispielsweise die unter den Bezeichnungen Amphomer® und Amphomer® LV-71 (DELFT NATIONAL) erhältlichen Octylacrylamid/Methylmethacrylat/tert.- Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere.
Erfindungsgemäß geeignete wasserlösliche anionische Polymere sind u. a.:
Vinylacetat/Crotonsäure-Copolymere, wie sie beispielsweise unter den Bezeichnungen Resyn® (NATIONAL STARCH), Luviset® (BASF) und Gafset® (GAF) im Handel sind. Diese Polymere weisen neben Monomereinheiten der vorstehend genannten Formel (II) auch Monomereinheiten der allgemeinen Formel (E) auf:
[-CH(CH3)-CH(COOH)-]n (E)
Vinylpyrrolidon/Vinylacrylat-Copolymere, erhältlich beispielsweise unter dem Warenzeichen
Luviflex® (BASF). Ein bevorzugtes Polymer ist das unter der Bezeichnung Luviflex® VBM-35
(BASF) erhältliche Vinylpyrrolidon/Acrylat-Terpolymere.
Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere, die beispielsweise unter der
Bezeichnung Ultrahold® strong (BASF) vertrieben werden.
Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im
Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit
Polyalkylenoxiden und/oder Polykalkylenglycolen
Solche gepfropften Polymere von Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch mit anderen copolymerisierbaren Verbindungen auf Polyalkylenglycolen werden durch Polymerisation in der Hitze in homogener Phase dadurch erhalten, daß man die Polyalkylenglycole in die Monomeren der Vinylester, Ester von Acrylsäure oder Methacrylsäure, in Gegenwart von Radikalbildner einrührt. Als geeignete Vinylester haben sich beispielsweise Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylbenzoat und als Ester von Acrylsäure oder Methacrylsäure diejenigen, die mit aliphatischen Alkoholen mit niedrigem Molekulargewicht, also insbesondere Ethanol, Propanol, Isopropanol, 1-Butanol, 2-Butanol, 2-Methy-1-Propanol, 2-Methyl-2-Propanol, 1- Pentanol, 2-Pentanol, 3-Pentanol, 2,2-Dimethyl-1 -Propanol, 3-Methyl-1-butanol; 3-Methyl-2- butanol, 2-Methyl-2-butanol, 2-Methyl-1-Butanol, 1-Hexanol, erhältlich sind, bewährt.
Polypropylenglycole (Kurzzeichen PPG) sind Polymere des Propylenglycols, die der allgemeinen Formel (F)
H-(0-CH-CH2)n-OH (F)
I CH3
genügen, wobei n Werte zwischen 1 (Propylenglycol) und mehreren tausend annehmen kann.
Technisch bedeutsam sind hier insbesondere Di-, Tri- und Tetrapropylenglycol, d.h. die
Vertreter mit n=2, 3 und 4 in Formel VI.
Insbesondere können die auf Polyethylenglycole gepfropften Vinylacetatcopolymeren und die auf Polyethylenglycole gepfropften Polymeren von Vinylacetat und Crotonsäure eingesetzt werden. gepropfte und vernetzte Copolymere aus der Copolymerisation von i) mindesten einem Monomeren vom nicht-ionischen Typ, ii) mindestens einem Monomeren vom ionischen Typ, iii) von Polyethylenglycol und iv) einem Vernetzter
Das verwendete Polyethylenglycol weist ein Molekulargewicht zwischen 200 und mehreren
Millionen, vorzugsweise zwischen 300 und 30.000, auf.
Die nicht-ionischen Monomeren können von sehr unterschiedlichem Typ sein und unter diesen sind folgende bevorzugt: Vinylacetat, Vinylstearat, Vinyllaurat, Vinylpropionat, Allylstearat,
Allyllaurat, Diethylmaleat, Allylacetat, Methylmethacrylat, Cetylvinylether, Stearylvinylether und
1 -Hexen.
Die nicht-ionischen Monomeren können gleichermaßen von sehr unterschiedlichen Typen sein, wobei unter diesen besonders bevorzugt Crotonsäure, Allyloxyessigsäure, Vinylessigsäure, Maleinsäure, Acrylsäure und Methacrylsäure in den Pfropfpolymeren enthalten sind.
Als Vernetzer werden vorzugsweise Ethylenglycoldimethacrylat, Diallylphthalat, ortho-, meta- und para-Divinylbenzol, Tetraallyloxyethan und Polyallylsaccharosen mit 2 bis 5 Allylgruppen pro Molekül Saccharin.
Die vorstehend beschriebenen gepfropften und vernetzten Copoymere werden vorzugsweise gebildet aus: i) 5 bis 85 Gew.-% mindesten eine Monomeren vom nicht-ionischen Typ, ii) 3 bis 80 Gew.-% mindestens eines Monomeren vom ionischen Typ, iii) 2 bis 50 Gew.-%, vorzugsweise 5 bis 30 Gew.-% Polyethylenglycol und iv) 0,1 bis 8 Gew.-% eines Vernetzers, wobei der Prozentsatz des Vernetzers durch das
Verhältnis der Gesamtgewichte von i), ii) und iii) ausgebildet ist. durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltene Copolymere: i) Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesätigter Alkohole und ungesättigter Carbonsäuren, ii) ungesättigte Carbonsäuren, iii) Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den
Carbonsäuren der Gruppe ii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C8.18-Alkohols Unter kurzkettigen Carbonsäuren bzw. Alkoholen sind dabei solche mit 1 bis 8 Kohlenstoffatomen zu verstehen, wobei die Kohlenstoffketten dieser Verbindungen gegebenenfalls durch zweibindige Heterogruppen wie -O-, -NH-, -S- unterbrochen sein können.
Terpolymere aus Crotonsäure, Vinylacetat und einem Allyl- oder Methallylester Diese Terpolymere enthalten Monomereinheiten der allgemeinen Formeln (D) und (E) (siehe oben) sowie Monomereinheiten aus einem oder mehreren Allyl- oder Methallylestern der Formel (G):
R1 R3
I I
R2-C-C(0)-0-CH2— C=CH2 (G)
I CH3
worin R3 für -H oder -CH3, R2 für -CH3 oder -CH(CH3)2 und R1 für -CH3 oder einen gesättigten geradkettigen oder verzweigten Cι.6-Alkylrest steht und die Summe der Kohlenstoffatome in den Resten R1 und R2 vorzugsweise 7, 6, 5, 4, 3 oder 2 ist. Die vorstehend genannten Terpolymeren resultieren vorzugsweise aus der Copolymerisation von 7 bis 12 Gew.-% Crotonsäure, 65 bis 86 Gew.-%, vorzugsweise 71 bis 83 Gew.-%
Vinylacetat und 8 bis 20 Gew.-%, vorzugsweise 10 bis 17 Gew.-% Allyl- oder Methallylester der Formel (G).
Tetra- und Pentapolymere aus i) Crotonsäure oder Allyloxyessigsäure ii) Vinylacetat oder Vinylpropionat iii) verzweigten Allyl- oder Methallylestern iv) Vinylethern, Vinylestern oder geradkettigen Allyl- oder Methallylestern
Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe Ethylen,
Vinylbenzol, Vinylmethylether, Acrylamid und deren wasserlöslicher Salze
Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in α-Stellung verzweigten Monocarbonsäure.
Weitere, bevorzugt erfindungsgemäß als Folienmaterial einsetzbare Polymere sind kationische Polymere. Unter den kationischen Polymeren sind dabei die permanent kationischen Polymere bevorzugt. Als „permanent kationisch" werden erfindungsgemäß solche Polymere bezeichnet, die unabhängig vom pH-Wert eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten. Bevorzugte kationische Polymere sind beispielsweise quatemisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Polymer JR® im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR®400 sind bevorzugte quaternierte Cellulose-Derivate.
Polysiloxane mit quaternären Gruppen, wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethylsilylamodimethicon), Dow Corning® 929 Emulsion (enthaltend ein hydroxyl-amino-modifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt; di- quaternäre Polydime- thylsiloxane, Quaternium-80),
Kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cosmedia®Guar und Jaguar® vertriebenen Produkte,
Polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Ami- den von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Merquat®100 (Poly(dimethyldiallylammoniumchlorid)) und Merquat®550 (Dimethyldiallylammoniumchlorid- Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere. Copolymere des Vinylpyrrolidons mit quatemierten Derivaten des Dialkylaminoacrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quatemierte Vinylpyrrolidon- Dimethylaminomethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat®734 und Gafquat®755 im Handel erhältlich.
Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere, wie sie unter der Bezeichnung Luviquat® angeboten werden. quaternierter Polyvinylalkohol sowie die unter den Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette. Die genannten Polymere sind dabei nach der sogenannten INCI-Nomenklatur bezeichnet, wobei sich detaillierte Angaben im CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997, finden, auf die hier ausdrücklich Bezug genommen wird.
Erfindungsgemäß bevorzugte kationische Polymere sind quatemisierte Cellulose-Derivate sowie polymere Dimethyldiallylammoniumsalze und deren Copolymere. Kationische Cellulose-Derivate, insbesondere das Handelsprodukt Polymer®JR 400, sind ganz besonders bevorzugte kationische Polymere.
Unabhängig davon, ob die erfindungsgemäßen Formkörper durch Tablettierung oder durch andere Verfahren hergestellt werden, enthalten sie Aktivsubstanzen für einen Wasch- oder Reinigungsprozeß. In dem Fall, in dem Tabletten die erfindungsgemäßen Formkörper bilden, können schon verschiedene Aktivsubstanzen in den Tabletten enthalten sein. Werden die erfindungsgemäßen Formkörper durch andere Verfahren hergestellt, ist es zwar auch möglich, daß der Hohlkörper bereits Aktivsubstanz enthält (beispielsweise Farbstoffe, Enzyme, optische Aufheller, Redispergiermittel, Komplexbildner etc., also sogenannte Kleinkomponenten), die Hauptmenge der Aktivsubstanz wird sich allerdings in der Füllung befinden.
Es folgt eine Darstellung der bevorzugten Inhaltsstoffe der erfindungsgemäßen Wasch- oder Reinigungsmittelformkörper.
Besonders bevorzugt werden dabei wasch- und reinigungsaktive Substanzen aus der Gruppe der Bleichmittel, Bleichaktivatoren, Polymere, Gerüststoffe, Tenside, Enzyme, Desintegrationshilfsmittel, Elektrolyte, pH-Stellmittel, Duftstoffe, Parfümträger, Farbstoffe, Hydrotrope, Schauminhibitoren, Antiredepositionsmittel, optischen Aufheller,
Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungs-inhibitoren, antimikrobiellen Wirkstoffe, Germizide, Fungizide, Antioxidantien, Korrosionsinhibitoren, Antistatika, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel, nichtwässrigen Lösungsmittel, Weichspüler, Proteinhydrolysate sowie UV-Absorber eingesetzt.
Als wichtige Bestandteile von Wasch- und Reinigungsmitteln können in den erfindungsgemäßen Mitteln neben anderen Bestandteilen Bleichmittel und Bleichkaktivatoren enthalten sein. Unter den als Bleichmittel dienenden, in Wasser H202 liefernden Verbindungen haben das Natriumpercarbonat sowie Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H202 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Reinigungsmittelformkörper für das maschinelle Geschirrspülen können auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Aikylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium- monoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylauhnsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure
[Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N- nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperoxysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan- 1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäure) können eingesetzt werden.
Werden die erfindungsgemäßen Mittel als maschinelle Geschirrspülmittel eingesetzt, so können diese Bleichaktivatoren enthalten, um beim Reinigen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C- Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
Weitere im Rahmen der vorliegenden Anmeldung bevorzugt eingesetzte Bleichaktivatoren sind Verbindungen aus der Gruppe der kationischen Nitrile, insebsondere kationische Nitril der Formel
R1
I
R2-N(+)-(CH2)-CN XΘ,
R3
in der R1 für -H, -CH3, einen C2.24-Alkyl- oder -Alkenylrest, einen substituierten C2.24-Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN, einen Alkyl- oder Alkenylarylrest mit einer C^-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer Cι.2 -Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2- OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-0)nH mit n = 1 , 2, 3, 4, 5 oder 6 und X ein Anion ist.
In besonders bevorzugten erfindungsgemäßen Mitteln ist ein kationisches Nitril der Formel
R4
R5-N(+)-(CH2)-CN XH,
R6
enthalten, in der R4, R5 und R6 unabhängig voneinander ausgewählt sind aus -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, wobei R4 zusätzlich auch -H sein kann und X ein Anion ist, wobei vorzugsweise R5 = R6 = -CH3 und insbesondere R4 = R5 = R6 = -CH3 gilt und Verbindungen der Formeln (CH3)3N(+)CH2-CN X", (CH3CH2)3N(+)CH2-CN X" , (CH3CH2CH2)3N(+)CH2-CN X", (CH3CH(CH3))3N(+)CH2-CN X", oder (HO-CH2-CH2)3N(+)CH2-CN X" besonders bevorzugt sind, wobei aus der Gruppe dieser Substanzen wiederum das kationische Nitril der Formel (CH3)3N(+)CH2-CN X" , in welcher X" für ein Anion steht, das aus der Gruppe Chlorid, Bromid, lodid, Hydrogensulfat, Methosulfat, p-Toluolsulfonat (Tosylat) oder Xylolsulfonat ausgewählt ist, besonders bevorzugt wird.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Mittel eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleich katalysatoren verwendbar.
