EP1529099B1 - Portionierte wasch- oder reinigungsmittel mit phosphat i - Google Patents

Portionierte wasch- oder reinigungsmittel mit phosphat i Download PDF

Info

Publication number
EP1529099B1
EP1529099B1 EP03793670A EP03793670A EP1529099B1 EP 1529099 B1 EP1529099 B1 EP 1529099B1 EP 03793670 A EP03793670 A EP 03793670A EP 03793670 A EP03793670 A EP 03793670A EP 1529099 B1 EP1529099 B1 EP 1529099B1
Authority
EP
European Patent Office
Prior art keywords
weight
water
acid
soluble
detergent composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03793670A
Other languages
English (en)
French (fr)
Other versions
EP1529099A1 (de
Inventor
Ulrich Pegelow
Alexander Lambotte
Maren Jekel
Christian Nitsch
Arno DÜFFELS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1529099A1 publication Critical patent/EP1529099A1/de
Application granted granted Critical
Publication of EP1529099B1 publication Critical patent/EP1529099B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/043Liquid or thixotropic (gel) compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0004Non aqueous liquid compositions comprising insoluble particles
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/06Phosphates, including polyphosphates

Definitions

  • the present invention is in the field of portioned liquid detergents or cleaning agents, as they are used for dosing washing and cleaning-active substances.
  • the present invention relates to low-water liquid detergents or cleaners containing phosphate.
  • thermoforming process for producing deep-drawn packaging units are disclosed, for example, in the international applications WO 00/55044, WO 00/44045, WO 00/44046 and WO 00/55415 (Hindustan Lever Limited).
  • These deep-drawn bags contain according to the description of these applications liquid or gel mixtures of substances, preferably from the field of washing and cleaning active substances.
  • the foil bag may consist of water-soluble materials such as polyvinyl alcohol.
  • the applications do not give any details on the composition of the liquid or gel-based ingredients, their storage stability or water absorption behavior.
  • the subject of international applications WO 02/16205 is a process for producing water-soluble containers by thermoforming a water-soluble PVA film having a water content below 5 wt .-%.
  • the resulting containers are preferably filled with washing or cleaning-active substances, these preferably having a water content above 8 wt .-%.
  • the detergents and cleaners may contain alkali phosphates according to the disclosure of this application.
  • the application WO 02/16206 (Reckitt Benckiser Limited) describes a process for producing inflated water-soluble containers by adding gas-releasing salts to the substances or substance mixtures present in the containers. These agents may include, among others, phosphate-containing detergents or cleaners.
  • Liquid compositions with a water content above 3 wt .-% which are packaged in deep-drawn PVA containers, claims the international application WO 02/16222 (Reckitt Benckiser Limited).
  • the liquid compositions may be, inter alia, phosphate-containing textile or dishwashing detergents. None of the applications mentioned provides information on the preparation of the phosphates contained in the liquid detergents or cleaning agents or the advantageous effect of such a formulation on storage stability and water absorption behavior of the phosphate-containing detergents or cleaners.
  • WO 02/16541 (Reckitt Benckiser Limited) are liquid-filled water-soluble or water- dispersible containers.
  • the liquids contained have a water content between 20 and 50 wt .-% and contain at least one polyphosphate builder and potassium and sodium ions, wherein the molar ratio of potassium to sodium between 0.55: 1 and 20: 1.
  • polyphosphate builder and potassium and sodium ions wherein the molar ratio of potassium to sodium between 0.55: 1 and 20: 1.
  • potassium tripolyphosphate is disclosed. Further details on the phosphates preferably used or their packaging can not be found in this application.
  • European Patent EP 518 689 B1 (Rhone-Poulenc Agrochimie) claims container systems comprising a water-soluble or water-dispersible bag containing an agent which is a liquid or gel comprising a hazardous product, 5 to 55% by weight. Water and an effective amount of an electrolyte that is an inorganic salt. The addition of this electrolyte causes according to the teaching of EP 518 689 B1, the reduction of the solubility of the bag material in the aqueous solution and increases in this way the stability of the bag.
  • phosphates are also disclosed as effective electrolytes. Information about the special nature of these phosphates or their packaging does not make this patent.
  • US-A-5 004 556 discloses non-aqueous liquid laundry detergents in sachets.
  • low-water liquids or gels at the temperatures and humidities customary for storage, transport or use tend to form precipitates up to the solidification of the entire gel.
  • the formation of such precipitates not only detracts from the appearance of the agents, but also has a detrimental effect on the washing or cleaning performance of these agents because precipitation generally results in reduced solubility of the solidified detergent ingredients.
  • a first subject of the present application is therefore a portioned, liquid, detergent or cleaning composition in a water-soluble or water-dispersible container comprising a low-water matrix and phosphate dispersed therein, characterized in that based on the total weight of the dispersed phosphate at least 10 wt .-% of the dispersed phosphate have a coating.
  • the phosphate dispersed in the low-water matrix coat it has proven to be advantageous to more than 10 wt .-% of the phosphate dispersed in the low-water matrix coat. It is therefore preferred in the context of the present invention for the phosphate dispersed in the low-water matrix to be at least 30% by weight, particularly preferably at least 50% by weight and in particular at least 70% by weight, based on the total weight of the dispersed phosphate. % has a coating. In a particularly preferred embodiment of the present invention, the total phosphate has a coating.
  • liquid-poor refers to those liquid washing or cleaning agent compositions which have a total water content, ie a content of free water and / or water present in the form of water of hydration and / or constituting water of less than 18% by weight, in each case based on the total weight of the washing and cleaning agent without consideration of the water-soluble or water-dispersible container having.
  • the determination of the water content can be carried out for example by titration according to Karl Fischer.
  • preferred washing or cleaning agent compositions have a total water content, that is to say a content of free water and / or of water present in the form of water of hydration and / or constitutive water of between 0.1 and 15% by weight, preferably between 0.5 and 12 wt .-%, particularly preferably between 1 and 9 wt .-% and in particular between 2 and 6 wt .-%, each based on the total weight of the detergent and cleaning agent without consideration of the water-soluble or water-dispersible container, on.
  • the total water content (sum of the free water and the constitutional water and the hydrated water) of preferred compositions of the invention is between 0.1 and 15% by weight, the proportion of free water in this total water content is preferably low.
  • washing or cleaning agent compositions which have a free water content, ie water not present in the form of water of hydration and / or water of constitution, between 0.1 and 6% by weight, preferably between 0, 1 and 5 wt .-%, particularly preferably between 0.1 and 4 wt .-% and in particular between 0.1 and 3 wt .-%, each based on the total weight of the detergent or cleaning composition, without consideration of the water-soluble or water-dispersible Container having.
  • a free water content ie water not present in the form of water of hydration and / or water of constitution, between 0.1 and 6% by weight, preferably between 0, 1 and 5 wt .-%, particularly preferably between 0.1 and 4 wt .-% and in particular between 0.1 and 3 wt .-%, each based on the total weight of the detergent or cleaning composition, without consideration of the water-soluble or water-dispersible Container having.
  • Water-soluble polymers in the context of the invention are those polymers which are soluble in water at room temperature in excess of 2.5% by weight.
  • the phosphates dispersed in the liquid detergents and cleaning agents according to the invention are preferably coated with a polymer or polymer mixture, wherein the polymer (and accordingly the entire coating) or at least 50 wt .-% of the polymer mixture (and thus at least 50% of the coating) of certain polymers is selected.
  • the coating consists entirely or at least 50% of its weight of water-soluble polymers from the group of nonionic, amphoteric, zwitterionic, anionic and / or cationic polymers.
  • the coating of the phosphate consists of a further inorganic salt which contains as binder of one of the polymers mentioned. Preferred polymers from these groups have been listed above and are described in more detail below.
  • polymers are water-soluble amphopolymers.
  • Amphoteric polymers ie polymers which contain both free amino groups and free -COOH or SO 3 H groups in the molecule and are capable of forming internal salts, are zwitterionic polymers which contain quaternary ammonium groups in the molecule. COO - - or -SO 3 groups, and summarized those polymers containing -COOH or SO 3 H groups and quaternary ammonium groups.
  • amphopolymer suitable is the acrylic resin commercially available as Amphomer ® is a copolymer of tert-butylaminoethyl methacrylate, N- (1,1,3,3-tetramethylbutyl) -acrylamide and two or more monomers from the group of acrylic acid, Represents methacrylic acid and its simple esters.
  • amphopolymers from unsaturated carboxylic acids eg acrylic and methacrylic acid
  • cationically derivatized unsaturated carboxylic acids eg acrylamidopropyltrimethylammonium chloride
  • optionally further ionic or nonionogenic monomers as for example in German Offenlegungsschrift 39 29 973 and the prior art cited therein are removed.
  • amphoteric polymers are for example sold under the names Amphomer ® and Amphomer ® LV-71 (DELFT NATIONAL) available octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers.
  • Suitable zwitterionic polymers are, for example, acrylamidopropyltrimethylammonium chloride / acrylic acid or methacrylic acid copolymers and their alkali metal and ammonium salts. Further suitable zwitterionic polymers are Methacroylethylbetain / methacrylate copolymers, which are commercially available under the name Amersette ® (AMERCHOL).
  • Cationic polymers preferred according to the invention are quaternized cellulose derivatives and polymeric dimethyldiallylammonium salts and their copolymers.
  • Cationic cellulose derivatives, in particular the commercial product Polymer® JR 400, are very particularly preferred cationic polymers.
  • a particularly preferred coating material for phosphates in the context of the present application is polyvinyl alcohol (PVA).
  • PVA polyvinyl alcohol
  • the preferred polyvinyl alcohols used for the coating are those given below in the description of the preferred container materials, which are referred to at this point to avoid repetition.
  • the coating according to the invention of preferred phosphates can also consist of a mixture of the abovementioned polymers with salts, preferably inorganic salts.
  • washing or cleaning agent compositions are preferred in which the coating of the phosphate dispersed in the low-water matrix comprises at least one substance selected from the group of water-soluble organic polymers, preferably water-soluble organic homo- and / or copolymers, particularly preferably the group of water-soluble homopolymers, more preferably from the group of polyethylene glycols and / or polypropylene glycols and in particular from the group of polyethylene glycols and / or polypropylene glycols having a molecular weight above 2000, wherein in the choice of the aforementioned coating materials in terms of their processability and thermal Resistance substances are particularly preferred which have a melting point above 30 ° C, preferably above 60 ° C, more preferably above 90 ° C and in particular above 120 ° C.
  • particles or particulate builder granules are designated as separate particles, as obtained, for example, by crystallization or agglomeration.
  • the term particle is not bound to any particle size.
  • the size of the particles processed in the process according to the invention is limited exclusively by the technical possibilities of the fluidized bed used.
  • the coating agent used in step b) of the process is an aqueous solution of an inorganic salt which also contains binders.
  • the used Binder is not necessarily completely dissolved, it may for example be suspended in the aqueous phase. In the context of the present application, however, preference is given to coating compositions which have both the inorganic salt and the binder in dissolved form.
  • the temperature of the feed air used in step b) is between 30 and 220 ° C., preferably between 60 and 210 ° C.
  • step b) has a temperature above 30 ° C, preferably above 45 ° C and in particular above 60 ° C and / or in step b) sprayed aqueous solution at a temperature above 30 ° C, preferably above 40 ° C and in particular above 50 ° C.
  • salts of inorganic salts which have a solubility of more than 100 g / l at 20 ° C.
  • Salts of inorganic salts which have proven advantageous are, in particular, those salts which are capable of forming hydrates. From this group of hydrate-forming salts, in turn, sodium sulfate, sodium carbonate, sodium phosphate or magnesium sulfate are preferred.
  • the solution sprayed in step b) contains at least one inorganic salt from the group capable of forming hydrates, in particular at least one inorganic salt from the group of sodium sulfate, sodium carbonate, sodium phosphate or magnesium sulfate ,
  • the abovementioned inorganic salts are used in the process according to the invention in the form of aqueous solutions which additionally contain a binder.
  • a binder which additionally contain a binder.
  • the use of this / these binder (s) in the process of the invention increases the bulk density and abrasion resistance of the resulting granules and improves their flowability.
  • Water-soluble organic polymers have proven to be particularly suitable binders, the polyalkylene glycols, in particular the polyethylene glycols and / or polypropylene glycols being particularly preferred. A detailed description of preferred water-soluble polymers for the coating can be found in the preceding sections. These statements are made at this point.
  • the coating according to the invention of the phosphate dispersed in the liquid washing or cleaning compositions leads to markedly improved properties of these agents. It is in the context of the present invention, it is preferred that the amount of the coating substance (s), based on the total weight of the coated dispersed phosphate, be between 0.5 and 15% by weight, preferably between 1 and 12% by weight and in particular between 2 and 8 wt .-% is / amount.
  • Inventive low-water detergents or cleaners contain phosphates which have at least 10 wt .-% a coating. These phosphates are preferably selected from the group of alkali metal phosphates.
  • Alkali metal phosphates is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids, in which one can distinguish metaphosphoric acids (HPO 3 ) n and orthophosphoric H 3 PO 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: they act as alkali carriers, prevent limescale deposits and also contribute to the cleaning performance.
  • pentasodium triphosphate In the preparation of pentasodium triphosphate, phosphoric acid is reacted with soda solution or sodium hydroxide solution in a stoichiometric ratio and the solution is dehydrated by spraying. Similar to Graham's salt and sodium diphosphate, pentasodium triphosphate dissolves many insoluble metal compounds (including lime soaps, etc.).
  • detergent or cleaning compositions in which the dispersed phosphate comprises sodium tripolyphosphate and the phase I content of the dispersed sodium tripolyphosphate based on the total weight of the dispersed sodium tripolyphosphate is less than 25% by weight, preferably less than 20% by weight preferably less than 16% by weight, very particularly preferably less than 12% by weight and in particular less than 10% by weight, based in each case on the total weight of the dispersed sodium tripolyphosphate, since these detergent or cleaner compositions are compatible with compositions a higher phase I share of the sodium tripolyphosphate characterized by a higher storage stability.
  • alkali metal phosphate is the sodium dihydrogen phosphate, NaH 2 PO 4 , which exists as a dihydrate (density 1.91 gcm -3 , melting point 60 °) and as a monohydrate (density 2.04 gcm -3 ).
  • Both salts are white powders which are very soluble in water and which lose their water of crystallization when heated and at 200 ° C into the weak acid diphosphate (disodium hydrogen diphosphate, Na 2 H 2 P 2 O 7 ), at higher temperature in sodium trimetaphosphate (Na 3 P 3 O 9) and Maddrell's salt (see below), pass.
  • NaH 2 PO 4 is acidic; It arises when phosphoric acid is adjusted to a pH of 4.5 with sodium hydroxide solution and the mash is sprayed.
  • Potassium dihydrogen phosphate potassium phosphate primary or monobasic potassium phosphate, KDP
  • KH 2 PO 4 is a white salt of 2.33 gcm -3 density, has a melting point of 253 ° [decomposition to form potassium polyphosphate (KPO 3 ) x ] and is light soluble in water.
  • Disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HPO 4 , is a colorless, very slightly water-soluble crystalline salt. It exists anhydrous and with 2 moles (density 2.066 gcm -3 , loss of water at 95 °), 7 moles (density 1.68 gcm -3 , melting point 48 ° with loss of 5 H 2 O) and 12 moles water ( Density 1.52 gcm -3 , melting point 35 ° with loss of 5 H 2 O) becomes anhydrous at 100 ° C and goes on stronger heating in the diphosphate Na 4 P 2 O 7 .
  • Disodium hydrogen phosphate is prepared by neutralization of phosphoric acid with soda solution using phenolphthalein as an indicator.
  • Dipotassium hydrogen phosphate (secondary or dibasic potassium phosphate), K 2 HPO 4 , is an amorphous, white salt that is readily soluble in water.
  • Trisodium phosphate, tertiary sodium phosphate, Na 3 PO 4 are colorless crystals which have a density of 1.62 gcm -3 as dodecahydrate and a melting point of 73-76 ° C (decomposition), as decahydrate (corresponding to 19-20% P 2 O 5 ) have a melting point of 100 ° C and in anhydrous form (corresponding to 39-40% P 2 O 5 ) have a density of 2.536 gcm -3 .
  • Trisodium phosphate is readily soluble in water under alkaline reaction and is prepared by evaporating a solution of exactly 1 mole of disodium phosphate and 1 mole of NaOH.
  • Tetrasodium diphosphate (sodium pyrophosphate), Na 4 P 2 O 7 , exists in anhydrous form (density 2.534 gcm -3 , melting point 988 °, also indicated 880 °) and as decahydrate (density 1.815-1.836 gcm -3 , melting point 94 ° with loss of water) , For substances are colorless, in water with alkaline reaction soluble crystals.
  • Na 4 P 2 O 7 is formed on heating of disodium phosphate to> 200 ° or by reacting phosphoric acid with soda in a stoichiometric ratio and dewatering the solution by spraying.
  • the decahydrate complexes heavy metal salts and hardness agents and therefore reduces the hardness of the water.
  • Potassium diphosphate (potassium pyrophosphate), K 4 P 2 O 7 , exists in the form of the trihydrate and is a colorless, hygroscopic powder with a density of 2.33 gcm -3 , which is soluble in water, the pH being 1% Solution at 25 ° 10.4.
  • Condensation of the NaH 2 PO 4 or the KH 2 PO 4 results in higher molecular weight sodium and potassium phosphates, in which one can distinguish cyclic representatives, the sodium or potassium metaphosphates and chain types, the sodium or potassium polyphosphates.
  • cyclic representatives the sodium or potassium metaphosphates and chain types, the sodium or potassium polyphosphates.
  • for the latter are a variety of names in use: melting or annealing phosphates, Graham's salt, Kurrolsches and Maddrell's salt. All higher sodium and potassium phosphates are collectively referred to as condensed phosphates.
  • Pentakaliumtriphosphat, K 5 P 3 O 10 (potassium tripolyphosphate), for example, in the form of a 50 wt .-% solution (> 23% P 2 O 5 , 25% K 2 O) in the trade.
  • the potassium polyphosphates are widely used in the washing and cleaning industry.
  • phosphates are to be regarded as preferred constituents of liquid, water-poor detergent or cleaner compositions, in one particularly preferred embodiment of the present invention the dispersed phosphate polyphosphate (s), preferably tripolyphosphate (s), more preferably sodium and / or or potassium tripolyphosphate.
  • the claimed compositions may also be special detergents for the care of fibers, glass, ceramics or metal.
  • detergents and cleaners which have a total phosphate content of the detergent composition between 30 and 70% by weight, preferably between 35 and 65% by weight, more preferably between 40 and 60% by weight and in particular between 45 and 55 wt .-%, each based on the total weight of the liquid detergent and cleaning composition, without regard to the water-soluble or water-dispersible container having.
  • a second method for improving the shelf life of compositions according to the invention in addition to the coating described above is the hydration of the in the low-water matrix dispersed phosphates, especially the sodium tripolyphosphate.
  • sodium tripolyphosphate still exists as a crystalline hexahydrate whose water of hydration content, based on the total weight, is 28% by weight.
  • the dispersed sodium tripolyphosphate is at least partly in the form of the hexahydrate.
  • the dispersed sodium tripolyphosphate may also be completely in the form of the hexahydrate.
  • washing or cleaning compositions in which the dispersed sodium tripolyphosphate, based on its total weight, contains 10 to 70% by weight, preferably 20 to 60% by weight and in particular 25 to 50% by weight, of sodium tripolyphosphate hexahydrate.
  • the dispersed sodium tripolyphosphate contains 10 to 70% by weight, preferably 20 to 60% by weight and in particular 25 to 50% by weight, of sodium tripolyphosphate hexahydrate.
  • partially hydrated sodium tripolyphosphate has the advantage over hexahydrate of easier processability and allows the preparation of detergent or cleaner compositions of higher active ingredient concentration due to the lower water of hydration.
  • the preparation of partially hydrated sodium tripolyphosphate can be carried out, for example, by the action of hot steam or aqueous sprays on anhydrous phosphates.
  • the degree of hydration of the phosphate can be determined by the amount of water supplied.
  • preferred detergent or cleaning agent compositions according to the invention comprise the dispersed phosphate at least partly in the form of a hydrated phosphate, this hydrated phosphate preferably having a water of hydration content of from 0.5 to 26% by weight, preferably from 1 to 24% by weight. and in particular from 2 to 20 wt .-%, each based on the total weight of the dispersed hydrated phosphate.
  • compositions of the invention are present as a solid suspension in a low-water matrix, which may contain other non-aqueous solvents in addition to the water.
  • solid suspension does not exclude in the context of the present application that the solid substances contained in the agents according to the invention are present at least partially in solution. Regardless of these dissolved portions, however, the compositions of the invention have a proportion of suspended solids.
  • non-aqueous solvents are derived, for example, from the groups of the monoalcohols, diols, triols or polyols, ethers, esters and / or amides. Particular preference is given to nonaqueous solvents which are water-soluble, "water-soluble" solvents in the context of the present application being solvents which are completely miscible with water at room temperature, ie without a miscibility gap.
  • Non-aqueous solvents which can be used in the compositions according to the invention preferably originate from the group of monohydric or polyhydric alcohols, alkanolamines or glycol ethers, provided they are miscible with water in the concentration range indicated.
  • the solvents are selected from ethanol, n- or i-propanol, butanols, glycol, propane or butanediol, glycerol, diglycol, propyl or butyl diglycol, hexylene glycol, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol propyl ether, Etheylenglykolmonon-butyl ether, diethylene glycol methyl ether, di-ethylenglykolethylether , Propylenglykolmethyl-, ethyl or propyl ether, Dipropylenglykolmethyl- or ethyl ether, methoxy, ethoxy or
  • a particularly preferred portioned detergent or cleaning composition in the context of the present invention is characterized in that it contains nonaqueous solvents in amounts of from 0.1 to 70% by weight, preferably from 0.5 to 60% by weight, especially preferably from 1 to 50% by weight, very particularly preferably from 2 to 40% by weight and in particular from 2.5 to 30% by weight, based in each case on the total composition, preference being given to nonaqueous ( s) solvent is / are selected from the group of liquid at room temperature nonionic surfactants, the polyethylene glycols and polypropylene glycols, glycerol, glycerol carbonate, triacetin, ethylene glycol, propylene glycol, propylene carbonate, hexylene glycol, ethanol and n-propanol and / or iso-propanol.
  • nonaqueous solvents in amounts of from 0.1 to 70% by weight, preferably from 0.5 to 60% by weight, especially preferably from 1 to 50% by weight, very particularly preferably from 2 to 40% by weight
  • non-ionic surfactants which are liquid at room temperature are described in detail below as washing or cleaning-active substances.
  • Polyethylene glycols which can be used according to the invention are liquid at room temperature.
  • PEG are polymers of ethylene glycol which are of the general formula (VIII) H- (O-CH 2 -CH 2 ) n -OH (VIII) n, where n can assume values between 1 (ethylene glycol, see below) and about 16.
  • VIII general formula
  • n can assume values between 1 (ethylene glycol, see below) and about 16.
  • polyethylene glycols are, for example, under the trade name Carbowax ® PEG 200 (Union Carbide), Emkapol ® 200 (ICI Americas), Lipoxol ® 200 MED (Huls America), polyglycol ® E-200 (Dow Chemical), Alkapol ® PEG 300 (Rhone -Poulenc), Lutrol ® E300 (BASF) and the corresponding trade names with higher numbers.
  • Polypropylene glycols which can be used according to the invention are polymers of propylene glycol which correspond to the general formula (IX) n, where n can assume values between 1 (propylene glycol, see below) and about 12.
  • n can assume values between 1 (propylene glycol, see below) and about 12.
  • Glycerin is a colorless, clear, heavy-bodied, odorless sweet-tasting hygroscopic liquid of density 1.261 that solidifies at 18.2 ° C.
  • Glycerol was originally a by-product of fat saponification but is now technically synthesized in large quantities. Most technical processes are based on propene, which is processed into glycerol via the intermediates allyl chloride, epichlorohydrin. Another technical process is the hydroxylation of allyl alcohol with hydrogen peroxide at the WO 3 contact via the step of the glycide.
  • Glycerol carbonate is accessible by transesterification of ethylene carbonate or dimethyl carbonate with glycerol, as by-products of ethylene glycol or methanol incurred. Another synthetic route is based on glycidol (2,3-epoxy-1-propanol), which is converted under pressure in the presence of catalysts with CO 2 to glycerol carbonate. Glycerine carbonate is a clear, easily agitated liquid with a density of 1.398 gcm -3 , which boils at 125-130 ° C (0.15 mbar).
  • Ethylene Glycol (1,2-Ethanediol, "Glycol”) is a colorless, viscous, sweet-tasting, highly hygroscopic liquid that is miscible with water, alcohols and acetone and has a density of 1.113.
  • the solidification point of ethylene glycol is -11.5 ° C, the liquid boils at 198 ° C.
  • ethylene glycol is recovered from ethylene oxide by heating with water under pressure. Promising manufacturing processes can also be built on the acetoxylation of ethylene and subsequent hydrolysis or on synthesis gas reactions.
  • 1,3-Propanediol trimethylene glycol
  • 1,0597 a neutral, colorless and odorless, sweet-tasting liquid of density 1,0597, which solidifies at -32 ° C and boils at 214 ° C.
  • the preparation of 1,3-propanediol succeeds from acrolein and water with subsequent catalytic hydrogenation.
  • 1,2-propanediol (propylene glycol), which is an oily, colorless, almost odorless liquid, density 1.0381, which solidifies at -60 ° C and boils at 188 ° C.
  • 1,2-Propanediol is prepared from propylene oxide by water addition.
  • Propylene carbonate is a water-bright, easily mobile liquid, with a density of 1.21 gcm -3 , the melting point is -49 ° C, the boiling point at 242 ° C. Also propylene carbonate is industrially accessible by reaction of propylene oxide and CO 2 at 200 ° C and 80 bar.
  • detergent or cleaning agent compositions preferred according to the invention contain further active substances customary for these compositions, substances from the group of bleaching agents, bleach activators, polymers, builders, surfactants, enzymes, electrolytes, pH adjusters, fragrances, perfume carriers, dyes, Hydrotropes, foam inhibitors, anti redeposition agents, optical brighteners, grayness inhibitors, anti-shrinkage agents, crease inhibitors, dye transfer inhibitors, antimicrobial agents, germicides, fungicides, antioxidants, corrosion inhibitors, antistatic agents, repellents and impregnating agents, swelling and anti-slip agents, nonaqueous solvents, fabric softeners, protein hydrolysates, and UV absorbers are particularly preferred.
  • active substances customary for these compositions substances from the group of bleaching agents, bleach activators, polymers, builders, surfactants, enzymes, electrolytes, pH adjusters, fragrances, perfume carriers, dyes, Hydrotropes, foam inhibitors, anti redeposition agents, optical brighteners, grayness inhibitors, anti
  • bleaching agents and bleach activators may be present in the compositions according to the invention, among other constituents.
  • sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other useful bleaching agents are, for example, sodium percarbonate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • Machine dishwashing detergent tablets may also contain bleach the group of organic bleach.
  • Typical organic bleaches are the diacyl peroxides such as dibenzoyl peroxide.
  • Other typical organic bleaches are the peroxyacids, examples of which include the alkyl peroxyacids and the aryl peroxyacids.
  • Preferred representatives are (a) the peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidoperoxycaproic acid [phthaloiminoperoxyhexanoic acid (PAP)] , o-carboxybenzamidoperoxycaproic acid, N-nonenylamidoperadipic acid and N-nonenylamidopersuccinate, and (c) aliphatic and araliphatic peroxydicarboxylic acids, such as 1,12-diperoxycarboxylic acid, 1,9-diperoxyazelaic acid, diperoxysebacic acid, diperoxybrassic acid, the diperoxyphthalic acids, 2-decy
  • the agents according to the invention may contain bleach activators in order to achieve an improved bleaching effect when they are cleaned at temperatures of 60 ° C. and below.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate and 2,5-diacetoxy- 2,5-dihydrofuran.
  • TAED tetraacet