Bei den Tensiden kommen insbesondere die Aniontenside in Säureform, wäßrige Lösungen oder Pasten der neutralisierten Aniontensidsäuren, nichtionische Tenside und/oder Kationtenside bzw. amphotere Tenside in Betracht. In Abhängigkeit von der Wahl des/der eingesetzten Tenside sind tensidhaltige erfindungsgemäße Mittel beispielsweise in der Beseitigung von Fett- oder Ölverschmutzungen einsetzbar, wobei ihr Einsatzgebiet von der Textilreinigung bis zur Beseitigung von Ölverschmutzungen in der Natur reicht. Im Rahmen der vorliegenden Anmeldung werden Granulate bevorzugt, welche einen Tensidgehalt von 1 bis 70 Gew.-%, besonders bevorzugt von 2 bis 60 Gew.-%, insbesondere bevorzugt von 4 bis 50 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Mittel, aufweisen.
Neben den genannten Inhaltsstoffen Bleichmittel und Bleichaktivator sind Gerüststoffe weitere wichtige Inhaltsstoffe von Wasch- Reinigungsmitteln. Bevorzugte erfindungsgemäße Mittel können dabei alle üblicherweise in Reinigungsmitteln eingesetzten Gerüststoffe enthalten, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und - wo keine ökologischen Bedenken gegen ihren Einsatz bestehen - auch die Phosphate. Die genannten Gerüststoffe können dabei selbstverständlich auch in tensidfreien Komprimaten eingesetzt werden.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSix02x+ι Η20, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate Na2Si205 'yH20 bevorzugt.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na20 : Si02 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1 :2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate weisen ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern auf. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Der einsetzbare feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa20 (1-n)K20 Al203 ' (2 - 2,5)Si02 ' (3,5 - 5,5) H20
beschrieben werden kann. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HP03)n und Orthophosphorsäure H3P04 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. auf Spülgutoberflächen und tragen überdies zur Reinigungsleistung bei. Natriumdihydrogenphosphat, NaH2P04, Dinatriumhydrogenphosphat (sekundäres
Natriumphosphat), Na2HP04, Trinatriumphosphat, tertiäres Natriumphosphat, Na3P0 , Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P207 und durch Kondensation des NaH2P04 bzw. des KH2P0 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann sind ebenso wie das Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat) weitere im Rahmen der vorliegenden Anmeldung mit Vorteil eingesetzte Gerüststoffe.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Alkali- und insbesondere Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
Als weitere Bestandteile können Alkaliträger zugegen sein. Als Alkaliträger gelten Alkalimetallhydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetall- sesquicarbonate, Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden.
Werden die erfindungsgemäßen Mittel beim maschinellen Geschirrspülen eingesetzt, so sind wasserlösliche Builder bevorzugt, da sie auf Geschirr und harten Oberflächen in der Regel weniger dazu tendieren, unlösliche Rückstände zu bilden. Übliche Builder sind die niedermolekularen Polycarbonsäuren und ihre Salze, die homopolymeren und copolymeren Polycarbonsäuren und ihre Salze, die Carbonate, Phosphate und Silikate. Bevorzugt werden zur Herstellung von Tabletten für das maschinelle Geschirrspülen Trinatriumcitrat und/oder Pentanatriumtripolyphosphat und/oder Natriumcarbonat und/oder Natriumbicarbonat und/oder Gluconate und/oder silikatische Builder aus der Klasse der Disilikate und/oder Metasilikate eingesetzt. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buildersystem, das eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat enthält.
Als organische Cobuilder können in den Reinigungsmitteln im Rahmen der vorliegenden Erfindung insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Methylglycindiessigsäure, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 1000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 1000 bis 10000 g/mol, und besonders bevorzugt von 1200 bis 4000 g/mol, aufweisen, bevorzugt sein. Besonders bevorzugt werden in den erfindungsgemäßen Mitteln sowohl Polyacrylate als auch Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren sowie gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren eingesetzt. Die Sulfonsäuregruppen-haltigen Copolymere werden in der Folge ausführlich beschrieben.
Es lassen sich aber auch erfindungsgemäße Mittel, welche als sogenannte „3in1 "-Produkte die herkömmlichen Reiniger, Klarspüler und eine Salzersatzfunktion in sich vereinen, bereitstellen. Hierzu sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, die zusätzlich 0,1 bis 70 Gew.-% an Copolymeren aus
i) ungesättigten Carbonsäuren ii) Sulfonsäuregruppen-haltigen Monomeren iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
enthalten.
Als zusätzlich positiver Effekt bewirken diese Copolymere, daß die Geschirrteile bei Anwendung dieser Mittel mit höheren Wasserhärten gespült werden können, d.h. dass bis zu einer bestimmten Leitungswasserhärte kein Regeneriersalz eingesetzt werden braucht, und deutlich sauberer werden, als Geschirrteile, die unter diesen Umständen mit herkömmlichen Mitteln gespült wurden.
Im Rahmen der vorliegenden Erfindung sind ungesättigte Carbonsäuren der Formel I als Monomer bevorzugt,
R1(R2)C=C(R3)COOH (I),
in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder - COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder - COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
Unter den ungesättigten Carbonsäuren, die sich durch die Formel I beschreiben lassen, sind insbesondere Acrylsäure (R1 = R2 = R3 = H), Methacrylsäure (R1 = R2 = H; R3 = CH3) und/oder Maleinsäure (R1 = COOH; R2 = R3 = H) bevorzugt. Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel II bevorzugt,
R5(R6)C=C(R7)-X-S03H (II),
in der R5 bis R7 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder - COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder - COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, - C(0)-NH-C(CH3)2- und -C(0)-NH-CH(CH2CH3)-.
Unter diesen Monomeren bevorzugt sind solche der Formeln lla, llb und/oder llc,
H2C=CH-X-S03H (lla),
H2C=C(CH3)-X-S03H (llb),
H03S-X-(R6)C=C(R7)-X-S03H (llc),
in denen R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(0)-NH-C(CH3)2- und -C(0)-NH- CH(CH2CH3)-.
Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1- propansulfonsäure (X = -C(0)NH-CH(CH2CH3) in Formel lla), 2-Acrylamido-2-propansulfonsäure (X = -C(0)NH-C(CH3)2 in Formel lla), 2-Acrylamido-2-methyl-1 -propansulfonsäure (X = -C(0)NH- C(CH3)2CH2- in Formel lla), 2-Methacrylamido-2-methyl-1-propansulfonsäure (X = -C(0)NH- C(CH3)2CH2- in Formel llb), 3-Methacrylamido-2-hydroxy-propansulfonsäure (X = -C(0)NH- CH2CH(OH)CH2- in Formel llb), Allylsulfonsäure (X = CH2 in Formel lla), Methallylsulfonsäure (X = CH2 in Formel llb), Allyloxybenzolsulfonsäure (X = -CH2-0-C6H4- in Formel lla), Methallyloxybenzolsulfonsäure (X = -CH2-0-C6H4- in Formel Xlb), 2-Hydroxy-3-(2- propenyloxy)propansulfonsäure, 2-Methyl-2-propen1-sulfonsäure (X = CH2 in Formel llb), Styrolsulfonsäure (X = C6H in Formel lla), Vinylsulfonsäure (X nicht vorhanden in Formel lla), 3- Acrylamido-propansulfonsäure (X = -C(0)NH-CH2CH2CH2- in Formel lla), 3-Methacrylamido- propansulfonsäure (X = -C(0)NH-CH2CH2CH2- in Formel llb), Sulfomethacrylamid (X = -C(0)NH- in Formel llb), Sulfomethylmethacrylamid (X = -C(0)NH-CH2- in Formel llb) sowie wasserlösliche Salze der genannten Säuren.
Als weitere ionische oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der erfindungsgemäß eingesetzten Polymere an Monomeren der Grupp iii) weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Gruppen i) und ii).
Zusammenfassend sind Copolymere aus
i) ungesättigten Carbonsäuren der Formel I.
R1(R2)C=C(R3)COOH (I),
in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder - COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder - COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist,
ii) Sulfonsäuregruppen-haltigen Monomeren der Formel II
R5(R6)C=C(R7)-X-S03H (II),
in der R5 bis R7 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO- (CH2)k- mit k = 1 bis 6, -C(0)-NH-C(CH3)2- und -C(0)-NH-CH(CH2CH3)-
iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
besonders bevorzugt. Besonders bevorzugte Copolymere bestehen aus
i) einer oder mehrerer ungesättigter Carbonsäuren aus der Gruppe Acrylsäure, Methacrylsäure und/oder Maleinsäure
ii) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln lla, llb und/oder llc:
H2C=CH-X-S03H (lla),
H2C=C(CH3)-X-S03H (llb),
H03S-X-(R6)C=C(R7)-X-S03H (llc),
in der R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(0)-NH-C(CH3)2- und -C(0)-NH-CH(CH2CH3)-
iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
Die in den Mitteln enthaltenen Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.
So sind beispielsweise erfindungsgemäße Mittel bevorzugt, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel III
-[CH2-CHCOOH]m-[CH2-CHC(0)-Y-S03H]p- (III),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH-C(CH3)2- oder - NH-CH(CH2CH3)- steht, bevorzugt sind. Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppen- haltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Einsatz in den erfindungsgemäßen Mitteln ebenfalls bevorzugt und dadurch gekennzeichnet ist, daß die Mittel ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel IV
-[CH2-C(CH3)COOH]m-[CH2-CHC(0)-Y-S03H]p- (IV),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH-C(CH3)2- oder - NH-CH(CH2CH3)- steht, bevorzugt sind.
Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppen- haltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So sind erfindungsgemäße Mittel, die ein oder mehrere Copolymere enthalten, welche Struktureinheiten der Formel V
-[CH2-CHCOOH]m-[CH2-C(CH3)C(0)-Y-S03H]p- (V),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoff resten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -Ö-(C6H )-, für -NH-C(CH3)2- oder - NH-CH(CH2CH3)- steht, bevorzugt sind, ebenfalls eine bevorzugte Ausführungsform der vorliegenden Erfindung, genau wie auch Mittel bevorzugt sind, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel VI
-[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(0)-Y-S03H]p- (VI),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoff resten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -0-(C6H )-, für -NH-C(CH3)2- oder - NH-CH(CH2CH3)- steht, bevorzugt sind. Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugten Mitteln, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel VII
-[HOOCCH-CHCOOH]m-[CH2-CHC(0)-Y-S03H]p- (VII),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH-C(CH3)2- oder - NH-CH(CH2CH3)- steht, bevorzugt sind und zu Mitteln, welche dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel VIII
-[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(0)0-Y-S03H]p- (VIII),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH-C(CH3) - oder - NH-CH(CH2CH3)- steht, bevorzugt sind.
Zusammenfassend sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, die als Inhaltsstoff b) ein oder mehrere Copolymere enthält, die Struktureinheiten der Formeln III und/oder IV und/oder V und/oder VI und/oder VII und/oder VIII
-[CH2-CHCOOH]m-[CH2-CHC(0)-Y-S03H]p- (III),
-[CH2-C(CH3)COOH]m-[CH2-CHC(0)-Y-S03H]p- (IV),
-[CH2-CHCOOH]m-[CH2-C(CH3)C(0)-Y-S03H]p- (V),
-[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(0)-Y-S03H]p- (VI),
-[HOOCCH-CHCOOH]m-[CH2-CHC(0)-Y-S03H]p- (VII),
-[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(0)0-Y-S03H]p- (VIII),
enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoff resten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH-C(CH3)2- oder - NH-CH(CH2CH3)- steht, bevorzugt sind. - 296 -
Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugten Mitteln, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel VII
-[HOOCCH-CHCOOH]m-[CH2-CHC(0)-Y-S03H]p- (VII),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH-C(CH3)2- oder - NH-CH(CH2CH3)- steht, bevorzugt sind und zu Mitteln, welche dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel VIII
-[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(0)0-Y-S03H]p- (VIII),
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)π- mit n = 0 bis 4, für -0-(C6H4)-, für -NH-C(CH3)2- oder - NH-CH(CH2CH3)- steht, bevorzugt sind.
Zusammenfassend sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, die als Inhaltsstoff b) ein oder mehrere Copolymere enthält, die Struktureinheiten der Formeln III und/oder IV und/oder V und/oder VI und/oder VII und/oder VIII
-[CH2-CHC00H]m-[CH2-CHC(0)-Y-S03H]p- (III),
-[CH2-C(CH3)COOH]m-[CH2-CHC(0)-Y-S03H]p- (IV),