  • bleach activators preferably used in the context of the present application are compounds from the group of cationic nitriles, in particular cationic nitrile of the formula in which R 1 is -H, -CH 3, a C 2-24 -alkyl or -alkenyl radical, a substituted C 2-24 -alkyl or -alkenyl radical having at least one substituent from the group -Cl, -Br, - OH, -NH 2 , -CN, an alkyl or alkenylaryl radical having a C 1-24 -alkyl group, or represents a substituted alkyl or alkenylaryl radical having a C 1-24 -alkyl group and at least one further substituent on the aromatic ring, R 2 and R 3 are independently selected from -CH 2 -CN, -CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH (CH 3 ) -CH 3 , -
  • bleach catalysts can also be incorporated into the compositions.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo saline complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes can also be used as bleach catalysts.
  • builders are other important ingredients of detergents or cleaning agents.
  • these agents in particular zeolites, silicates, carbonates, organic compounds Cobuilders and - where there are no ecological prejudices against their use - also the phosphates.
  • Suitable crystalline layered sodium silicates have the general formula NaMSi x O 2x + 1 H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2 , 3 or 4 are.
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3. In particular, both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred.
  • amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which Delayed and have secondary washing properties.
  • the dissolution delay compared with conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • the term "amorphous” is also understood to mean "X-ray amorphous”.
  • the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays having a width of several degrees of diffraction angle. However, it may well even lead to particularly good builder properties if the silicate particles provide blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of size 10 to a few hundred nm, values of up to max. 50 nm and in particular up to max. 20 nm are preferred. Such so-called X-ray amorphous silicates likewise have a dissolution delay compared with the conventional water glasses. Particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates.
  • the finely crystalline, synthetic zeolite containing bound water used is preferably zeolite A and / or P.
  • the zeolite P, zeolite MAP ® (Crosfield) is a particularly preferred. Also suitable, however, are zeolite X and mixtures of A, X and / or P.
  • zeolite X and zeolite A are cocrystal of zeolite X and zeolite A (about 80% by weight of zeolite X) ), which is sold by the company CONDEA Augusta SpA under the brand name VEGOBOND AX ® and by the formula nNa 2 O • (1-n) K 2 O • Al 2 O 3 • (2 - 2.5) SiO 2 • (3.5-5.5) H 2 O can be described.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution, measuring method: Coulter Counter) and preferably contain 18 to 22% by weight, in particular 20 to 22% by weight, of bound water.
  • phosphates as builders are possible, unless such use should not be avoided for environmental reasons.
  • Particularly suitable are the sodium salts of orthophosphates, pyrophosphates and in particular tripolyphosphates. To avoid repetition, reference is made to the above statements for a detailed description of these phosphates.
  • Useful organic builders are, for example, usable in the form of their alkali and especially sodium polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for environmental reasons, as well as Mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof.
  • alkali carriers may be present.
  • Suitable alkali carriers are alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogencarbonates, alkali metal sesquicarbonates, alkali metal silicates, alkali metal silicates, and mixtures of the abovementioned substances, preference being given for the purposes of this invention to using the alkali metal carbonates, in particular sodium carbonate, sodium bicarbonate or sodium sesquicarbonate.
  • water-soluble builders are preferred since they generally tend to be less likely to form insoluble residues on dishes and hard surfaces.
  • Common builders are the low molecular weight polycarboxylic acids and their salts, the homopolymeric and copolymeric polycarboxylic acids and their salts, the carbonates, phosphates and silicates.
  • Trisodium citrate and / or pentasodium tripolyphosphate and / or sodium carbonate and / or sodium bicarbonate and / or gluconates and / or silicatic builders from the class of disilicates and / or metasilicates are preferably used for the production of tablets for automatic dishwashing.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate.
  • a builder system containing a mixture of tripolyphosphate and sodium carbonate and sodium disilicate are particularly preferred.
  • the organic cobuilders used may in particular be polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, further organic cobuilders (see below) and also phosphonates. These classes of substances are described below.
  • Useful organic builder substances are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function. These are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, methylglycinediacetic acid, sugar acids and mixtures thereof.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • polymeric polycarboxylates for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those having a relative molecular mass of from 500 to 70,000 g / mol.
  • the molecular weights stated for polymeric polycarboxylates are weight-average molar masses M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used. The measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the polymers investigated. These data differ significantly from the molecular weight data, in which polystyrene sulfonic acids are used as standard. The molar masses measured against polystyrenesulfonic acids are generally significantly higher than the molecular weights specified in this document.
  • Suitable polymers are in particular polyacrylates, which preferably have a molecular weight of from 1000 to 20 000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molecular weights of from 1,000 to 10,000 g / mol, and more preferably from 1,200 to 4,000 g / mol, may again be preferred from this group.
  • Polyacrylates as well as copolymers of unsaturated carboxylic acids, monomers containing sulfonic acid groups and optionally further ionic or nonionogenic monomers are particularly preferably used in the compositions according to the invention.
  • the sulfonic acid-containing copolymers will be described in detail below.
  • Drying time in the context of the teaching according to the invention is generally understood to mean the meaning of the word, ie the time that elapses until a dish surface treated in a dishwasher has dried, but in particular the time that elapses, up to 90% with a cleaning or Rinse aid is dried in concentrated or diluted form treated surface.
  • R 5 (R 6 ) C C (R 7 ) -X-SO 3 H (XI)
  • Suitable further ionic or nonionic monomers are, in particular, ethylenically unsaturated compounds.
  • the content of the polymers used according to the invention to monomers of group iii) is preferably less than 20% by weight, based on the polymer.
  • Particularly preferred polymers to be used consist only of monomers of groups i) and ii).
  • the copolymers used in the compositions may contain the monomers from groups i) and ii) and optionally iii) in varying amounts, all representatives from group i) with all representatives from group ii) and all representatives from group iii) can be combined.
  • Particularly preferred polymers have certain structural units, which are described below.
  • Acrylic acid and / or methacrylic acid can also be copolymerized completely analogously with methacrylic acid derivatives containing sulfonic acid groups, as a result of which the structural units in the molecule to be changed.
  • maleic acid can also be used as a particularly preferred monomer from group i).
  • dishwashing detergents according to the invention are preferred which contain as ingredient b) one or more copolymers which contain structural units of the formulas XII and / or XIII and / or XiV and / or XV and / or XVI and / or XVII - [CH 2 -CHCOOH] m - [CH 2 -CHC (O) -Y-SO 3 H] p - (XII), - [CH 2 -C (CH 3 ) COOH] m - [CH 2 -CHC (O) -Y-SO 3 H] p - (XIII) - [CH 2 -CHCOOH] m - [CH 2 -C (CH 3 ) C (O) -Y-SO 3 H] p - (XIV), - [CH 2 -C (CH 3 ) COOH] m -CH 2 -C (CH 3 ) C (O) -Y-SO 3 H] p -
  • the sulfonic acid groups may be wholly or partly in neutralized form, ie that the acidic acid of the sulfonic acid group in some or all sulfonic acid groups may be exchanged for metal ions, preferably alkali metal ions and especially sodium ions.
  • metal ions preferably alkali metal ions and especially sodium ions.
  • Corresponding agents which are characterized in that the sulfonic acid groups are partially or fully neutralized in the copolymer, are preferred according to the invention.
  • the monomer distribution of the copolymers used in the agents according to the invention in the case of copolymers which contain only monomers from groups i) and ii) is preferably in each case from 5 to 95% by weight i) or ii), particularly preferably from 50 to 90% by weight. % Of monomer from group i) and from 10 to 50% by weight of monomer from group ii), in each case based on the polymer.
  • terpolymers particular preference is given to those containing from 20 to 85% by weight of monomer from group i), from 10 to 60% by weight of monomer from group ii) and from 5 to 30% by weight of monomer from group iii) ,
  • the molecular weight of the polymers used in the agents according to the invention can be varied in order to adapt the properties of the polymers to the desired use.
  • Preferred automatic dishwashing agents are characterized in that the copolymers have molar masses of from 2000 to 200,000 gmol -1 , preferably from 4000 to 25,000 gmol -1 and in particular from 5000 to 15,000 gmol -1 .
  • the content of one or more copolymers in the compositions according to the invention can vary depending on the intended use and the desired product performance, preference being given to preferred automatic dishwashing compositions according to the invention in that they contain the copolymer (s) in amounts of from 0.25 to 50% by weight. %, preferably from 0.5 to 35 wt .-%, particularly preferably from 0.75 to 20 wt .-% and in particular from 1 to 15 wt .-%.
  • polyacrylates As already mentioned above, in the agents according to the invention it is particularly preferable to use both polyacrylates and the above-described copolymers of unsaturated carboxylic acids, monomers containing sulfonic acid groups and optionally further ionic or nonionogenic monomers.
  • the polyacrylates were described in detail above. Particularly preferred are combinations of the above-described sulfonic acid-containing copolymers with low molecular weight polyacrylates, for example in the range between 1000 and 4000 daltons.
  • Such polyacrylates are commercially available under the trade name Sokalan ® PA15 and Sokalan ® PA25 (BASF).
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their molecular weight relative to free acids is generally from 2000 to 100,000 g / mol, preferably from 20,000 to 90,000 g / mol and in particular from 30,000 to 80,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of (co) polymeric polycarboxylates in the compositions is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
  • the polymers may also contain allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid as a monomer.
  • biodegradable polymers of more than two different monomer units for example those which contain as monomers salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or as monomers salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives ,
  • copolymers have as monomers preferably acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids their salts or their precursors.
  • polyaspartic acids or their salts and derivatives are particularly preferred.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes.
  • it is hydrolysis products having average molecular weights in the range of 400 to 500,000 g / mol.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a common measure of the reducing action of a polysaccharide compared to dextrose, which has a DE of 100 , is.
  • DE dextrose equivalent
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • a product oxidized to C 6 of the saccharide ring may be particularly advantageous.
  • Oxydisuccinates and other derivatives of disuccinates are other suitable co-builders.
  • ethylenediamine-N, N'-disuccinate (EDDS) is preferably used in the form of its sodium or magnesium salts.
  • glycerol disuccinates and glycerol trisuccinates are also preferred in this context. Suitable amounts are in zeolithissen and / or silicate-containing formulations at 3 to 15 wt .-%.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • phosphonates are, in particular, hydroxyalkane or aminoalkanephosphonates.
  • hydroxyalkane phosphonates 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance as a co-builder.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • Preferred aminoalkanephosphonates are ethylenediamine tetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs. They are preferably in the form of neutral sodium salts, eg. B.
  • the builder used here is preferably HEDP from the class of phosphonates.
  • the aminoalkanephosphonates also have a pronounced heavy metal binding capacity. Accordingly, in particular if the agents also contain bleach, it may be preferable to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • Preferred agents in the context of the present application contain one or more surfactants from the groups of anionic, nonionic, cationic and / or amphoteric surfactants.
  • Preferred anionic surfactants in acid form are one or more substances from the group of carboxylic acids, sulfuric acid half esters and sulfonic acids, preferably from the group of fatty acids, fatty alkyl sulfuric acids and alkylaryl sulfonic acids.
  • the compounds mentioned should have longer-chain hydrocarbon radicals, ie at least 6 carbon atoms in the alkyl or alkenyl radical.
  • the C chain distributions of the anionic surfactants are in the range of 6 to 40, preferably 8 to 30 and especially 12 to 22 carbon atoms.
  • Carboxylic acids which are used in the form of their alkali metal salts as soaps in detergents and cleaners, are obtained industrially, for the most part, from native fats and oils by hydrolysis. While the alkaline saponification already carried out in the past century led directly to the alkali salts (soaps), today only large amounts of water are used for cleavage, which cleaves the fats into glycerol and the free fatty acids. Examples of industrially applied processes are the autoclave cleavage or continuous high pressure cleavage.
  • hexanoic acid caproic acid
  • heptanoic acid enanthic acid
  • octanoic acid caprylic acid
  • nonanoic acid pelargonic acid
  • decanoic acid capric acid
  • undecanoic acid etc.
  • fatty acids such as dodecanoic acid (lauric acid), tetradecanoic acid (myristic acid), hexadecanoic acid (palmitic acid), octadecanoic acid (stearic acid), eicosanoic acid (arachidic acid), docosanoic acid (behenic acid), tetracosanic acid (lignoceric acid), hexacosanoic acid (cerotic acid), triacotanoic acid (melissic acid) and unsaturated secies 9c-hexadecenoic acid (palmitoleic acid), 6c-octadecenoic acid (petroselinic acid), 6t-octadecenoic acid (petroselaidic acid), 9c-octadecenoic acid (oleic acid), 9t-octadecenoic acid ((elaidic acid), 9c, 12c-oc
  • Such mixtures are for example coconut oil (about 6 wt .-% C 8 , 6 wt .-% C 10 , 48 wt .-% C 12 , 18 wt .-% C 14 , 10 wt .-% C 16 , 2 wt % C 18 , 8% by weight C 18 ' , 1% by weight C 18 " ), palm kernel oil fatty acid (about 4% by weight C 8 , 5% by weight C 10 , 50% by weight C 12 , 15 wt .-% C 14 , 7 wt .-% C 16 , 2 wt .-% C 18 , 15 wt .-% C 18 ' , 1 wt .-% C 18 " ), tallow fatty acid (ca.
  • % C 16 ' 1 wt% C 17 , 2 wt% C 18 , 70 wt% C 18' , 10 wt% C 18 " , 0.5 wt% C 18"' technical palmitic / stearic acid (about 1% by weight C 12 , 2% by weight C 14 , 45% by weight C 16 , 2 Wt .-% C 17 , 47 wt .-% C 18 , 1 wt .-% C 18 ' ) and soybean oil fatty acid (about 2 wt .-% C 14 , 15 wt .-% C 16 , 5 wt .-% C 18 , 25 wt .-% C 18 , 45 wt .-% C 18 " , 7 wt .-% C 18"' ).
  • Sulfuric acid semi-esters of longer-chain alcohols are also anionic surfactants in their acid form and can be used in the context of the present invention.
  • Their alkali metal salts, in particular sodium salts, the fatty alcohol sulfates are industrially available from fatty alcohols, which are reacted with sulfuric acid, chlorosulfonic acid, sulfamic acid or sulfur trioxide to the respective alkyl sulfuric acids and subsequently neutralized.
  • the fatty alcohols are thereby obtained from the relevant fatty acids or fatty acid mixtures by high-pressure hydrogenation of fatty acid methyl esters.
  • the quantitatively most important industrial process for the production of fatty alkylsulfuric acids is the sulfation of the alcohols with SO 3 / air mixtures in special cascade, falling film or tube bundle reactors.
  • alkyl ether sulfuric acids which can be used according to the invention are the alkyl ether sulfuric acids whose salts, the alkyl ether sulfates, have a higher water solubility and lower sensitivity to water hardness (solubility of the Ca salts) compared to the alkyl sulfates.
  • Alkyl ether sulfuric acids like the alkyl sulfuric acids, are synthesized from fatty alcohols which are reacted with ethylene oxide to give the fatty alcohol ethoxylates in question. Instead of ethylene oxide, propylene oxide can also be used. The subsequent sulfonation with gaseous sulfur trioxide in short-term sulfonation reactors yields over 98% of the relevant alkyl ether sulfuric acids.
  • Alkane sulfonic acids and olefin sulfonic acids can also be used in the context of the present invention as anionic surfactants in acid form.
  • Alkanesulfonic acids may contain the sulfonic acid group terminally bound (primary alkanesulfonic acids) or along the C chain (secondary alkanesulfonic acids), with only the secondary alkanesulfonic acids having commercial significance. These are prepared by sulfochlorination or sulfoxidation of linear hydrocarbons.
  • alkanesulfonic acids Another process for producing alkanesulfonic acids is sulfoxidation in which n-paraffins are reacted with sulfur dioxide and oxygen under UV light irradiation.
  • This radical reaction produces successive alkylsulfonyl radicals, which are oxygenated Alkylpersulfonylradiaklen react further.
  • the reaction with unreacted paraffin provides an alkyl radical and the alkylpersulfonic acid which decomposes into an alkyl peroxysulfonyl radical and a hydroxyl radical.
  • the reaction of the two radicals with unreacted paraffin provides the alkylsulfonic acids or water, which reacts with alkylpersulfonic acid and sulfur dioxide to form sulfuric acid.
  • this reaction is usually carried out only up to degrees of conversion of 1% and then terminated.
  • Olefinsulfonates are produced industrially by reaction of ⁇ -olefins with sulfur trioxide. Intermediate zwitterions form, which cyclize to form so-called sultones. Under suitable conditions (alkaline or acid hydrolysis), these sultones react to give hydroxylalkanesulfonic acids or alkensulfonic acids, both of which can likewise be used as anionic surfactant acids.
  • alkyl benzene sulfonates as powerful anionic surfactants have been known since the thirties of our century. At that time, alkylbenzenes were prepared by monochlorination of kogasin fractions and subsequent Friedel-Crafts alkylation, which were sulfonated with oleum and neutralized with sodium hydroxide solution.
  • Linear alkylbenzenesulfonates are prepared from linear alkylbenzenes, which in turn are accessible from linear olefins.
  • large-scale petroleum fractions are separated with molecular sieves in the n-paraffins of the desired purity and dehydrogenated to the n-olefins, resulting in both ⁇ - and i-olefins.
  • ABSS alkylbenzenesulfonic acid
  • C 8-16" preferably C 9-13- alkylbenzenesulfonic acids, which are different from alkylbenzenes which have a tetralin content of less than 5% by weight, based on the alkylbenzene.
  • alkylbenzenesulfonic acids whose alkylbenzenes were prepared by the HF process, so that the C 8-16 " , preferably C 9-13 -alkylbenzenesulfonic acids used have a content of 2-phenyl isomer below 22% by weight. , based on the alkylbenzenesulfonic acid.
  • anionic surfactants in their acid form may be used alone or in admixture with each other.
  • the anionic surfactant in acid form before addition to the / the carrier material (s) further, preferably acidic, ingredients of detergents and cleaners in amounts of 0.1 to 40 wt .-%, preferably from 1 to 15 wt .-% and in particular from 2 to 10 wt .-%, in each case based on the weight of the mixture to be reacted, mixed.
  • anionic surfactants partially or fully neutralized. These salts can then be present as solution, suspension or emulsion in the granulation liquid, but also as a solid component of the solid bed. Suitable cations for such anionic surfactants are, in addition to the alkali metals (here in particular according to claims and K salts), ammonium and mono-, di- or triethanolalkonium ions. Instead of mono-, di- or triethanolamine, the analogous representatives of mono-, di- or trimethanolamine or those of the alkanolamines of higher alcohols can also be quaternized and present as a cation.
  • cationic surfactants can be used with advantage as an active substance.
  • the cationic surfactant can be added directly to the mixer in its delivery form, or can be sprayed onto the solid carrier in the form of a liquid to pasty cationic surfactant formulation.
  • Such cationic surfactant formulations can be prepared, for example, by mixing commercial cationic surfactants with excipients such as nonionic surfactants, polyethylene glycols or polyols.
  • lower alcohols such as ethanol and isopropanol can be used, and the amount of such lower alcohols in the liquid cationic surfactant preparation should be below 10% by weight for the reasons mentioned above.
  • Suitable cationic surfactants for the compositions according to the invention are all customary substances, with cationic surfactants having textile-softening action being clearly preferred.
  • the detergent composition additionally contains nonionic surfactant (s) as the active substance.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture can contain, as they are usually present in Oxoalkoholresten.
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include C 12-14 alcohols, for example, with 3 EO or 4 EO, C 9-11 -alcohol with 7 EO, C 13-15 -alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 -alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12-14 -alcohol with 3 EO and C 12-18 -alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants and alkyl glycosides of the general formula RO (G) x can be used in which R is a primary straight-chain or methyl-branched, especially in the 2-position methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol which represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; preferably x is 1.2 to 1.4.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain, especially fatty acid methyl esters.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • polyhydroxy fatty acid amides of the formula XXII, in the RCO for an aliphatic acyl radical having 6 to 22 carbon atoms, R 1 for hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms and [Z] for a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups stands.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula XXIII, in the R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 1 is a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms and R 2 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms, with C 1-4 alkyl or phenyl radicals being preferred and [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated Derivatives of this residue.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • the ratio of anionic surfactant (s) to nonionic surfactant (s) is between 10: 1 and 1:10, preferably between 7.5: 1 and 1: 5 and especially between 5: 1 and 1: 2.
  • containers according to the invention which contain surfactant (s), preferably anionic (s) and / or nonionic surfactant (s), in amounts of from 5 to 80% by weight, preferably from 7.5 to 70% by weight. %, particularly preferably from 10 to 60% by weight, in particular from 12.5 to 50% by weight, based in each case on the weight of the enclosed solids.
  • Dishwashing compositions according to the invention therefore preferably contain only certain nonionic surfactants, which are described below.
  • Surfactants are usually used in automatic dishwasher detergents only low-foaming nonionic surfactants. Representatives from the groups of anionic, cationic or amphoteric surfactants, however, have less importance.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture can contain, as they are usually present in Oxoalkoholresten.
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohols with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12-14 -alcohol with 3 EO and C 12-18 -alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants having a melting point above room temperature, preferably a nonionic surfactant having a melting point above 20 ° C.
  • a nonionic surfactant having a melting point above 20 ° C Preferably used nonionic surfactants have melting points above 25 ° C, particularly preferably used nonionic surfactants have melting points between 25 and 60 ° C, in particular between 26.6 and 43.3 ° C.
  • Suitable nonionic surfactants which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which may be solid or highly viscous at room temperature. If highly viscous nonionic surfactants are used at room temperature, it is preferred that they have a viscosity above 20 Pas, preferably above 35 Pas and in particular above 40 Pas. Nonionic surfactants which have waxy consistency at room temperature are also preferred.
  • Preferred nonionic surfactants to be used at room temperature are from the groups of the alkoxylated nonionic surfactants, in particular the ethoxylated primary alcohols, and mixtures of these surfactants with structurally complicated surfactants such as Polyoxypropylene / polyoxyethylene / polyoxypropylene (PO / EO / PO) surfactants.
  • Such (PO / EO / PO) nonionic surfactants are also distinguished by good foam control.
  • the nonionic surfactant having a melting point above room temperature is an ethoxylated nonionic surfactant consisting of the reaction of a monohydroxyalkanol or alkylphenol having 6 to 20 carbon atoms, preferably at least 12 mol, more preferably at least 15 mol, especially at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol emerged.
  • a particularly preferred solid at ambient temperature, non-ionic surfactant is derived from a straight chain fatty alcohol having 16 to 20 carbon atoms (C 16-20 alcohol), preferably a C 18 alcohol and at least 12 mole, preferably at least 15 mol and in particular at least 20 moles of ethylene oxide , Of these, the so-called “narrow range ethoxylates" (see above) are particularly preferred.
  • the nonionic surfactant solid at room temperature preferably additionally has propylene oxide units in the molecule.
  • such PO units make up to 25 wt .-%, more preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic surfactant from.
  • Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
  • the alcohol or alkylphenol part of such nonionic surfactant molecules preferably constitutes more than 30% by weight, more preferably more than 50% by weight and in particular more than 70% by weight of the total molecular weight of such nonionic surfactants.
  • More particularly preferred nonionic surfactants having melting points above room temperature contain from 40 to 70% of a polyoxypropylene / polyoxyethylene / polyoxypropylene block polymer blend containing 75% by weight of a reverse block copolymer of polyoxyethylene and polyoxypropylene with 17 moles of ethylene oxide and 44 moles of propylene oxide and 25% by weight. % of a block copolymer of polyoxyethylene and polyoxypropylene initiated with trimethylolpropane and containing 24 moles of ethylene oxide and 99 moles of propylene oxide per mole of trimethylolpropane.
  • Nonionic surfactants that may be used with particular preference are available, for example under the name Poly Tergent ® SLF-18 from Olin Chemicals.
  • a further preferred surfactant can be defined by the formula R 1 O [CH 2 CH (CH 3 ) O] x [CH 2 CH 2 O] y [CH 2 CH (OH) R 2 ] in which R 1 is a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof, R 2 is a linear or branched hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x is values between 0.5 and 1, 5 and y is a value of at least 15.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula R 1 O [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 in which R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n- Butyl, 2-butyl or 2-methyl-2-butyl radical, x are values between 1 and 30, k and j are values between 1 and 12, preferably between 1 and 5.
  • each R 3 in the above formula may be different.
  • R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, with radicals having 8 to 18 carbon atoms being particularly preferred.
  • R 3 H, -CH 3 or -CH 2 CH 3 are particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula may be different if x ⁇ 2.
  • the alkylene oxide unit in the square bracket can be varied.
  • the value 3 for x has been selected here by way of example and may well be greater, with the variation width increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
  • R 1 , R 2 and R 3 are as defined above and x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18.
  • Particularly preferred are surfactants in which the radicals R 1 and R 2 has 9 to 14 C atoms, R 3 is H and x assumes values of 6 to 15.
  • Agents according to the invention may contain enzymes to increase the washing or cleaning performance, it being possible in principle to use all enzymes established for this purpose in the prior art. These include in particular proteases, amylases, lipases, hemicellulases, cellulases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; Starting from the natural molecules, improved variants are available for use in detergents and cleaners, which are preferably used accordingly. Agents according to the invention preferably contain enzymes in total amounts of 1 ⁇ 10 -6 to 5 percent by weight, based on active protein. The protein concentration can be determined by known methods, for example the BCA method (bicinchoninic acid, 2,2'-biquinolyl-4,4'-dicarboxylic acid) or the biuret method.
  • BCA method bicinchoninic acid, 2,2'-biquinolyl-4,4'-dicarboxylic acid
  • subtilisin type examples thereof are the subtilisins BPN 'and Carlsberg, the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the enzymes thermitase, proteinase K and the subtilases, but not the subtilisins in the narrower sense Proteases TW3 and TW7.
  • subtilisin Carlsberg in a developed form under the trade names Alcalase ® from Novozymes A / S, Bagsvaerd, Denmark.
  • subtilisins 147 and 309 are sold under the trade names Esperase ®, or Savinase ® from Novozymes. From the protease from Bacillus lentus DSM 5483 derived under the name BLAP ® variants are derived.
  • proteases are, for example, under the trade names Durazym ®, relase ®, Everlase® ®, Nafizym, Natalase ®, Kannase® ® and Ovozymes ® from Novozymes, under the trade names Purafect ®, Purafect ® OxP and Properase.RTM ® by the company Genencor, that under the trade name Protosol® ® from Advanced Biochemicals Ltd., Thane, India, under the trade name Wuxi ® from Wuxi Snyder Bioproducts Ltd., China, under the trade names Proleather® ® and protease P ® by the company Amano Pharmaceuticals Ltd., Nagoya, Japan, and the enzyme available under the name Proteinase K-16 from Kao Corp., Tokyo, Japan.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, B. amyloliquefaciens or B. stearothermophilus and also their further developments improved for use in detergents and cleaners.
  • the enzyme from B. licheniformis is available from Novozymes under the name Termamyl ® and from Genencor under the name Purastar® ® ST. Development products of this ⁇ -amylase are available from Novozymes under the trade names Duramyl ® and Termamyl ® ultra, from Genencor under the name Purastar® ® OxAm and from Daiwa Seiko Inc., Tokyo, Japan, as Keistase ®.
  • the ⁇ -amylase from B. amyloliquefaciens is marketed by Novozymes under the name BAN ®, and variants derived from the ⁇ -amylase from B. stearothermophilus under the names BSG ® and Novamyl ®, likewise from Novozymes.
  • ⁇ -amylase from Bacillus sp. A7-7 (DSM 12368) and the cyclodextrin glucanotransferase (CGTase) from B. agaradherens (DSM 9948); Likewise, fusion products of said molecules can be used.
  • compositions according to the invention may contain lipases or cutinases, in particular because of their triglyceride-cleaving activities, but also in order to generate in situ peracids from suitable precursors.
  • lipases or cutinases include, for example, the lipases originally obtainable from Humicola lanuginosa ( Thermomyces lanuginosus ) or further developed, in particular those with the amino acid exchange D96L. They are sold, for example, by Novozymes under the trade names Lipolase ®, Lipolase Ultra ®, LipoPrime® ®, Lipozyme® ® and Lipex ®.
  • the cutinases can be used, which were originally isolated from Fusarium solani pisi and Humicola insolens .
  • lipases are available from Amano under the designations Lipase CE ®, Lipase P ®, Lipase B ®, or lipase CES ®, Lipase AKG ®, Bacillis sp. Lipase® , Lipase AP® , Lipase M- AP® and Lipase AML® are available. From the company Genencor, for example, the lipases, or cutinases can be used, the initial enzymes were originally isolated from Pseudomonas mendocina and Fusarium solanii .
  • Detergents according to the invention may contain cellulases, depending on the purpose, as pure enzymes, as enzyme preparations or in the form of mixtures in which the individual components advantageously supplement each other in terms of their various performance aspects.
  • These performance aspects include, in particular, contributions to the primary washing performance, the secondary washing performance of the composition (anti-redeposition effect or graying inhibition) and softening (fabric effect), up to the exercise of a "stone washed" effect.
  • EG endoglucanase
  • Novozymes under the trade name Celluzyme ®.
  • the products Endolase® ® and Carezyme ® likewise available from Novozymes, are based on the 50 kD EG and 43 kD EG from H. insolens DSM 1800. Further commercial products of this company are Cellusoft® ® and Renozyme ®.
  • the 20 kD EG cellulase from Melanocarpus from AB Enzymes, Finland available under the trade names Ecostone® ® and Biotouch ®, can be used.
  • Suitable mannanases are available, for example under the name Gamanase ® and Pektinex AR ® from Novozymes, under the name Rohapec ® B1 L from AB Enzymes and under the name Pyrolase® ® from Diversa Corp., San Diego, CA, USA , The obtained from B. subtilis ⁇ -glucanase is available under the name Cereflo ® from Novozymes.
  • detergents or cleaners according to the invention may be oxidoreductases, for example oxidases, oxygenases, catalases, peroxidases, such as halo-, chloro-, bromo-, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases).
  • oxidases for example oxidases, oxygenases, catalases, peroxidases, such as halo-, chloro-, bromo-, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases).
  • oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo-, chloro-, bromo-, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol
  • organic, particularly preferably aromatic, interacting with the enzymes compounds are added to enhance the activity of the respective oxidoreductases (enhancer) or order to ensure the flow of electrons at strongly different redox potentials between the oxidizing enzymes and the soiling (mediators).
  • the enzymes used in agents of the invention are either originally from microorganisms, such as the genera Bacillus, Streptomyces, Humicola, or Pseudomonas, and / or are produced by biotechnological methods known per se by suitable microorganisms, such as transgenic expression hosts of the genera Bacillus or filamentous fungi.
  • the purification of the relevant enzymes is conveniently carried out by conventional methods, for example by precipitation, sedimentation, concentration, filtration of the liquid phases, microfiltration, ultrafiltration, exposure to chemicals, deodorization or suitable combinations of these steps.
  • the agents of the invention may be added to the enzymes in any form known in the art. These include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, especially in the case of liquid or gel-form detergents, solutions of the enzymes, advantageously as concentrated as possible, sparing in water and / or added with stabilizers.
  • the enzymes may be encapsulated for both the solid and liquid dosage forms, for example by spray-drying or extruding the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • further active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, may additionally be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • such granules for example by applying polymeric film-forming agent, low in dust and storage stable due to the coating.
  • a protein and / or enzyme contained in an agent according to the invention can be protected against damage, for example inactivation, denaturation or decomposition, for example by physical influences, oxidation or proteolytic cleavage, in particular during storage become.
  • damage for example inactivation, denaturation or decomposition, for example by physical influences, oxidation or proteolytic cleavage, in particular during storage become.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Compositions according to the invention may contain stabilizers for this purpose; the provision of such means constitutes a preferred embodiment of the present invention.
  • One group of stabilizers are reversible protease inhibitors. Frequently, benzamidine hydrochloride, borax, boric acids, boronic acids or their salts or esters are used, including, in particular, derivatives with aromatic groups, for example ortho, meta or para-substituted phenylboronic acids, or their salts or esters. Furthermore, peptide aldehydes, that is oligopeptides with reduced C-terminus are suitable. As peptidic protease inhibitors are, inter alia, ovomucoid and leupeptin to mention; An additional option is the formation of fusion proteins from proteases and peptide inhibitors.
  • enzyme stabilizers are amino alcohols such as mono-, di-, triethanol- and -propanolamine and mixtures thereof, aliphatic carboxylic acids up to C 12 , such as succinic acid, other dicarboxylic acids or salts of said acids. End-capped fatty acid amide alkoxylates can also be used as stabilizers.
  • Lower aliphatic alcohols but especially polyols such as glycerol, ethylene glycol, propylene glycol or sorbitol are other frequently used enzyme stabilizers.
  • di-glycerol phosphate protects against denaturation by physical influences.
  • calcium salts are used, such as calcium acetate or calcium formate and magnesium salts.
  • Polyamide oligomers or polymeric compounds such as lignin, water-soluble vinyl copolymers or, such as cellulose ethers, acrylic polymers and / or polyamides stabilize the enzyme preparation, inter alia, against physical influences or pH fluctuations.
  • Polyamine N-oxide containing polymers act simultaneously as enzyme stabilizers and as dye transfer inhibitors.
  • Other polymeric stabilizers are the linear C 8 -C 18 polyoxyalkylenes.
  • Alkylpolyglycosides can stabilize in accordance with the also the enzymatic components of the agent according to the invention and even increase their performance.
  • Crosslinked N-containing compounds perform a dual function as soil release agents and as enzyme stabilizers.
  • Reducing agents and antioxidants such as sodium sulfite or reducing sugars enhance the stability of the enzymes to oxidative degradation.
  • combinatons of stabilizers are used, for example of polyols, boric acid and / or borax, the combination of boric acid or borate, reducing salts and succinic acid or other dicarboxylic acids or the combination of boric acid or borate with polyols or polyamino compounds and with reducing salts.
  • the effect of peptide-aldehyde stabilizers can be enhanced by combination with boric acid and / or boric acid derivatives and polyols and further enhanced according to the additional use of divalent cations, such as calcium ions.
  • agents according to the invention are preferred which additionally contain enzymes and / or enzyme preparations, preferably solid and / or liquid protease preparations and / or amylase preparations, in amounts of from 1 to 5% by weight, preferably from 1.5 to 4.5 and in particular from 2 to 4 wt .-%, each based on the total agent.
  • salts from the group of inorganic salts a wide number of different salts can be used.
  • Preferred cations are the alkali and alkaline earth metals, preferred anions are the halides and sulfates. From a manufacturing point of view, the use of NaCl or MgCl 2 in the granules according to the invention is preferred.
  • pH adjusters In order to bring the pH of solutions of the detergents or cleaners according to the invention into the desired range, the use of pH adjusters may be indicated. Can be used here are all known acids or alkalis, unless their use is not for technical application or environmental reasons or for reasons of consumer protection prohibited. Usually, the amount of these adjusting agents does not exceed 1% by weight of the total formulation.
  • fragrance compounds for example the synthetic products of the ester type, ethers, aldehydes, ketones, alcohols and hydrocarbons, can be used in the context of the present invention.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethylmethylphenyl glycinate, allylcyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes, for example, the linear alkanals with 8-18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones such as the ionone, ⁇ -isomethylionone and methyl cedrylketone , among the alcohols anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include Terpenes like limes and pinas.
  • fragrance oils may also contain natural fragrance mixtures as are available from vegetable sources, eg pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • perfume oils may also contain natural fragrance mixtures as are available from vegetable sources, eg pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • fragrance To be perceptible, a fragrance must be volatile, whereby besides the nature of the functional groups and the structure of the chemical compound, the molecular weight also plays an important role plays. For example, most odorants have molecular weights up to about 200 daltons, while molecular weights of 300 daltons and above are more of an exception. Due to the different volatility of fragrances, the smell of a perfume or fragrance composed of several fragrances changes during evaporation, whereby the odor impressions in "top note”, “middle note” or “body note” ) and “base note” (end note or dry out).
  • the top note of a perfume does not consist solely of volatile compounds, while the base note is largely made up of less volatile, i. adherent fragrances.
  • more volatile fragrances can be bound to certain fixatives, preventing them from evaporating too quickly.
  • fixatives preventing them from evaporating too quickly.
  • both the odor of the water-soluble or water-dispersible container and the odor, the liquid enclosed by this container (product fragrance), and, after completion of the cleaning and care process, in addition, for example, the laundry fragrance can be influenced .
  • more volatile fragrances are used in particular, while the use of more adhesive fragrances is advantageous to achieve a sufficient level of laundry.
  • Adhesive-resistant fragrances which can be used in the context of the present invention are, for example, the essential oils such as angelica root oil, aniseed oil, arnica blossom oil, basil oil, bay oil, bergamot oil, Champacablütenöl, Edeltannöl, Edeltannenzapfenapfen, Elemiöl, eucalyptus oil, fennel oil, spruce alder oil, galbanum oil, geranium oil, gingergrass oil, Guaiac wood oil, gurdy balm oil, helichrysum oil, ho oil, ginger oil, iris oil, cajeput oil, calamus oil, chamomile oil, camphor oil, kanaga oil, cardamom oil, cassia oil, pine needle oil, Kopa ⁇ va balsam, coriander oil, spearmint oil, caraway oil, cumin oil, lavender oil, lemongrass oil, lime oil, tangerine oil, lemon balm oil, musk kernel oil, myrr
  • fragrances can be used in the context of the present invention as adherent fragrances or fragrance mixtures, ie fragrances.
  • These compounds include the following compounds and mixtures thereof: ambrettolide, ⁇ -amylcinnamaldehyde, anethole, anisaldehyde, anisalcohol, anisole, methyl anthranilate, acetophenone, benzylacetone, benzaldehyde, ethyl benzoate, benzophenone, benzyl alcohol, benzyl acetate, benzyl benzoate, benzyl formate, benzyl valerate, borneol , Bornyl acetate, ⁇ -bromostyrene, n-decyl aldehyde, n-dodecyl aldehyde, eugenol, eugenol methyl ether, eucalyptol,
  • the more volatile fragrances include in particular the lower-boiling fragrances of natural or synthetic origin, which can be used alone or in mixtures.
  • Examples of more readily volatile fragrances are alkyl isothiocyanates (alkyl mustard oils), butanedione, limonene, linalool, linayl acetate and propionate, menthol, menthone, methyl-n-heptenone, phellandrene, phenylacetaldehyde, terpinyl acetate, citral, citronellal.
  • the enclosed liquid or the water-soluble container can be colored with suitable dyes.
  • Preferred dyes the selection of which presents no difficulty to the skilled person, have a high storage stability and insensitivity to the other ingredients of the agents and to light. If the agents according to the invention are used for textile cleaning, the used dyes have no pronounced substantivity to textile fibers so as not to stain them.
  • Hydrotropes or solubilizers are substances which by their presence make other compounds which are virtually insoluble in a certain solvent soluble or emulsifiable in this solvent (solubilization).
  • solubilizers that make a molecular compound with the sparingly soluble substance and those that act by micelle formation. It can also be said that only solubilizers give a so-called latent solvent its solvent power.
  • water as the (latent) solvent, instead of solubilizers, one speaks mostly of hydrotropes, in some cases better of emulsifiers.
  • Suitable foam inhibitors which can be used in the compositions according to the invention are, inter alia, soaps, oils, fats, paraffins or silicone oils, which may optionally be applied to support materials.
  • Suitable carrier materials are, for example, inorganic salts such as carbonates or sulfates, cellulose derivatives or silicates and mixtures of the abovementioned materials.
  • preferred agents include paraffins, preferably unbranched paraffins (n-paraffins) and / or silicones, preferably linear-polymeric silicones, which are constructed according to the scheme (R 2 SiO) x and are also referred to as silicone oils. These silicone oils are usually clear, colorless, neutral, odorless, hydrophobic liquids having a molecular weight of between 1000-150,000, and viscosities of between 10 and 50,000. 1 000 000 mPa ⁇ s.
  • Suitable anti-redeposition agents which are also referred to as soil repellents, are, for example, nonionic cellulose ethers such as methylcellulose and methylhydroxypropylcellulose with a proportion of methoxy groups of 15 to 30% by weight and of hydroxypropyl groups of 1 to 15% by weight, based in each case on the nonionic cellulose ether as well as the known from the prior art polymers of phthalic acid and / or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionic and / or nonionic modified derivatives thereof.
  • Especially preferred of these are the sulfonated derivatives of the phthalic and terephthalic acid polymers.
  • Optical brighteners can be added to the compositions according to the invention in order to eliminate graying and yellowing of the treated textiles. These substances are absorbed by the fiber and cause lightening and fake bleaching by transforming invisible ultraviolet radiation into visible longer wavelength light, with ultraviolet light absorbed from sunlight as a faint bluish fluorescence is emitted and with the yellow color of the gray or yellowed laundry results in pure white.
  • Suitable compounds are derived, for example, from the substance classes of 4,4'-diamino-2,2'-stilbenedisulfonic acids (flavonic acids), 4,4'-distyrylbiphenyls, methylumbelliferones, coumarins, dihydroquinolinones, 1,3-diarylpyrazolines, naphthalimides, benzoxazole , Benzisoxazole and benzimidazole systems as well as heterocyclic substituted pyrene derivatives.
  • fluoronic acids 4,4'-diamino-2,2'-stilbenedisulfonic acids
  • 4,4'-distyrylbiphenyls 4,4'-distyrylbiphenyls, methylumbelliferones, coumarins, dihydroquinolinones, 1,3-diarylpyrazolines, naphthalimides, benzoxazole , Benzisoxazole and benzimid
  • Grayness inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being rebuilt.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether sulfonic acids or cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • soluble starch preparations and other than the above-mentioned starch products can be used, e.g. degraded starch, aldehyde levels, etc. Also polyvinylpyrrolidone is useful.
  • graying inhibitors are cellulose ethers such as carboxymethylcellulose (sodium salt), methylcellulose, hydroxyalkylcellulose and mixed ethers such as methylhydroxyethylcellulose, methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof.
  • compositions of the invention may contain synthetic crease inhibitors. These include, for example, synthetic products based on fatty acids, fatty acid esters. Fatty acid amides, alkylol esters, alkylolamides or fatty alcohols, which are usually reacted with ethylene oxide, or products based on lecithin or modified phosphoric acid ester.
  • a particularly suitable for textiles equipment and care substance is the cottonseed oil, which can be prepared for example by pressing the brown cleaned cottonseeds and refining with about 10% sodium hydroxide or by extraction with hexane at 60-70 ° C.
  • cotton oils contain 40 to 55% by weight of linoleic acid, 16 to 26% by weight of oleic acid and 20 to 26% by weight of palmitic acid.
  • Other particularly preferred agents for fiber finishing and fiber care are the glycerides, in particular the monoglycerides of fatty acids such as, for example, glycerol monooleate or glycerol monostearate.
  • the compositions of the invention may contain antimicrobial agents.
  • antimicrobial agents Depending on the antimicrobial spectrum and mechanism of action, a distinction is made between bacteriostats and bactericides, fungistatics and fungicides etc.
  • Important substances from these groups are, for example, benzalkonium chlorides, alkylaryl sulfonates, halophenols and phenol mercuriacetate, it also being possible entirely to dispense with these compounds in the compositions according to the invention.
  • compositions according to the invention may contain antioxidants.
  • This class of compounds includes, for example, substituted phenols, hydroquinones, catechols and aromatic amines, as well as organic sulfides, polysulfides, dithiocarbamates, phosphites and phosphonates.
  • Antistatic agents increase the surface conductivity and thus allow an improved drainage of formed charges.
  • External antistatic agents are generally substances with at least one hydrophilic molecule ligand and give a more or less hygroscopic film on the surfaces. These mostly surface-active antistatic agents can be subdivided into nitrogen-containing (amines, amides, quaternary ammonium compounds), phosphorus-containing (phosphoric acid esters) and sulfur-containing (alkyl sulfonates, alkyl sulfates) antistatic agents. Lauryl (or stearyl) dimethylbenzylammonium chlorides are also suitable as antistatic agents for textiles or as an additive to detergents, wherein additionally a softening effect is achieved.
  • Phobic and impregnation processes are used to furnish textiles with substances that prevent the deposition of dirt or facilitate its leaching ability.
  • Preferred repellents and impregnating agents are perfluorinated fatty acids, also in the form of their aluminum u. Zirconium salts, organic silicates, silicones, polyacrylic acid esters with perfluorinated alcohol component or perfluorinated acyl- or sulfonyl-residue-coupled, polymerisable compounds.
  • Antistatic agents may also be included. The antisoiling equipment with repellents and impregnating agents is often classified as an easy-care finish.
  • the penetration of the impregnating agent in the form of solutions or emulsions of the active substances in question can be facilitated by adding wetting agents which reduce the surface tension.
  • Another field of use of phobies and imprgänierstoffn is the water-repellent finish of textiles, tents, tarpaulins, leather, etc., in which, in contrast to waterproofing, the fabric pores are not closed, so the fabric remains breathable (hydrophobing).
  • the water repellents used for hydrophobizing coat textiles, leather, paper, wood, etc. with a very thin layer of hydrophobic groups, such as longer alkyl chains or siloxane groups. Suitable water repellents are z. As paraffins, waxes, metal soaps, etc.
  • compositions according to the invention may contain softener.
  • softener The active ingredients in fabric softener formulations are "esterquats", quaternary ammonium compounds having two hydrophobic groups, such as disteryldimethylammonium chloride, which, however, due to its insufficient biodegradability, is increasingly being replaced by quaternary ammonium compounds containing in their hydrophobic groups ester groups as breaking points for biodegradation.
  • esters with improved biodegradability are obtainable, for example, by esterifying mixtures of methyldiethanolamine and / or triethanolamine with fatty acids and then quaternizing the reaction products in a manner known per se with alkylating agents. Further suitable as a finish is dimethylolethyleneurea.
  • silicone derivatives can be used in the compositions according to the invention. These additionally improve the rinsing out of the compositions according to the invention by their foam-inhibiting properties.
  • Preferred silicone derivatives are, for example, polydialkyl or alkylaryl siloxanes in which the alkyl groups have one to five carbon atoms and are completely or partially fluorinated.
  • Preferred silicones are polydimethylsiloxanes, which may optionally be derivatized and are then amino-functional or quaternized or have Si-OH, Si-H and / or Si-Cl bonds.
  • silicones are the polyalkylene oxide-modified polysiloxanes, ie polysiloxanes which comprise, for example, polyethylene glycols and also the polyalkylene oxide-modified dimetylpolysiloxanes.
  • Protein hydrolyzates are due to their fiber-care effect further in the context of the present invention preferred active substances from the field of detergents and cleaners.
  • Protein hydrolysates are product mixtures obtained by acid, alkaline or enzymatically catalyzed degradation of proteins (proteins).
  • protein hydrolysates of both vegetable and animal origin can be used.
  • Animal protein hydrolysates are for example elastin, collagen, keratin, silk and milk protein protein hydrolysates, which may also be present in the form of salts.
  • Preferred according to the invention is the use of protein hydrolysates of plant origin, eg. Soybean, almond, rice, pea, potato and wheat protein hydrolysates.
  • protein hydrolysates are preferred as such, amino acid mixtures or individual amino acids obtained otherwise, such as, for example, arginine, lysine, histidine or pyrroglutamic acid, may also be used in their place. Also possible is the use of derivatives of protein hydrolysates, for example in the form of their fatty acid condensation products.
  • compositions according to the invention may also contain UV absorbers which are absorbed by the treated textiles and improve the light resistance of the fibers.
  • UV absorbers which are absorbed by the treated textiles and improve the light resistance of the fibers.
  • Compounds having these desired properties include, for example, the non-radiative deactivating compounds and derivatives of benzophenone having substituents in the 2- and / or 4-position. Also suitable are substituted benzotriazoles, phenyl-substituted acrylates (cinnamic acid derivatives) in the 3-position, optionally with cyano groups in the 2-position, salicylates, organic Ni complexes and natural substances such as umbelliferone and the body's own urocanic acid.
  • Detergents for automatic dishwashing may contain corrosion inhibitors for the protection of the items to be washed or the machine, with silver protectants and glass corrosion inhibitors being of particular importance in the field of automatic dishwashing. It is possible to use the known substances of the prior art. In general, silver protectants selected from the group of triazoles, benzotriazoles, bisbenzotriazoles, aminotriazoles, alkylaminotriazoles and transition metal salts or complexes can be used in particular. Particularly preferred to use are benzotriazole and / or alkylaminotriazole. In addition, cleaner formulations often contain active chlorine-containing agents which can markedly reduce the corrosion of the silver surface.
  • chlorine-free cleaners are particularly oxygen and nitrogen-containing organic redox-active compounds, such as di- and trihydric phenols, eg. As hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglucinol, pyrogallol or derivatives of these classes of compounds. Also, salt and complex inorganic compounds, such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce are often used.
  • transition metal salts which are selected from the group of manganese and / or cobalt salts and / or complexes, more preferably the cobalt (amine) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes , the chlorides of cobalt or manganese and manganese sulfate, as well as the manganese complexes [Me-TACN) Mn IV (m-0) 3 Mn IV (Me-TACN)] 2+ (PF 6 - ) 2 , [Me-MeTACN) Mn IV (m-0) 3 Mn IV (Me-MeTACN)] 2+ (PF 6 - ) 2 , [Me-TACN) Mn III (m-0) (m-0Ac) 2 Mn III (Me-TACN)] 2+ (PF 6 - ) 2 and [Me-MeTACN) Mn III (m-0) (m-0) (m-
  • At least one silver protecting agent selected from the group of the triazoles, the benzotriazoles, the bisbenzotriazoles, the aminotriazoles, the alkylaminotriazoles, preferably benzotriazole and / or alkylaminotriazole, in amounts of from 0.001 to 1 wt .-%, preferably from 0.01 to 0.5% by weight and in particular from 0.05 to 0.25% by weight, based in each case on the total weight of the solids enclosed in the water-soluble containers according to the invention.
  • agents according to the invention may further comprise one or more substances for reducing glass corrosion.
  • additives of zinc and / or inorganic and / or organic zinc salts and / or silicates for example the layered crystalline sodium disilicate SKS 6 from Clariant GmbH, and / or water-soluble glasses, for example glasses, which have a mass loss of at least 0 , 5 mg under the conditions specified in DIN ISO 719, are preferred for reducing glass corrosion.
  • a preferred class of compounds that can be added to the compositions of the invention to prevent glass corrosion are insoluble zinc salts. These can accumulate on the glass surface during the dishwashing process, preventing the dissolution of metal ions from the glass network and the hydrolysis of the silicates. In addition, these insoluble zinc salts also prevent the deposition of silicate on the glass surface, so that the glass is protected from the consequences described above.
  • Insoluble zinc salts in the context of this preferred embodiment are zinc salts which have a solubility of a maximum of 10 grams of zinc salt per liter of water at 20 ° C.
  • Examples of particularly preferred insoluble zinc salts according to the invention are zinc silicate, zinc carbonate, zinc oxide, basic zinc carbonate (Zn 2 (OH) 2 CO 3 ), zinc hydroxide, zinc oxalate, zinc monophosphate (Zn 3 (PO 4 ) 2 ), and zinc pyrophosphate (Zn 2 (P 2 O 7 )).
  • the zinc compounds mentioned are used in the compositions according to the invention in amounts which have a content of the zinc ions of between 0.02 and 10% by weight, preferably between 0.1 and 5.0% by weight and in particular between 0.2 and 1.0 wt .-%, each based on the agent without the container cause.
  • a content of the zinc ions of between 0.02 and 10% by weight, preferably between 0.1 and 5.0% by weight and in particular between 0.2 and 1.0 wt .-%, each based on the agent without the container cause.
  • the exact content of the agents on the zinc salt or zinc salts is of course dependent on the type of zinc salts - the less soluble the zinc salt used, the higher its concentration should be in the inventive compositions.
  • Another preferred class of compounds are magnesium and / or zinc salt (s) of at least one monomeric and / or polymeric organic acid. The effect of this is that even with repeated use, the surfaces of glassware do not change corrosively, in particular, no turbidity, streaks or scratches, but also iridescence of the glass surfaces are not caused.
  • magnesium and / or zinc salt (s) of monomeric and / or polymeric organic acids may be included in the claimed compositions, as described above, the magnesium and / or zinc salts of monomeric and / or polymeric organic acids are derived from the Groups of unbranched saturated or unsaturated monocarboxylic acids, the branched saturated or unsaturated monocarboxylic acids, the saturated and unsaturated dicarboxylic acids, the aromatic mono-, di- and tricarboxylic acids, the sugar acids, the hydroxy acids, the oxo acids, the amino acids and / or the polymeric carboxylic acids are preferred. Within these groups, the acids mentioned below are again preferred in the context of the present invention:
  • the spectrum of the inventively preferred zinc salts of organic acids ranging from salts which are difficult or insoluble in water, ie a solubility below 100 mg / L, preferably below 10 mg / L, in particular have no solubility, to such salts having a solubility in water above 100 mg / L, preferably above 500 mg / L, more preferably above 1 g / L and in particular above 5 g / L (all solubilities at 20 ° C water temperature).
  • the first group of zinc salts includes, for example, zinc citrate, zinc oleate and zinc stearate
  • the group of soluble zinc salts includes, for example, zinc formate, zinc acetate, zinc lactate and zinc gluconate.
  • the agents according to the invention contain at least one zinc salt but no magnesium salt of an organic acid, preferably at least one zinc salt of an organic carboxylic acid, more preferably a zinc salt from the group zinc stearate, zinc oleate, Zinc gluconate, zinc acetate, zinc lactate and / or zinc citrate. Zinc ricinoleate, zinc abietate and zinc oxalate are also preferred.
  • An agent preferred in the context of the present invention contains zinc salt in amounts of from 0.1 to 5% by weight, preferably from 0.2 to 4% by weight and in particular from 0.4 to 3% by weight, or zinc in oxidized form (calculated as Zn 2+ ) in amounts of from 0.01 to 1% by weight, preferably from 0.02 to 0.5% by weight and in particular from 0.04 to 0.2% by weight , in each case based on the agent without the container.
  • Particularly preferred agents contain at least one zinc salt of an organic acid, preferably selected from the group zinc oleate, zinc stearate, zinc gluconate, zinc acetate, zinc lactate and zinc citrate.
  • washing or cleaning agent compositions can be determined by means of a modified Olten test.
  • 300 g of the liquid washing or cleaning composition are heated to 20 ° C, with stirring (laboratory stirrer, 3-blade propeller, 800 rpm) in a tempered to 80 ° C solution of 50 g of sodium sulfate in 200 ml of water in a 1 L cylinder dewar (half-life: 10 hours) and then determines the change in temperature as a function of time.