-[CH2-CHCOOH]m-[CH2-C(CH3)C(0)N-S03H]p- (V),
-[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(0)N-S03H]p- (VI),
-[HOOCCH-CHCOOH]m-[CH2-CHC(0)-Y-S03H]p- (VII),
-[HOOCCH-CHCÖOH]m-[CH2-C(CH3)C(0)0-Y-Sθ3H]p- (VIII),
enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -0-(CH2)n- mit n = 0 bis 4, für -0-(C6H4)-, für -NH-C(CH3)2- oder - NH-CH(CH2CH3)- steht, bevorzugt sind. - 297 -
ln den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. daß das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Entsprechende Mittel, die dadurch gekennzeichnet sind, daß die Sulfonsäuregruppen im Copolymer teil- oder vollneutralisiert vorliegen, sind erfindungsgemäß bevorzugt.
Die Monomerenverteilung der in den erfindungsgemäßen Mitteln eingesetzten Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.-% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer.
Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.
Die Molmasse der in den erfindungsgemäßen Mitteln eingesetzten Polymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte maschinelle Geschirrspülmittel sind dadurch gekennzeichnet, daß die Copolymere Molmassen von 2000 bis 200.000 gmol"1, vorzugsweise von 4000 bis 25.000 gmol"1 und insbesondere von 5000 bis 15.000 gmol"1 aufweisen.
Der Gehalt an einem oder mehreren Copolymeren in den erfindungsgemäßen Mitteln kann je nach Anwendungszweck und gewünschter Produktleistung variieren, wobei bevorzugte erfindungsgemäße maschinelle Geschirrspülmittel dadurch gekennzeichnet sind, daß sie das bzw. die Copolymer(e) in Mengen von 0,25 bis 50 Gew.-%, vorzugsweise von 0,5 bis 35 Gew.-%, besonders bevorzugt von 0,75 bis 20 Gew.-% und insbesondere von 1 bis 15 Gew.-% enthalten.
Wie bereits weiter oben erwähnt, werden in den erfindungsgemäßen Mitteln besonders bevorzugt sowohl Polyacrylate als auch die vorstehend beschriebenen Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren sowie gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren eingesetzt. Die Polyacrylate wurden dabei weiter oben ausführlich beschrieben. Besonders bevorzugt sind Kombinationen aus den vorstehend beschriebenen Sulfonsäuregruppen-haltigen Copolymeren mit Polyacrylaten niedriger Molmasse, beispielsweise im Bereich zwischen 1000 und 4000 Dalton. Solche Polyacrylate sind kommerziell unter dem Handelsnamen Sokalan® PA15 bzw. Sokalan® PA25 (BASF) erhältlich. - 298 -
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 100000 g/mol, vorzugsweise 20000 bis 90000 g/mol und insbesondere 30000 bis 80000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Als Aniontenside in Säureform werden bevorzugt ein oder mehrere Stoffe aus der Gruppe der Carbonsäuren, der Schwefelsäurehalbester und der Sulfonsäuren, vorzugsweise aus der Gruppe der Fettsäuren, der Fettalkylschwefelsäuren und der Alkylarylsulfonsäuren, eingesetzt. Um ausreichende oberflächenaktive Eigenschaften aufzuweisen, sollten die genannten Verbindungen dabei über längerkettige Kohlenwasserstoffreste verfügen, also im Alkyl- oder Alkenylrest mindestens 6 C-Atome aufweisen. Üblicherweise liegen die C-Kettenverteilungen der Aniontenside im Bereich von 6 bis 40, vorzugsweise 8 bis 30 und insbesondere 12 bis 22 Kohlenstoffatome.
Carbonsäuren, die in Form ihrer Alkalimetallsalze als Seifen in Wasch- und Reinigungsmitteln Verwendung finden, werden technisch größtenteils aus nativen Fetten und Ölen durch Hydrolyse gewonnen. Während die bereits im vergangenen Jahrhundert durchgeführte alkalische Verseifung direkt zu den Alkalisalzen (Seifen) führte, wird heute großtechnisch zur Spaltung nur Wasser eingesetzt, das die Fette in Glycerin und die freien Fettsäuren spaltet. Großtechnisch angewendete Verfahren sind beispielsweise die Spaltung im Autoklaven oder die kontinuierliche Hochdruckspaltung. Im Rahmen der vorliegenden Erfindung als Aniontensid in Säureform einsetzbare Carbonsäuren sind beispielsweise Hexansäure (Capronsäure), Heptansäure (Önanthsäure), Octansäure (Caprylsäure), Nonansäure (Pelargonsäure), Decansäure (Caprinsäure), Undecansäure usw.. Bevorzugt ist im Rahmen der vorliegenden Verbindung der Einsatz von Fettsäuren wie Dodecansäure (Laurinsäure), Tetradecansäure (Myristinsäure), - 299 -
Hexadecansäure (Palmitinsäure), Octadecansäure (Stearinsäure), Eicosansäure (Arachinsäure), Docosansäure (Behensäure), Tetracosansäure (Lignocerinsäure), Hexacosansäure (Cerotinsäure), Triacotansäure (Melissinsäure) sowie der ungesättigten Spezies 9c-Hexadecensäure (Palmitoleinsäure), 6c-Octadecensäure (Petroselinsäure), 6t-Octadecensäure (Petroselaidinsäure), 9c-Octadecensäure (Ölsäure), 9t-Octadecensäure ((Elaidinsäure), 9c,12c-Octadecadiensäure (Linolsäure), 9t,12t-Octadecadiensäure (Linolaidinsäure) und 9c,12c,15c-Octadecatreinsäure (Linolensäure). Aus Kostengründen ist es bevorzugt, nicht die reinen Spezies einzusetzen, sondern technische Gemische der einzelnen Säuren, wie sie aus der Fettspaltung zugänglich sind. Solche Gemische sind beispielsweise Koskosölfettsäure (ca. 6 Gew.-% C8, 6 Gew.-% C10, 48 Gew.-% C12, 18 Gew.-% C14, 10 Gew.-% C16, 2 Gew.-% C18, 8 Gew.-% C18-, 1 Gew.-% C1fr), Palmkemölfettsäure (ca. 4 Gew.-% C8, 5 Gew.-% C10, 50 Gew.-% C12, 15 Gew.-% C14, 7 Gew.-% C16, 2 Gew.-% C18, 15 Gew.-% C18-, 1 Gew.-% C1t ), Taigfettsäure (ca. 3 Gew.-% C14, 26 Gew.-% C16, 2 Gew.-% C16-, 2 Gew.-% C17, 17 Gew.-% C18, 44 Gew.-% C18-, 3 Gew.-% C18 -, 1 Gew.-% C18 •••), gehärtete Taigfettsäure (ca. 2 Gew.-% C14, 28 Gew.-% C16, 2 Gew.-% C17, 63 Gew.-% C18, 1 Gew.-% C18 ), technische Ölsäure (ca. 1 Gew.-% C12, 3 Gew.-% C14, 5 Gew.-% C16, 6 Gew.-% C16-, 1 Gew.-% C17, 2 Gew.-% C18, 70 Gew.-% C18-, 10 Gew.-% C18-, 0,5 Gew.-% C18-), technische Palmitin/Stearinsäure (ca. 1 Gew.-% C12, 2 Gew.-% C1 , 45 Gew.-% C16, 2 Gew.-% C17, 47 Gew.-% C18, 1 Gew.-% C18-) sowie Sojabohnenölfettsäure (ca. 2 Gew.-% C14, 15 Gew.-% C16, 5 Gew.-% C18, 25 Gew.-% C18-, 45 Gew.-% C18-, 7 Gew.-% C18-).
Schwefelsäurehalbester längerkettiger Alkohole sind ebenfalls Aniontenside in ihrer Säureform und im Rahmen der vorliegenden Erfindung einsetzbar. Ihre Alkalimetall-, insbesondere Natriumsalze, die Fettalkoholsulfate, sind großtechnisch aus Fettalkoholen zugänglich, welche mit Schwefelsäure, Chlorsulfonsäure, Amidosulfonsäure oder Schwefeltrioxid zu den betreffenden Alkylschwefelsäuren umgesetzt und nachfolgend neutralisiert werden. Die Fettalkohole werden dabei aus den betreffenden Fettsäuren bzw. Fettsäuregemischen durch Hochdruckhydrierung der Fettsäuremethylester gewonnen. Der mengenmäßig bedeutendste industrielle Prozeß zur Herstellung von Fettalkylschwefelsäuren ist die Sulfierung der Alkohole mit S03/Luft-Gemischen in speziellen Kaskaden-, Fallfilm- oder Röhrenbündelreaktoren.
Eine weitere Klasse von Aniontensidsäuren, die erfindungsgemäß eingesetzt werden kann, sind die Alkyletherschwefelsäuren, deren Salze, die Alkylethersulfate, sich im Vergleich zu den Alkylsulfaten durch eine höhere Wasserlöslichkeit und geringere Empfindlichkeit gegen Wasserhärte (Löslichkeit der Ca-Salze) auszeichnen. Alkyletherschwefelsäuren werden wie die Alkylschwefelsäuren aus Fettalkoholen synthetisiert, welche mit Ethylenoxid zu den betreffenden Fettalkoholethoxylaten umgesetzt werden. Anstelle von Ethylenoxid kann auch Propylenoxid eingesetzt werden. Die nachfolgende Sulfonierung mit gasförmigem Schwefeltrioxid in Kurzzeit-Sulfierreaktoren liefert Ausbeuten über 98% an den betreffenden Alkyletherschwefelsäuren. - 300 -
Auch Alkansulfonsäuren und Olefinsulfonsäuren sind im Rahmen der vorliegenden Erfindung als Aniontenside in Säureform einsetzbar. Alkansulfonsäuren können die Sulfonsäuregruppe terminal gebunden (primäre Alkansulfonsäuren) oder entlang der C-Kette enthalten (sekundäre Alkansulfonsäuren), wobei lediglich die sekundären Alkansulfonsäuren kommerzielle Bedeutung besitzen. Diese werden durch Sulfochlorierung oder Sulfoxidation linearer Kohlenwasserstoffe hergestellt. Bei der Sulfochlorierung nach Reed werden n-Paraffine mit Schwefeldioxid und Chlor unter Bestrahlung mit UV-Licht zu den entsprechenden Sulfochloriden umgesetzt, die bei Hydrolyse mit Alkalien direkt die Alkansulfonate, bei Umsetzung mit Wasser die Alkansulfonsäuren, liefern. Da bei der Sulfochlorierung Di- und Polysulfochloride sowie Chlorkohlenwasserstoffe als Nebenprodukte der radikalischen Reaktion auftreten können, wird die Reaktion üblicherweise nur bis zu Umsetzungsgraden von 30% durchgeführt und danach abgebrochen.
Ein anderer Prozeß zur Herstellung von Alkansulfonsäuren ist die Sulfoxidation, bei der n-Paraffine unter Bestrahlung mit UV-Licht mit Schwefeldioxid und Sauerstoff umgesetzt werden. Bei dieser Radikalreaktion entstehen sukzessive Alkylsulfonylradikale, die mit Sauerstoff zu den Alkylpersulfonylradiaklen weiter reagieren. Die Reaktion mit unumgesetztem Paraffin liefert ein Alkylradikal und die Alkylpersulfonsäure, welche in ein Alkylperoxysulfonylradikal und ein Hydroxylradikal zerfällt. Die Reaktion der beiden Radikale mit unumgesetztem Paraffin liefert die Alkylsulfonsäuren bzw. Wasser, welches mit Alkylpersulfonsäure und Schwefeldioxid zu Schwefelsäure reagiert. Um die Ausbeute an den beiden Endprodukten Alkylsulfonsäure und Schwefelsäure möglichst hoch zu halten und Nebenreaktionen zu unterdrücken, wird diese Reaktion üblicherweise nur bis zu Umsetzungsgraden von 1% durchgeführt und danach abgebrochen.
Olefinsulfonate werden technisch durch Reaktion von α-Olefinen mit Schwefeltrioxid hergestellt. Hierbei bilden sich intermediär Zwitterionen, welche sich zu sogenannten Sultanen cyclisieren. Unter geeigneten Bedingungen (alkalische oder saure Hydrolyse) reagieren diese Sultone zu Hydroxylalkansulfonsäuren bzw. Alkensulfonsäuren, welche beide ebenfalls als Aniontensidsäuren eingesetzt werden können.
Alkylbenzolsulfonate als leistungsstarke anionische Tenside sind seit den dreißiger Jahren unseres Jahrhunderts bekannt. Damals wurden durch Monochlorierung von Kogasin-Fraktionen und subsequente Friedel-Crafts-Alkylierung Alkylbenzole hergestellt, die mit Oleum sulfoniert und mit Natronlauge neutralisiert wurden. Anfang der fünfziger Jahre wurde zur Herstellung von Alkylbenzolsulfonaten Propylen zu verzweigtem α-Dodecylen tetramerisiert und das Produkt über eine Friedel-Crafts-Reaktion unter Verwendung von Aluminiumtrichlorid oder Fluorwasserstoff zum Tetrapropylenbenzol umgesetzt, das nachfolgend sulfoniert und neutralisiert wurde. Diese - 301 -
ökonomische Möglichkeit der Herstellung von Tetrapropylenbenzolsulfonaten (TPS) führte zum Durchbruch dieser Tensidklasse, die nachfolgend die Seifen als Haupttensid in Wasch- und Reinigungsmitteln verdrängte.
Aufgrund der mangelnden biologischen Abbaubarkeit von TPS bestand die Notwendigkeit, neue Alkylbenzolsulfonate darzustellen, die sich durch ein verbessertes ökologische Verhalten auszeichnen. Diese Erfordernisse werden von linearen Alkylbenzolsulfonaten erfüllt, welche heute die fast ausschließlich hergestellten Alkylbenzolsulfonate sind und mit dem Kurzzeichen ABS bzw. LAS belegt werden. ,
Lineare Alkylbenzolsulfonate werden aus linearen Alkylbenzolen hergestellt, welche wiederum aus linearen Olefinen zugänglich sind. Hierzu werden großtechnisch Petroleumfraktionen mit Molekularsieben in die n-Paraffine der gewünschten Reinheit aufgetrennt und zu den n-Olefinen dehydriert, wobei sowohl α- als auch i-Olefine resultieren. Die entstandenen Olefine werden dann in Gegenwart saurer Katalysatoren mit Benzol zu den Alkylbenzolen umgesetzt, wobei die Wahl des Friedel-Crafts-Katalysators einen Einfluß auf die Isomerenverteilung der entstehenden linearen Alkylbenzole hat: Bei Verwendung von Aluminiumtrichiorid liegt der Gehalt der 2-Phenyl-lsomere in der Mischung mit den 3-, 4-, 5- und anderen Isomeren bei ca. 30 Gew.-%, wird hingegen Fluorwasserstoff als Katalysator eingesetzt, läßt sich der Gehalt an 2-Phenyl-lsomer auf ca. 20 Gew.-% senken. Die Sulfonierung der linearen Alkylbenzole schließlich gelingt heute großtechnisch mit Oleum, Schwefelsäure oder gasförmigem Schwefeltrioxid, wobei letzteres die weitaus größte Bedeutung hat. Zur Sulfonierung werden spezielle Film- oder Rohrbündelreaktoren eingesetzt, die als Produkt eine 97 Gew.-%ige Alkylbenzolsulfonsäure (ABSS) liefern, die im Rahmen der vorliegenden Erfindung als Aniontensidsäure einsetzbar ist.
Durch Wahl des Neutralisationsmittels lassen sich aus den ABSS die unterschiedlichsten Salze, d.h. Alkylbenzolsulfonate, gewinnen. Aus Gründen der Ökonomie ist es hierbei bevorzugt, die Alkalimetallsalze und unter diesen bevorzugt die Natriumsalze der ABSS herzustellen und einzusetzen. Diese lassen sich durch die allgemeine Formel IX beschreiben:
- 302 -