  • Preferred liquid detergent or cleaning composition are characterized in this test by the fact that five minutes after entry of 300 g of a 20 ° C tempered sample of liquid detergent or makeskarzusammensatzung in a tempered at 80 ° C solution of 50 g of sodium sulfate in 200 mL Water, the temperature of this solution is less than 72 ° C, preferably less than 70 ° C, more preferably less than 68 ° C and in particular less than 65 ° C.
  • liquid detergent compositions according to the invention are packaged in water-dispersible or water-soluble containers.
  • the corresponding packaging materials are known from the prior art and originate, for example, from the group (acetalated) polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide, gelatin and mixtures thereof.
  • the water-soluble or water-dispersible container comprises one or more water-soluble polymer (s), preferably a material from the group (optionally acetalized) polyvinyl alcohol (PVAL), polyvinylpyrrolidone, polyethylene oxide, gelatin , Cellulose, and their derivatives and mixtures thereof.
  • PVAL polyvinyl alcohol
  • PVP polyvinylpyrrolidone
  • Polyvinyl alcohols (abbreviated PVAL, occasionally PVOH) is the name for polymers of the general structure in small proportions (about 2%) also structural units of the type contain.
  • polyvinyl alcohols which are available as white-yellowish powders or granules with degrees of polymerization in the range of about 100 to 2500 (molar masses of about 4000 to 100,000 g / mol), have degrees of hydrolysis of 98-99 or 87-89 mol%. , so still contain a residual content of acetyl groups.
  • the polyvinyl alcohols are characterized by the manufacturer by indicating the degree of polymerization of the starting polymer, the degree of hydrolysis, the saponification number or the solution viscosity.
  • polyvinyl alcohols are soluble in water and a few highly polar organic solvents (formamide, dimethylformamide, dimethyl sulfoxide); They are not attacked by (chlorinated) hydrocarbons, esters, fats and oils.
  • Polyvinyl alcohols are classified as toxicologically safe and are biologically at least partially degradable.
  • the water solubility can be reduced by aftertreatment with aldehydes (acetalization), by complexation with Ni or Cu salts or by treatment with dichromates, boric acid or borax.
  • the coatings of polyvinyl alcohol are largely impermeable to gases such as oxygen, nitrogen, helium, hydrogen, carbon dioxide, but allow water vapor to pass through.
  • the water-soluble or water-dispersible container comprises a polyvinyl alcohol whose degree of hydrolysis is 70 to 100% by mole, preferably 80 to 90% by mole, more preferably 81 to 89% by mole, and especially 82 to 88% -% is.
  • Polyvinyl alcohols of a certain molecular weight range are preferably used as materials for the containers, it being preferred according to the invention that the water-soluble or water-dispersible container comprises a polyvinyl alcohol whose molecular weight is in the range from 10,000 to 100,000 gmol -1 , preferably from 11,000 to 90,000 gmol -1 preferably from 12,000 to 80,000 gmol -1 and in particular from 13,000 to 70,000 gmol -1 .
  • the degree of polymerization of such preferred polyvinyl alcohols is between about 200 to about 2100, preferably between about 220 to about 1890, more preferably between about 240 to about 1680, and most preferably between about 260 to about 1500.
  • polyvinyl alcohols described above are widely available commercially, for example under the trade name Mowiol ® (Clariant).
  • Mowiol ® Commercially, for example under the trade name Mowiol ® (Clariant).
  • particularly suitable polyvinyl alcohols are, for example, Mowiol ® 3-83, Mowiol ® 4-88, Mowiol ® 5-88 and Mowiol ® 8-88.
  • ELVANOL ® 51-05, 52-22, 50-42, 85-82, 75-15, T-25, T-66, 90-50 (trademark of Du Pont)
  • ALCOTEX ® 72.5, 78, B72, F80 / 40, F88 / 4, F88 / 26, F88 / 40, F88 / 47 (trademark of Harlow Chemical Co.)
  • Gohsenol ® NK-05, A-300, AH-22, C -500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11Q, KZ-06 (Trademark of Nippon Gohsei KK ).
  • the water solubility of PVAL can be altered by post-treatment with aldehydes (acetalization) or ketones (ketalization).
  • aldehydes acetalization
  • ketones ketalization
  • Polyvinyl alcohols which are acetalated or ketalized with the aldehyde or keto groups of saccharides or polysaccharides or mixtures thereof.
  • reaction products of PVAL and starch are particularly advantageous.
  • the water solubility can be changed by complexing with Ni or Cu salts or by treatment with dichromates, boric acid, borax and thus set specifically to desired values.
  • Films made of PVAL are largely impermeable to gases such as oxygen, nitrogen, helium, hydrogen, carbon dioxide, but allow water vapor to pass through.
  • PVAL films under the name "SOLUBLON® ®” from Syntana bottlesgesellschaft E. Harke GmbH & Co. available PVAL films. Their solubility in water can be adjusted to the exact degree, and films of this product series are available which are soluble in aqueous phase in all temperature ranges relevant for the application.
  • PVP Polyvinylpyrrolidones
  • PVP are prepared by radical polymerization of 1-vinylpyrrolidone.
  • Commercially available PVP have molecular weights in the range of about 2,500 to 750,000 g / mol and are available as white, hygroscopic powders or as aqueous solutions.
  • Polyethylene oxides PEOX for short, are polyalkylene glycols of the general formula H- [O-CH 2 -CH 2 ] n -OH the technically by alkaline-catalyzed polyaddition of ethylene oxide (oxirane) in mostly small amounts of water-containing systems are prepared with ethylene glycol as the starting molecule. They have molar masses in the range of about 200 to 5,000,000 g / mol, corresponding to degrees of polymerization n of about 5 to> 100,000. Polyethylene oxides have an extremely low concentration of reactive hydroxy end groups and show only weak glycol properties.
  • Gelatin is a polypeptide (molecular weight: about 15,000 to> 250,000 g / mol), which is obtained primarily by hydrolysis of the collagen contained in the skin and bones of animals under acidic or alkaline conditions.
  • the amino acid composition of gelatin is broadly similar to that of the collagen from which it was obtained and varies depending on its provenance.
  • the use of gelatin as water-soluble coating material is extremely widespread, especially in pharmacy in the form of hard or soft gelatin capsules. In the form of films, gelatin has little use because of its high price compared to the polymers mentioned above.
  • agents whose packaging consists of at least partially water-soluble film of at least one polymer from the group starch and starch derivatives, cellulose and cellulose derivatives, in particular methyl cellulose and mixtures thereof.
  • Starch is a homoglycan, wherein the glucose units are linked ⁇ -glycosidically.
  • Starch is composed of two components of different molecular weight: from about 20 to 30% straight chain amylose (MW about 50,000 to 150,000) and 70 to 80% branched chain amylopectin (MW about 300,000 to 2,000,000).
  • small amounts of lipids, phosphoric acid and cations are still included. While the amylose forms long, helical, entangled chains with about 300 to 1,200 glucose molecules as a result of the binding in the 1,4-position, the chain branched in amylopectin after an average of 25 glucose building blocks by 1,6-bonding to a branch-like structure with about 1,500 to 12,000 molecules of glucose.
  • starch-derivatives which are obtainable from starch by polymer-analogous reactions are also suitable for the preparation of water-soluble coatings of the detergent, detergent and cleaner portions in the context of the present invention.
  • Such chemically modified starches include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted. But even starches in which the hydroxy groups have been replaced by functional groups that are not bound by an oxygen atom, can be used as starch derivatives.
  • the group of starch derivatives includes, for example, alkali starches, carboxymethyl starch (CMS), starch esters and ethers, and amino starches.
  • Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and is formally a ⁇ -1,4-polyacetal of cellobiose, which in turn is composed of two molecules of glucose.
  • Suitable celluloses consist of about 500 to 5,000 glucose units and therefore have average molecular weights of 50,000 to 500,000.
  • cellulose derivatives obtainable by polymer-analogous reactions of cellulose.
  • Such chemically modified celluloses include in this case, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • Celluloses in which the hydroxy groups have been replaced by functional groups which are not bonded via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali metal celluloses, carboxymethylcellulose (CMC), cellulose esters and ethers, and aminocelluloses.
  • CMC carboxymethylcellulose
  • HPMC hydroxypropylmethylcellulose
  • the water-soluble or water-dispersible containers containing the agents of the present invention can be prepared by any of the methods described in the prior art.
  • these containers are film pouches (so-called pouches) or injection-molded, thermoformed or blow molded articles.
  • Preferred detergent or cleaning agent compositions according to the invention are accordingly characterized in that the water-soluble or water-dispersible container comprises a film and / or an injection-molded part and / or a blow-molded part and / or a deep-drawn part.
  • the water-soluble film forming the bag has a thickness of 1 to 150 ⁇ m, preferably 2 to 100 ⁇ m, more preferably 5 to 75 ⁇ m and in particular from 10 to 50 ⁇ m.
  • the wall of preferred containers has a thickness of 50 to 300 ⁇ m, preferably 70 to 200 ⁇ m and in particular 80 to 150 ⁇ m.
  • a process which is particularly suitable for the production of water-soluble or water-dispersible containers according to the invention is injection molding.
  • Injection molding refers to the forming of a molding material such that the mass contained in a mass cylinder for more than one injection molding plastically softens under heat and flows under pressure through a nozzle into the cavity of a previously closed tool.
  • the method is mainly applied to non-hardenable molding compounds which solidify in the tool by cooling.
  • Injection molding is a very economical modern process for producing non-cutting shaped articles and is particularly suitable for automated mass production.
  • thermoplastic molding compounds are heated to liquefaction (up to 180 ° C) and injected under high pressure (up to 140 MPa) in closed, two-piece, that is from Gesenk (earlier Matrix) and Core (formerly male) existing, preferably water-cooled molds, where they cool and solidify.
  • Suitable molding compositions are water-soluble polymers, for example the abovementioned cellulose ethers, pectins, polyethylene glycols, polyvinyl alcohols, polyvinylpyrrolidones, alginates, gelatin or starch.
  • the water-soluble or water-dispersible sealing unit which is used to close the filled container in step c) is preferably an injection-molded body, this body preferably having the same spatial shape as the basic shaped body. In the context of the present invention, therefore, preference is given in particular to a method in which the closure unit has the same spatial shape as the container produced in step a).
  • a film is used as the closure unit, it being possible for example to previously process this film by deep-drawing process.
  • a further preferred subject matter of the present application is therefore an abovementioned process, characterized in that the water-soluble sealing unit introduced in step c) is a water-soluble or water-dispersible film.
  • the thickness of the water-soluble outer wall of the container according to the invention is not necessarily homogeneous, but may vary depending on the manufacturing process chosen. In the context of the present application, it is preferred that these fluctuations move within the above-mentioned preferred ranges for the wall thickness of containers according to the invention.
  • the closure of base molding with the closure unit can be done in different ways.
  • Preferred in the context of the present invention are closure processes based on partial solvation of the surface of the container and / or closure and / or heating of the container and / or the closure unit to a temperature at which they are plastically deformable.
  • Both the partial solvation and the heating is preferably not carried out on the entire surface of the container and / or the entire surface of the closure unit, but only in the areas in which the subsequent sealing is to take place to form a sealed seam.
  • the heating of the surface of the container and / or the closure unit is preferably carried out by the use of hot air, hot plates, heated rollers or heat radiation, preferably laser radiation or other IR sources such as optical fiber (optical fiber).
  • the preferred subject matter of the present application is consequently a previously described process in which the sealing in step c) takes place by means of fusion bonding.
  • the Rotary-Die method is particularly suitable for the preparation of inventive compositions, wherein the term of the rotary-die process in the context of the present application also process variants such as the Accogel method, the Reciprocating-Die method by a Norton encapsulation machine, the Colton and the Upjohn method summarized.
  • the term of the rotary die method is therefore not to be understood as limiting, but encompasses all variants of the process known to the person skilled in the art which are suitable for producing filled containers using molding rolls.
  • the plastic deformation temperatures in step b) and the heat-sealing may differ significantly.
  • the temperature selected in steps b) and c) is below the temperatures required for the above-described fusion bonding as part of the injection molding process.
  • the temperature for the plastic deformation is preferably 85 to 90 ° C., while the fusion bonding takes place in the temperature range from 150 to 170 ° C.
  • the plastic deformation temperatures are about 150 ° C, while melt bonding is in the range of 160 to 200 ° C.
  • the heating of the container materials by hot air, heat radiation or direct contact with suitable hot plates or heated rollers can be done.
  • step c) of the claimed method constitute suitable procedures for the deformation of these films
  • a method is still particularly preferred within the scope of the present application, in which the film in step c) under the influence of a vacuum the plastically deformable film is deep-drawn, which preferably remains until after completion of the process in step e) and retains the film in the recess.
  • step e) of the abovementioned deep-drawing method can be carried out by gluing or fusion bonding as in the other methods described, wherein both methods can optionally be carried out in combination with an additional pressure action.
  • Suitable adhesives depending on the composition of the films, in addition to the adhesives known to the person skilled in the art, are also solvents, such as, for example, water.
  • the application of the adhesive to the film is carried out in a preferred process variant of the latter method, preferably after step b) and / or step c) and / or step d).
  • the seal can also be done by melt sealing or pressure.
  • the sealing in step e) is effected by temperature and / or pressure.
  • the water-soluble or water-dispersible container produced by one of the methods described above has one or more embossing (s) and / or one or more imprints.
  • the solids enclosed in the container may have such embossments or imprints.
  • the embossing or de imprint can contain not only lettering but also patterns, shapes and so on. In this way, for example, universal detergents can be identified by a T-shirt symbol, color detergent by a wool symbol, dishwashing detergents by symbols such as glasses, plates, pots, pans, etc.
  • the name of the product or of the manufacturer is also suitable as the lettering.
  • these water-soluble films can be produced by various production methods. Blow molding, calendering and casting processes should be mentioned here in principle.
  • the films are blown starting from a melt with air through a mandrel to a hose.
  • the calendering process which is likewise one of the preferred production processes
  • the raw materials plasticized by suitable additives are atomized to form the films.
  • an aqueous polymer preparation is placed on a heatable drying roller, after the evaporation of the water is optionally cooled and the film is peeled off as a film.
  • this film is additionally powdered before or during the removal.
  • the polymer materials may particularly preferably the groups (optionally partially acetalized) polyvinyl alcohol, polyvinylpyrrolidone, polyethylene oxide, gelatin, cellulose and derivatives thereof, starch and derivatives thereof, in particular modified starches, and mixtures (polymer blends, composites, co-extrudates, etc.) of the materials mentioned to belong - see above.
  • Particularly preferred are gelatin and polyvinyl alcohols and the two materials mentioned in each case in combination with starch or modified starch.
  • An essential advantage of this embodiment is that the container within a practically relevant short time - as a non-limiting example, can be at least partially solve under precisely defined conditions in the cleaning liquor - and a few seconds to 5 min, and thus according to the requirements of the wrapped content, d. H. the cleaning-active material or several materials in the fleet brings.
  • the water-soluble container comprises regions which are less soluble in water or only soluble in water at elevated temperature and regions which are readily soluble in water or soluble in water at low temperature.
  • the container does not consist of a uniform, in all areas the same water solubility having material, but of materials of different water solubility.
  • areas of good water solubility are to be distinguished from areas with less good water solubility, with poor or even absent water solubility or areas in which the water solubility reaches the desired value only at a higher temperature or only at a different pH value or only when the electrolyte concentration has changed achieved, on the other hand.
  • a container provided with pores or holes is formed, into which water and / or liquor can penetrate, which can dissolve washing-active, rinse-active or cleaning-active ingredients and remove them from the container.
  • onion system systems in the form of multi-chamber containers or in the form of nested containers.
  • containers may be provided in which a uniform polymeric material comprises small areas of incorporated compounds (for example, salts) which are more rapidly soluble in water than the polymeric material.
  • incorporated compounds for example, salts
  • polymer blend polymer blend
  • the less well water-soluble areas or not water-soluble areas or only at higher Temperature water-soluble portions of the containers are portions of a material which chemically substantially corresponds to those of the water-soluble or water-soluble portions, but has a higher layer thickness and / or a changed degree of polymerization of the same polymer and / or a higher degree of crosslinking of the same polymer structure and / or has a higher degree of acetalization (in the case of PVAL, for example with saccharides, polysaccharides, such as starch) and / or has a content of water-insoluble salt components and / or has a content of a water-insoluble polymer.
  • portioned detergent compositions can be provided according to the invention, which have advantageous properties in the release of the detergent or cleaning composition into the respective liquor.
  • liquid washing or cleaning compositions it may additionally happen that the drops or product threads which are trapped in the seam to be formed are subjected to such high thermal stresses when using a heat-sealing method that the composition boils causing further leakage, discoloration or in the process Emergency even accidents can result from thermal decomposition.
  • Preferred washing or cleaning compositions in the context of the present invention are therefore characterized in that at least 70 wt .-%, preferably at least 80 wt .-%, preferably at least 85 wt .-%, particularly preferably at least 90 wt .-% and in particular at least 95 wt .-% of the dispersed phosphate particle sizes below 200 microns, preferably below 160 microns, more preferably below 120 microns and in particular below 100 microns, have.
  • the above-mentioned problems of sealing in the seam remaining drops or liquid threads no longer occur.
  • the at least 70% by weight of the particles and the 200 ⁇ m are to be understood as upper limits which, for example, result from the fact that solids used for technical reasons may also contain small amounts of coarse fractions.
  • a proportion of particularly fine particles whose particle sizes are well below 200 ⁇ m may also be advantageous.
  • the water-soluble or water-dispersible container material is preferably transparent.
  • transparency means that the transmittance within the visible spectrum of the light (410 to 800 nm) is greater than 20%, preferably greater than 30%, more preferably greater than 40% and in particular greater than 50%.
  • a wavelength of the visible spectrum of the light has a transmittance greater than 20%, it is to be regarded as transparent within the meaning of the invention.
  • Particulate detergent compositions according to the invention which are packaged in transparent containers, may contain a stabilizer as an essential constituent.
  • Stabilizing agents according to the invention are materials which protect the detergent ingredients in their water-soluble, transparent containers from decomposition or deactivation by light irradiation. Antioxidants, UV absorbers and fluorescent dyes have proven to be particularly suitable here.
  • antioxidants are particularly suitable stabilizing agents in the context of the invention.
  • the formulations may contain antioxidants.
  • antioxidants can, for example, by sterically hindered groups substituted phenols, bisphenols and thiobisphenols.
  • Further examples are propyl gallate, butylhydroxytoluene (BHT), butylhydroxyanisole (BHA), t-butylhydroquinone (TBHQ), tocopherol and the long chain (C8-C22) esters of gallic acid, such as dodecyl gallate.
  • aromatic amines preferably secondary aromatic amines and substituted p-phenylenediamines
  • phosphorus compounds with trivalent phosphorus such as phosphines, phosphites and phosphonites
  • citric acids and citric acid derivatives such as isopropyl citrate, endiol group-containing compounds, so-called reductones such as ascorbic acid and its derivatives, such as ascorbic palmitate
  • organosulfur compounds such as the esters of 3,3'-thiodipropionic acid with C 1-18 alkanols, especially C 10-18 alkanols
  • metal ion deactivators capable of auto-oxidation catalyzing metal ions such as copper, to complex such as nitrilotriacetic acid and its derivatives and their mixtures.
  • Antioxidants may be present in the formulations in amounts of up to 35% by weight, preferably up to 25% by weight, particularly preferably from 0.01 to 20 and in particular from 0.03 to 20% by weight.
  • UV absorbers can improve the light stability of the formulation ingredients. These are understood to be organic substances (light protection filters) which are able to absorb ultraviolet rays and to release the absorbed energy in the form of longer-wave radiation, for example heat. Compounds having these desired properties include, for example, the non-radiative deactivating compounds and derivatives of benzophenone having substituents in the 2- and / or 4-position.
  • substituted benzotriazoles such as the water-soluble benzenesulfonic acid-3- (2H-benzotriazol-2-yl) -4-hydroxy-5- (methylpro pyl-) monosodium salt (Ciba ® Fast H), phenyl-substituted in the 3-position acrylates ( Cinnamic acid derivatives), optionally with cyano groups in the 2-position, salicylates, organic Ni complexes and natural substances such as umbelliferone and the body's own urocanic acid.
  • the biphenyl and especially stilbene derivatives which are available commercially as Tinosorb ® FD or Tinosorb ® FR available ex Ciba.
  • 3-benzylidene camphor or 3-benzylidene norcamphor and derivatives thereof, for example 3- (4-methylbenzylidene) camphor may be mentioned as UV-B absorbers; 4-aminobenzoic acid derivatives, preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and 4- (dimethylamino) benzoic acid ester; Esters of cinnamic acid, preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-methoxycinnamic acid propyl ester, 4-methoxycinnamic acid isoamyl ester, 2-cyano-3,3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene); Esters of salicylic acid, preferably 2-ethylhexyl salicylate, 4-isopropylbenzyl sal
  • 2-phenylbenzimidazole-5-sulfonic acid and its alkali metal, alkaline earth metal, ammonium, alkylammonium, alkanolammonium and glucammonium salts Sulfonic acid derivatives of benzophenones, preferably 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid and its salts
  • Sulfonic acid derivatives of 3-Benzylidencamphers such as 4- (2-oxo-3-bomylidenemethyl) benzenesulfonic acid and 2-methyl-5- (2-oxo-3-bomylidene) sulfonic acid and salts thereof.
  • UV-A filter in particular derivatives of benzoylmethane are suitable, such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert-butyl 4'-methoxydibenzoylmethane (Parsol 1789), 1-phenyl-3- (4'-isopropylphenyl) -propane-1,3-dione and enamine compounds.
  • the UV-A and UV-B filters can also be used in mixtures.
  • insoluble photoprotective pigments namely finely dispersed, preferably nano-metal oxides or salts, are also suitable for this purpose.
  • suitable metal oxides are in particular zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • silicates (talc) barium sulfate or zinc stearate can be used.
  • the oxides and salts are already used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm. They may have a spherical shape, but it is also possible to use those particles which have an ellipsoidal or otherwise deviating shape from the spherical shape.
  • the pigments can also be surface-treated, ie hydrophilized or hydrophobized.
  • Typical examples are coated titanium dioxides, for example Titandioxid T 805 (Degussa) or Eusolex ® T2000 (Merck).
  • Suitable hydrophobic coating agents are in particular silicones and in particular trialkoxyoctylsilanes or simethicones.
  • micronized zinc oxide is used.
  • UV absorbers can be present in the detergent or cleaner compositions in amounts of up to 5% by weight, preferably up to 3% by weight, particularly preferably from 0.01 to 2.0 and in particular from 0.03 to 1% by weight be.
  • fluorescent dyes include the 4,4'-diamino-2,2'-stilbenesulfonic acids (flavonic acids), 4,4'-distyrylbiphenyls, methyl umbelliferones, coumarins, dihydroquinolinones, 1,3-diarylpyrazolines, Naphthalic acid imides, benzoxazole, benzisoxazole and benzimidazole systems, as well as heterocyclic substituted pyrene derivatives. Of particular importance are the sulfonic acid salts of diaminostilbene derivatives, as well as polymeric fluorescers.
  • Fluorescent substances can be present in the formulations in amounts of up to 5% by weight, preferably up to 1% by weight, particularly preferably from 0.01 to 0.5 and in particular from 0.03 to 0.1% by weight.
  • the abovementioned stabilizers are used in any mixtures.
  • the stabilizers are used in amounts of up to 40% by weight, preferably up to 30% by weight, particularly preferably from 0.01 to 20% by weight, in particular from 0.02 to 5% by weight.
  • portioned washing or cleaning agent compositions according to the invention can be provided in such a way that the packaging is, on the one hand, water-soluble and, on the other hand, tight-sealing, ie. to the environment is completed.
  • the packaging is, on the one hand, water-soluble and, on the other hand, tight-sealing, ie. to the environment is completed.
  • two embodiments can be realized:
  • the container (s) is / are completed and contains at least one gas that does not react with the detergent composition, more preferably in an amount such that the total pressure within the / closed container (s) is above the external pressure, more preferably at least 1 mbar above the outside pressure.
  • Very particularly preferred embodiments of these portions according to the invention comprise at least one gas which does not react with the detergent composition in such an amount that the total pressure within the sealed containers is at least 5 mbar, more preferably at least 10 mbar, most preferably in the Range of 10 mbar to 50 mbar is above the external pressure.
  • the containers may contain either one or more gases.
  • loading the containers with a gas is preferred because of the associated lower cost.
  • Preferred washing or cleaning agent portions according to the invention comprise as gas (s) at least one gas selected from the group N 2 , noble gas (s), CO 2 , N 2 O, O 2 , H 2 , air, gaseous Hydrocarbons, especially N 2 , which is available at low cost everywhere.
  • the gases mentioned are advantageously inert to the components of the detergent-active preparation and are therefore also sometimes referred to as "inert gases" in the context of the present invention.
  • the container (s) is / are closed and contain at least one substance which releases, on reaction with water, a gas which does not react with the detergent preparation (s) in an amount such that the total pressure within the closed one Container rises.
  • the at least one substance contained in the container (s) liberates the at least one gas in an amount upon reaction with water in such a way that the total pressure inside the closed container increases by at least 1 mbar above the external pressure , preferably by at least 5 mbar, more preferably by a value in the range of 5 to 50 mbar higher than the external pressure.
  • This embodiment is particularly advantageous in that its manufacture is greatly simplified over that embodiment in which the gas is contained in the sealed container, since only the at least one substance must be added which, upon contact with moisture / water in the closed container, at least generates a gas. Furthermore, any moisture that has entered the container is immediately taken up and reacted by the substance capable of reacting with water and is therefore no longer available for a deterioration in the quality of the components of the detergent composition. Also conceivable are mixed forms of the portions in which from the beginning both (at least) one gas in the container and a substance capable of reacting with water are contained.
  • the gas-releasing substance is a constituent of the detergent composition and, more preferably, is a hygroscopic substance which is compatible with the components of the detergent composition.
  • a substance is preferably metered into the water-soluble or water-dispersible container separately from the liquid detergent or cleaning agent composition according to the invention, this container preferably being sealed within a few seconds, in particular within 10 seconds, after contact of the gas-releasing substance with the detergent composition.
  • the release of the gas then increases the internal pressure within the container to a value above the atmospheric pressure and thus achieves the above-mentioned advantages.
  • Such substances include, but are not limited to, substances selected from the group consisting of hydrogen peroxide-containing substances, O-containing substances, OCO-containing substances, hydrides and carbides, more preferably a substance, which is selected from the group of percarbonates (particularly preferably sodium percarbonate), persulfates, perborates, peracids, M A M B H 4 , in which M A is an alkali metal (particularly preferably Li or Na) (for example LiAlH 4 , NaBH 4 , NaAlH 4 ) and M B is B or Al, or M I 2 C 2 or M II C 2 , where M I is a monovalent metal and M "is a divalent metal (e.g., CaC 2 ).
  • M A is an alkali metal (particularly preferably Li or Na) (for example LiAlH 4 , NaBH 4 , NaAlH 4 ) and M B is B or Al, or M I 2 C 2 or M II C 2 , where M I is a monovalent metal and