in der die Summe aus x und y üblicherweise zwischen 5 und 13 liegt. Erfindungsgemäß bevorzugt als Aniontensid in Säureform sind C8.16-, vorzugsweise C93-Alkylbenzolsulfonsäuren. Es ist im Rahmen der vorliegenden Erfindung weiterhin bevorzugt, C86-, vorzugsweise C9.13- Alkybenzolsulfonsäuren einzusetzen, die sich von Alkylbenzolen ableiten, welche einen Tetralingehalt unter 5 Gew.-%, bezogen auf das Alkylbenzol, aufweisen. Weiterhin bevorzugt ist es, Alkylbenzolsulfonsäuren zu verwenden, deren Alkylbenzole nach dem HF-Verfahren hergestellt wurden, so daß die eingesetzten C8.16-, vorzugsweise C93-Alkybenzolsulfonsäuren einen Gehalt an 2-Phenyl-lsomer unter 22 Gew.-%, bezogen auf die Alkylbenzolsulfonsäure, aufweisen.
Die vorstehend genannten Aniontenside in ihrer Säureform können alleine oder in Mischung miteinander eingesetzt werden. Es ist aber auch möglich und bevorzugt, daß dem Aniontensid in Säureform vor der Zugabe auf das/die Trägermaterial(ien) weitere, vorzugsweise saure, Inhaltsstoffe von Wasch- und Reinigungsmitteln in Mengen von 0,1 bis 40 Gew.-%, vorzugsweise von 1 bis 15 Gew.-% und insbesondere von 2 bis 10 Gew.-%, jeweils bezogen auf das Gewicht der umzusetzenden Mischung, zugemischt werden.
Als saure Reaktionspartner eignen sich im Rahmen der vorliegenden Erfindung neben den „Tensidsäuren" auch die genannten Fettsäuren, Phosphonsäuren, Polymersäuren oder teilneutralisierte Polymersäuren sowie „Buildersäuren" und „Komplexbuildersäuren" (Einzelheiten später im Text) aileine sowie in beliebigen Mischungen. Als Inhaltsstoffe von Wasch- und Reinigungsmitteln bieten sich vor allem saure Wasch- und Reinigungsmittel-Inhaltsstoffe an, also beispielsweise Phosphonsäuren, welche in neutralisierter Form (Phosphonate) als Inkrustationsinhibitoren Bestandteil vieler Wasch- und Reinigungsmittel sind. Auch der Einsatz von (teilneutralisierten) Polymersäuren wie beispielsweise Polyacrylsäuren, ist erfindungsgemäß möglich. Es ist aber auch möglich, säurestabile Inhaltsstoffe mit der Aniontensidsäure zu vermischen. Hier bieten sich beispielsweise sogenannte Kleinkomponenten an, welche sonst in aufwendigen weiteren Schritten zugegeben werden müßten, also beispielsweise optische Aufheller, Farbstoffe usw., wobei im Einzelfall die Säurestabilität zu prüfen ist.
Selbstverständlich ist es auch möglich, die Aniontenside teil- oder vollneutralisiert einzusetzen. Diese Salze können dann als Lösung, Suspension oder Emulsion in der Granulierflüssigkeit vorliegen, aber auch als Feststoff Bestandteil des Feststoffbetts sein. Als Kationen für solche Aniontenside bieten sich neben den Alkalimetallen (hier insbesondere nach Anspruch- und K- Salze) Ammonium- sowie Mono-, Di- oder Triethanolalkonium-Ionen an. Anstelle von Mono-, Dioder Triethanolamin können auch die analogen Vertreter des Mono-, Di- oder Trimethanolamins bzw. solche der Alkanolamine höherer Alkohole quaterniert und als Kation zugegen sein. - 303 -
Auch Kationtenside lassen sich mit Vorteil als Aktivsubstanz einsetzen. Das Kationtensid kann dabei in seiner Lieferform direkt in den Mischer gegeben werden, oder in Form einer flüssigen bis pastösen Kationtensid-Zubereitungsform auf den festen Träger aufgedüst werden. Solche Kationtensid-Zubereitungsformen lassen sich beispielsweise durch Mischen handelsüblicher Kationtenside mit Hilfsstoffen wie nichtionischen Tensiden, Polyethylenglycolen oder Polyolen herstellen. Auch niedere Alkohole wie Ethanol und Isopropanol können eingesetzt werden, wobei die Menge an solchen niederen Alkoholen in der flüssigen Kationtensid-Zubereitungsform aus den obengenannten Gründen unter 10 Gew.-% liegen sollte.
Als Kationtenside kommen für die erfindungsgemäßen Mittel alle üblichen Stoffe in Betracht, wobei Kationtenside mit textilweichmachender Wirkung deutlich bevorzugt sind.
Die erfindungsgemäßen Mittel können als kationische Aktivsubstanzen mit textilweichmachender Wirkung ein oder mehrerer kationische, textilweichmachende Mittel der Formeln X, XI oder XII enthalten:
R1
R1-Nϊ+)-(CH2)n-T-R2 (XI)
(CH2)n-T-Rz
R1
R1-N(+)-(CH2)n-CH-CH2 (XII)
R1 T T
R2 R2
R1
R3-N(+)-(CH2)n-T-R2 (XIII)
R4 - 304 -
worin jede Gruppe R1 unabhängig voneinander ausgewählt ist aus Cι_6-Alkyl-, -Alkenyl- oder - Hydroxyalkylgruppen; jede Gruppe R2 unabhängig voneinander ausgewählt ist aus C8.28-Alkyl- oder -Alkenylgruppen; R3 = R1 oder (CH2)n-T-R2; R4 = R1 oder R2 oder (CH2)n-T-R2; T = -CH2-, -O-CO- oder -CO-O- und n eine ganze Zahl von 0 bis 5 ist.
In bevorzugten Ausführungsformen der vorliegenden Erfindung enthält/enthalten der/die Feststoff(e) zusätzlich Niotensid(e) als Aktivsubstanz.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12.14-Alkohole mit 3 EO oder 4 EO, C9.ι Alkohol mit 7 EO, C13.15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C128- Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12.-ι4- Alkohol mit 3 EO und Cι2.18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Als besonders bevorzugte Niotenside haben sich im Rahmen der vorliegenden Erfindung schwachschäumende Niotenside erwiesen, welche alternierende Ethylenoxid- und Alkylenoxideinheiten aufweisen. Unter diesen sind wiederum Tenside mit EO-AO-EO-AO-Blöcken bevorzugt, wobei jeweils eine bis zehn EO- bzw. AO-Gruppen aneinander gebunden sind, bevor ein Block aus den jeweils anderen Gruppen folgt. Hier sind erfindungsgemäße Mittel bevorzugt, die als nichionische(s) Tensid(e) Tenside der allgemeinen Formel XIV enthalten
R1-0-(CH2-CH2-0)w-(CH2-CH-0)x-(CH2-CH2-0)y-(CH2-CH-0)z-H (XIV)
I I
R2 R3 - 305 -
in der R1 für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C6.2 -Alkyl- oder -Alkenylrest steht; jede Gruppe R2 bzw. R3 unabhängig voneinander ausgewählt ist aus -CH3; -CH2CH3, -CH2CH2-CH3, CH(CH3)2 und die Indizes w, x, y, z unabhängig voneinander für ganze Zahlen von 1 bis 6 stehen.
Die bevorzugten Niotenside der Formel XIV lassen sich durch bekannte Methoden aus den entsprechenden Alkoholen R1-OH und Ethylen- bzw. Alkylenoxid herstellen. Der Rest R1 in der vorstehenden Formel XIV kann je nach Herkunft des Alkohols variieren. Werden native Quellen genutzt, weist der Rest R1 eine gerade Anzahl von Kohlenstoffatomen auf und ist in der Regel unverzweigt, wobei die linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, bevorzugt sind. Aus sysnthetischen Quellen zugängliche Alkohole sind beispielsweise die Guerbetalkohole oder in 2-Stellung methylverzweigte bzw. lineare und methylverzweigte Reste im Gemisch, so wie sie üblicherweise in Oxoalkohol- resten vorliegen. Unabhängig von der Art des zur Herstellung der erfindungsgemäß in den Mitteln enthaltenen Niotenside eingesetzten Alkohols sind erfindungsgemäße Mittel bevorzugt, bei denen R1 in Formel XIV für einen Alkylrest mit 6 bis 24, vorzugsweise 8 bis 20, besonders bevorzugt 9 bis 15 und insbesondere 9 bis 11 Kohlenstoffatomen steht.
Als Alkylenoxideinheit, die alternierend zur Ethylenoxideinheit in den bevorzugten Niotensiden enthalten ist, kommt neben Propylenoxid insbesondere Butylenoxid in Betracht. Aber auch weitere Alkylenoxide, bei denen R2 bzw. R3 unabhängig voneinander ausgewählt sind aus -CH2CH2-CH3 bzw. CH(CH3)2 sind geeignet. Bevorzugte Mittel sind dadurch gekennzeichnet, daß R2 bzw. R3 für einen Rest -CH3, w und x unabhängig voneinander für Werte von 3 oder 4 und y und z unabhängig voneinander für Werte von 1 oder 2 stehen.
Zusammenfassend sind zum Einsatz in den erfindungsgemäßen Mitteln insbesondere nichtionische Tenside bevorzugt, die einen C95-Alkylrest mit 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten, gefolgt vonl bis 4 Ethylenoxideinheiten, gefolgt vonl bis 4 Propylenoxideinheiten aufweisen.
Die angegebenen C-Kettenlängen sowie Ethoxylierungsgrade bzw. Alkoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Aufgrund der Herstellverfahren bestehen Handelsprodukte der genannten Formeln zumeist nicht aus einem individuellen Vertreter, sondern aus Gemischen, wodurch sich sowohl für die C-Kettenlängen als auch für die Ethoxylierungsgrade bzw. Alkoxylierungsgrade Mittelwerte und daraus folgend gebrochene Zahlen ergeben können. - 306 -
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Mono- glykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel XV,
R '
R-CO-N-[Z] (XV)
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel XVI,
R1-0-R2
I R-CO-N-[Z] (XVI) - 307 -
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C^-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N- Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Es ist für viele Anwendungen besonders bevorzugt, wenn das Verhältnis von Aniontensid(en) zu Niotensid(en) zwischen 10:1 und 1:10, vorzugsweise zwischen 7,5:1 und 1:5 und insbesondere zwischen 5:1 und 1:2 beträgt. Bevorzugt sind dabei erfindungsgemäße Behälter, die Tensid(e), vorzugsweise anionische(s) und/oder nichtionische(s) Tensid(e), in Mengen von 5 bis 80 Gew.-%, vorzugsweise von 7,5 bis 70 Gew.-%, besonders bevorzugt von 10 bis 60 Gew.-% uns insbesondere von 12,5 bis 50 Gew.-%, jeweils bezogen auf das Gewicht der umschlossenen Feststoffe, enthalten.
Wie bereits erwähnt, beschränkt sich der Einsatz von Tensiden bei Reinigungsmitteln für das maschinelle Geschirrspülen vorzugsweise auf den Einsatz nichtionischer Tenside in geringen Mengen. Sollen die erfindungsgemäßen Behälter derartige Mittel umschließen, so enthalten diese Mittel vorzugsweise nur bestimmte nichtionische Tenside, die nachstehend beschrieben sind. Als Tenside werden in maschinellen Geschirrspülmitteln üblicherweise lediglich schwachschäumende nichtionische Tenside eingesetzt. Vertreter aus den Gruppen der anionischen, kationischen oder amphoteren Tenside haben dagegen eine geringere Bedeutung. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten eth- oxylierten Alkoholen gehören beispielsweise C12.ι -Alkohole mit 3 EO oder 4 EO, C9.1 Alkohol mit - 308 -
7 EO, C13.15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12.18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12.14-Alkohol mit 3 EO und Cι28-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Insbesondere bei erfindungsgemäßen wasserlöslichen Behältern für die Portionierung, Verpackung und Dosierung von Reinigungsmitteln für das maschinelle Geschirrspülen ist es bevorzugt, daß diese ein nichtionisches Tensid enthalten, das einen Schmelzpunkt oberhalb Raumtemperatur aufweist, bevorzugt ein nichtionisches Tensid mit einem Schmelzpunkt oberhalb von 20°C. Bevorzugt einzusetzende nichtionische Tenside weisen Schmelzpunkte oberhalb von 25°C auf, besonders bevorzugt einzusetzende nichtionische Tenside haben Schmelzpunkte zwischen 25 und 60°C, insbesondere zwischen 26,6 und 43,3°C.
Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden bei Raumtemperaturhochviskose Niotenside eingesetzt, so ist bevorzugt, daß diese eine Viskosität oberhalb von 20 Pas, vorzugsweise oberhalb von 35 Pas und insbesondere oberhalb 40 Pas aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.
Bevorzugt als bei Raumtemperatur feste einzusetzende Niotenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie
Polyoxypropylen/Polyoxyethylen/Polyoxypropylen (PO/EO/PO)-Tenside. Solche (PO/EO/PO)- Niotenside zeichnen sich darüberhinaus durch gute Schaumkontrolle aus.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tensid mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C-Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist.
Ein besonders bevorzugtes bei Raumtemperatur festes, einzusetzendes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16.2o-Alkohol), vorzugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere - 309 -
mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten „narrow ränge ethoxylates" (siehe oben) besonders bevorzugt.
Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus.
Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen- Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block- Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan.
Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind beispielsweise unter dem Namen Poly Tergent® SLF-18 von der Firma Olin Chemicals erhältlich.
Ein weiter bevorzugtes Tensid läßt sich durch die Formel
R10[CH2CH(CH3)0]x[CH2CH20]y[CH2CH(OH)R2]
beschreiben, in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1 ,5 und y für einen Wert von mindestens 15 steht.
Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel
R10[CH2CH(R3)0]x[CH2]kCH(OH)[CH2]jOR2
in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoff reste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen - 310 -
Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≥ 2 ist, kann jedes R3 in der obenstehenden Formel unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C- Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich sein, falls x ≥ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid- (R3 = H) oder Propylenoxid- (R3 = CH3) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)- Gruppen einschließt, oder umgekehrt.
Insbesondere bevorzugte endgruppenverschlossenen Poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so daß sich die vorstehende Formel zu
R10[CH2CH(R3)0]xCH2CH(OH)CH2OR2
vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
Bevorzugte erfindungsgemäße Mittel, welche als maschinelle Geschirrspülmittel eingesetzt werden, enthalten neben den genannten Tensiden zur Verbesserung des Klarspülergebnisses weiterhin amphotere oder kationische Polymere.
Erfindungsgemäße Mittel können zur Steigerung der Wasch-, beziehungsweise Reinigungsleistung Enzyme enthalten, wobei prinzipiell alle im Stand der Technik für diese Zwecke etablierten Enzyme einsetzbar sind. Hierzu gehören insbesondere Proteasen, Amylasen, Lipasen, Hemicellulasen, Cellulasen oder Oxidoreduktasen sowie vorzugsweise deren Gemische. Diese Enzyme sind im - 311 -
Prinzip natürlichen Ursprungs; ausgehend von den natürlichen Molekülen stehen für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Varianten zur Verfügung, die entsprechend bevorzugt eingesetzt werden. Erfindungsgemäße Mittel enthalten Enzyme vorzugsweise in Gesamtmengen von 1 x 10"6 bis 5 Gewichts-Prozent bezogen auf aktives Protein. Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren (Bichinchoninsäure; 2,2'-Bichinolyl- 4,4'-dicarbonsäure) oder dem Biuret-Verfahren bestimmt werden.
Unter den Proteasen sind solche vom Subtilisin-Typ bevorzugt. Beispiele hierfür sind die Subtilisine BPN' und Carlsberg, die Protease PB92, die Subtilisine 147 und 309, die Alkalische Protease aus Bacillus lentus, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase, Proteinase K und die Proteasen TW3 und TW7. Subtilisin Carlsberg ist in weiterentwickelter Form unter dem Handelsnamen Alcalase® von der Firma Novozymes A/S, Bagsvasrd, Dänemark, erhältlich. Die Subtilisine 147 und 309 werden unter den Handelsnamen Esperase®, beziehungsweise Savinase® von der Firma Novozymes vertrieben. Von der Protease aus Bacillus lentus DSM 5483 leiten sich die unter der Bezeichnung BLAP® geführten Varianten ab.
Weitere brauchbare Proteasen sind beispielsweise die unter den Handelsnamen Durazym®, Relase®, Everlase®, Nafizym, Natalase®, Kannase® und Ovozymes® von der Firma Novozymes, die unter den Handelsnamen, Purafect®, Purafect®OxP und Properase® von der Firma Genencor, das unter dem Handelsnamen Protosol® von der Firma Advanced Biochemicals Ltd., Thane, Indien, das unter dem Handelsnamen Wuxi® von der Firma Wuxi Snyder Bioproducts Ltd., China, die unter den Handelsnamen Proleather® und Protease P® von der Firma Amano Pharmaceuticals Ltd., Nagoya, Japan, und das unter der Bezeichnung Proteinase K-16 von der Firma Kao Corp., Tokyo, Japan, erhältlichen Enzyme.
Beispiele für erfindungsgemäß einsetzbare Amylasen sind die α-Amylasen aus Bacillus licheniformis, aus ß. amyloliquefaciens oder aus ß. stearothermophilus sowie deren für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Weiterentwicklungen. Das Enzym aus ß. licheniformis ist von der Firma Novozymes unter dem Namen Termamyl® und von der Firma Genencor unter dem Namen Purastar®ST erhältlich. Weiterentwicklungsprodukte dieser α-Amylase sind von der Firma Novozymes unter den Handelsnamen Duramyl® und Termamyl®ultra, von der Firma Genencor unter dem Namen Purastar®OxAm und von der Firma Daiwa Seiko Inc., Tokyo, Japan, als Keistase® erhältlich. Die α-Amylase von ß. amyloliquefaciens wird von der Firma Novozymes unter dem Namen BAN® vertrieben, und abgeleitete Varianten von der α-Amylase aus ß. stearothermophilus unter den Namen BSG® und Novamyl®, ebenfalls von der Firma Novozymes. - 312 -
Desweiteren sind für diesen Zweck die α-Amylase aus Bacillus sp. A 7-7 (DSM 12368) und die Cyclodextrin-Glucanotransferase (CGTase) aus ß. agaradherens (DSM 9948) hervorzuheben; ebenso sind Fusionsprodukte der genannten Moleküle einsetzbar.
Darüber hinaus sind die unter den Handelsnamen Fungamyl® von der Firma Novozymes erhältlichen Weiterentwicklungen der α-Amylase aus Aspergillus niger und A. oryzae geeignet. Ein weiteres Handelsprodukt ist beispielsweise die Amylase-LT®.
Erfindungsgemäße Mittel können Lipasen oder Cutinasen, insbesondere wegen ihrer Triglycerid- spaltenden Aktivitäten enthalten, aber auch, um aus geeigneten Vorstufen in situ Persäuren zu erzeugen. Hierzu gehören beispielsweise die ursprünglich aus Humicola lanuginosa (Thermomyces lanuginosus) erhältlichen, beziehungsweise weiterentwickelten Lipasen, insbesondere solche mit dem Aminosäureaustausch D96L. Sie werden beispielsweise von der Firma Novozymes unter den Handelsnamen Lipolase®, Lipolase®Ultra, LipoPrime®, Lipozyme® und Lipex® vertrieben. Desweiteren sind beispielsweise die Cutinasen einsetzbar, die ursprünglich aus Fusarium solani pisi und Humicola insolens isoliert worden sind. Ebenso brauchbare Lipasen sind von der Firma Amano unter den Bezeichnungen Lipase CE®, Lipase P®, Lipase B®, beziehungsweise Lipase CES®, Lipase AKG®, Bacillis sp. Lipase®, Lipase AP®, Lipase M-AP® und Lipase AML® erhältlich. Von der Firma Genencor sind beispielsweise die Lipasen, beziehungsweise Cutinasen einsetzbar, deren Ausgangsenzyme ursprünglich aus Pseudomonas mendocina und Fusarium solanii isoliert worden sind. Als weitere wichtige Handelsprodukte sind die ursprünglich von der Firma Gist-Brocades vertriebenen Präparationen M1 Lipase® und Lipomax® und die von der Firma Meito Sangyo KK, Japan, unter den Namen Lipase MY-30®, Lipase OF® und Lipase PL® vertriebenen Enzyme zu erwähnen, ferner das Produkt Lumafast® von der Firma Genencor.
Erfindungsgemäße Mittel können, insbesondere wenn sie für die Behandlung von Textilien gedacht sind, Cellulasen enthalten, je nach Zweck als reine Enzyme, als Enzympräparationen oder in Form von Mischungen, in denen sich die einzelnen Komponenten vorteilhafterweise hinsichtlich ihrer verschiedenen Leistungsaspekte ergänzen. Zu diesen Leistungsaspekten zählen insbesondere Beiträge zur Primärwaschleistung, zur Sekundärwaschleistung des Mittels (Antiredepositionswirkung oder Vergrauungsinhibition) und Avivage (Gewebewirkung), bis hin zum Ausüben eines „stone washed"-Effekts.
Eine brauchbare pilzliche, Endoglucanase(EG)-reiche Cellulase-Präparation, beziehungsweise deren Weiterentwicklungen werden von der Firma Novozymes unter dem Handelsnamen Celluzyme® angeboten. Die ebenfalls von der Firma Novozymes erhältlichen Produkte Endolase® und Carezyme® basieren auf der 50 kD-EG, beziehungsweise der 43 kD-EG aus H. insolens - 313 -
DSM 1800. Weitere mögliche Handelsprodukte dieser Firma sind Cellusoft® und Renozyme®. Ebenso ist die 20 kD-EG Cellulase aus Melanocarpus, die von der Firma AB Enzymes, Finnland, unter den Handelsnamen Ecostone® und Biotouch® erhältlich ist, einsetzbar. Weitere Handelprodukte der Firma AB Enzymes sind Econase® und Ecopulp®. Eine weitere geeignete Cellulase aus Bacillus sp. CBS 670.93 ist von der Firma Genencor unter dem Handelsnamen Puradax® erhältlich. Weitere Handelsprodukte der Firma Genencor sind „Genencor detergent cellulase L" und lndiAge®Neutra.
Erfindungsgemäße Mittel können weitere Enzyme enthalten, die unter dem Begriff Hemicellulasen zusammengefaßt werden. Hierzu gehören beispielsweise Mannanasen, Xanthanlyasen, Pektinlyasen (=Pektinasen), Pektinesterasen, Pektatlyasen, Xyloglucanasen (=Xylanasen), Pullulanasen und ß-Glucanasen. Geeignete Mannanasen sind beispielsweise unter den Namen Gamanase® und Pektinex AR® von der Firma Novozymes, unter dem Namen Rohapec® B1 L von der Firma AB Enzymes und unter dem Namen Pyrolase® von der Firma Diversa Corp., San Diego, CA, USA erhältlich. Die aus ß. subtilis gewonnene ß-Glucanase ist unter dem Namen Cereflo® von der Firma Novozymes erhältlich.
Zur Erhöhung der bleichenden Wirkung können erfindungsgemäße Wasch- oder Reinigungsmittel Oxidoreduktasen, beispielsweise Oxidasen, Oxygenasen, Katalasen, Peroxidasen, wie Halo-, Chloro-, Bromo-, Lignin-, Glucose- oder Mangan-peroxidasen, Dioxygenasen oder Laccasen (Phenoloxidasen, Polyphenoloxidasen) enthalten. Als geeignete Handelsprodukte sind Denilite® 1 und 2 der Firma Novozymes zu nennen. Vorteilhafterweise werden zusätzlich vorzugsweise organische, besonders bevorzugt aromatische, mit den Enzymen wechselwirkende Verbindungen zugegeben, um die Aktivität der betreffenden Oxidoreduktasen zu verstärken (Enhancer) oder um bei stark unterschiedlichen Redoxpotentialen zwischen den oxidierenden Enzymen und den Anschmutzungen den Elektronenfluß zu gewährleisten (Mediatoren).
Die in erfindungsgemäßen Mitteln eingesetzten Enzyme stammen entweder ursprünglich aus Mikroorganismen, etwa der Gattungen Bacillus, Streptomyces, Humicola, oder Pseudomonas, und/oder werden nach an sich bekannten biotechnologischen Verfahren durch geeignete Mikroorganismen produziert, etwa durch transgene Expressionswirte der Gattungen Bacillus oder filamentöse Fungi.
Die Aufreinigung der betreffenden Enzyme erfolgt günstigerweise über an sich etablierte Verfahren, beispielsweise über Ausfällung, Sedimentation, Konzentrierung, Filtration der flüssigen Phasen, Mikrofiltration, Ultrafiltration, Einwirken von Chemikalien, Desodorierung oder geeignete Kombinationen dieser Schritte. - 314 -
Erfindungsgemäßen Mitteln können die Enzyme in jeder nach dem Stand der Technik etablierten Form zugesetzt werden. Hierzu gehören beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren versetzt.
Alternativ können die Enzyme sowohl für die feste als auch für die flüssige Darreichungsform verkapselt werden, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem, vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kern-Schale-Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalien-undurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluid-bed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.
Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so daß ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.
Ein in einem erfindungsgemäßen Mittel enthaltenes Protein und/oder Enzym kann besonders während der Lagerung gegen Schädigungen wie beispielsweise Inaktivierung, Denaturierung oder Zerfall etwa durch physikalische Einflüsse, Oxidation oder proteolytische Spaltung geschützt werden. Bei mikrobieller Gewinnung der Proteine und/oder Enzyme ist eine Inhibierung der Proteolyse besonders bevorzugt, insbesondere wenn auch die Mittel Proteasen enthalten. Erfindungsgemäße Mittel können zu diesem Zweck Stabilisatoren enthalten; die Bereitstellung derartiger Mittel stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar.
Eine Gruppe von Stabilisatoren sind reversible Proteaseinhibitoren. Häufig werden Benzamidin- Hydrochlorid, Borax, Borsäuren, Boronsäuren oder deren Salze oder Ester verwendet, darunter vor allem Derivate mit aromatischen Gruppen, etwa ortho-,meta- oder para-substituierte Phenylboronsäuren, beziehungsweise deren Salze oder Ester. Weiterhin sind Peptidaldehyde, das heißt Oligopeptide mit reduziertem C-Terminus geeignet. Als peptidische Proteaseinhibitoren sind unter anderem Ovomucoid und Leupeptin zu erwähnen; eine zusätzliche Option ist die Bildung von Fusionsproteinen aus Proteasen und Peptid-Inhibitoren. - 315 -
Weitere Enzymstabilisatoren sind Aminoalkohole wie Mono-, Di-, Triethanol- und -Propanolamin und deren Mischungen, aliphatische Carbonsäuren bis zu C12, wie Bernsteinsäure, andere Dicarbonsäuren oder Salze der genannten Säuren. Auch endgruppenverschlossene Fettsäureamidalkoxylate sind als Stabilisatoren einsetzbar.
Niedere aliphatische Alkohole, vor allem aber Polyole, wie beispielsweise Glycerin, Ethylenglykol, Propylenglykol oder Sorbit sind weitere häufig eingesetzte Enzymstabilisatoren. Weiterhin schützt auch Di-Glycerinphosphat gegen Denaturierung durch physikalische Einflüsse. Ebenso werden Calciumsalze verwendet, wie beispielsweise Calciumacetat oder Calcium-Formiat sowie Magnesiumsalze.
Polyamid-Oligomere oder polymere Verbindungen wie Lignin, wasserlösliche Vinyl-Copolymere oder, wie Cellulose-Ether, Acryl-Polymere und/oder Polyamide stabilisieren die Enzym-Präparation unter anderem gegenüber physikalischen Einflüssen oder pH-Wert-Schwankungen. Polyamin-N- Oxid-enthaltende Polymere wirken gleichzeitig als Enzymstabilisatoren und als Farbübertragungsinhibitoren. Andere polymere Stabilisatoren sind die linearen C8-C18 Polyoxyalkylene. Alkylpolyglycoside können gemäß den ebenfalls die enzymatischen Komponenten des erfindungsgemäßen Mittels stabilisieren und sogar in ihrer Leistung steigern. Vernetzte N-haltige Verbindungen erfüllen eine Doppelfunktion als Soil-release-Agentien und als Enzym-Stabilisatoren.
Reduktionsmittel und Antioxidantien wie Natrium-Sulfit oder reduzierende Zucker erhöhen die Stabilität der Enzyme gegenüber oxidativem Zerfall.