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Cosmetics (AREA)

Description

  • Die vorliegende Erfindung liegt auf dem Gebiet der portionierten flüssigen Wasch- oder Reinigungsmittel, wie sie zur Dosierung wasch- und reinigungsaktiver Substanzen eingesetzt werden. Insbesondere bezieht sich die vorliegende Erfindung auf wasserarme flüssige Wasch- oder Reinigungsmittel, welche Phosphat enthalten.
  • Portionierte und vordosierte Wasch- oder Reinigungsmittel erfreuen sich bei den Verbrauchern aufgrund ihrer einfachen und sicheren Handhabbarkeit einer großen Beliebtheit. Die Verpackung flüssiger oder gelförmiger wasch- oder reinigungsaktiver Substanzen oder Substanzgemische in wasserlöslichen oder wasserdispergierbaren Materialien ist dementsprechend im Stand der Technik in einer Reihe von Dokumenten beschrieben. Dabei ist zwischen Verfahrensanmeldungen für die Herstellung der wasserlöslichen oder wasserdispergierbaren Verpackungen auf der einen Seiten und Anmeldungen bezüglich der eingesetzten Verpackungsmaterialien und Inhaltsstoffe auf der anderen Seite zu unterscheiden.
  • Spezielle Ausgestaltungen des Thermoform-Verfahrens zur Herstellung tiefgezogener Verpackungseinheiten offenbaren beispielsweise die internationalen Anmeldungen WO 00/55044, WO 00/44045, WO 00/44046 und WO 00/55415 (Hindustan Lever Limited). Diese tiefgezogenen Beutel enthalten gemäß der Beschreibung dieser Anmeldungen flüssige oder gelförmige Substanzgemische, vorzugsweise aus dem Bereich der wasch- und reinigungsaktiven Substanzen. Der Folienbeutel kann aus wasserlöslichen Materialien wie Polyvinylalkohol bestehen. Die Anmeldungen machen keine näheren Angaben über die Zusammensetzung der flüssigen oder gelförmigen Inshaltsstoffe, deren Lagerstabilität oder Wasseraufnahmeverhalten.
  • Gegenstand der internationalen Anmeldungen WO 02/16205 (Reckitt Benckiser Limited) ist ein Verfahren zur Herstellung wasserlöslicher Behältnisse durch Thermoformen einer wasserlöslichen PVA-Folie mit einem Wassergehalt unterhalb 5 Gew.-%. Die resultierenden Behältnisse werden vorzugsweise mit wasch- oder reinigungsaktiven Substanzen befüllt, wobei diese bevorzugt einen Wassergehalt oberhalb 8 Gew.-% aufweisen. Die Wasch- und Reinigungsmittel können gemäß der Offenbarung dieser Anmeldung Alkaliphosphate enthalten.
    Die Anmeldung WO 02/16206 (Reckitt Benckiser Limited) beschreibt ein Verfahren zur Herstellung aufgeblasener wasserlöslicher Behälter durch Zusatz gasfreisetzender Salze zu dem in den Behältern befindlichen Substanzen oder Substanzgemischen. Bei diesen Mitteln kann es sich u.a. um Phosphat-haltige Wasch- oder Reinigungsmittel handeln.
    Flüssige Zusammensetzungen mit einem Wassergehalt oberhalb 3 Gew.-%, welche in tiefgezogenen PVA-Behältern verpackt sind, beansprucht die internationale Anmeldung WO 02/16222 (Reckitt Benckiser Limited). Bei den flüssigen Zusammensetzungen kann es sich u.a. um phosphathaltige Textil- oder Geschirreinigungsmittel handeln. Keine der genannten Anmeldungen macht Angaben über die Konfektionierung der in den flüssigen Wasch- oder Reinigungsmitteln enthaltenen Phosphate oder den vorteilhaften Einfluß einer solchen Konfektionierung auf Lagerstabilität und Wasseraufnahmeverhalten der phosphathaltigen Wasch- oder Reinigungsmittel.
  • Gegenstand der WO 02/16541 (Reckitt Benckiser Limited) sind flüssigkeitsbefüllte wasserlösliche oder wasserdispergierbare Behälter. Die enthaltenen Flüssigkeiten weisen einen Wassergehalt zwischen 20 und 50 Gew.-% auf und enthalten mindestens einen Polyphosphat Gerüststoff sowie Kalium- und Natrium-Ionen, wobei das molare Verhältnis von Kalium zu Natrium zwischen 0,55:1 und 20:1 beträgt. Als bevorzugtes Polyphosphat wird Kaliumtripolyphosphat offenbart. Nähere Angaben über die bevorzugt eingesetzten Phosphate oder deren Konfektionierung sind dieser Anmeldung nicht zu entnehmen.
  • Das europäische Patent EP 518 689 B1 (Rhone-Poulenc Agrochimie) beansprucht Behältersysteme, umfassend einen in Wasser löslichen oder in Wasser dispergierbaren Beutel enthaltend ein Mittel, das eine Flüssigkeit oder ein Gel ist, umfassend ein gefährliches Produkt, 5 bis 55 Gew.-% Wasser und eine wirksame Menge eines Elektrolyten, der ein anorganisches Salz ist. Der Zusatz dieses Elektrolyten bewirkt nach der Lehre der EP 518 689 B1 die Herabsetzung der Löslichkeit des Beutelmaterials in der wäßrigen Lösung und erhöht auf diese Weise die Stabilität des Beutels. Neben anderen anorganischen Salzen werden auch Phosphate als wirksame Elektrolyte offenbart. Angaben über die spezielle Natur dieser Phosphate oder deren Konfektionierung macht dieses Patent nicht.
  • Die US-A-5 004 556 offenbart nicht-wässerige flüssige Textilreinigungsmittel in Portionsverpackungen.
  • Flüssige oder gelförmige Angebotsformen, wie sie vordosiert in Folienbeuteln erhältlich sind und in den vorgenannten Anmeldungen beschrieben werden, weisen bisher eine Reihe von Nachteilen auf. So neigen insbesondere wasserarme Flüssigkeiten oder Gele bei den für Lagerung, Transport oder Gebrauch üblichen Temperaturen und Luftfeuchten zur Bildung von Ausfällungen bis hin zur Verfestigung des gesamten Gels. Die Bildung derartiger Ausfällungen ist nicht nur dem äußeren Erscheinungsbild der Mittel abträglich, sondern hat auch einen nachteiligen Einfluß auf die Wasch- oder Reinigungsleistung dieser Mittel, da aus der Ausfällung in der Regel eine verringerte Löslichkeit der verfestigten Wasch- oder Reinigungsmittelinhaltsstoffe resultiert.
  • Es war folglich die Aufgabe der vorliegenden Anmeldung, wasserarme flüssige oder gelförmige Angebotsformen von Wasch- oder Reinigungsmitteln bereitzustellen, welche sich zur Verpackung in wasserlöslichen oder wasserdispergierbaren Folien eignen, und auch nach mehrwöchiger Lagerung unter den für Herstellung, Lagerung und Transport dieser Mittel üblichen Bedingungen (Temperatur, Luftfeuchtigkeit) keine Ausfällungen oder Verfestigungen aufweisen.
  • Es wurde nun gefunden, daß in wasserlöslichen oder wasserdispergierbaren Behältern verpackte wasserarme, flüssige Wasch- oder Reinigungsmittelzusammensetzungen dann eine hohe Lagerstabilität aufweisen, wenn mindestens 10 Gew.-% des in diesen Mitteln enthaltenen Phosphats eine Beschichtung aufweisen.
  • Ein erster Gegenstand der vorliegenden Anmeldung ist daher eine portionierte, flüssige, Wasch- oder Reinigungsmittelzusammensetzung in einem wasserlöslichen oder wasserdispergierbaren Behälter, umfassend eine wasserarme Matrix und darin dispergiertes Phosphat, dadurch gekennzeichnet, daß bezogen auf das Gesamtgewicht des dispergierten Phosphats mindestens 10 Gew.-% des dispergierten Phosphats eine Beschichtung aufweisen.
  • Zur weiteren vorteilhaften Beeinflussung der Lagerstabilität sowie der Lösungseigenschaften und der Optik der beanspruchten Wasch- oder Reinigungsmittel, insbesondere jedoch zur weiteren Verbesserung der Lagerstabilität, hat es sich als vorteilhaft erwiesen, das in der wasserarmen Matrix dispergierte Phosphat zu mehr als 10 Gew.-% zu beschichten. Es ist daher im Rahmen der vorliegenden Erfindung bevorzugt, daß das in der wasserarmen Matrix dispergierte Phosphat bezogen auf das Gesamtgewicht des dispergierten Phosphats zu mindestens 30 Gew.-%, besonders bevorzugt zu mindestens 50 Gew.-% und insbesondere zu mindestens 70 Gew.-% eine Beschichtung aufweist. In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung weist das gesamt Phosphat eine Beschichtung auf.
  • Als "wasserarm" werden im Rahmen der vorliegenden Anmeldung solche flüssigen Wasch- oder Reinigungsmittelzusammensetzungen bezeichnet, die einen Gesamtwassergehalt, das heißt einen Gehalt an freiem Wasser und/oder in Form von Hydratwasser und/oder Konstitutionswasser vorliegendem Wasser unterhalb 18 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Wasch- und Reinigungsmittels ohne Berücksichtigung des wasserlöslichen oder wasserdispergierbaren Behälter, aufweisen. Die Bestimmung des Wassergehalts kann beispielsweise durch Titration nach Karl Fischer erfolgen.
  • Bevorzugte Wasch- oder Reinigungsmittelzusammensetzungen weisen im Rahmen dieser Anmeldung einen Gesamtwassergehalt, das heißt einen Gehalt an freiem Wasser und/oder in Form von Hydratwasser und/oder Konstitutionswasser vorliegendem Wasser zwischen 0,1 und 15 Gew.-%, vorzugsweise zwischen 0,5 und 12 Gew.-%, besonders bevorzugt zwischen 1 und 9 Gew.-% und insbesondere zwischen 2 und 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Wasch- und Reinigungsmittels ohne Berücksichtigung des wasserlöslichen oder wasserdispergierbaren Behälter, auf. Wenngleich der Gesamtwassergehalt (Summe des freien Wassers und des Konstitutionswassers und des Hydratwassers) bevorzugter erfindungsgemäßer Mittel zwischen 0,1 und 15 Gew.-% beträgt, so ist der Anteil des freien Wassers an diesem Gesamtwassergehalt doch vorzugsweise gering. Im Rahmen der vorliegenden Anmeldung werden daher Wasch- oder Reinigungsmittel-zusammensetzungen bevorzugt, welche einen Gehalt an freiem Wasser, das heißt nicht in Form von Hydratwasser und/oder Konstitutionswasser vorliegendem Wasser zwischen 0,1 und 6 Gew.-%, vorzugsweise zwischen 0,1 und 5 Gew.-%, besonders bevorzugt zwischen 0,1 und 4 Gew.-% und insbesondere zwischen 0,1 und 3 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Wasch- oder Reinigungsmittelzusammensetzung, ohne Berücksichtigung des wasserlöslichen oder wasserdispergierbaren Behälters, aufweisen.
  • Als Beschichtungsmaterialien oder als Bestandteil der Beschichtung, beispielsweise als Bindemittel in Kombination mit Salzen, vorzugsweise anorganischen Salzen, eignen sich insbesondere Polymere oder Polymergemische, wobei das Polymer bzw. mindestens 50 Gew.-% des Polymergemischs ausgewählt ist aus
    1. a) wasserlöslichen nichtionischen Polymeren aus der Gruppe der
      • a1) Polyvinylpyrrolidone,
      • a2) Vinylpyrrolidon/Vinylester-Copolymere,
      • a3) Celluloseether
    2. b) wasserlöslichen amphoteren Polymeren aus der Gruppe der
      • b1) Alkylacrylamid/Acrylsäure-Copolymere
      • b2) Alkylacrylamid/Methacrylsäure-Copolymere
      • b3) Alkylacrylamid/Methylmethacrylsäure-Copolymere
      • b4) Alkylacrylamid/Acrylsäure/Alkylaminoalkyl(meth)acrylsäure -Copolymere
      • b5) Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)acrylsäure -Copolymere
      • b6) Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth)acrylsäure-Copolymere
      • b7) Alkylacrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacrylat-Copolymere
      • b8) Copolymere aus
        • b8i) ungesättigten Carbonsäuren
        • b8ii) kationisch derivatisierten ungesättigten Carbonsäuren
        • b8iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
    3. c) wasserlöslichen zwitterionischen Polymeren aus der Gruppe der
      • c1) Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
      • c2) Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
      • c3) Methacroylethylbetain/Methacrylat-Copolymere
    4. d) wasserlöslichen anionischen Polymeren aus der Gruppe der
      • d1) Vinylacetat/Crotonsäure-Copolymere
      • d2) Vinylpyrrolidon/Vinylacrylat-Copolymere
      • d3) Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere
      • d4) Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglycolen
      • d5) gepfropften und vernetzten Copolymere aus der Copolymerisation von
        • d5i) mindesten einem Monomeren vom nicht-ionischen Typ,
        • d5ii) mindestens einem Monomeren vom ionischen Typ,
        • d5iii) von Polyethylenglycol und
        • d5iv) einem Vernetzter
      • d6) durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltenen Copolymere:
        • d6i) Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäuren,
        • d6ii) ungesättigte Carbonsäuren,
        • d6iii) Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe d6ii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C8-18-Alkohols
      • d7) Terpolymere aus Crotonsäure, Vinylacetat und einem Allyl- oder Methallylester
      • d8) Tetra- und Pentapolymere aus
        • d8i) Crotonsäure oder Allyloxyessigsäure
        • d8ii) Vinylacetat oder Vinylpropionat
        • d8iii) verzweigten Allyl- oder Methallylestern
        • d8iv) Vinylethern, Vinylestern oder geradkettigen Allyl- oder Methallylestern
      • d9) Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe Ethylen, Vinylbenzol, Vinylmethylether, Acrylamid und deren wasserlöslicher Salze
      • d10) Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in α-Stellung verzweigten Monocarbonsäure
    5. e) wasserlöslichen kationischen Polymeren aus der Gruppe der
      • e1) quaternierten Cellulose-Derivate
      • e2) Polysiloxane mit quaternären Gruppen
      • e3) kationischen Guar-Derivate
      • e4) polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure
      • e5) Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats
      • e6) Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere
      • e7) quaternierter Polyvinylalkohol
      • e8) unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 angegeben Polymere.
  • Wasserlösliche Polymere im Sinne der Erfindung sind solche Polymere, die bei Raumtemperatur in Wasser zu mehr als 2,5 Gew.-% löslich sind.
  • Die in den erfindungsgemäßen flüssigen Wasch- und Reinigungsmitteln dispergierten Phosphate sind vorzugsweise mit einem Polymer oder Polymergemisch beschichtet, wobei das Polymer (und dementsprechend die gesamte Beschichtung) bzw. mindestens 50 Gew.-% des Polymergemischs (und damit mindestens 50% der Beschichtung) aus bestimmten Polymeren ausgewählt ist. Dabei besteht die Beschichtung ganz oder zu mindestens 50% ihres Gewichts aus wasserlöslichen Polymeren aus der Gruppe der nichtionischen, amphoteren, zwitterionischen, anionischen und/oder kationischen Polymere. In einer weiteren bevorzugten Ausführungsform besteht die Beschichtung des Phosphats aus einem weiteren anorganischen Salz, welches als Bindemittel eines der genannten Polymere enthält. Bevorzugte Poylmere aus diesen Gruppen wurden vorstehend aufgelistet und werden nachfolgend näher beschrieben.
  • Erfindungsgemäß bevorzugte wasserlösliche Polymere sind nichtionisch. Geeignete nichtionogene Polymere sind beispielsweise:
    • Polyvinylpyrrolidone, wie sie beispielsweise unter der Bezeichnung Luviskol® (BASF) vertrieben werden. Polyvinylpyrrolidone sind bevorzugte nichtionische Polymere im Rahmen der Erfindung.
      Polyvinylpyrrolidone [Poly(1-vinyl-2-pyrrolidinone)], Kurzzeichen PVP, sind Polymere der allg. Formel (1)
      Figure imgb0001
      die durch radikalische Polymerisation von 1-Vinylpyrrolidon nach Verfahren der Lösungs- oder Suspensionspolymerisation unter Einsatz von Radikalbildnern (Peroxide, AzoVerbindungen) als Initiatoren hergestellt werden. Die ionische Polymerisation des Monomeren liefert nur Produkte mit niedrigen Molmassen. Handelsübliche Polyvinylpyrrolidone haben Molmassen im Bereich von ca. 2500-750000 g/mol, die über die Angabe der K-Werte charakterisiert werden und - K-Wert-abhängig - Glasübergangstemperaturen von 130-175° besitzen. Sie werden als weiße, hygroskopische Pulver oder als wäßrige. Lösungen angeboten. Polyvinylpyrrolidone sind gut löslich in Wasser und einer Vielzahl von organischen Lösungsmitteln (Alkohole, Ketone, Eisessig, Chlorkohlenwasserstoffe, Phenole u.a.).
    • VinylpyrrolidonNinylester-Copolymere, wie sie beispielsweise unter dem Warenzeichen Luviskol® (BASF) vertrieben werden. Luviskol® VA 64 und Luviskol® VA 73, jeweils VinylpyrrolidonNinylacetat-Copolymere, sind besonders bevorzugte nichtionische Polymere. Die Vinylester-Polymere sind aus Vinylestern zugängliche Polymere mit der Gruppierung der Formel (II)
      Figure imgb0002
      als charakteristischem Grundbaustein der Makromoleküle. Von diesen haben die Vinylacetat-Polymere (R = CH3) mit Polyvinylacetaten als mit Abstand wichtigsten Vertretern die größte technische Bedeutung.
      Die Polymerisation der Vinylester erfolgt radikalisch nach unterschiedlichen Verfahren (Lösungspolymerisation, Suspensionspolymerisation, Emulsionspolymerisation, Substanzpolymerisation.). Copolymere von Vinylacetat mit Vinylpyrrolidon enthalten Monomereinheiten der Formeln (1) und (11)
    • Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methylhydroxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal® und Benecel® (AQUALON) vertrieben werden.
      Celluloseether lassen sich durch die allgemeine Formel (III) beschreiben,
      Figure imgb0003
      in R für H oder einen Alkyl-, Alkenyl-, Alkinyl-, Aryl- oder Alkylarylrest steht. In bevorzugten Produkten steht mindestens ein R in Formel (III) für -CH2CH2CH2-OH oder -CH2CH2-OH. Celluloseether werden technisch durch Veretherung von Alkalicellulose (z.B. mit Ethylenoxid) hergestellt. Celluloseether werden charakterisiert über den durchschnittlichen Substitutionsgrad DS bzw. den molaren Substitutionsgrad MS, die angeben, wieviele Hydroxy-Gruppen einer Anhydroglucose-Einheit der Cellulose mit dem Veretherungsreagens reagiert haben bzw. wieviel mol des Veretherungsreagens im Durchschnitt an eine Anhydroglucose-Einheit angelagert wurden. Hydroxyethylcellulosen sind ab einem DS von ca. 0,6 bzw. einem MS von ca. 1 wasserlöslich. Handelsübliche Hydroxyethyl- bzw. Hydroxypropylcellulosen haben Substitutionsgrade im Bereich von 0,85-1,35 (DS) bzw. 1,5-3 (MS). Hydroxyethyl- und -propylcellulosen werden als gelblich-weiße, geruch- und geschmacklose Pulver in stark unterschiedlichen Polymerisationsgraden vermarktet. Hydroxyethyl- und -propylcellulosen sind in kaltem und heißem Wasser sowie in einigen (wasserhaltigen) organischen Lösungsmitteln löslich, in den meisten (wasserfreien) organischen Lösungsmitteln dagegen unlöslich; ihre wäßrigen Lösungen sind relativ unempfindlich gegenüber Änderungen des pH-Werts oder Elektrolyt-Zusatz.
  • Weitere erfindungsgemäß bevorzugte Polymere sind wasserlösliche Amphopolymere. Unter dem Oberbegriff Ampho-Polymere sind amphotere Polymere, d.h. Polymere, die im Molekül sowohl freie Aminogruppen als auch freie -COOH- oder SO3H-Gruppen enthalten und zur Ausbildung innerer Salze befähigt sind, zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO-- oder -SO3-Gruppen enthalten, und solche Polymere zusammengefaßt, die -COOH- oder SO3H-Gruppen und quartäre Ammoniumgruppen enthalten. Ein Beispiel für ein erfindungsgemäß einsetzbares Amphopolymer ist das unter der Bezeichnung Amphomer® erhältliche Acrylharz, das ein Copolymer aus tert.-Butylaminoethylmethacrylat, N-(1,1,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Monomeren aus der Gruppe Acrylsäure, Methacrylsäure und deren einfachen Estern darstellt. Ebenfalls bevorzugte Amphopolymere setzen sich aus ungesättigten Carbonsäuren (z.B. Acryl- und Methacrylsäure), kationisch derivatisierten ungesättigten Carbonsäuren (z.B. Acrylamidopropyl-trimethyl-ammoniumchlorid) und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren zusammen, wie beispielsweise in der deutschen Offenlegungsschrift 39 29 973 und dem dort zitierten Stand der Technik zu entnehmen sind. Terpolymere von Acrylsäure, Methylacrylat und Methacrylamidopropyltrimoniumchlorid, wie sie unter der Bezeichnung Merquat®2001 N im Handel erhältlich sind, sind erfindungsgemäß besonders bevorzugte Ampho-Polymere. Weitere geeignete amphotere Polymere sind beispielsweise die unter den Bezeichnungen Amphomer® und Amphomer® LV-71 (DELFT NATIONAL) erhältlichen Octylacrylamid/Methylmethacrylat/tert.-Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere.
  • Geeignete zwitterionische Polymere sind beispielsweise Acrylamidopropyltrimethylammoniumchlorid/Acrylsäure- bzw. -Methacrylsäure-Copolymerisate und deren Alkali- und Ammoniumsalze. Weiterhin geeignete zwitterionische Polymere sind Methacroylethylbetain/Methacrylat-Copolymere, die unter der Bezeichnung Amersette® (AMERCHOL) im Handel erhältlich sind.
  • Erfindungsgemäß geeignete anionische Polymere sind u. a.:
    • Vinylacetat/Crotonsäure-Copolymere, wie sie beispielsweise unter den Bezeichnungen Resyn® (NATIONAL STARCH), Luviset® (BASF) und Gafset® (GAF) im Handel sind. Diese Polymere weisen neben Monomereinheiten der vorstehend genannten Formel (II) auch Monomereinheiten der allgemeinen Formel (IV) auf:

              [-CH(CH3)-CH(COOH)-]n     (IV)

    • Vinylpyrrolidon/Vinylacrylat-Copolymere, erhältlich beispielsweise unter dem Warenzeichen Luviflex® (BASF). Ein bevorzugtes Polymer ist das unter der Bezeichnung Luviflex® VBM-35 (BASF) erhältliche Vinylpyrrolidon/Acrylat-Terpolymere.
    • Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere, die beispielsweise unter der Bezeichnung Ultrahold® strong (BASF) vertrieben werden.
    • Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglycolen
      Solche gepfropften Polymere von Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch mit anderen copolymerisierbaren Verbindungen auf Polyalkylenglycolen werden durch Polymerisation in der Hitze in homogener Phase dadurch erhalten, daß man die Polyalkylenglycole in die Monomeren der Vinylester, Ester von Acrylsäure oder Methacrylsäure, in Gegenwart von Radikalbildner einrührt.
      Als geeignete Vinylester haben sich beispielsweise Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylbenzoat und als Ester von Acrylsäure oder Methacrylsäure diejenigen, die mit aliphatischen Alkoholen mit niedrigem Molekulargewicht, also insbesondere Ethanol, Propanol, Isopropanol, 1-Butanol, 2-Butanol, 2-Methy-1-Propanol, 2-Methyl-2-Propanol, 1-Pentanol, 2-Pentanol, 3-Pentanol, 2,2-Dimethyl-1-Propanol, 3-Methyl-1-butanol; 3-Methyl-2-butanol, 2-Methyl-2-butanol, 2-Methyl-1-Butanol, 1-Hexanol, erhältlich sind, bewährt.
      Als Polyalkylenglycole kommen insbesondere Polyethylenglycole und Polypropylenglycole in Betracht. Polymere des Ethylenglycols, die der allgemeinen Formel V

              H-(O-CH2-CH2)n-OH     (V)

      genügen, wobei n Werte zwischen 1 (Ethylenglycol) und mehreren tausend annehmen kann. Für Polyethylenglycole existieren verschiedene Nomenklaturen, die zu Verwirrungen führen können. Technisch gebräuchlich ist die Angabe des mittleren relativen Molgewichts im Anschluß an die Angabe "PEG", so daß "PEG 200" ein Polyethylenglycol mit einer relativen Molmasse von ca. 190 bis ca. 210 charakterisiert. Für kosmetische Inhaltsstoffe wird eine andere Nomenklatur verwendet, in der das Kurzzeichen PEG mit einem Bindestrich versehen wird und direkt an den Bindestrich eine Zahl folgt, die der Zahl n in der oben genannten Formel V entspricht. Nach dieser Nomenklatur (sogenannte INCI-Nomenklatur, CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997) sind beispielsweise PEG-4, PEG-6, PEG-8, PEG-9, PEG-10, PEG-12, PEG-14 und PEG-16 einsetzbar. Kommerziell erhältlich sind Polyethylenglycole beispielsweise unter den Handelsnamen Carbowax® PEG 200 (Union Carbide), Emkapol® 200 (ICI Americas), Lipoxol® 200 MED (HÜLS America), Polyglycol® E-200 (Dow Chemical), Alkapol® PEG 300 (Rhone-Poulenc), Lutrol® E300 (BASF) sowie den entsprechenden Handelsnamen mit höheren Zahlen.
      Polypropylenglycole (Kurzzeichen PPG) sind Polymere des Propylenglycols, die der allgemeinen Formel VI
      Figure imgb0004
      genügen, wobei n Werte zwischen 1 (Propylenglycol) und mehreren tausend annehmen kann. Technisch bedeutsam sind hier insbesondere Di-, Tri- und Tetrapropylenglycol, d.h. die Vertreter mit n=2, 3 und 4 in Formel VI.
      Insbesondere können die auf Polyethylenglycole gepfropften Vinylacetatcopolymeren und die auf Polyethylenglycole gepfropften Polymeren von Vinylacetat und Crotonsäure eingesetzt werden.
    • gepfropfte und vernetzte Copolymere aus der Copolymerisation von
      1. i) mindesten einem Monomeren vom nicht-ionischen Typ,
      2. ii) mindestens einem Monomeren vom ionischen Typ,
      3. iii) von Polyethylenglycol und
      4. iv) einem Vernetzter
      Das verwendete Polyethylenglycol weist ein Molekulargewicht zwischen 200 und mehreren Millionen, vorzugsweise zwischen 300 und 30.000, auf. Die nicht-ionischen Monomeren können von sehr unterschiedlichem Typ sein und unter diesen sind folgende bevorzugt: Vinylacetat, Vinylstearat, Vinyllaurat, Vinylpropionat, Allylstearat, Allyllaurat, Diethylmaleat, Allylacetat, Methylmethacrylat, Cetylvinylether, Stearylvinylether und 1-Hexen.
      Die ionischen Monomeren können gleichermaßen von sehr unterschiedlichen Typen sein, wobei unter diesen besonders bevorzugt Crotonsäure, Allyloxyessigsäure, Vinylessigsäure, Maleinsäure, Acrylsäure und Methacrylsäure in den Pfropfpolameren enthalten sind.
      Als Vernetzer werden vorzugsweise Ethylenglycoldimethacrylat, Diallylphthalat, ortho-, meta- und para-Divinylbenzol, Tetraallyloxyethan und Polyallylsaccharosen mit 2 bis 5 Allylgruppen pro Molekül Saccharin.
      Die vorstehend beschriebenen gepfropften und vernetzten Copolymere werden vorzugsweise gebildet aus:
      1. i) 5 bis 85 Gew.-% mindesten eine Monomeren vom nicht-ionischen Typ,
      2. ii) 3 bis 80 Gew.-% mindestens eines Monomeren vom ionischen Typ,
      3. iii) 2 bis 50 Gew.-%, vorzugsweise 5 bis 30 Gew.-% Polyethylenglycol und
      4. iv) 0,1 bis 8 Gew.-% eines Vernetzers, wobei der Prozentsatz des Vernetzers durch das Verhältnis der Gesamtgewichte von i), ii) und iii) ausgebildet ist.
    • durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltene Copolymere:
      1. i) Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäuren,
      2. ii) ungesättigte Carbonsäuren,
      3. iii) Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe ii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C8-18-Alkohols
      Unter kurzkettigen Carbonsäuren bzw. Alkoholen sind dabei solche mit 1 bis 8 Kohlenstoffatomen zu verstehen, wobei die Kohlenstoffketten dieser Verbindungen gegebenenfalls durch zweibindige Heterogruppen wie -O-, -NH-, -S_ unterbrochen sein können.
    • Terpolymere aus Crotonsäure, Vinylacetat und einem Allyl- oder Methallylester
      Diese Terpolymere enthalten Monomereinheiten der allgemeinen Formeln (II) und (IV) (siehe oben) sowie Monomereinheiten aus einem oder mehreren Allyl- oder Methallyestern der Formel VII:
      Figure imgb0005
      worin R3 für -H oder -CH3, R2 für -CH3 oder -CH(CH3)2 und R1 für -CH3 oder einen gesättigten geradkettigen oder verzweigten C1-6-Alkylrest steht und die Summe der Kohlenstoffatome in den Resten R1 und R2 vorzugsweise 7, 6, 5, 4, 3 oder 2 ist.
      Die vorstehend genannten Terpolymeren resultieren vorzugsweise aus der Copolymerisation von 7 bis 12 Gew.-% Crotonsäure, 65 bis 86 Gew.-%, vorzugsweise 71 bis 83 Gew.-% Vinylacetat und 8 bis 20 Gew.-%, vorzugsweise 10 bis 17 Gew.-% Allyl- oder Methallylestern der Formel VII.
    • Tetra- und Pentapolymere aus
      1. i) Crotonsäure oder Allyloxyessigsäure
      2. ii) Vinylacetat oder Vinylpropionat
      3. iii) verzweigten Allyl- oder Methallylestern
      4. iv) Vinylethern, Vinylestern oder geradkettigen Allyl- oder Methallylestern
    • Crotonsäure-Copolymere mit einem oder mehreren Monomeren aus der Gruppe Ethylen, Vinylbenzol, Vinylmethylether, Acrylamid und deren wasserlöslicher Salze
    • Terpolymere aus Vinylacetat, Crotonsäure und Vinylestern einer gesättigten aliphatischen in □-Stellung verzweigten Monocarbonsäure.
  • Weitere, bevorzugt als Bestandteil der Beschichtung einsetzbare Polymere sind kationische Polymere. Unter den kationischen Polymeren sind dabei die permanent kationischen Polymere bevorzugt. Als "permanent kationisch" werden erfindungsgemäß solche Polymeren bezeichnet, die unabhängig vom pH-Wert der Mittels (also sowohl der Beschichtung als auch des Formkörpers) eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten.
    Bevorzugte kationische Polymere sind beispielsweise
    • quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat® und Polymer JR® im Handel erhältlich sind. Die Verbindungen Celquat® H 100, Celquat® L 200 und Polymer JR®400 sind bevorzugte quaternierte Cellulose-Derivate.
    • Polysiloxane mit quaternären Gruppen, wie beispielsweise die im Handel erhältlichen Produkte Q2-7224 (Hersteller: Dow Corning; ein stabilisiertes Trimethylsilylamodimethicon), Dow Corning® 929 Emulsion (enthaltend ein hydroxyl-amino-modifiziertes Silicon, das auch als Amodimethicone bezeichnet wird), SM-2059 (Hersteller: General Electric), SLM-55067 (Hersteller: Wacker) sowie Abil®-Quat 3270 und 3272 (Hersteller: Th. Goldschmidt; diquaternäre Polydime- thylsiloxane, Quaternium-80),
    • Kationische Guar-Derivate, wie insbesondere die unter den Handelsnamen Cosmedia®Guar und Jaguar® vertiebenen Produkte,
    • Polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Merquat®100 (Poly(dimethyldiallylammoniumchlorid)) und Merquat®550 (Dimethyldiallylammoniumchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere.
    • Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quaternierte Vinylpyrrolidon-Dimethylaminomethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat®734 und Gafquat®755 im Handel erhältlich.
    • Vinylpyrrolidon-Methoimidazoliniumchlorid-Copolymere, wie sie unter der Bezeichnung Luviquat® angeboten werden.
    • quaternierter Polyvinylalkohol
    sowie die unter den Bezeichnungen
    • Polyquaternium 2,
    • Polyquaternium 17,
    • Polyquaternium 18 und
    • Polyquaternium 27
    bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette. Die genannten Polymere sind dabei nach der sogenannten INCI-Nomenklatur bezeichnet, wobei sich detaillierte Angaben im CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997, finden, auf die hier ausdrücklich Bezug genommen wird.
  • Erfindungsgemäß bevorzugte kationische Polymere sind quaternisierte Cellulose-Derivate sowie polymere Dimethyldiallylammoniumsalze und deren Copolymere. Kationische Cellulose-Derivate, insbesondere das Handelsprodukt Polymer®JR 400, sind ganz besonders bevorzugte kationische Polymere.
  • Ein im Rahmen der vorliegenden Anmeldung besonders bevorzugtes Beschichtungsmaterial für Phosphate ist Polyvinylalkohol (PVA). Bezüglich des Hydrolysegrades und des Molekulargewichts der bevorzugt für das Coating eingesetzten Polyvinylalkohole gelten die weiter unten in der Beschreibung bezüglich der bevorzugten Behältermaterialien gemachten Angaben, auf die an dieser Stelle zur Vermeidung von Wiederholungen verwiesen wird.
    Wie bereits erwähnt kann die Beschichtung erfindungsgemäß bevorzugter Phosphate auch aus einem Gemisch der vorgenannten Polymere mit Salzen, vorzugsweise anorganischen Salzen, bestehen.
  • Zusammenfassend werden im Rahmen der vorliegenden Anmeldung Wasch- oder Reinigungsmittelzusammensetzungen bevorzugt, bei denen die Beschichtung des in der wasserarmen Matrix dispergierten Phosphats mindestens eine Substanz ausgewählt aus der Gruppe der wasserlöslichen organischen Polymere, bevorzugt der wasserlöslichen organischen Homo- und/oder Copolymere, besonders bevorzugt aus der Gruppe der wasserlöslichen Homopolymere, insbesondere bevorzugt aus der Gruppe der Polyethylenglycole und/oder Polypropylenglycole und insbesondere aus der Gruppe der Polyethylenglycole und/oder Poylpropylenglycole mit einem Molekulargewicht oberhalb 2000, enthält, wobei bei der Wahl der vorgenannten Beschichtungsmaterialien im Hinblick auf ihre Verarbeitbarkeit und thermische Beständigkeit solche Substanzen besonders bevorzugt sind, die einen Schmelzpunkt oberhalb 30°C, vorzugsweise oberhalb 60°C, besonders bevorzugt oberhalb 90°C und insbesondere oberhalb 120°C aufweisen.
  • Die Herstellung derartig beschichteter Phosphatpartikel kann beispielsweise durch ein Granulationsverfahren, in welchem in einer Wirbelschicht partikuläre Gerüststoffe mit bindemittelhaltigen wäßrigen Lösungen anorganischer Salze in Kontakt gebrachten werden, erfolgen. Ein solches Verfahren zur Herstellung beschichteter Phosphatpartikel, umfaßt die Schritte:
    1. a) Einbringen eines oder mehrerer partikulärer Gerüststoffe(s) in eine Wirbelschicht;
    2. b) Aufsprühen der wäßrigen Lösung mindestens eines anorganischen Salzes, auf den/die partikuläre(n) Gerüststoff(e), wobei die in Schritt b) eingesetzte wäßrige Lösung weiterhin ein Bindemittel enthält.
  • Als Partikel oder partikuläre Gerüststoffgranulate werden im Rahmen der vorliegenden Anmeldung separate Teilchen bezeichnet, wie sie beispielsweise durch Kristallisation oder Agglomeration erhalten werden. Die Bezeichnung Partikel ist an keine Teilchengröße gebunden. Die Größe der in dem erfindungsgemäßen Verfahren verarbeiteten Partikel wird ausschließlich durch die technischen Möglichkeiten der eingesetzten Wirbelschicht begrenzt.
  • Bei dem in Schritt b) des Verfahrens eingesetzten Beschichtungsmittel handelt es sich um eine wäßrige Lösung eines anorganischen Salzes, die weiterhin Bindemittel enthält. Das eingesetzte Bindemittel ist nicht notwendigerweise vollständig gelöst, es kann beispielsweise auch in der wässrigen Phasen suspendiert vorliegen. Bevorzugt sind im Rahmen der vorliegenden Anmeldung jedoch Beschichtungsmittel, welche sowohl das anorganische Salz, als auch das Bindemittel in gelöster Form aufweisen.
  • Zur Durchführung des Beschichtungsverfahrens hat es sich als vorteilhaft erwiesen, die Temperaturen der Zuluft, des Wirbelbetts sowie der aufgesprühten wäßrigen Lösung zu kontrollieren. Bevorzugt werden im Rahmen der vorliegenden Anmeldung daher erfindungsgemäße Verfahren, bei denen die Temperatur der in Schritt b) eingesetzten Zuluft zwischen 30 und 220°C, vorzugsweise zwischen 60 und 210°C und insbesondere zwischen 90 und 200°C beträgt und/oder das Wirbelbett während des Aufsprühens der wäßrigen Lösung in Schritt b) eine Temperatur oberhalb 30 °C, vorzugsweise oberhalb 45°C und insbesondere oberhalb 60°C aufweist und/oder die in Schritt b) aufgesprühte wäßrige Lösung eine Temperatur oberhalb 30°C, vorzugsweise oberhalb 40°C und insbesondere oberhalb 50°C aufweist.
  • Bevorzugt werden im Rahmen der vorstehenden Verfahrens wäßrige Lösungen anorganischer Salze eingesetzt, welche bei 20°C eine Löslichkeit oberhalb 100 g/L aufweisen. Als vorteilhaft einsetzbare anorganische Salze haben sich insbesondere solche Salze erwiesen, die zur Bildung von Hydraten befähigt sind. Aus dieser Gruppe der Hydratbildenden Salze werden wiederum Natriumsulfat, Natriumcarbonat, Natriumphosphat oder Magnesiumsulfat bevorzugt. Besonders bevorzugt sind Granulationsverfahren, welche dadurch gekennzeichnet sind, daß die in Schritt b) aufgesprühte Lösung mindestens ein anorganisches Salz aus der Gruppe, welche zur Bildung von Hydraten befähigt sind, insbesondere mindestens ein anorganisches Salz aus der Gruppe Natriumsulfat, Natriumcarbonat, Natriumphosphat oder Magnesiumsulfat enthält.
  • Die vorgenannten anorganischen Salze werden in dem erfindungsgemäßen Verfahren in Form wässeriger Lösungen eingesetzt, welche zusätzlich ein Bindemittel enthalten. Der Einsatz dieses/dieser Bindemittel(s) in dem erfindungsgemäßen Verfahren erhöht die Schüttdichte und Abriebbeständigkeit der resultierenden Granulate und verbessert deren Rieselfähigkeit.
    Als besonders geeignete Bindemittel haben sich wasserlösliche organische Polymere erwiesen, wobei die Polyalkylenglycole, insbesondere die Polyethylenglycole und/oder Poylpropylenglycole besonders bevorzugt werden. Eine ausführliche Beschreibung bevorzugter wasserlöslicher Polymere für die Beschichtung findet sich in den vorhergehenden Abschnitten. Auf diese Ausführungen wird an dieser Stelle verwiesen.
  • Die erfindungsgemäße Beschichtung des in den flüssigen Wasch- oder Reinigungsmittelzusammensetzungen dispergierten Phosphats, führt bereits bei geringen Mengen an Beschichtungsmaterial zu deutlich verbesserten Eigenschaften dieser Mittel. Es ist im Rahmen der vorliegenden Erfindung bevorzugt, daß die Menge des/der Beschichtungssubstanz(en), bezogen auf das Gesamtgewicht des beschichteten dispergierten Phosphats zwischen 0,5 und 15 Gew.-%, vorzugsweise zwischen 1 und 12 Gew.-% und insbesondere zwischen 2 und 8 Gew.-% beträgt/betragen.
  • Erfindungsgemäße wasserarme Wasch- oder Reinigungsmittel enthalten Phosphate, welche zu mindentens 10 Gew.-% eine Beschichtung aufweisen. Diese Phosphate werden vorzugsweise ausgewählt aus der Gruppe der Alkalimetallphosphate. Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken las Alkaliträger, verhindern Kalkbeläge und tragen überdies zur Reinigungsleistung bei.
  • Natriumtripolyphosphat (Pentanatriumphosphat, Na5P3O10) ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. Bei den wasserfreien Modifikationen ist zwischen den kristallinen Phase-I- und Phase-II-Phosphaten zu unterscheiden. In 100 g Wasser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lösung durch Versprühen entwässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphosphat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.).
  • Besonders bevorzugt werden erfindungsgemäße Wasch- oder Reinigungsmittelzusammensetzungen, in welchen das dispergierte Phosphat Natriumtripolyphosphat umfaßt und der Phase-I Anteil des dispergierten Natriumtripolyphosphats bezogen auf das Gesamtgewicht des dispergierten Natriumtripolyphosphats weniger als 25 Gew.-%, bevorzugt weniger als 20 Gew.-%, besonders bevorzugt weniger als 16 Gew.-%, ganz besonders bevorzugt weniger als 12 Gew.-% und insbesondere weniger als 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht des dispergierten Natriumtripolyphosphats, beträgt, da sich diese Wasch- oder Reinigungsmittelzusammensetzungen gegenüber Zusammensetzungen mit einem höheren Phase I Anteil des Natriumtripolyphosphats durch eine höhere Lagerstabilität auszeichnen.
  • Ein weiteres bevovzugtes Alkalimetallphosphat ist das Natriumdihydrogenphosphat, NaH2PO4, welches als Dihydrat (Dichte 1,91 gcm-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3) existiert. Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natronlauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihydrogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3, hat einen Schmelzpunkt 253° [Zersetzung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
  • Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Verlust von 5 H2O) wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator hergestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
  • Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zersetzung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH hergestellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein weißes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z.B. beim Erhitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kalium- phosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
  • Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Erhitzen von Dinatriumphosphat auf >200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1 %igen Lösung bei 25° 10,4 beträgt.
  • Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermolekulare Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
  • Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%-igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung.
  • Alle vorgenannten Phosphate sind im Rahmen der vorliegenden Erfindung als bevorzugte Bestandteile flüssiger, wasserarmer Wasch- oder Reinigungsmittelzusammensetzungen aufzufassen, wobei in einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung das dispergierte Phosphat Polyphosphat(e), bevorzugt Tripolyphosphat(e), besonders bevorzugt Natrium- und/oder Kaliumtripolyphosphat, umfaßt.
  • Bei den beanspruchten Mitteln kann es sich neben Vollwaschmitteln für Textilien oder maschinelle Geschirrspülmittel auch um Spezialwaschmittel zur Pflege von Fasern, Glas, Keramik oder Metall handeln. Bevorzugt werden in jedem Fall Wasch- und Reinigungsmittel, welche einen Gesamtphosphatgehalt der Wasch- und Reinigungsmittelzusammensetzung zwischen 30 und 70 Gew.-%, vorzugsweise zwischen 35 und 65 Gew.-%, besonders bevorzugt zwischen 40 und 60 Gew.-% und insbesondere zwischen 45 und 55 Gew.-%, jeweils bezogen auf das Gesamtgewicht der flüssigen Wasch- und Reinigungsmittelzusammensetzung, ohne Berücksichtigung des wasserlöslichen oder wasserdispergierbaren Behälter, aufweisen.
  • Eine zweite Methode zur Verbesserung der Lagerfähigkeit erfindungsgemäßer Mittel neben der zuvor beschriebenen Beschichtung ist die Hydratisierung der in der wasserarmen Matrix dispergierten Phosphate, insbesondere des Natriumtripolyphospats. Wie eingangs erwähnt, existiert Natriumtripolyphosphat außer in den beiden wasserfreien Modifikationen weiterhin als kristallines Hexahydrat, dessen Hydratwassergehalt, bezogen auf das Gesamtgewicht, 28 Gew.-% beträgt. In einer weiteren bevorzugten Ausführungsform liegt daher das dispergierte Natriumtripolyphosphat wengistens anteilsweise in Form des Hexahydrats vor. Das dispergierte Natriumtripolyphosphat kann jedoch auch vollständig in Form des Hexahydrats vorliegen. Besonders bevorzugt werden Wasch- oder Reinigungsmittelzusammensetzungen in denen das dispergierte Natriumtripolyphosphat, bezogen auf sein Gesamtgewicht, 10 bis 70 Gew.-%, vorzugsweise 20 bis 60 Gew.-% und insbesondere 25 bis 50 Gew.-% Natriumtripolyphosphat Hexahydrat enthält. Anstelle des oder in Kombination mit dem vollhydratisierten Natriumtripolyphosphat Hexahydrats kann weiterhin auch teilhydratisiertes Natriumtripolyphosphat eingesetzt werden. Derartiges teilhydratisiertes Phosphat hat gegenüber dem Hexahydrat den Vorteil einer leichteren Verarbeitbarkeit und ermöglicht aufgrund des geringeren Hydratwassergehalts die Herstellung von Wasch- oder Reinigungsmittelzusammensetzungen höherer Wirkstoffkonzentration. Die Herstellung teilhydratisierten Natriumtripolyphosphats kann beispielsweise durch die Einwirkung von heißem Wasserdampf oder wäßrige Sprühnebel auf wasserfreie Phosphate erfolgen. Der Hydratisierungsgrad des Phosphats läßt sich dabei über die Menge des zugeführten Wassers bestimmen. Im Rahmen der vorliegenden Anmeldung enthalten bevorzugte erfindungsgemäße Wasch - oder Reinigungsmittelzusammensetzungen das dispergierte Phosphat wenigstens anteilsweise in Form eines hydratisierten Phosphats, wobei dieses hydratisierte Phosphat vorzugsweise einen Hydratwassergehalt von 0,5 bis 26 Gew.-%, vorzugsweise von 1 bis 24 Gew.-% und insbesondere von 2 bis 20 Gew.-%, jeweils bezogen auf das Gesamtgewicht der dispergierten hydratisierten Phosphats, aufweist.
  • Die erfindungsgemäßen Mittel liegen als Feststoffsuspension in einer wasserarmen Matrix vor, welche außer dem Wasser auch weitere nichtwäßrige Lösungsmittel enthalten kann. Die Bezeichnung "Feststoffsuspension" schließt im Rahmen der vorliegenden Anmeldung nicht aus, daß die in den erfindungsgemäßen Mitteln enthaltenen festen Substanzen wenigstens anteilsweise in Lösung vorliegen. Unabhängig von diesen gelösten Anteilen weisen die erfindungsgemäßen Mittel jedoch einen Anteil suspendierter Feststoffe auf. Die oben genannten nichtwäßrigen Lösungsmittel stammen beispielsweise aus den Gruppen der Mono-Alkohole, Diole, Triole bzw. Polyole, der Ether, Ester und/oder Amide. Besonders bevorzugt sind dabei nichtwäßrige Lösungsmittel, die wasserlöslich sind, wobei "wasserlösliche" Lösungsmittel im Sinne der vorliegenden Anmeldung Lösungsmittel sind, die bei Raumtemperatur mit Wasser vollständig, d.h. ohne Mischungslücke, mischbar sind.
  • Nichtwäßrige Lösungsmittel, die in den erfindungsgemäßen Mitteln eingesetzt werden können, stammen vorzugsweise aus der Gruppe ein- oder mehrwertigen Alkohole, Alkanolamine oder Glykolether, sofern sie im angegebenen Konzentrationsbereich mit Wasser mischbar sind. Vorzugsweise werden die Lösungsmittel ausgewählt aus Ethanol, n- oder i-Propanol, Butanolen, Glykol, Propan- oder Butandiol, Glycerin, Diglykol, Propyl- oder Butyldiglykol, Hexylenglycol, Ethylenglykolmethylether, Ethylenglykolethylether, Ethylenglykolpropylether, Etheylenglykolmonon-butylether, Diethylenglykolmethylether, Di-ethylenglykolethylether, Propylenglykolmethyl-, -ethyl- oder -propylether, Dipropylenglykolmethyl-, oder -ethylether, Methoxy-, Ethoxy- oder Butoxytriglykol, 1-Butoxyethoxy-2-propanol, 3-Methyl-3-methoxybutanol, Propylen-glykol-t-butylether sowie Mischungen dieser Lösungsmittel.
  • Eine im Rahmen der vorliegenden Erfindung besonders bevorzugte portionierte Wasch- oder Reinigungsmittelzusammensetzung ist dadurch gekennzeichnet, daß sie nichtwäßrige(s) Lösungsmittel in Mengen von 0,1 bis 70 Gew.-%, vorzugsweise von 0,5 bis 60 Gew.-%, besonders bevorzugt von 1 bis 50 Gew.-%, ganz besonders bevorzugt von 2 bis 40 Gew.-% und insbesondere von 2,5 bis 30 Gew.-%, jeweils bezogen auf die gesamte Zusammensetzung, enthält, wobei bevorzugte(s) nichtwäßrige(s) Lösungsmittel ausgewählt ist/sind aus der Gruppe der bei Raumtemperatur flüssigen nichtionischen Tenside, der Polyethylenglycole und Polypropylenglycole, Glycerin, Glycerincarbonat, Triacetin, Ethylenglycol, Propylengylcol, Propylencarbonat, Hexylenglycol, Ethanol sowie n-Propanol und/oder iso-Propanol.
  • Die bei Raumtemperatur flüssigen nichtionischen Tenside werden als wasch- bzw. reinigungsaktive Substanzen weiter unten ausführlich beschrieben.
  • Erfindungsgemäß einsetzbare Polyethylenglycole (Kurzzeichen PEG) sind bei Raumtemperatur flüssig. PEG sind Polymere des Ethylenglycols, die der allgemeinen Formel (VIII)