Bevorzugt werden Kombinatonen von Stabilisatoren verwendet, beispielsweise aus Polyolen, Borsäure und/oder Borax, die Kombination von Borsäure oder Borat, reduzierenden Salzen und Bernsteinsäure oder anderen Dicarbonsäuren oder die Kombination von Borsäure oder Borat mit Polyolen oder Polyaminoverbindungen und mit reduzierenden Salzen. Die Wirkung von Peptid- Aldehyd-Stabilisatoren kann durch die Kombination mit Borsäure und/oder Borsäurederivaten und Polyolen gesteigert und gemäß durch die zusätzliche Verwendung von zweiwertigen Kationen, wie zum Beispiel Calcium-Ionen weiter verstärkt werden.
Besonders bevorzugt ist im Rahmen der vorliegenden Erfindung der Einsatz flüssiger Enzymformulierungen. Hier sind erfindungsgemäße Mittel bevorzugt, die zusätzlich Enzyme und/oder Enzymzubereitungen, vorzugsweise feste und/oder flüssige Protease-Zubereitungen und/oder Amylase-Zubereitungen, in Mengen von 1 bis 5 Gew.-%, vorzugsweise von 1,5 bis 4,5 und insbesondere von 2 bis 4 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten. - 316 -
Um den Zerfall der optional in den erfindgungsgemäßen Mitteln umfaßten Feststoffe wie beispielsweise Tabletten oder Granulate zu erleichtern, können diese Komprimate Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, enthalten. Unter
Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate. Alle genannten Desintegrationshilfsmittel sind erfindungsgemäß einsetzbar.
Als bevorzugte Desintegrationshilfsmittel werden im Rahmen der vorliegenden Erfindung Destintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granulärer, cogranulierter oder kompaktierter Form, eingesetzt.
Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein ß-1 ,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50,000 bis 500,000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose- Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen.
Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders - 317 -
bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist. Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kompaktierbar sind.
Zusätzlich oder anstelle der Desintegrationshilfsmittel auf Cellulosebasis können die erfindungsgemäßen Mittel ein gasfreisetzendes System aus organischen Säuren und Carbonaten/Hydrogencarbonaten enthalten.
Als organische Säuren, die aus den Carbonaten/Hydrogencarbonaten in wäßriger Lösung Kohlendioxid freisetzen, sind beispielsweise die festen Mono-, Oligo- und Polycarbonsäuren einsetzbar. Aus dieser Gruppe wiederum bevorzugt sind Citronensäure, Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.- %).
Die genannten Säuren müssen nicht stöchiometrisch zu den in den Komprimaten enthaltenen Carbonaten bzw. Hydrogencarbonaten eingesetzt werden.
Eine im Rahmen der vorliegenden Erfindung bevorzugtes Wasch- und Reinigungsmittelkomprimat enthält zusätzlich ein Brausesystem.
Das gasentwickelnde Brausesystem besteht in den erfindungsgemäßen Mitteln neben den genannten organischen Säuren aus Carbonaten und/oder Hydrogencarbonaten. Bei den Vertretern dieser Stoffklasse sind aus Kostengründen die Alkalimetallsalze deutlich bevorzugt. Bei den Alkalimetallcarbonaten bzw. -hydrogencarbonaten wiederum sind die Natrium- und Kaliumsalze aus Kostengründen gegenüber den anderen Salzen deutlich bevorzugt. Selbstverständlich müssen nicht die betreffenden reinen Alkalimetallcarbonate bzw. - - 318 -
hydrogencarbonate eingesetzt werden; vielmehr können Gemische unterschiedlicher Carbonate und Hydrogencarbonate bevorzugt sein.
Als Elektrolyte aus der Gruppe der anorganischen Salze kann eine breite Anzahl der verschiedensten Salze eingesetzt werden. Bevorzugte Kationen sind die Alkali- und Erdalkalimetalle, bevorzugte Anionen sind die Halogenide und Sulfate. Aus herstellungstechnischer Sicht ist der Einsatz von NaCI oder MgCI2 in den erfindungsgemäßen Granulaten bevorzugt.
Um den pH-Wert von Lösungen der erfindungsgemäßen wasserlöslichen Behälter in den gewünschten Bereich zu bringen, kann der Einsatz von pH-Stellmitteln angezeigt sein. Einsetzbar sind hier sämtliche bekannten Säuren bzw. Laugen, sofern sich ihr Einsatz nicht aus anwendungstechnischen oder ökologischen Gründen bzw. aus Gründen des Verbraucherschutzes verbietet. Üblicherweise überschreitet die Menge dieser Stellmittel 1 Gew.-% der Gesamtformulierung nicht.
Als Parfümöle bzw. Duftstoffe können im Rahmen der vorliegenden Erfindung einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat,
Ethylmethylphenyl-glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8- 18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, oc-lsomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Die allgemeine Beschreibung der einsetzbaren Parfüme (siehe oben) stellt dabei allgemein die unterschiedlichen Substanzklassen von Riechstoffen dar. Um wahrnehmbar zu sein, muß ein Riechstoff flüchtig sein, wobei neben der Natur der funktionellen Gruppen und der Struktur der chemischen Verbindung auch die Molmasse eine wichtige Rolle spielt. So besitzen die meisten - 319 -
Riechstoffe Molmassen bis etwa 200 Dalton, während Molmassen von 300 Dalton und darüber eher eine Ausnahme darstellen. Auf Grund der unterschiedlichen Flüchtigkeit von Riechstoffen verändert sich der Geruch eines aus mehreren Riechstoffen zusammengesetzten Parfüms bzw. Duftstoffs während des Verdampfens, wobei man die Geruchseindrücke in "Kopfnote" (top note), "Herz- bzw. Mittelnote" (middle note bzw. body) sowie "Basisnote" (end note bzw. dry out) unterteilt. Da die Geruchswahrnehmung zu einem großen Teil auch auf der Geruchsintensität beruht, besteht die Kopfnote eines Parfüms bzw. Duftstoffs nicht allein aus leichtflüchtigen Verbindungen, während die Basisnote zum größten Teil aus weniger flüchtigen, d.h. haftfesten Riechstoffen besteht. Bei der Komposition von Parfüms können leichter flüchtige Riechstoffe beispielsweise an bestimmte Fixative gebunden werden, wodurch ihr zu schnelles Verdampfen verhindert wird. Bei der nachfolgenden Einteilung der Riechstoffe in "leichter flüchtige" bzw. "haftfeste" Riechstoffe ist also über den Geruchseindruck und darüber, ob der entsprechende Riechstoff als Kopf- oder Herznote wahrgenommen wird, nichts ausgesagt.
Durch eine geeignete Auswahl der genannten Duftstoffe bzw. Parfümöle kann sowohl der Geruch der erfindungsgemäßen wasserlöslichen Behälter bzw. der in diesen umschlossenen Feststoffe (Produktduft) sowie, nach Beendigung des Reinigungs- und Pflegevorgangs, zusätzlich beispielsweise der Wäscheduft beeinflußt werden. Aufgrund ihrer Gestaltung, insbesondere aufgrund der in der Außenwand befindlichen Öffnungen, sind erfindungsgemäße wasserlösliche Behälter im Vergleich zu vollständig verschlossenen Behältern in besonderer Weise geeignet auch bei Einsatz geringerer Duftstoffmengen einen unverwechselbaren Produktduft zu gewährleisten, wobei zu diesem Zwecke insbesondere auch leichterflüchtige Riechstoffe einsetzbar sind, während zur Erzielung eines hinreichenden Wäschedufts die Verwendung haftfesterer Riechstoffe vorteilhaft ist. Haftfeste Riechstoffe, die im Rahmen der vorliegenden Erfindung einsetzbar sind, sind beispielsweise die ätherischen Öle wie Angelikawurzelöl, Anisöl, Arnikablütenöl, Basilikumöl, Bayöl, Bergamottöl, Champacablütenöl, Edeltannenöl, Edeltannenzapfenöl, Elemiöl, Eukalyptusöl, Fenchelöl, Fichtennandelöl, Galbanumöl, Geraniumöl, Gingergrasöl, Guajakholzöl, Gurjunbalsamöl, Helichrysumöl, Ho-Öl, Ingweröl, Irisöl, Kajeputöl, Kalmusöl, Kamillenöl, Kampferöl, Kanagaöl, Kardamomenöl, Kassiaöl, Kiefernnadelöl, Kopaϊvabalsamöl, Korianderöl, Krauseminzeöl, Kümmelöl, Kuminöl, Lavendelöl, Lemongrasöl, Limetteöl, Mandarinenöl, Melissenöl, Moschuskörneröl, Myrrhenöl, Nelkenöl, Neroliöl, Niaouliöl, Olibanumöl, Orangenöl, Origanumöl, Palmarosaöl, Patschuiiöl, Perubalsamöl, Petitgrainöl, Pfefferöl, Pfefferminzöl, Pimentöl, Pine-Öl, Rosenöl, Rosmarinöl, Sandelholzöl, Sellerieöl, Spiköl, Sternanisöl, Terpentinöl, Thujaöl, Thymianöl, Verbenaöl, Vetiveröl, Wacholderbeeröl, Wermutöl, Wintergrünöl, Ylang-Ylang-Öl, Ysop-Öl, Zimtöl, Zimtblätteröl, Zitronellöl, Zitronenöl sowie Zypressenöl. Aber auch die höhersiedenden bzw. festen Riechstoffe natürlichen oder synthetischen Ursprungs können im Rahmen der vorliegenden Erfindung als haftfeste Riechstoffe bzw. Riechstoffgemische, also Duftstoffe, eingesetzt werden. Zu diesen Verbindungen zählen die nachfolgend genannten Verbindungen sowie Mischungen aus - 320 -
diesen: Ambrettolid, α-Amylzimtaldehyd, Anethol, Anisaldehyd, Anisalkohol, Anisol, Anthranilsäuremethylester, Acetophenon, Benzylaceton, Benzaldehyd, Benzoesäureethylester, Benzophenon, Benzylalkohol, Benzylacetat, Benzylbenzoat, Benzylformiat, Benzylvalerianat, Borneol, Bornylacetat, α-Bromstyrol, n-Decylaldehyd, n-Dodecylaldehyd, Eugenol, Eugenolmethylether, Eukalyptol, Famesol, Fenchon, Fenchylacetat, Geranylacetat, Geranylformiat, Heliotropin, Heptincarbonsäuremethylester, Heptaldehyd, Hydrochinon-Dimethylether, Hydroxyzimtaldehyd, Hydroxyzimtalkohol, Indol, Iron, Isoeugenol, Isoeugenolmethylether, Isosafrol, Jasmon, Kampfer, Karvakrol, Karvon, p-Kresolmethylether, Cumarin, p-Methoxyacetophenon, Methyl-n-amylketon, Methylanthranilsäuremethylester, p-Methylacetophenon, Methylchavikol, p- Methylchinolin, Methyl-ß-naphthylketon, Methyl-n-nonylacetaldehyd, Methyl-n-nonylketon, Muskon, ß-Naphtholethylether, ß-Naphtholmethylether, Nerol, Nitrobenzol, n-Nonylaldehyd, Nonylakohol, n- Octylaldehyd, p-Oxy-Acetophenon, Pentadekanolid, ß-Phenylethylalkohol, Phenylacetaldehyd- Dimethyacetal, Phenylessigsäure, Pulegon, Safrol, Salicylsäureisoamylester,
Salicylsäuremethylester, Salicylsäurehexylester, Salicylsäurecyclohexylester, Santalol, Skatol, Terpineol, Thymen, Thymol, γ-Undelacton, Vanilin, Veratrumaldehyd, Zimtaldehyd, Zimatalkohol, Zimtsäure, Zimtsäureethylester, Zimtsäurebenzylester. Zu den leichter flüchtigen Riechstoffen zählen insbesondere die niedriger siedenden Riechstoffe natürlichen oder synthetischen Ursprung, die allein oder in Mischungen eingesetzt werden können. Beispiele für leichter flüchtige Riechstoffe sind Alkyisothiocyanate (Alkylsenföle), Butandion, Limonen, Linalool, Linaylacetat und -Propionat, Menthol, Menthon, Methyl-n-heptenon, Phellandren, Phenylacetaldehyd, Terpinylacetat, Zitral, Zitronellal.
Um den ästhetischen Eindruck der erfindungsgemäßen Mittel zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht. Umschließen die erfindungsgemäßen Behälter Wasch- und Reinigungsmitteln zur Textilreinigung sollten die eingesetzten Farbstoffe weiterhin keine ausgeprägte Substantivität gegenüber Textilfasem aufweisen, um diese nicht anzufärben.
Als Hydrotrope oder Lösungsvermittler werden Substanzen bezeichnet, die durch ihre Gegenwart andere, in einem bestimmten Lösungsmittel praktisch unlösliche Verbindungen in diesem Lösungsmittel löslich oder emulgierbar machen (Solubilisation). Es gibt Lösungsvermittler, die mit der schwerlöslichen Substanz eine Molekülverbindung eingehen und solche, die durch Micell- Bildung wirken. Man kann auch sagen, daß erst Lösungsvermittler einem sogenannten latenten Lösemittel sein Lösungsvermögen verleihen. Bei Wasser als (latentem) Lösungsmittel spricht man statt von Lösungsvermittler meist von Hydrotropika, in bestimmten Fällen besser von Emulgatoren. - 321 -
Als Schauminhibitoren, die in den erfindungsgemäßen Mitteln eingesetzt werden können, kommen u.a. Seifen, Öle, Fette, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können. Als Trägermaterialien eignen sich beispielsweise anorganische Salze wie Carbonate oder Sulfate, Cellulosederivate oder Silikate sowie Mischungen der vorgenannten Materialien. Im Rahmen der vorliegenden Anmeldung bevorzugte Mittel enthalten Paraffine, vorzugsweise unverzweigte Paraffine (n-Paraffine) und/oder Silikone, vorzugsweise linear-polymere Silikone, welche nach dem Schema (R2SiO)x aufgebaut sind und auch als Silikonöle bezeichnet werden. Diese Silikonöle stellen gewöhnlich klare, farblose, neutrale, geruchsfreie, hydrophobe Flüssigkeiten dar mit einem Molekulargewicht zwischen 1000- 150 000, und Viskositäten zwischen 10 u. 1 000 000 mPa s.
Geeignete Antiredepositionsmittel, die auch als soil repellents bezeichnet werden, sind beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxygruppen von 15 bis 30 Gew.-% und an Hydroxypropylgruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder
Polyethylenglycolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Insbesondere bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und Terephthalsäure-Polymere.
Optische Aufheller (sogenannte „Weißtöner") können den erfindungsgemäßen Mitteln zugesetzt werden, um Vergrauungen und Vergilbungen der behandelten Textilien zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleichwirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längerwelliges Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4'-Diamino-2,2'- stilbendisulfonsäuren (Flavonsäuren), 4,4'-Distyryl-biphenylen, Methylumbelliferone, Cumarine, Dihydrochinolinone, 1 ,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Heterocyclen substituierten Pyrenderivate.
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin - 322 -
lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Als Vergrauungsinhibitoren einsetzbar sind weiterhin Celluloseether wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxy-methylcellulose und deren Gemische.
Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mischungen, zum Knittern eigen können, weil die Einzelfasern gegen Durchbiegen, Knicken. Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können die erfindungsgemäßen Mittel synthetische Knitterschutzmittel enthalten. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern. Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester. Eine im besonderen Maße zur Textilausrüstung und Pflege geeignete Substanz ist das Baumwollsamenöl, welches beispielsweise durch Auspressen der braunen gereinigten Baumwollsamen und Raffination mit etwa 10%igem Natriumhydroxid oder durch Extraktion mit Hexan bei 60-70°C hergestellt werden kann. Derartige Baumwollöle enthalten 40 bis 55 Gew.-% Linolsäure, 16 bis 26 Gew.-% Ölsäure und 20 bis 26 Gew.-% Palmitinsäure. Weitere zur Faserglättung und Faserpflege besonders bevorzugte Mittel sind die Glyceride, insbesondere die Monoglyceride von Fettsäuren wie beispielsweise Giycerinmonooleat oder Glycerinmonostearat.
Zur Bekämpfung von Mikroorganismen können die erfindungsgemäßen Mittel antimikrobielle Wirkstoffe enthalten. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarlylsulfonate, Halogenphenole und Phenolmercuriacetat, wobei bei den erfindungemäßen Mitteln auch gänzlich auf diese Verbindungen verzichtet werden kann.
Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Veränderungen an den Wasch- und Reinigungsmitteln und/oder den behandelten Textilien zu verhindern, können die erfindungsgemäßen Mittel Antioxidantien enthalten. Zu dieser Verbindungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechnine und aromatische Amine sowie organische Sulfide, Polysulfide, Dithiocarbamate, Phosphite und Phosphonate.
Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antistatika resultieren, die den erfindungsgemäßen Mitteln zusätzlich beigefügt werden. Antistatika vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. - 323 -
Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika unterteilen. Lauryl- (bzw. Stearyl-) dimethylbenzylammoniumchloride eignen sich ebenfalls als Antistatika für Textilien bzw. als Zusatz zu Waschmitteln, wobei zusätzlich ein Avivageeffekt erzielt wird.
Phobier- und Imprägnierverfahren dienen der Ausrüstung von Textilien mit Substanzen, welche die Ablagerung von Schmutz verhindern oder dessen Auswaschbarkeit erleichtern. Bevorzugte Phobier- und Imprägniermittel sind perfluorierte Fettsäuren, auch in Form ihrer Aluminium- u. Zirconiumsalze, organische Silicate, Silicone, Polyacrylsäureester mit perfluorierter Alkohol- Komponente oder mit perfluoriertem Acyl- od. Sulfonyl-Rest gekoppelte, polymerisierbare Verbindungen. Auch Antistatika können enthalten sein. Die schmutzabweisende Ausrüstung mit Phobier- und Imprägniermitteln wird oft als eine Pflegeleicht-Ausrüstung eingestuft. Das Eindringen der Imprägniermittel in Form von Lösungen oder Emulsionen der betreffenden Wirkstoffe kann durch Zugabe von Netzmitteln erleichtert werden, die die Oberflächenspannung herabsetzen. Ein weiteres Einsatzgebiet von Phobier- und Imprgäniermitteln ist die wasserabweisende Ausrüstung von Textilwaren, Zelten, Planen, Leder usw., bei der im Gegensatz zum Wasserdichtmachen die Gewebeporen nicht verschlossen werden, der Stoff also atmungsaktiv bleibt (Hydrophobieren). Die zum Hydrophobieren verwendeten Hydrophobiermittel überziehen Textilien, Leder, Papier, Holz usw. mit einer sehr dünnen Schicht hydrophober Gruppen, wie längere Alkyl-Ketten od. Siloxan- Gruppen. Geeignete Hydrophobiermittel sind z. B. Paraffine, Wachse, Metallseifen usw. mit Zusätzen an Aluminium- od. Zirconium-Salzen, quartäre Ammonium-Verbindungen mit langkettigen Alkyl-Resten, Harnstoff-Derivate, Fettsäure-modifizierte Melaminharze, Chrom-Komplexsalze, Silicone, Zinn-organische Verbindungen und Glutardialdehyd sowie perfluorierte Verbindungen. Die hydrop obierten Materialien fühlen sich nicht fettig an; dennoch perlen - ähnlich wie an gefetteten Stoffen - Wassertropfen an ihnen ab, ohne zu benetzen. So haben z. B. Silicon-imprägnierte Textilien einen weichen Griff u. sind wasser- u. schmutzabweisend; Flecke aus Tinte, Wein, Fruchtsäften und dergleichen sind leichter zu entfernen.
Zu den nichtwässrigen Lösungsmittel, welche in den erfindungsgemäßen Mitteln eingesetzt werden können, zählen insbesondere die organischen Lösungsmittel, von denen hier nur die wichtigsten aufgeführt sein können: Alkohole (Methanol, Ethanol, Propanole, Butanole, Octanole, Cyclohexanol), Glykole (Ethylenglykol, Diethylenglykol), Ether u. Glykolether (Diethylether, Dibutylether, Anisol, Dioxan, Tetrahydrofuran, Mono-, Di-, Tri-, Polyethylenglykolether), Ketone (Aceton, Butanon, Cyclohexanon), Ester (Essigsäureester, Glykolester), Amide u. a. Stickstoff- Verbindungen (Dimethylformamid, Pyridin, N-Methylpyrrolidon, Acetonitril), Schwefel-Verindungen - 324 -
(Schwefelkohlenstoff, Dimethylsulfoxid, Sulfolan), Nitro-Verbindungen (Nitrobenzol), Halogenkohlenwasserstoffe (Dichlormethan, Chloroform, Tetrachlormethan, Tri-, Tetrachlorethen, 1,2-Dichlorethan, Chlorfluorkohlenstoffe), Kohlenwasserstoffe (Benzine, Petrolether, Cyclohexan, Methylcyclohexan, Decalin, Terpen-Lösungsmittel, Benzol, Toluol, Xylole). Alternativ können statt der reinen Lösungsmittel auch deren Gemische, welche beispielsweise die Lösungseigenschaften verschiedener Lösungsmittel vorteilhaft vereinigen, eingesetzt werden. Ein derartiges und im Rahmen der vorliegenden Anmeldung besonders bevorzugtes Lösungsmittelgemisch ist beispielsweise Waschbenzin, ein zur chemischen Reinigung geeignetes Gemisch verschiedener Kohlenwasserstoffe, vorzugsweise mit einem Gehalt an C12 bis C14 Kohlenwasserstoffen oberhalb 60 Gew.-%, besonders bevorzugt oberhalb 80 Gew.-% und insbesondere oberhalb 90 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Gemischs, vorzugsweise mit einem Siedebereich von 81 bis 110 °C.
Zur Pflege der Textilien und zur Verbesserung der Textileigenschaften wie einem weicheren "Griff' (Avivage) und verringerter elektrostatischer Aufladung (erhöhter Tragekomfort) können die erfindungsgemäßen Mittel Weichspüler enthalten. Die Wirkstoffe in Weichspülformulierungen sind "Esterquats", quartäre Ammoniumverbindungen mit zwei hydrophoben Resten, wie beispielsweise das Disteraryldimethylammoniumchlorid, welches jedoch wegen seiner ungenügenden biologischen Abbaubarkeit zunehmend durch quartäre Ammoniumverbindungen ersetzt wird, die in ihren hydrophoben Resten Estergruppen als Sollbruchstellen für den biologischen Abbau enthalten. Derartige "Esterquats" mit verbesserter biologischer Abbaubarkeit sind beispielsweise dadurch erhältlich, daß man Mischungen von Methyldiethanolamin und/oder Triethanolamin mit Fettsäuren verestert und die Reaktionsprodukte anschließend in an sich bekannter Weise mit Alkylierungsmitteln quaterniert. Als Appretur weiterhin geeignet ist Dimethylolethylenhamstoff.
Zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behandelten Textilien und zur Erleichterung des Bügeins der behandelten Textilien können in den erfindungsgemäßen Mitteln beispielsweise Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten der erfindungsgemäßen Mittel durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C-Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Weitere bevorzugte Silikone sind die Polyalkylenoxid-modifizierten Polysiloxane, also Polysiloxane, welche beispielsweise Polyethylenglycole aufweisen sowie die Polyalkylenoxid- modifizierten Dimetylpolysiloxane. - 325 -
Proteinhydrolysate sind auf Grund ihrer faserpflegenden Wirkung weitere im Rahmen der vorliegenden Erfindung bevorzugte Aktivsubstanzen aus dem Gebiet der Wasch- und Reinigungsmittel. Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden. Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen Ursprungs eingesetzt werden. Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milchei- weiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z. B. Soja-, Mandel- , Reis-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische oder einzelne Aminosäuren wie beispielsweise Arginin, Lysin, Histidin oder Pyrroglutaminsäure eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure- Kondensationsprodukte.
Schließlich können die erfindungsgemäßen Mittel auch UV-Absorber enthalten, die auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern verbessern. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3-Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet.
Reinigungsmittel für das maschinelle Geschirrspülen können zum Schütze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel und Glaskorrosionsinhibitoren im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die - 326 -
Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)- Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats sowie den Mangankomplexen
[Me-TACN)Mnlv(m-0)3MnIV(Me-TACN)]2+(PF6-)2, [Me-MeTACN)MnIV(m-0)3Mn1V(Me-MeTACN)]2+(PF6-)2,
[Me-TACN)Mnlll(m-0)(m-0Ac)2Mnlll(Me-TACN)]2+(PF6 ")2 und [Me-MeTACN)Mnlll(m-0)(m-OAc)2Mnlll(Me-MeTACN)]2+(PF6 ")2, wobei Me-TACN für 1,4,7- trimethyl-1,4,7-triazacyclononan und Me-MeTACN für 1,2,4,7-tetramethyl-1,4,7-triazacyclononan steht. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
Im Rahmen der vorliegenden Erfindung ist es bevorzugt, zusätzlich mindestens ein Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole, vorzugsweise Benzotriazol und/oder Alkylaminotriazol, in Mengen von 0,001 bis 1 Gew.-%, vorzugsweise von 0,01 bis 0,5 Gew.-% und insbesondere von 0,05 bis 0,25 Gew.-%, jeweils bezogen auf das Gesamtgewicht der in den erfindungsgemäßen wasserlöslichen Behältern umschlossenen Feststoffe, einzusetzen.
Neben den zuvor genannten Silberschutzmitteln können erfindungsgemäße Mittel weiterhin eine oder mehrere Substanzen zur Verringerung der Glaskorrosion enthalten. Im Rahmen der vorliegenden Anmeldung werden insbesondere Zusätze von Zink und/oder anorganischen und/oder organischen Zinksalzen und/oder Silikaten, beispielsweise das schichtförmige kristalline Natriumdisilikat SKS 6 der Clariant GmbH, und/oder wasserlösliche Gläser, beispielsweise Gläser, welche einen Masseverlust von wenigstens 0,5 mg unter den in DIN ISO 719 angegebenen Bedingungen aufweisen, zur Verringerung der Glaskorrosion bevorzugt. Besonders bevorzugte Mittel enthalten mindestens ein Zinksalz einer organischen Säure, vorzugsweise ausgewählt aus der Gruppe Zinkoleat, Zinkstearat, Zinkgluconat, Zinkacetat, Zinklactat und Zinkeitrat. - 327 -
Beispiele:
Handelsübliche Geschirrspülmitteitabletten (V1) in tetragonaler Form mit den Abmessungen 38,60 x 30,50 x 15,50 mm und einem Volumen von 17,80 cm3 wurden in handelsübliche Geschirrspülmaschinen eingelegt. Erfindungsgemäße Formkörper E1 bis E3 wurden hergestellt, welche in alle Geschirrspülmaschinen passen, in die auch die herkömmliche Tablette paßt, sich jedoch durch ein deutlich erhöhtes Volumen auszeichnen. Die Ergebnisse zeigt Tabelle 1:
Tabelle 1: Einpaßbarkeit von Formkörpern in Dosierkammern
- 328 -
Die Tabelle 1 zeigt, daß sich erfindungsgemäß das Volumen deutlich erhöhen läßt, ohne auf Paßgenauigkeit zu verzichten.
Analog wurden neuartige Formkörper (V2) in Form eines befüllten Tiefziehteils in tetragonaler Form mit den Abmessungen 39,50 x 30,00 x 18,50 mm und einem Volumen von 21,10 cm3 in handelsübliche Geschirrspülmaschinen eingelegt. Diese Formkörper lassen sich schon in fünf der Dosierkammern der o.g. Geschirrspülmaschinen nicht mehr einlegen. Es wurden erfindungsgemäße Formkörper E4 bis E6 hergestellt, welche bei gleichem Volumen in eine größere Anzahl von Dosierkammern passen sollten oder bei gleicher Paßgenauigkeit ein größeres Volumen besitzen. Die Ergebnisse zeigt Tabelle 2:
329 -
Tabelle 2: Einpaßbarkeit von Formkörpern in Dosierkammern
Die Tabelle zeigt, daß die erfindungsgemäßen Formkörper entweder bei gleichem Volumen in deutlich mehr Dosierkammern passen (E4) oder bei deutlich höheren Volumen in die gleiche Anzahl von Dosierkammern passen (E6) wie das Vergleichsbeispiel Bei geringerfügig errhöhtem Volumen läßt sich auch eine höhere Paßganeuigkeit verwirklichen (E5).