            H-(O-CH2-CH2)n-OH     (VIII)

    genügen, wobei n Werte zwischen 1 (Ethylenglykol, siehe unten) und ca. 16 annehmen kann. Für Polyethylenglykole existieren verschiedene Nomenklaturen, die zu Verwirrungen führen können. Technisch gebräuchlich ist die Angabe des mittleren relativen Molgewichts im Anschluß an die Angabe "PEG", so daß "PEG 200" ein Polyethylenglycol mit einer relativen Molmasse von ca. 190 bis ca. 210 charakterisiert. Nach dieser Nomenklatur sind im Rahmen der vorliegenden Erfindung die technisch gebräuchlichen Polyethylenglycole PEG 200, PEG 300, PEG 400 und PEG 600 einsetzbar.
  • Für kosmetische Inhaltsstoffe wird eine andere Nomenklatur verwendet, in der das Kurzzeichen PEG mit einem Bindestrich versehen wird und direkt an den Bindestrich eine Zahl folgt, die der Zahl n in der oben genannten Formel entspricht. Nach dieser Nomenklatur (sogenannte INCI-Nomenklatur, CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997) sind erfindungsgemäß beispielsweise PEG-4, PEG-6, PEG-8, PEG-9, PEG-10, PEG-12, PEG-14 und PEG-16 erfindungsgemäß einsetzbar.
  • Kommerziell erhältlich sind Polyethylenglycole beispielsweise unter den Handelnamen Carbowax® PEG 200 (Union Carbide), Emkapol® 200 (ICI Americas), Lipoxol® 200 MED (HÜLS America), Polyglycol® E-200 (Dow Chemical), Alkapol® PEG 300 (Rhone-Poulenc), Lutrol® E300 (BASF) sowie den entsprechenden Handelnamen mit höheren Zahlen.
  • Erfindungsgemäß einsetzbare Polypropylenglycole (Kurzzeichen PPG) sind Polymere des Propylenglycols, die der allgemeinen Formel (IX)
    Figure imgb0006
    genügen, wobei n Werte zwischen 1 (Propylenglycol, siehe unten) und ca. 12 annehmen kann. Technisch bedeutsam sind hier insbesondere Di-, Tri- und Tetrapropylenglycol, d.h. die Vertreter mit n=2, 3 und 4 in der vorstehenden Formel.
  • Glycerin ist eine farblose, klare, schwerbewegliche, geruchlose süß schmeckende hygroskopische Flüssigkeit der Dichte 1,261, die bei 18,2°C erstarrt. Glycerin war ursprünglich nur ein Nebenprodukt der Fettverseifung, wird heute aber in großen Mengen technisch synthetisiert. Die meisten technischen Verfahren gehen von Propen aus, das über die Zwischenstufen Allylchlorid, Epichlorhydrin zu Glycerin verarbeitet wird. Ein weiteres technisches Verfahren ist die Hydroxylierung von Allylalkohol mit Wasserstoffperoxid am WO3-Kontakt über die Stufe des Glycids.
  • Glycerincarbonat ist durch Umesterung von Ethylencarbonat oder Dimethylcarbonat mit Glycerin zugänglich, wobei als Nebenprodukte Ethylenglycol bzw. Methanol anfallen. Ein weiterer Syntheseweg geht von Glycidol (2,3-Epoxy-1-propanol) aus, das unter Druck in Gegenwart von Katalysatoren mit CO2 zu Glycerincarbonat umgesetzt wird. Glycerincarbonat ist eine klare, leichtbewegliche Flüssigkeit mit einer Dichte von 1,398 gcm-3, die bei 125-130°C (0,15 mbar) siedet.
  • Ethylenglycol (1,2-Ethandiol, "Glykol") ist eine farblose, viskose, süß schmeckende, stark hygroskopische Flüssigkeit, die mit Wasser, Alkoholen und Aceton mischbar ist und eine Dichte von 1,113 aufweist. Der Erstarrungspunkt von Ethylenglycol liegt bei -11,5°C, die Flüssigkeit siedet bei 198°C. Technisch wird Ethylenglycol aus Ethylenoxid durch Erhitzen mit Wasser unter Druck gewonnen. Aussichtsreiche Herstellungsverfahren lassen sich auch auf der Acetoxylierung von Ethylen und nachfolgender Hydrolyse oder auf Synthesegas-Reaktionen aufbauen.
  • Vom Propylengylcol existieren zwei Isomere, das 1,3-Propandiol und das 1,2-Propandiol. 1,3-Propandiol (Trimethylenglykol) ist eine neutrale, farb- und geruchlose, süß schmeckende Flüssigkeit der Dichte 1,0597, die bei -32°C erstarrt und bei 214°C siedet. Die Herstellung von 1,3-Propandiol gelingt aus Acrolein und Wasser unter anschließender katalytischer Hydrierung.
  • Technisch weitaus bedeutender ist 1,2-Propandiol (Propylenglykol), das eine ölige, farblose, fast geruchlose Flüssigkeit, der Dichte 1,0381 darstellt, die bei -60°C erstarrt und bei 188°C siedet. 1,2-Propandiol wird aus Propylenoxid durch Wasseranlagerung hergestellt.
  • Propylencarbonat ist eine wasserhelle, leichtbewegliche Flüssigkeit, mit einer Dichte von 1,21 gcm-3, der Schmelzpunkt liegt bei -49°C, der Siedepunkt bei 242°C. Auch Propylencarbonat ist großtechnisch durch Reaktion von Propylenoxid und CO2 bei 200°C und 80 bar zugänglich.
  • Außer dem zuvor beschriebenen Phosphat, erhalten erfindungsgemäß bevorzugte Wasch- oder Reinigungsmittelzusammensetzungen weitere für diese Mittel übliche Aktivsubstanzen, wobei Substanzen aus der Gruppe der Bleichmittel, Bleichaktivatoren, Polymere, Gerüststoffe, Tenside, Enzyme, Elektrolyte, pH-Stellmittel, Duftstoffe, Parfümträger, Farbstoffe, Hydrotrope, Schauminhibitoren, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungs-inhibitoren, antimikrobiellen Wirkstoffe, Germizide, Fungizide, Antioxidantien, Korrosionsinhibitoren, Antistatika, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel, nichtwässrigen Lösungsmittel, Weichspüler, Proteinhydrolysatte, sowie UV-Absorber besonders bevorzugt sind.
  • Als wichtige Bestandteile von Wasch- oder Reinigungsmitteln können in den erfindungsgemäßen Mitteln neben anderen Bestandteilen Bleichmittel und Bleichkaktivatoren enthalten sein. Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Reinigungsmittelformkpörper für das maschinelle Geschirrspülen können auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesiummonoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
  • Werden die erfindungsgemäßen Mittel als maschinelle Geschirrspülmittel eingesetzt, so können diese Bleichaktivatoren enthalten, um beim Reinigen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
  • Weitere im Rahmen der vorliegenden Anmeldung bevorzugt eingesetzte Bleichaktivatoren sind Verbindungen aus der Gruppe der kationischen Nitrile, insebsondere kationische Nitril der Formel
    Figure imgb0007
    in der R1 für -H, -CH3, einen C2-24-Alkyl- oder -Alkenylrest, einen substituierten C2-24-Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN, einen Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-O)nH mit n = 1, 2, 3, 4, 5 oder 6 und X ein Anion ist.
  • In besonders bevorzugten erfindungsgemäßen Mitteln ist ein kationisches Nitril der Formel
    Figure imgb0008
    enthalten, in der R4, R5 und R6 unabhängig voneinander ausgewählt sind aus -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, wobei R4 zusätzlich auch -H sein kann und X ein Anion ist, wobei vorzugsweise R5 = R6 = -CH3 und insbesondere R4 = R5 = R6 = -CH3 gilt und Verbindungen der Formeln (CH3)3N(+)CH2-CN X-, (CH3CH2)3N(+)CH2-CN X-, (CH3CH2CH2)3N(+)CH2-CN X-, (CH3CH(CH3))3N(+)CH2-CN X-, oder (HO-CH2-CH2)3N(+)CH2-CN X- besonders bevorzugt sind, wobei aus der Gruppe dieser Substanzen wiederum das kationische Nitril der Formel (CH3)3N(+)CH2-CN X-, in welcher X- für ein Anion steht, das aus der Gruppe Chlorid, Bromid, lodid, Hydrogensulfat, Methosulfat, p-Toluolsulfonat (Tosylat) oder Xylolsulfonat ausgewählt ist, besonders bevorzugt wird.
  • Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Mittel eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
  • Neben den genannten Inhaltsstoffen Bleichmittel und Bleichaktivator sind Gerüststoffe weitere wichtige Inhaltsstoffe von Wasch- oder Reinigungsmitteln. In den erfindungsgemäßen Wasch- oder Reinigungsmitteln können dabei alle üblicherweise in diesen Mitteln eingesetzten Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silikate, Carbonate, organische Cobuilder und - wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen - auch die Phosphate.
  • Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5 · yH2O bevorzugt.
  • Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate weisen ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen auf. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
  • Der einsetzbare feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel

            nNa2O · (1-n)K2O · Al2O3 · (2 - 2,5)SiO2 · (3,5 - 5,5) H2O

    beschrieben werden kann. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
  • Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Zur Vermeidung von Wiederholungen wird für eine ausführliche Beschreibung dieser Phosphate auf die obigen Ausführungen verwiesen.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Alkali- und insbesondere Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
  • Als weitere Bestandteile können Alkaliträger zugegen sein. Als Alkaliträger gelten Alkalimetallhydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetallsesquicarbonate, Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden.
  • Werden die erfindungsgemäßen Wasch- oder Reinigungsmittel für das maschinelle Geschirrspülen eingesetzt, so sind wasserlösliche Builder bevorzugt, da sie auf Geschirr und harten Oberflächen in der Regel weniger dazu tendieren, unlösliche Rückstände zu bilden. Übliche Builder sind die niedermolekularen Polycarbonsäuren und ihre Salze, die homopolymeren und copolymeren Polycarbonsäuren und ihre Salze, die Carbonate, Phosphate und Silikate. Bevorzugt werden zur Herstellung von Tabletten für das maschinelle Geschirrspülen Trinatriumcitrat und/oder Pentanatriumtripolyphosphat und/oder Natriumcarbonat und/oder Natriumbicarbonat und/oder Gluconate und/oder silikatische Builder aus der Klasse der Disilikate und/oder Metasilikate eingesetzt. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buildersystem, das eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat enthält.
  • Als organische Cobuilder können in den Reinigungsmitteln im Rahmen der vorliegenden Erfindung insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Methylglycindiessigsäure, Zuckersäuren und Mischungen aus diesen.
  • Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
  • Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
  • Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
  • Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 1000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 1000 bis 10000 g/mol, und besonders bevorzugt von 1200 bis 4000 g/mol, aufweisen, bevorzugt sein.
  • Besonders bevorzugt werden in den erfindungsgemäßen Mitteln sowohl Polyacrylate als auch Copolymere aus ungesättigten Carbonsäuren, sulfonsäuregruppenhaltigen Monomeren sowie gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren eingesetzt. Die Sulfonsäuregruppen-haltigen Copolymere werden in der Folge ausführlich beschrieben.
  • Es lassen sich aber auch erfindungsgemäße Produkte, welche als sogenannte "3in1"-Produkte die herkömmlichen Reiniger, Klarspüler und eine Salzersatzfunktion in sich vereinen, bereitstellen. Hierzu sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, die zusätzlich 0,1 bis 70 Gew.-% an Copolymeren aus
    1. i) ungesättigten Carbonsäuren
    2. ii) Sulfonsäuregruppen-haltigen Monomeren
    3. iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
    enthalten.
  • Diese Copolymere bewirken, daß die mit solchen Mitteln behandelten Geschirrteile bei nachfolgenden Reinigungsvorgängen deutlich sauberer werden, als Geschirrteile, die mit herkömmlichen Mitteln gespült wurden.
  • Als zusätzlicher positiver Effekt tritt eine Verkürzung der Trocknungszeit der mit dem Reinigungsmittel behandelten Geschirrteile auf, d.h. der Verbraucher kann nach dem Ablauf des Reinigungsprogramms das Geschirr früher aus der Maschine nehmen und wiederbenutzen. Unter Trocknungszeit wird im Rahmen der erfindungsgemäßen Lehre im allgemeinen die wortsinngemäße Bedeutung verstanden, also die Zeit, die verstreicht, bis eine in einer Geschirrspülmaschine behandelte Geschirroberfläche getrocknet ist, im besonderen aber die Zeit, die verstreicht, bis 90 % einer mit einem Reinigungs- oder Klarspülmittel in konzentrierter oder verdünnter Form behandelten Oberfläche getrocknet ist.
  • Im Rahmen der vorliegenden Erfindung sind ungesättigte Carbonsäuren der Formel X als Monomer bevorzugt,

            R1(R2)C=C(R3)COOH     (X),

    in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
  • Unter den ungesättigten Carbonsäuren, die sich durch die Formel X beschreiben lassen, sind insbesondere Acrylsäure (R1 = R2 = R3 = H), Methacrylsäure (R1 = R2 = H; R3 = CH3) und/oder Maleinsäure (R1 = COOH; R2 = R3 = H) bevorzugt.
  • Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel XI bevorzugt,

            R5(R6)C=C(R7)-X-SO3H     (XI),

    in der R5 bis R7 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-.
  • Unter diesen Monomeren bevorzugt sind solche der Formeln XIa, XIb und/oder XIc,

            H2C=CH-X-SO3H     (XIa),

            H2C=C(CH3)-X-SO3H     (XIb),

            HO3S-X-(R6)C=C(R7)-X-SO3H     (XIc),

    in denen R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-.
  • Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1-propansulfonsäure (X = -C(O)NH-CH(CH2CH3) in Formel XIa), 2-Acrylamido-2-propansulfonsäure (X = -C(O)NH-C(CH3)2 in Formel XIa), 2-Acrylamido-2-methyl-1-propansulfonsäure (X = -C(O)NH-CH(CH3)CH2- in Formel XIa), 2-Methacrylamido-2-methyl-1-propansulfonsäure (X = -C(O)NH-CH(CH3)CH2- in Formel XIb), 3-Methacrylamido-2-hydroxy-propansulfonsäure (X = -C(O)NH-CH2CH(OH)CH2- in Formel XIb), Allylsulfonsäure (X = CH2 in Formel IIa), Methallylsulfonsäure (X = CH2 in Formel XIb), Allyloxybenzolsulfonsäure (X = -CH2-O-C6H4- in Formel XIa), Methallyloxybenzolsulfonsäure (X = -CH2-O-C6H4- in Formel XIb), 2-Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2-propenl-sulfonsäure (X = CH2 in Formel XIb), Styrolsulfonsäure (X = C6H4 in Formel XIa), Vinylsulfonsäure (X nicht vorhanden in Formel XIa), 3-Sulfopropylacrylat (X = -C(O)NH-CH2CH2CH2- in Formel XIa), 3-Sulfopropylmethacrylat (X = - C(O)NH-CH2CH2CH2- in Formel XIb), Sulfomethacrylamid (X = -C(O)NH- in Formel XIb), Sulfomethylmethacrylamid (X = -C(O)NH-CH2- in Formel XIb) sowie wasserlösliche Salze der genannten Säuren.
  • Als weitere ionische oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der erfindungsgemäß eingesetzten Polymere an Monomeren der Grupp iii) weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Gruppen i) und ii).
  • Zusammenfassend sind Copolymere aus
    1. i) ungesättigten Carbonsäuren der Formel X.

              R1(R2)C=C(R3)COOH     (X),

      in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist,
    2. ii) Sulfonsäuregruppen-haltigen Monomeren der Formel XI

              R5(R6)C=C(R7)-X-SO3H     (XI),

      in der R5 bis R7 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-
    3. iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
    besonders bevorzugt.
  • Besonders bevorzugte Copolymere bestehen aus
    1. i) einer oder mehrerer ungesättigter Carbonsäuren aus der Gruppe Acrylsäure, Methacrylsäure und/oder Maleinsäure
    2. ii) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln XIa, XIb und/oder XIc:

              H2C=CH-X-SO3H     (XIa),

              H2C=C(CH3)-X-SO3H     (XIb),

              HO3S-X-(R6)C=C(R7)-X-SO3H     (XIc),

      in der R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-
    3. iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
  • Die in den Mitteln anthaltenen Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.
  • So sind beispielsweise erfindungsgemäße Mittel bevorzugt, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XII

            -[CH2-CHCOOH]m,-[CH2-CHC(O)-Y-SO3H]p-     (XII),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppenhaltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Einsatz in den erfindungsgemäßen Mitteln ebenfalls bevorzugt und dadurch gekennzeichnet ist, daß die Mittel ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XIII

            -[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p-     (XIII),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppenhaltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So sind erfindungsgemäße Mittel, die ein oder mehrere Copolymere enthalten, welche Struktureinheiten der Formel XIV

            -[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p-     (XIV),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind, ebenfalls eine bevorzugte Ausführungsform der vorliegenden Erfindung, genau wie auch Mittel bevorzugt sind, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XV

            -[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p-     (XV),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugten Mitteln, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XVI

            -[HOOCCH-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p-     (XVI),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind und zu Mitteln, welche dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XVII

            -[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(O)O-Y-SO3H]p-     (XVII),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Zusammenfassend sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, die als Inhaltsstoff b) ein oder mehrere Copolymere enthält, die Struktureinheiten der Formeln XII und/oder XIII und/oder XiV und/oder XV und/oder XVI und/oder XVII

            -[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p-     (XII),

            -[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p-     (XIII),

            -[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p-     (XIV),

            -[CH2-C(CH3)COOH]m-CH2-C(CH3)C(O)-Y-SO3H]p-     (XV),

            -[HOOCCH-CHCOOH]m[CH2-CHC(O)-Y-SO3H]p-     (XVI),

            -[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(O)O-Y-SO3H]p-     (XVII),

    enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. daß das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Entsprechende Mittel, die dadurch gekennzeichnet sind, daß die Sulfonsäuregruppen im Copolymer teil- oder vollneutralisiert vorliegen, sind erfindungsgemäß bevorzugt.
  • Die Monomerenverteilung der in den erfindungsgemäßen Mitteln eingesetzten Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.-% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer.
  • Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.
  • Die Molmasse der in den erfindungsgemäßen Mitteln eingesetzten Polymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte maschinelle Geschirrspülmittel sind dadurch gekennzeichnet, daß die Copolymere Molmassen von 2000 bis 200.000 gmol-1, vorzugsweise von 4000 bis 25.000 gmol-1 und insbesondere von 5000 bis 15.000 gmol-1 aufweisen.
  • Der Gehalt an einem oder mehreren Copolymeren in den erfindungsgemäßen Mitteln kann je nach Anwendungszweck und gewünschter Produktleistung varieren, wobei bevorzugte erfindungsgemäße maschinelle Geschirrspülmittel dadurch gekennzeichnet sind, daß sie das bzw. die Copolymer(e) in Mengen von 0,25 bis 50 Gew.-%, vorzugsweise von 0,5 bis 35 Gew.-%, besonders bevorzugt von 0,75 bis 20 Gew.-% und insbesondere von 1 bis 15 Gew.-% enthalten.
  • Wie bereits weiter oben erwähnt, werden in den erfindungsgemäßen Mitteln besonders bevorzugt sowohl Polyacrylate als auch die vorstehend beschriebenen Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren sowie gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren eingesetzt. Die Polyacrylate wurden dabei weiter oben ausführlich beschrieben. Besonders bevorzugt sind Kombinationen aus den vorstehend beschriebenen Sulfonsäuregruppen-haltigen Copolymeren mit Polyacrylaten niedriger Molmasse, beispielsweise im Bereich zwischen 1000 und 4000 Dalton. Solche Polyacrylate sind kommerziell unter dem Handelsnamen Sokalan® PA15 bzw. Sokalan® PA25 (BASF) erhältlich.
  • Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 100000 g/mol, vorzugsweise 20000 bis 90000 g/mol und insbesondere 30000 bis 80000 g/mol.
  • Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
  • Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
  • Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
  • Weitere bevorzugte Copolymere weisen als Monomere vorzugsweise Acrolein und Acrylsäure/Acryisäuresalze bzw. Acrolein und Vinylacetat auf.
  • Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
  • Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
  • Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
  • Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
  • Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
  • Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
  • Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
  • Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
  • Bevorzugte Mittel enthalten im Rahmen der vorliegenden Anmeldung ein oder mehrere Tensid(e) aus den Gruppen der anionischen, nichtionischen, kationischen und/oder amphoteren Tenside.
  • Als Aniontenside in Säureform werden bevorzugt ein oder mehrere Stoffe aus der Gruppe der Carbonsäuren, der Schwefelsäurehalbester und der Sulfonsäuren, vorzugsweise aus der Gruppe der Fettsäuren, der Fettalkylschwefelsäuren und der Alkylarylsulfonsäuren, eingesetzt. Um ausreichende oberflächenaktive Eigenschaften aufzuweisen, sollten die genannten Verbindungen dabei über längerkettige Kohlenwasserstoffreste verfügen, also im Alkyl- oder Alkenylrest mindestens 6 C-Atome aufweisen. Üblicherweise liegen die C-Kettenverteilungen der Aniontenside im Bereich von 6 bis 40, vorzugsweise 8 bis 30 und insbesondere 12 bis 22 Kohlenstoffatome.
  • Carbonsäuren, die in Form ihrer Alkalimetallsalze als Seifen in Wasch- und Reinigungsmitteln Verwendung finden, werden technisch größtenteils aus nativen Fetten und Ölen durch Hydrolyse gewonnen. Während die bereits im vergangenen Jahrhundert durchgeführte alkalische Verseifung direkt zu den Alkalisalzen (Seifen) führte, wird heute großtechnisch zur Spaltung nur Wasser eingesetzt, das die Fette in Glycerin und die freien Fettsäuren spaltet. Großtechnisch angewendete Verfahren sind beispielsweise die Spaltung im Autoklaven oder die kontinuierliche Hochdruckspaltung. Im Rahmen der vorliegenden Erfindung als Aniontensid in Säureform einsetzbare Carbonsäuren sind beispielsweise Hexansäure (Capronsäure), Heptansäure (Önanthsäure), Octansäure (Caprylsäure), Nonansäure (Pelargonsäure), Decansäure (Caprinsäure), Undecansäure usw.. Bevorzugt ist im Rahmen der vorliegenden Verbindung der Einsatz von Fettsäuren wie Dodecansäure (Laurinsäure), Tetradecansäure (Myristinsäure), Hexadecansäure (Palmitinsäure), Octadecansäure (Stearinsäure), Eicosansäure (Arachinsäure), Docosansäure (Behensäure), Tetracosansäure (Lignocerinsäure), Hexacosansäure (Cerotinsäure), Triacotansäure (Melissinsäure) sowie der ungesättigten Sezies 9c-Hexadecensäure (Palmitoleinsäure), 6c-Octadecensäure (Petroselinsäure), 6t-Octadecensäure (Petroselaidinsäure), 9c-Octadecensäure (Ölsäure), 9t-Octadecensäure ((Elaidinsäure), 9c,12c-Octadecadiensäure (Linolsäure), 9t,12t-Octadecadiensäure (Linolaidinsäure) und 9c,12c,15c-Octadecatreinsäure (Linolensäure). Aus Kostengründen ist es bevorzugt, nicht die reinen Spezies einzusetzen, sondern technische Gemische der einzelnen Säuren, wie sie aus der Fettspaltung zugänglich sind. Solche Gemische sind beispielsweise Koskosölfettsäure (ca. 6 Gew.-% C8, 6 Gew.-% C10, 48 Gew.-% C12, 18 Gew.-% C14, 10 Gew.-% C16, 2 Gew.-% C18, 8 Gew.-% C18', 1 Gew.-% C18"), Palmkernölfettsäure (ca. 4 Gew.-% C8, 5 Gew.-% C10, 50 Gew.-% C12, 15 Gew.-% C14, 7 Gew.-% C16, 2 Gew.-% C18, 15 Gew.-% C18', 1 Gew.-% C18"), Talgfettsäure (ca. 3 Gew.-% C14, 26 Gew.-% C16, 2 Gew.-% C16', 2 Gew.-% C17, 17 Gew.-% C18, 44 Gew.-% C18', 3 Gew.-% C18", 1 Gew.-% C18"'), gehärtete Talgfettsäure (ca. 2 Gew.-% C14, 28 Gew.-% C16, 2 Gew.-% C17, 63 Gew.-% C18, 1 Gew.-% C18'), technische Ölsäure (ca. 1 Gew.-% C12, 3 Gew.-% C14, 5 Gew.-% C16, 6 Gew.-% C16', 1 Gew.-% C17, 2 Gew.-% C18, 70 Gew.-% C18', 10 Gew.-% C18", 0,5 Gew.-% C18"'), technische Palmitin/Stearinsäure (ca. 1 Gew.-% C12, 2 Gew.-% C14, 45 Gew.-% C16, 2 Gew.-% C17, 47 Gew.-% C18, 1 Gew.-% C18') sowie Sojabohnenölfettsäure (ca. 2 Gew.-% C14, 15 Gew.-% C16, 5 Gew.-% C18, 25 Gew.-% C18, 45 Gew.-% C18", 7 Gew.-% C18"').
  • Schwefelsäurehalbester längerkettiger Alkohole sind ebenfalls Aniontenside in ihrer Säureform und im Rahmen der vorliegenden Erfindung einsetzbar. Ihre Alkalimetall-, insbesondere Natriumsalze, die Fettalkoholsulfate, sind großtechnisch aus Fettalkoholen zugänglich, welche mit Schwefelsäure, Chlorsulfonsäure, Amidosulfonsäure oder Schwefeltrioxid zu den betreffenden Alkylschwefelsäuren umgesetzt und nachfolgend neutralisiert werden. Die Fettalkohole werden dabei aus den betreffenden Fettsäuren bzw. Fettsäuregemischen durch Hochdruckhydrierung der Fettsäuremethylester gewonnen. Der mengenmäßig bedeutendste industrielle Prozeß zur Herstellung von Fettalkylschwefelsäuren ist die Sulfierung der Alkohole mit SO3/Luft-Gemischen in speziellen Kaskaden-, Fallfilm- oder Röhrenbündelreaktoren.
  • Eine weitere Klasse von Aniontensidsäuren, die erfindungsgemäß eingesetzt werden kann, sind die Alkyletherschwefelsäuren, deren Salze, die Alkylethersulfate, sich im Vergleich zu den Alkylsulfaten durch eine höhere Wasserlöslichkeit und geringere Empfindlichkeit gegen Wasserhärte (Löslichkeit der Ca-Salze) auszeichnen. Alkyletherschwefelsäuren werden wie die Alkylschwefelsäuren aus Fettalkoholen synthetisiert, welche mit Ethylenoxid zu den betreffenden Fettalkoholethoxylaten umgesetzt werden. Anstelle von Ethylenoxid kann auch Propylenoxid eingesetzt werden. Die nachfolgende Sulfonierung mit gasförmigem Schwefeltrioxid in Kurzzeit-Sulfierreaktoren liefert Ausbeuten über 98% an den betreffenden Alkyletherschwefelsäuren.
  • Auch Alkansulfonsäuren und Olefinsulfonsäuren sind im Rahmen der vorliegenden Erfindung als Aniontenside in Säureform einsetzbar. Alkansulfonsäuren können die Sulfonsäuregruppe terminal gebunden (primäre Alkansulfonsäuren) oder entlang der C-Kette enthalten (sekundäre Alkansulfonsäuren), wobei lediglich die sekundären Alkansulfonsäuren kommerzielle Bedeutung besitzen. Diese werden durch Sulfochlorierung oder Sulfoxidation linearer Kohlenwasserstoffe hergestellt. Bei der Sulfochlorierung nach Reed werden n-Paraffine mit Schwefeldioxid und Chlor unter Bestrahlung mit UV-Licht zu den entsprechenden Sulfochloriden umgesetzt, die bei Hydrolyse mit Alkalien direkt die Alkansulfonate, bei Umsetzung mit Wasser die Alkansulfonsäuren, liefern. Da bei der Sulfochlorierung Di- und Polysulfochloride sowie Chlorkohlenwasserstoffe als Nebenprodukte der radikalischen Reaktion auftreten können, wird die Reaktion üblicherweise nur bis zu Umsetzungsgraden von 30% durchgeführt und danach abgebrochen.
  • Ein anderer Prozeß zur Herstellung von Alkansulfonsäuren ist die Sulfoxidation, bei der n-Paraffine unter Bestrahlung mit UV-Licht mit Schwefeldioxid und Sauerstoff umgesetzt werden. Bei dieser Radikalreaktion entstehen sukzessive Alkylsulfonylradikale, die mit Sauerstoff zu den Alkylpersulfonylradiaklen weiter reagieren. Die Reaktion mit unumgesetztem Paraffin liefert ein Alkylradikal und die Alkylpersulfonsäure, welche in ein Alkylperoxysulfonylradikal und ein Hydroxylradikal zerfällt. Die Reaktion der beiden Radikale mit unumgesetztem Paraffin liefert die Alkylsulfonsäuren bzw. Wasser, welches mit Alkylpersulfonsäure und Schwefeldioxid zu Schwefelsäure reagiert. Um die Ausbeute an den beiden Endprodukten Alkylsulfonsäure und Schwefelsäure möglichst hoch zu halten und Nebenreaktionen zu unterdrücken, wird diese Reaktion üblicherweise nur bis zu Umsetzungsgraden von 1 % durchgeführt und danach abgebrochen.
  • Olefinsulfonate werden technisch durch Reaktion von α-Olefinen mit Schwefeltrioxid hergestellt. Hierbei bilden sich intermediär Zwitterionen, welche sich zu sogenannten Sultonen cyclisieren. Unter geeigneten Bedingungen (alkalische oder saure Hydrolyse) reagieren diese Sultone zu Hydroxylalkansulfonsäuren bzw. Alkensulfonsäuren, welche beide ebenfalls als Aniontensidsäuren eingesetzt werden können.
  • Alkylbenzolsulfonate als leistungsstarke anionische Tenside sind seit den dreißiger Jahren unseres Jahrhunderts bekannt. Damals wurden durch Monochlorierung von Kogasin-Fraktionen und subsequente Friedel-Crafts-Alkylierung Alkylbenzole hergestellt, die mit Oleum sulfoniert und mit Natronlauge neutralisiert wurden. Anfang der fünfziger Jahre wurde zur Herstellung von Alkylbenzolsulfonaten Propylen zu verzweigtem α-Dodecylen tetramerisiert und das Produkt über eine Friedel-Crafts-Reaktion unter Verwendung von Aluminiumtrichlorid oder Fluorwasserstoff zum Tetrapropylenbenzol umgesetzt, das nachfolgend sulfoniert und neutralisiert wurde. Diese ökonomische Möglichkeit der Herstellung von Tetrapropylenbenzolsulfonaten (TPS) führte zum Durchbruch dieser Tensidklasse, die nachfolgend die Seifen als Haupttensid in Wasch- und Reinigungsmitteln verdrängte.
  • Aufgrund der mangelnden biologischen Abbaubarkeit von TPS bestand die Notwendigkeit, neue Alkylbenzolsulfonate darzustellen, die sich durch ein verbessertes ökologische Verhalten auszeichnen. Diese Erfordernisse werden von linearen Alkylbenzolsulfonaten erfüllt, welche heute die fast ausschließlich hergestellten Alkylbenzolsulfonate sind und mit dem Kurzzeichen ABS bzw. LAS belegt werden.
  • Lineare Alkylbenzolsulfonate werden aus linearen Alkylbenzolen hergestellt, welche wiederum aus linearen Olefinen zugänglich sind. Hierzu werden großtechnisch Petroleumfraktionen mit Molekularsieben in die n-Paraffine der gewünschten Reinheit aufgetrennt und zu den n-Olefinen dehydriert, wobei sowohl α- als auch i-Olefine resultieren. Die entstandenen Olefine werden dann in Gegenwart saurer Katalysatoren mit Benzol zu den Alkylbenzolen umgesetzt, wobei die Wahl des Friedel-Crafts-Katalysators einen Einfluß auf die Isomerenverteilung der entstehenden linearen Alkylbenzole hat: Bei Verwendung von Aluminiumtrichlorid liegt der Gehalt der 2-Phenyl-Isomere in der Mischung mit den 3-, 4-, 5- und anderen Isomeren bei ca. 30 Gew.-%, wird hingegen Fluorwasserstoff als Katalysator eingesetzt, läßt sich der Gehalt an 2-Phenyl-Isomer auf ca. 20 Gew.-% senken. Die Sulfonierung der linearen Alkylbenzole schließlich gelingt heute großtechnisch mit Oleum, Schwefelsäure oder gasförmigem Schwefeltrioxid, wobei letzteres die weitaus größte Bedeutung hat. Zur Sulfonierung werden spezielle Film- oder Rohrbündelreaktoren eingesetzt, die als Produkt eine 97 Gew.-%ige Alkylbenzolsulfonsäure (ABSS) liefern, die im Rahmen der vorliegenden Erfindung als Aniontensidsäure einsetzbar ist.
  • Durch Wahl des Neutralisationsmittels lassen sich aus den ABSS die unterschiedlichsten Salze, d.h. Alkylbenzolsulfonate, gewinnen. Aus Gründen der Ökonomie ist es hierbei bevorzugt, die Alkalimetallsalze und unter diesen bevorzugt die Natriumsalze der ABSS herzustellen und einzusetzen. Diese lassen sich durch die allgemeine Formel XVIII beschreiben:
    Figure imgb0009
    in der die Summe aus x und y üblicherweise zwischen 5 und 13 liegt. Erfindungsgemäß bevorzugt als Aniontensid in Säureform sind C8-16", vorzugsweise C9-13-Alkylbenzolsulfonsäuren. Es ist im Rahmen der vorliegenden Erfindung weiterhin bevorzugt, C8-16", vorzugsweise C9-13-Alkybenzolsulfonsäuren einzusetzen, die sich von Alkylbenzolen ableiten, welche einen Tetralingehalt unter 5 Gew.-%, bezogen auf das Alkylbenzol, aufweisen. Weiterhin bevorzugt ist es, Alkylbenzolsulfonsäuren zu verwenden, deren Alkylbenzole nach dem HF-Verfahren hergestellt wurden, so daß die eingesetzten C8-16", vorzugsweise C9-13-Alkybenzolsulfonsäuren einen Gehalt an 2-Phenyl-Isomer unter 22 Gew.-%, bezogen auf die Alkylbenzolsulfonsäure, aufweisen.
  • Die vorstehend genannten Aniontenside in ihrer Säureform können alleine oder in Mischung miteinander eingesetzt werden. Es ist aber auch möglich und bevorzugt, daß dem Aniontensid in Säureform vor der Zugabe auf das/die Trägermaterial(ien) weitere, vorzugsweise saure, Inhaltsstoffe von Wasch- und Reinigungsmitteln in Mengen von 0,1 bis 40 Gew.-%, vorzugsweise von 1 bis 15 Gew.-% und insbesondere von 2 bis 10 Gew.-%, jeweils bezogen auf das Gewicht der umzusetzenden Mischung, zugemischt werden.
  • Selbstverständlich ist es auch möglich, die Aniontenside teil- oder vollneutralisiert einzusetzen. Diese Salze können dann als Lösung, Suspension oder Emulsion in der Granulierflüssigkeit vorliegen, aber auch als Feststoff Bestandteil des Feststoffbetts sein. Als Kationen für solche Aniontenside bieten sich neben den Alkalimetallen (hier insbesondere nach Anspruch- und K-Salze) Ammonium- sowie Mono-, Di- oder Triethanolalkonium-lonen an. Anstelle von Mono-, Di- oder Triethanolamin können auch die analogen Vertreter des Mono-, Di- oder Trimethanolamins bzw. solche der Alkanolamine höherer Alkohole quaterniert und als Kation zugegen sein.
  • Auch Kationtenside lassen sich mit Vorteil als Aktivsubstanz einsetzen. Das Kationtensid kann dabei in seiner Lieferform direkt in den Mischer gegeben werden, oder in Form einer flüssigen bis pastösen Kationtensid-Zubereitungsform auf den festen Träger aufgedüst werden. Solche Kationtensid-Zubereitungsformen lassen sich beispielsweise durch Mischen handelsüblicher Kationtenside mit Hilfsstoffen wie nichtionischen Tensiden, Polyethylenglycolen oder Polyolen herstellen. Auch niedere Alkohole wie Ethanol und Isopropanol können eingesetzt werden, wobei die Menge an solchen niederen Alkoholen in der flüssigen Kationtensid-Zubereitungsform aus den obengenannten Gründen unter 10 Gew.-% liegen sollte.
  • Als Kationtenside kommen für die erfindungsgemäßen Mittel alle üblichen Stoffe in Betracht, wobei Kationtenside mit textilweichmachender Wirkung deutlich bevorzugt sind.
  • Die erfindungsgemäßen Mittel können als kationische Aktivsubstanzen mit textilweichmachender Wirkung ein oder mehrerer kationische, textilweichmachende Mittel der Formeln XIX, XX oder XXI enthalten:
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    worin jede Gruppe R1 unabhängig voneinander ausgewählt ist aus C1-6-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen; jede Gruppe R2 unabhängig voneinander ausgewählt ist aus C8-28-Alkyl- oder -Alkenylgruppen; R3 = R1 oder (CH2)n-T-R2; R4 = R1 oder R2 oder (CH2)n-T-R2; T = -CH2-, -O-CO- oder -CO-O- und n eine ganze Zahl von 0 bis 5 ist.
  • In bevorzugten Ausführungsformen der vorliegenden Erfindung enthält die Wasch- oder Reinigungsmittelzusammensetzung zusätzlich Niotensid(e) als Aktivsubstanz.
  • Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
  • Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
  • Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethyleste.
  • Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
  • Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel XXII,
    Figure imgb0013
    in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
  • Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel XXIII,
    Figure imgb0014
    in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
  • [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
  • Es ist für viele Anwendungen besonders bevorzugt, wenn das Verhältnis von Aniontensid(en) zu Niotensid(en) zwischen 10:1 und 1:10, vorzugsweise zwischen 7,5:1 und 1:5 und insbesondere zwischen 5:1 und 1:2 beträgt. Bevorzugt sind dabei erfindungsgemäße Behälter, die Tensid(e), vorzugsweise anionische(s) und/oder nichtionische(s) Tensid(e), in Mengen von 5 bis 80 Gew.-%, vorzugsweise von 7,5 bis 70 Gew.-%, besonders bevorzugt von 10 bis 60 Gew.-% uns insbesondere von 12,5 bis 50 Gew.-%, jeweils bezogen auf das Gewicht der umschlossenen Feststoffe, enthalten.
  • Wie bereits erwähnt, beschränkt sich der Einsatz von Tensiden bei Reinigungsmitteln für das maschinelle Geschirrspülen vorzugsweise auf den Einsatz nichtionischer Tenside in geringen Mengen. Erfindungsgemäße Mittel für das maschinelle Geschirrspülen enthalten daher vorzugsweise nur bestimmte nichtionische Tenside, die nachstehend beschrieben sind. Als Tenside werden in maschinellen Geschirrspülmitteln üblicherweise lediglich schwachschäumende nichtionische Tenside eingesetzt. Vertreter aus den Gruppen der anionischen, kationischen oder amphoteren Tenside haben dagegen eine geringere Bedeutung. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
  • Insbesondere bei Reinigungsmitteln für das maschinelle Geschirrspülen ist es bevorzugt, daß diese ein nichtionisches Tensid enthalten, das einen Schmelzpunkt oberhalb Raumtemperatur aufweist, bevorzugt ein nichtionisches Tensid mit einem Schmelzpunkt oberhalb von 20°C. Bevorzugt einzusetzende nichtionische Tenside weisen Schmelzpunkte oberhalb von 25°C auf, besonders bevorzugt einzusetzende nichtionische Tenside haben Schmelzpunkte zwischen 25 und 60°C, insbesondere zwischen 26,6 und 43,3°C.
  • Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden bei Raumtemperaturhochviskose Niotenside eingesetzt, so ist bevorzugt, daß diese eine Viskosität oberhalb von 20 Pas, vorzugsweise oberhalb von 35 Pas und insbesondere oberhalb 40 Pas aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.
  • Bevorzugt als bei Raumtemperatur feste einzusetzende Niotenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen (PO/EO/PO)-Tenside. Solche (PO/EO/PO)-Niotenside zeichnen sich darüberhinaus durch gute Schaumkontrolle aus.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tensid mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C-Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist.
  • Ein besonders bevorzugtes bei Raumtemperatur festes, einzusetzendes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16-20-Alkohol), vorzugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten "narrow range ethoxylates" (siehe oben) besonders bevorzugt.
  • Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus.
  • Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen-Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan.
  • Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind beispielsweise unter dem Namen Poly Tergent® SLF-18 von der Firma Olin Chemicals erhältlich.
  • Ein weiter bevorzugtes Tensid läßt sich durch die Formel

            R1O[CH2CH(CH3)O]x[CH2CH2O]y[CH2CH(OH)R2]

    beschreiben, in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 und y für einen Wert von mindestens 15 steht.
  • Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel

            R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2

    in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≥ 2 ist, kann jedes R3 in der obenstehenden Formel unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
  • Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich- sein, falls x ≥ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid- (R3 = H) oder Propylenoxid- (R3 = CH3) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)-Gruppen einschließt, oder umgekehrt.
  • Insbesondere bevorzugte endgruppenverschlossenen Poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so daß sich die vorstehende Formel zu