Claims

- 330 -Patentansprüche:
1. Wasch- oder Reinigungsmittelformkörper, dadurch gekennzeichnet, daß er mindestens zwei seitliche Begrenzungsflächen aufweist, von denen mindestens eine über mindestens die Hälfte ihrer Höhe nicht vertikal ist.
2. Wasch- oder Reinigungsmittelformkörper nach Anspruch 1 , dadurch gekennzeichnet, daß eine seitliche Begrenzungsfläche über mindestens die Hälfte ihrer Höhe nicht vertikal ist und mit der Horizontalen einen Winkel von 30° bis 80°, vorzugsweise von 35° bis 75°, besonders bevorzugt von 40° bis 70° und insbesondere von 50° bis 60° einschließt.
3. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß mindestens eine seitliche Begrenzungsfläche über mindestens 60%, vorzugsweise über mindestens 70%, besonders bevorzugt über mindestens 75% und insbesondere über mindestens 80% ihrer Höhe nicht vertikal ist.
4. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß er vier seitliche Begrenzungsflächen aufweist, von denen eine über mindestens die Hälfte ihrer Höhe nicht vertikal ist.
5. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß er von zwei horizontalen Flächen mit rechteckigem Querschnitt begrenzt wird, die die gleiche Länge £ und eine unterschiedliche Breite b aufweisen.
6. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Ecken des Formkörpers abgerundet sind.
7. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Kanten des Formkörpers eine Fase aufweisen.
8. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß er eine Tablette ist.
9. Wasch- oder Reinigungsmittelformkörper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß er ein befülltes und verschlossenes Tiefziehteil und/oder Spritzgußteil und/oder Blasformteil ist.
EP03813110A 2002-12-17 2003-12-06 Grossvolumige wasch- oder reinigungsmittelformk rper Expired - Lifetime EP1572858B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10258870A DE10258870B4 (de) 2002-12-17 2002-12-17 Grossvolumige Reinigungsmittelformkörper
DE10258870 2002-12-17
PCT/EP2003/013850 WO2004055152A1 (de) 2002-12-17 2003-12-06 Grossvolumige wasch- oder reinigungsmittelformkörper

Publications (2)

Publication Number Publication Date
EP1572858A1 true EP1572858A1 (de) 2005-09-14
EP1572858B1 EP1572858B1 (de) 2006-06-21

Family

ID=32477707

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03813110A Expired - Lifetime EP1572858B1 (de) 2002-12-17 2003-12-06 Grossvolumige wasch- oder reinigungsmittelformk rper

Country Status (7)

Country Link
US (1) US20050239680A1 (de)
EP (1) EP1572858B1 (de)
AT (1) ATE331023T1 (de)
AU (1) AU2003303063A1 (de)
DE (2) DE10258870B4 (de)
ES (1) ES2268492T3 (de)
WO (1) WO2004055152A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10313172B4 (de) * 2003-03-25 2007-08-09 Henkel Kgaa Gestaltsoptimierte Reinigungsmitteltabletten
DE102005041347A1 (de) 2005-08-31 2007-03-01 Basf Ag Reinigungsformulierungen für die maschinelle Geschirrreinigung enthaltend hydrophil modifizierte Polycarboxylate
DE102005041349A1 (de) * 2005-08-31 2007-03-01 Basf Ag Reinigungsformulierungen für die maschinelle Geschirrreinigung enthaltend hydrophil modifizierte Polycarboxylate
GB0522658D0 (en) * 2005-11-07 2005-12-14 Reckitt Benckiser Nv Composition
BRPI0810765B1 (pt) 2007-05-04 2018-05-29 Ecolab Inc. Composições de limpeza contendo composto de magnésio solúvel em água e métodos de uso das mesmas
JP5503545B2 (ja) * 2007-11-09 2014-05-28 ザ プロクター アンド ギャンブル カンパニー モノカルボン酸単量体、ジカルボン酸単量体、およびスルホン酸基含有単量体を含む洗浄用組成物
JP5750265B2 (ja) * 2008-03-31 2015-07-15 株式会社日本触媒 スルホン酸基含有マレイン酸系水溶性共重合体水溶液および乾燥して得られる粉体
CN108550134B (zh) * 2018-03-05 2020-05-05 北京三快在线科技有限公司 建图效果指标的确定方法和建图效果指标的确定装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB878529A (en) * 1959-06-12 1961-10-04 Hedley Thomas & Co Ltd Detergent tablets
DE2508730A1 (de) * 1975-02-28 1976-09-09 Miele & Cie Wasch- oder geschirrspuelmaschine mit einer einspuelvorrichtung fuer pulverfoermiges wasch- oder spuelmittel
DE2910106A1 (de) * 1979-03-15 1980-09-25 Blendax Werke Schneider Co Stueckseife und verfahren zu deren herstellung
CA1195251A (en) * 1981-07-20 1985-10-15 Anthony B.J. Eoga Convex tablet configuration
DE19710254A1 (de) * 1997-03-13 1998-09-17 Henkel Kgaa Wasch- oder reinigungsaktive Formkörper für den Gebrauch im Haushalt
ATE244296T1 (de) * 1997-11-10 2003-07-15 Procter & Gamble Verfahren zur herstellung einer waschmitteltablette
DE29720834U1 (de) * 1997-11-24 1998-01-08 Miele & Cie GmbH & Co, 33332 Gütersloh Dosiervorrichtung für eine Geschirrspülmaschine
CA2278557C (en) * 1997-11-26 2002-08-13 The Procter & Gamble Company Multi-layer detergent tablet having both compressed and non-compressed portions
US6589925B1 (en) * 1998-03-20 2003-07-08 Colgate-Palmolive Company Automatic dishwashing detergent tablets
CN1298443A (zh) * 1998-04-27 2001-06-06 宝洁公司 具有起伏状表面的涂覆非微粒洗涤剂产品
US5962387A (en) * 1998-10-16 1999-10-05 Colgate Palmolive Company Automatic dishwashing tablets
ATE310073T1 (de) * 1999-03-10 2005-12-15 Unilever Nv Waschmittelformkörper
EP1287109B1 (de) * 2000-05-17 2007-07-04 Henkel Kommanditgesellschaft auf Aktien Wasch- oder reinigungsmittelformkörper
GB0015350D0 (en) * 2000-06-23 2000-08-16 Reckitt Benckiser Nv Improvements in or relating to compositions
DE10050622A1 (de) * 2000-07-07 2002-05-02 Henkel Kgaa Klarspülmittel II a
DE10033827A1 (de) * 2000-07-14 2002-01-31 Henkel Kgaa Kompartiment-Hohlkörper
DE10046469B4 (de) * 2000-09-20 2004-07-15 Symrise Gmbh & Co. Kg Mehrphasenseifen
US6673756B2 (en) * 2000-09-20 2004-01-06 Symrise Gmbh & Co. Kg Multiphase soaps
DE10109799A1 (de) * 2001-03-01 2002-09-05 Henkel Kgaa 3in1-Geschirrspülmittel und Verfahren zur Herstellung derselben

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004055152A1 *

Also Published As

Publication number Publication date
ATE331023T1 (de) 2006-07-15
AU2003303063A1 (en) 2004-07-09
EP1572858B1 (de) 2006-06-21
ES2268492T3 (es) 2007-03-16
WO2004055152A1 (de) 2004-07-01
DE10258870B4 (de) 2005-04-07
DE10258870A1 (de) 2004-07-08
US20050239680A1 (en) 2005-10-27
DE50304000D1 (de) 2006-08-03

Similar Documents

Publication Publication Date Title
DE102004030318B4 (de) Mehrkammer-Pouch
EP1776448B2 (de) Verfahren zur herstellung portionierter wasch- oder reinigungsmittel
EP1606382A1 (de) Gestaltsoptimierte wasch-oder reinigungsmitteltabletten
US20050239680A1 (en) Large volume moulded body of washing or cleaning agent
EP1781768A1 (de) Beschichteter wasch- oder reinigungsmittelformkörper
EP1781764A1 (de) Klarspülhaltige wasch- und reinigungsmittel mit schwefelhaltigen aminosäuren
EP1529100B1 (de) Portionierte wasch- oder reinigungsmittel mit phosphat ii
WO2004058592A1 (de) Portioniertes wasch-oder reinigungsmittel
EP1529096B1 (de) Portionierte wasch- oder reinigungsmittel mit phosphat iii
WO2006066721A1 (de) Dosiereinheit für wasch- oder reinigungsmittel
EP1529099B1 (de) Portionierte wasch- oder reinigungsmittel mit phosphat i
DE10310932A1 (de) Portioniertes Wasch- oder Reinigungsmittel
DE10258584A1 (de) Portioniertes Wasch-oder Reinigungsmittel
DE10258585A1 (de) Portioniertes Wasch-oder Reinigungsmittel
EP1859018A1 (de) Mehrphasiger wasch- oder reinigungsmittelformkörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50304000

Country of ref document: DE

Date of ref document: 20060803

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061130

Year of fee payment: 4

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20061208

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20061213

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061231

Year of fee payment: 4

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070122

Year of fee payment: 4

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2268492

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070322

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 20061231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061206

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061222

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071206

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20071207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071207

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071206