            R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2

    vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
  • Erfindungsgemäße Mittel können zur Steigerung der Wasch-, beziehungsweise Reinigungsleistung Enzyme enthalten, wobei prinzipiell alle im Stand der Technik für diese Zwecke etablierten Enzyme einsetzbar sind. Hierzu gehören insbesondere Proteasen, Amylasen, Lipasen, Hemicellulasen, Cellulasen oder Oxidoreduktasen, sowie vorzugsweise deren Gemische. Diese Enzyme sind im Prinzip natürlichen Ursprungs; ausgehend von den natürlichen Molekülen stehen für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Varianten zur Verfügung, die entsprechend bevorzugt eingesetzt werden. Erfindungsgemäße Mittel enthalten Enzyme vorzugsweise in Gesamtmengen von 1 x 10-6 bis 5 Gewichts-Prozent bezogen auf aktives Protein. Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren (Bicinchoninsäure; 2,2'-Bichinolyl-4,4'-dicarbonsäure) oder dem Biuret-Verfahren bestimmt werden.
  • Unter den Proteasen sind solche vom Subtilisin-Typ bevorzugt. Beispiele hierfür sind die Subtilisine BPN' und Carlsberg, die Protease PB92, die Subtilisine 147 und 309, die Alkalische Protease aus Bacillus lentus, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase, Proteinase K und die Proteasen TW3 und TW7. Subtilisin Carlsberg ist in weiterentwickelter Form unter dem Handelsnamen Alcalase® von der Firma Novozymes A/S, Bagsværd, Dänemark, erhältlich. Die Subtilisine 147 und 309 werden unter den Handelsnamen Esperase®, beziehungsweise Savinase® von der Firma Novozymes vertrieben. Von der Protease aus Bacillus lentus DSM 5483 leiten sich die unter der Bezeichnung BLAP® geführten Varianten ab.
  • Weitere brauchbare Proteasen sind beispielsweise die unter den Handelsnamen Durazym®, Relase®, Everlase®, Nafizym, Natalase®, Kannase® und Ovozymes® von der Firma Novozymes, die unter den Handelsnamen, Purafect®, Purafect® OxP und Properase® von der Firma Genencor, das unter dem Handelsnamen Protosol® von der Firma Advanced Biochemicals Ltd., Thane, Indien, das unter dem Handelsnamen Wuxi® von der Firma Wuxi Snyder Bioproducts Ltd., China, die unter den Handelsnamen Proleather® und Protease P® von der Firma Amano Pharmaceuticals Ltd., Nagoya, Japan, und das unter der Bezeichnung Proteinase K-16 von der Firma Kao Corp., Tokyo, Japan, erhältlichen Enzyme.
  • Beispiele für erfindungsgemäß einsetzbare Amylasen sind die α-Amylasen aus Bacillus licheniformis, aus B. amyloliquefaciens oder aus B. stearothermophilus sowie deren für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Weiterentwicklungen. Das Enzym aus B. licheniformis ist von der Firma Novozymes unter dem Namen Termamyl® und von der Firma Genencor unter dem Namen Purastar®ST erhältlich. Weiterentwicklungsprodukte dieser α-Amylase sind von der Firma Novozymes unter den Handelsnamen Duramyl® und Termamyl®ultra, von der Firma Genencor unter dem Namen Purastar®OxAm und von der Firma Daiwa Seiko Inc., Tokyo, Japan, als Keistase® erhältlich. Die α-Amylase von B. amyloliquefaciens wird von der Firma Novozymes unter dem Namen BAN® vertrieben, und abgeleitete Varianten von der α-Amylase aus B. stearothermophilus unter den Namen BSG® und Novamyl®, ebenfalls von der Firma Novozymes.
  • Desweiteren sind für diesen Zweck die α-Amylase aus Bacillus sp. A7-7 (DSM 12368) und die Cyclodextrin-Glucanotransferase (CGTase) aus B. agaradherens (DSM 9948) hervorzuheben; ebenso sind Fusionsprodukte der genannten Moleküle einsetzbar.
  • Darüber hinaus sind die unter den Handelsnamen Fungamyl® von der Firma Novozymes erhältlichen Weiterentwicklungen der α-Amylase aus Aspergillus niger und A. oryzae geeignet. Ein weiteres Handelsprodukt ist beispielsweise die Amylase-LT®.
  • Erfindungsgemäße Mittel können Lipasen oder Cutinasen, insbesondere wegen ihrer Triglyceridspaltenden Aktivitäten enthalten, aber auch, um aus geeigneten Vorstufen in situ Persäuren zu erzeugen. Hierzu gehören beispielsweise die ursprünglich aus Humicola lanuginosa (Thermomyces lanuginosus) erhältlichen, beziehungsweise weiterentwickelten Lipasen, insbesondere solche mit dem Aminosäureaustausch D96L. Sie werden beispielsweise von der Firma Novozymes unter den Handelsnamen Lipolase®, Lipolase®Ultra, LipoPrime®, Lipozyme® und Lipex® vertrieben. Desweiteren sind beispielsweise die Cutinasen einsetzbar, die ursprünglich aus Fusarium solani pisi und Humicola insolens isoliert worden sind. Ebenso brauchbare Lipasen sind von der Firma Amano unter den Bezeichnungen Lipase CE®, Lipase P®, Lipase B®, beziehungsweise Lipase CES®, Lipase AKG®, Bacillis sp. Lipase®, Lipase AP®, Lipase M-AP® und Lipase AML® erhältlich. Von der Firma Genencor sind beispielsweise die Lipasen, beziehungsweise Cutinasen einsetzbar, deren Ausgangsenzyme ursprünglich aus Pseudomonas mendocina und Fusarium solanii isoliert worden sind. Als weitere wichtige Handelsprodukte sind die ursprünglich von der Firma Gist-Brocades vertriebenen Präparationen M1 Lipase® und Lipomax® und die von der Firma Meito Sangyo KK, Japan, unter den Namen Lipase MY-30®, Lipase OF® und Lipase PL® vertriebenen Enzyme zu erwähnen, ferner das Produkt Lumafast® von der Firma Genencor.
  • Erfindungsgemäße Mittel können, insbesondere wenn sie für die Behandlung von Textilien gedacht sind, Cellulasen enthalten, je nach Zweck als reine Enzyme, als Enzympräparationen oder in Form von Mischungen, in denen sich die einzelnen Komponenten vorteilhafterweise hinsichtlich ihrer verschiedenen Leistungsaspekte ergänzen. Zu diesen Leistungsaspekten zählen insbesondere Beiträge zur Primärwaschleistung, zur Sekundärwaschleistung des Mittels (Antiredepositionswirkung oder Vergrauungsinhibition) und Avivage (Gewebewirkung), bis hin zum Ausüben eines "stone washed"-Effekts.
  • Eine brauchbare pilzliche, Endoglucanase(EG)-reiche Cellulase-Präparation, beziehungsweise deren Weiterentwicklungen werden von der Firma Novozymes unter dem Handelsnamen Celluzyme® angeboten. Die ebenfalls von der Firma Novozymes erhältlichen Produkte Endolase® und Carezyme® basieren auf der 50 kD-EG, beziehungsweise der 43 kD-EG aus H. insolens DSM 1800. Weitere mögliche Handelsprodukte dieser Firma sind Cellusoft® und Renozyme®. Ebenso ist die 20 kD-EG Cellulase aus Melanocarpus, die von der Firma AB Enzymes, Finnland, unter den Handelsnamen Ecostone® und Biotouch® erhältlich ist, einsetzbar. Weitere Handelprodukte der Firma AB Enzymes sind Econase® und Ecopulp®. Eine weitere geeignete Cellulase aus Bacillus sp. CBS 670.93 ist von der Firma Genencor unter dem Handelsnamen Puradax® erhältlich. Weitere Handelsprodukte der Firma Genencor sind "Genencor detergent cellulase L" und IndiAge®Neutra.
  • Erfindungsgemäße Mittel können weitere Enzyme enthalten, die unter dem Begriff Hemicellulasen zusammengefaßt werden. Hierzu gehören beispielsweise Mannanasen, Xanthanlyasen, Pektinlyasen (=Pektinasen), Pektinesterasen, Pektatlyasen, Xyloglucanasen (=Xylanasen), Pullulanasen und β-Glucanasen. Geeignete Mannanasen sind beispielsweise unter den Namen Gamanase® und Pektinex AR® von der Firma Novozymes, unter dem Namen Rohapec® B1 L von der Firma AB Enzymes und unter dem Namen Pyrolase® von der Firma Diversa Corp., San Diego, CA, USA erhältlich. Die aus B. subtilis gewonnene β-Glucanase ist unter dem Namen Cereflo® von der Firma Novozymes erhältlich.
  • Zur Erhöhung der bleichenden Wirkung können erfindungsgemäße Wasch- oder Reinigungsmittel Oxidoreduktasen, beispielsweise Oxidasen, Oxygenasen, Katalasen, Peroxidasen, wie Halo-, Chloro-, Bromo-, Lignin-, Glucose- oder Mangan-peroxidasen, Dioxygenasen oder Laccasen (Phenoloxidasen, Polyphenoloxidasen) enthalten. Als geeignete Handelsprodukte sind Denilite® 1 und 2 der Firma Novozymes zu nennen. Vorteilhafterweise werden zusätzlich vorzugsweise organische, besonders bevorzugt aromatische, mit den Enzymen wechselwirkende Verbindungen zugegeben, um die Aktivität der betreffenden Oxidoreduktasen zu verstärken (Enhancer) oder um bei stark unterschiedlichen Redoxpotentialen zwischen den oxidierenden Enzymen und den Anschmutzungen den Elektronenfluß zu gewährleisten (Mediatoren).
  • Die in erfindungsgemäßen Mitteln eingesetzten Enzyme stammen entweder ursprünglich aus Mikroorganismen, etwa der Gattungen Bacillus, Streptomyces, Humicola, oder Pseudomonas, und/oder werden nach an sich bekannten biotechnologischen Verfahren durch geeignete Mikroorganismen produziert, etwa durch transgene Expressionswirte der Gattungen Bacillus oder filamentöse Fungi.
  • Die Aufreinigung der betreffenden Enzyme erfolgt günstigerweise über an sich etablierte Verfahren, beispielsweise über Ausfällung, Sedimentation, Konzentrierung, Filtration der flüssigen Phasen, Mikrofiltration, Ultrafiltration, Einwirken von Chemikalien, Desodorierung oder geeignete Kombinationen dieser Schritte.
  • Erfindungsgemäßen Mitteln können die Enzyme in jeder nach dem Stand der Technik etablierten Form zugesetzt werden. Hierzu gehören beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren versetzt.
  • Alternativ können die Enzyme sowohl für die feste als auch für die flüssige Darreichungsform verkapselt werden, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem, vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kern-Schale-Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalien-undurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluid-bed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.
  • Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so daß ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.
  • Ein in einem erfindungsgemäßen Mittel enthaltenes Protein und/oder Enzym kann besonders während der Lagerung gegen Schädigungen wie beispielsweise Inaktivierung, Denaturierung oder Zerfall etwa durch physikalische Einflüsse, Oxidation oder proteolytische Spaltung geschützt werden. Bei mikrobieller Gewinnung der Proteine und/oder Enzyme ist eine Inhibierung der Proteolyse besonders bevorzugt, insbesondere wenn auch die Mittel Proteasen enthalten. Erfindungsgemäße Mittel können zu diesem Zweck Stabilisatoren enthalten; die Bereitstellung derartiger Mittel stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar.
  • Eine Gruppe von Stabilisatoren sind reversible Proteaseinhibitoren. Häufig werden Benzamidin-Hydrochlorid, Borax, Borsäuren, Boronsäuren oder deren Salze oder Ester verwendet, darunter vor allem Derivate mit aromatischen Gruppen, etwa ortho-,meta- oder para-substituierte Phenylboronsäuren, beziehungsweise deren Salze oder Ester. Weiterhin sind Peptidaldehyde, das heißt Oligopeptide mit reduziertem C-Terminus geeignet. Als peptidische Proteaseinhibitoren sind unter anderem Ovomucoid und Leupeptin zu erwähnen; eine zusätzliche Option ist die Bildung von Fusionsproteinen aus Proteasen und Peptid-Inhibitoren.
  • Weitere Enzymstabilisatoren sind Aminoalkohole wie Mono-, Di-, Triethanol- und -Propanolamin und deren Mischungen, aliphatische Carbonsäuren bis zu C12, wie Bernsteinsäure, andere Dicarbonsäuren oder Salze der genannten Säuren. Auch endgruppenverschlossene Fettsäureamidalkoxylate sind als Stabilisatoren einsetzbar.
  • Niedere aliphatische Alkohole, vor allem aber Polyole, wie beispielsweise Glycerin, Ethylenglykol, Propylenglykol oder Sorbit sind weitere häufig eingesetzte Enzymstabilisatoren. Weiterhin schützt auch Di-Glycerinphosphat gegen Denaturierung durch physikalische Einflüsse. Ebenso werden Calciumsalze verwendet, wie beispielsweise Calciumacetat oder Calcium-Formiat sowie Magnesiumsalze.
  • Polyamid-Oligomere oder polymere Verbindungen wie Lignin, wasserlösliche Vinyl-Copolymere oder, wie Cellulose-Ether, Acryl-Polymere und/oder Polyamide stabilisieren die Enzym-Präparation unter anderem gegenüber physikalischen Einflüssen oder pH-Wert-Schwankungen. Polyamin-N-Oxid-enthaltende Polymere wirken gleichzeitig als Enzymstabilisatoren und als Farbübertragungsinhibitoren. Andere polymere Stabilisatoren sind die linearen C8-C18 Polyoxyalkylene. Alkylpolyglycoside können gemäß den ebenfalls die enzymatischen Komponenten des erfindungsgemäßen Mittels stabilisieren und sogar in ihrer Leistung steigern. Vernetzte N-haltige Verbindungen erfüllen eine Doppelfunktion als Soil-release-Agentien und als Enzym-Stabilisatoren.
  • Reduktionsmittel und Antioxidantien wie Natrium-Sulfit oder reduzierende Zucker erhöhen die Stabilität der Enzyme gegenüber oxidativem Zerfall.
  • Bevorzugt werden Kombinatonen von Stabilisatoren verwendet, beispielsweise aus Polyolen, Borsäure und/oder Borax, die Kombination von Borsäure oder Borat, reduzierenden Salzen und Bernsteinsäure oder anderen Dicarbonsäuren oder die Kombination von Borsäure oder Borat mit Polyolen oder Polyaminoverbindungen und mit reduzierenden Salzen. Die Wirkung von Peptid-Aldehyd-Stabilisatoren kann durch die Kombination mit Borsäure und/oder Borsäurederivaten und Polyolen gesteigert und gemäß durch die zusätzliche Verwendung von zweiwertigen Kationen, wie zum Beispiel Calcium-lonen weiter verstärkt werden.
  • Besonders bevorzugt ist im Rahmen der vorliegenden Erfindung der Einsatz flüssiger Enzymformulierungen. Hier sind erfindungsgemäße Mittel bevorzugt, die zusätzlich Enzyme und/oder Enzymzubereitungen, vorzugsweise feste und/oder flüssige Protease-Zubereitungen und/oder Amylase-Zubereitungen, in Mengen von 1 bis 5 Gew.-%, vorzugsweise von 1,5 bis 4,5 und insbesondere von 2 bis 4 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
  • Als Elektrolyte aus der Gruppe der anorganischen Salze kann eine breite Anzahl der verschiedensten Salze eingesetzt werden. Bevorzugte Kationen sind die Alkali- und Erdalkalimetalle, bevorzugte Anionen sind die Halogenide und Sulfate. Aus herstellungstechnischer Sicht ist der Einsatz von NaCl oder MgCl2 in den erfindungsgemäßen Granulaten bevorzugt.
  • Um den pH-Wert von Lösungen der erfindungsgemäßen Wasch- oder Reinigungsmittel in den gewünschten Bereich zu bringen, kann der Einsatz von pH-Stellmitieln angezeigt sein. Einsetzbar sind hier sämtliche bekannten Säuren bzw. Laugen, sofern sich ihr Einsatz nicht aus anwendungstechnischen oder ökologischen Gründen bzw. aus Gründen des Verbraucherschutzes verbietet. Üblicherweise überschreitet die Menge dieser Stellmittel 1 Gew.-% der Gesamtformulierung nicht.
  • Als Parfümöle bzw. Duftstoffe können im Rahmen der vorliegenden Erfindung einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, ∝-Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbelöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
  • Die allgemeine Beschreibung der einsetzbaren Parfüme (siehe oben) stellt dabei allgemein die unterschiedlichen Substanzklassen von Riechstoffen dar. Um wahrnehmbar zu sein, muß ein Riechstoff flüchtig sein, wobei neben der Natur der funktionellen Gruppen und der Struktur der chemischen Verbindung auch die Molmasse eine wichtige Rolle spielt. So besitzen die meisten Riechstoffe Molmassen bis etwa 200 Dalton, während Molmassen von 300 Dalton und darüber eher eine Ausnahme darstellen. Auf Grund der unterschiedlichen Flüchtigkeit von Riechstoffen verändert sich der Geruch eines aus mehreren Riechstoffen zusammengesetzten Parfüms bzw. Duftstoffs während des Verdampfens, wobei man die Geruchseindrücke in "Kopfnote" (top note), "Herz- bzw. Mittelnote" (middle note bzw. body) sowie "Basisnote" (end note bzw. dry out) unterteilt. Da die Geruchswahrnehmung zu einem großen Teil auch auf der Geruchsintensität beruht, besteht die Kopfnote eines Parfüms bzw. Duftstoffs nicht allein aus leichtflüchtigen Verbindungen, während die Basisnote zum größten Teil aus weniger flüchtigen, d.h. haftfesten Riechstoffen besteht. Bei der Komposition von Parfüms können leichter flüchtige Riechstoffe beispielsweise an bestimmte Fixative gebunden werden, wodurch ihr zu schnelles Verdampfen verhindert wird. Bei der nachfolgenden Einteilung der Riechstoffe in "leichter flüchtige" bzw. "haftfeste" Riechstoffe ist also über den Geruchseindruck und darüber, ob der entsprechende Riechstoff als Kopf- oder Herznote wahrgenommen wird, nichts ausgesagt.
  • Durch eine geeignete Auswahl der genannten Duftstoffe bzw. Parfümöle kann sowohl der Geruch des wasserlöslichen oder wasserdispergierbaren Behältes als auch der Geruch, der von diesem Behälter umschlossenen Flüssigkeit (Produktduft), sowie, nach Beendigung des Reinigungs- und Pflegevorgangs, zusätzlich beispielsweise der Wäscheduft beeinflußt werden. Um einen unverwechselbaren Produktduft zu gewährleisten, werden insbesondere auch leichterflüchtige Riechstoffe eingesetzt, während zur Erzielung eines hinreichenden Wäschedufts die Verwendung haftfesterer Riechstoffe vorteilhaft ist. Haftfeste Riechstoffe, die im Rahmen der vorliegenden Erfindung einsetzbar sind, sind beispielsweise die ätherischen Öle wie Angelikawurzelöl, Anisöl, Arnikablütenöl, Basilikumöl, Bayöl, Bergamottöl, Champacablütenöl, Edeltannenöl, Edeltannenzapfenöl, Elemiöl, Eukalyptusöl, Fenchelöl, Fichtennandelöl, Galbanumöl, Geraniumöl, Gingergrasöl, Guajakholzöl, Gurjunbalsamöl, Helichrysumöl, Ho-Öl, Ingweröl, Irisöl, Kajeputöl, Kalmusöl, Kamillenöl, Kampferöl, Kanagaöl, Kardamomenöl, Kassiaöl, Kiefernnadelöl, Kopaïvabalsamöl, Korianderöl, Krauseminzeöl, Kümmelöl, Kuminöl, Lavendelöl, Lemongrasöl, Limetteöl, Mandarinenöl, Melissenöl, Moschuskörneröl, Myrrhenöl, Nelkenöl, Neroliöl, Niaouliöl, Olibanumöl, Orangenöl, Origanumöl, Palmarosaöl, Patschuliöl, Perubalsamöl, Petitgrainöl, Pfefferöl, Pfefferminzöl, Pimentöl, Pine-Öl, Rosenöl, Rosmarinöl, Sandelholzöl, Sellerieöl, Spiköl, Sternanisöl, Terpentinöl, Thujaöl, Thymianöl, Verbenaöl, Vetiveröl, Wacholderbeeröl, Wermutöl, Wintergrünöl, Ylang-Ylang-Öl, Ysop-Öl, Zimtöl, Zimtblätteröl, Zitronellöl, Zitronenöl sowie Zypressenöl. Aber auch die höhersiedenden bzw. festen Riechstoffe natürlichen oder synthetischen Ursprungs können im Rahmen der vorliegenden Erfindung als haftfeste Riechstoffe bzw. Riechstoffgemische, also Duftstoffe, eingesetzt werden. Zu diesen Verbindungen zählen die nachfolgend genannten Verbindungen sowie Mischungen aus diesen: Ambrettolid, α-Amylzimtaldehyd, Anethol, Anisaldehyd, Anisalkohol, Anisol, Anthranilsäuremethylester, Acetophenon, Benzylaceton, Benzaldehyd, Benzoesäureethylester, Benzophenon, Benzylalkohol, Benzylacetat, Benzylbenzoat, Benzylformiat, Benzylvalerianat, Borneol, Bornylacetat, α-Bromstyrol, n-Decylaldehyd, n-Dodecylaldehyd, Eugenol, Eugenolmethylether, Eukalyptol, Farnesol, Fenchon, Fenchylacetat, Geranylacetat, Geranylformiat, Heliotropin, Heptincarbonsäuremethylester, Heptaldehyd, Hydrochinon-Dimethylether, Hydroxyzimtaldehyd, Hydroxyzimtalkohol, Indol, Iron, Isoeugenol, Isoeugenolmethylether, Isosafrol, Jasmon, Kampfer, Karvakrol, Karvon, p-Kresolmethylether, Cumarin, p-Methoxyacetophenon, Methyl-n-amylketon, Methylanthranilsäuremethylester, p-Methylacetophenon, Methylchavikol, p-Methylchinolin, Methyl-β-naphthylketon, Methyl-n-nonylacetaldehyd, Methyl-n-nonylketon, Muskon, β-Naphtholethylether, β-Naphtholmethylether, Nerol, Nitrobenzol, n-Nonylaldehyd, Nonylakohol, n-Octylaldehyd, p-Oxy-Acetophenon, Pentadekanolid, β-Phenylethylalkohol, Phenylacetaldehyd-Dimethyacetal, Phenylessigsäure, Pulegon, Safrol, Salicylsäureisoamylester, Salicylsäuremethylester, Salicylsäurehexylester, Salicylsäurecyclohexylester, Santalol, Skatol, Terpineol, Thymen, Thymol, γ-Undelacton, Vanilin, Veratrumaldehyd, Zimtaldehyd, Zimatalkohol, Zimtsäure, Zimtsäureethylester, Zimtsäurebenzylester. Zu den leichter flüchtigen Riechstoffen zählen insbesondere die niedriger siedenden Riechstoffe natürlichen oder synthetischen Ursprung, die allein oder in Mischungen eingesetzt werden können. Beispiele für leichter flüchtige Riechstoffe sind Alkyisothiocyanate (Alkylsenföle), Butandion, Limonen, Linalool, Linaylacetat und -Propionat, Menthol, Menthon, Methyl-n-heptenon, Phellandren, Phenylacetaldehyd, Terpinylacetat, Zitral, Zitronellal.
  • Um den ästhetischen Eindruck der umschlossenen Flüssigkeit oder des wasserlöslichen Behälters zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht. Werden die erfindungsgemäßen Mittel zur Textilreinigung eingesetzt, sollten die eingesetzten Farbstoffe keine ausgeprägte Substantivität gegenüber Textilfasern aufweisen, um diese nicht anzufärben.
  • Als Hydrotrope oder Lösungsvermittler werden Substanzen bezeichnet, die durch ihre Gegenwart andere, in einem bestimmten Lösungsmittel praktisch unlösliche Verbindungen in diesem Lösungsmittel löslich oder emulgierbar machen (Solubilisation). Es gibt Lösungsvermittler, die mit der schwerlöslichen Substanz eine Molekülverbindung eingehen und solche, die durch Micell-Bildung wirken. Man kann auch sagen, daß erst Lösungsvermittler einem sogenannten latenten Lösemittel sein Lösungsvermögen verleihen. Bei Wasser als (latentem) Lösungsmittel spricht man statt von Lösungsvermittler meist von Hydrotropika, in bestimmten Fällen besser von Emulgatoren.
  • Als Schauminhibitoren, die in den erfindungsgemäßen Mitteln eingesetzt werden können, kommen u.a. Seifen, Öle, Fette, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können. Als Trägermaterialien eignen sich beispielsweise anorganische Salze wie Carbonate oder Sulfate, Cellulosederivate oder Silikate sowie Mischungen der vorgenannten Materialien. Im Rahmen der vorliegenden Anmeldung bevorzugte Mittel enthalten Paraffine, vorzugsweise unverzweigte Paraffine (n-Paraffine) und/oder Silikone, vorzugsweise linear-polymere Silikone, welche nach dem Schema (R2SiO)x aufgebaut sind und auch als Silikonöle bezeichnet werden. Diese Silikonöle stellen gewöhnlich klare, farblose, neutrale, geruchsfreie, hydrophobe Flüssigkeiten dar mit einem Molekulargewicht zwischen 1000-150 000, und Viskositäten zwischen 10 u. 1 000 000 mPa·s.
  • Geeignete Antiredepositionsmittel, die auch als soil repellents bezeichnet werden, sind beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxygruppen von 15 bis 30 Gew.-% und an Hydroxypropylgruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglycolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Insbesondere bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und Terephthalsäure-Polymere.
  • Optische Aufheller (sogenannte "Weißtöner") können den erfindungsgemäßen Mitteln zugesetzt werden, um Vergrauungen und Vergilbungen der behandelten Textilien zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleichwirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längerwelliges Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4'-Diamino-2,2'-stilbendisulfonsäuren (Flavonsäuren), 4,4'-Distyryl-biphenylen, Methylumbelliferone, Cumarine, Dihydrochinolinone, 1,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Heterocyclen substituierten Pyrenderivate.
  • Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Als Vergrauungsinhibitoren einsetzbar sind weiterhin Celluloseether wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxy-methylcellulose und deren Gemische.
  • Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mischungen, zum Knittern eigen können, weil die Einzelfasern gegen Durchbiegen, Knicken. Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können die erfindungsgemäßen Mittel synthetische Knitterschutzmittel enthalten. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern. Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester. Eine im besonderen Maße zur Textilausrüstung und Pflege geeignete Substanz ist das Baumwollsamenöl, welches beispielsweise durch Auspressen der braunen gereinigten Baumwollsamen und Raffination mit etwa 10%igem Natriumhydroxid oder durch Extraktion mit Hexan bei 60-70°C hergestellt werden kann. Derartige Baumwollöle enthalten 40 bis 55 Gew.-% Linolsäure, 16 bis 26 Gew.-% Ölsäure und 20 bis 26 Gew.-% Palmitinsäure. Weitere zur Faserglättung und Faserpflege besonders bevorzugte Mittel sind die Glyceride, insbesondere die Monoglyceride von Fettsäuren wie beispielsweise Glycerinmonooleat oder Glycerinmonostearat.
  • Zur Bekämpfung von Mikroorganismen können die erfindungsgemäßen Mittel antimikrobielle Wirkstoffe enthalten. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarlylsulfonate, Halogenphenole und Phenolmercuriacetat, wobei bei den erfindungemäßen Mitteln auch gänzlich auf diese Verbindungen verzichtet werden kann.
  • Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Veränderungen an den Wasch- und Reinigungsmitteln und/oder den behandelten Textilien zu verhindern, können die erfindungsgemäßen Mittel Antioxidantien enthalten. Zu dieser Verbindungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechnine und aromatische Amine sowie organische Sulfide, Polysulfide, Dithiocarbamate, Phosphite und Phosphonate.
  • Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antistatika resultieren, die den erfindungsgemäßen Mitteln zusätzlich beigefügt werden. Antistatika vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika unterteilen. Lauryl- (bzw. Stearyl-) dimethylbenzylammoniumchloride eignen sich ebenfalls als Antistatika für Textilien bzw. als Zusatz zu Waschmitteln, wobei zusätzlich ein Avivageeffekt erzielt wird.
  • Phobier- und Imprägnierverfahren dienen der Ausrüstung von Textilien mit Substanzen, welche die Ablagerung von Schmutz verhindern oder dessen Auswaschbarkeit erleichtern. Bevorzugte Phobier- und Imprägniermittel sind perfluorierte Fettsäuren, auch in Form ihrer Aluminium- u. Zirconiumsalze, organische Silicate, Silicone, Polyacrylsäureester mit perfluorierter AlkoholKomponente oder mit perfluoriertem Acyl- od. Sulfonyl-Rest gekoppelte, polymerisierbare Verbindungen. Auch Antistatika können enthalten sein. Die schmutzabweisende Ausrüstung mit Phobier- und Imprägniermitteln wird oft als eine Pflegeleicht-Ausrüstung eingestuft. Das Eindringen der Imprägniermittel in Form von Lösungen oder Emulsionen der betreffenden Wirkstoffe kann durch Zugabe von Netzmitteln erleichtert werden, die die Oberflächenspannung herabsetzen. Ein weiteres Einsatzgebiet von Phobier- und Imprgäniermitteln ist die wasserabweisende Ausrüstung von Textilwaren, Zelten, Planen, Leder usw., bei der im Gegensatz zum Wasserdichtmachen die Gewebeporen nicht verschlossen werden, der Stoff also atmungsaktiv bleibt (Hydrophobieren). Die zum Hydrophobieren verwendeten Hydrophobiermittel überziehen Textilien, Leder, Papier, Holz usw. mit einer sehr dünnen Schicht hydrophober Gruppen, wie längere Alkyl-Ketten od. Siloxan-Gruppen. Geeignete Hydrophobiermittel sind z. B. Paraffine, Wachse, Metallseifen usw. mit Zusätzen an Aluminium- od. Zirconium-Salzen, quartäre Ammonium-Verbindungen mit langkettigen Alkyl-Resten, Harnstoff-Derivate, Fettsäuremodifizierte Melaminharze, Chrom-Komplexsalze, Silicone, Zinn-organische Verbindungen und Glutardialdehyd sowie perfluorierte Verbindungen. Die hydrophobierten Materialien fühlen sich nicht fettig an; dennoch perlen - ähnlich wie an gefetteten Stoffen - Wassertropfen an ihnen ab, ohne zu benetzen. So haben z. B. Silicon-imprägnierte Textilien einen weichen Griff u. sind wasser- u. schmutzabweisend; Flecke aus Tinte, Wein, Fruchtsäften und dergleichen sind leichter zu entfernen.
  • Zur Pflege der Textilien und zur Verbesserung der Textileigenschaften wie einem weicheren "Griff" (Avivage) und verringerter elektrostatischer Aufladung (erhöhter Tragekomfort) können die erfindungsgemäßen Mittel Weichspüler enthalten. Die Wirkstoffe in Weichspülformulierungen sind "Esterquats", quartäre Ammoniumverbindungen mit zwei hydrophoben Resten, wie beispielsweise das Disteraryldimethylammoniumchlorid, welches jedoch wegen seiner ungenügenden biologischen Abbaubarkeit zunehmend durch quartäre Ammoniumverbindungen ersetzt wird, die in ihren hydrophoben Resten Estergruppen als Sollbruchstellen für den biologischen Abbau enthalten. Derartige "Esterquats" mit verbesserter biologischer Abbaubarkeit sind beispielsweise dadurch erhältlich, daß man Mischungen von Methyldiethanolamin und/oder Triethanolamin mit Fettsäuren verestert und die Reaktionsprodukte anschließend in an sich bekannter Weise mit Alkylierungsmitteln quaterniert. Als Appretur weiterhin geeignet ist Dimethylolethylenharnstoff.
  • Zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behandelten Textilien und zur Erleichterung des Bügelns der behandelten Textilien können in den erfindungsgemäßen Mitteln beispielsweise Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten der erfindungsgemäßen Mittel durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C-Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Weitere bevorzugte Silikone sind die Polyalkylenoxid-modifizierten Polysiloxane, also Polysiloxane, welche beispielsweise Polyethylenglycole aufweisen sowie die Polyalkylenoxid-modifizierten Dimetylpolysiloxane.
  • Proteinhydrolysate sind auf Grund ihrer faserpflegenden Wirkung weitere im Rahmen der vorliegenden Erfindung bevorzugte Aktivsubstanzen aus dem Gebiet der Wasch- und Reinigungsmittel. Proteinhydrolysate sind Produktgemische, die durch sauer, basisch oder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden. Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen Ursprungs eingesetzt werden. Tierische Proteinhydrolysate sind beispielsweise Elastin-, Kollagen-, Keratin-, Seiden- und Milcheiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z. B. Soja-, Mandel-, Reis-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist, können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische oder einzelne Aminosäuren wie beispielsweise Arginin, Lysin, Histidin oder Pyrroglutaminsäure eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure-Kondensationsprodukte.
  • Schließlich können die erfindungsgemäßen Mittel auch UV-Absorber enthalten, die auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern verbessern. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3-Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet.
  • Reinigungsmittel für das maschinelle Geschirrspülen können zum Schutze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel und Glaskorrosionsinhibitoren im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats sowie den Mangankomplexen

            [Me-TACN)MnIV(m-0)3MnIV(Me-TACN)]2+(PF6 -)2,

            [Me-MeTACN)MnIV(m-0)3MnIV(Me-MeTACN)]2+(PF6 -)2,

            [Me-TACN)MnIII(m-0)(m-0Ac)2MnIII(Me-TACN)]2+(PF6 -)2

    und

            [Me-MeTACN)MnIII(m-0)(m-0Ac)2MnIII(Me-MeTACN)]2+(PF6 -)2,

    wobei Me-TACN für 1,4,7-trimethyl-1,4,7-triazacyclononan und Me-MeTACN für 1,2,4,7-tetramethyl-1,4,7-triazacyclononan steht. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
  • Im Rahmen der vorliegenden Erfindung ist es bevorzugt, zusätzlich mindestens ein Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole, vorzugsweise Benzotriazol und/oder Alkylaminotriazol, in Mengen von 0,001 bis 1 Gew.-%, vorzugsweise von 0,01 bis 0,5 Gew.-% und insbesondere von 0,05 bis 0,25 Gew.-%, jeweils bezogen auf das Gesamtgewicht der in den erfindungsgemäßen wasserlöslichen Behältern umschlossenen Feststoffe, einzusetzen.
  • Neben den zuvor genannten Silberschutzmitteln können erfindungsgemäße Mittel weiterhin eine oder mehrere Substanzen zur Verringerung der Glaskorrosion enthalten. Im Rahmen der vorliegenden Anmeldung werden insbesondere Zusätze von Zink und/oder anorganischen und/oder organischen Zinksalzen und/oder Silikaten, beispielsweise das schichtförmige kristalline Natriumdisilikat SKS 6 der Clariant GmbH, und/oder wasserlösliche Gläser, beispielsweise Gläser, welche einen Masseverlust von wenigstens 0,5 mg unter den in DIN ISO 719 angegebenen Bedingungen aufweisen, zur Verringerung der Glaskorrosion bevorzugt.
  • Eine bevorzugte Klasse von Verbindungen, die zur Verhinderung der Glaskorrosion den erfindungsgemäßen Mitteln zugesetzt werden können, sind unlösliche Zinksalze. Diese können sich während des Geschirrspülvorgangs an der Glasoberfläche anlagern und verhindern dort das in Lösung gehen von Metallionen aus dem Glasnetzwerk sowie die Hydrolyse der Silikate. Zusätzlich verhindern diese unlöslichen Zinksalze auch die Ablagerung von Silikat auf der Glasoberfläche, so daß das Glas vor den vorstehend geschilderten Folgen geschützt ist.
  • Unlösliche Zinksalze im Sinne dieser bevorzugten Ausführungsform sind Zinksalze, die eine Löslichkeit von maximal 10 Gramm Zinksalz pro Liter Wasser bei 20°C besitzen. Beispiele für erfindungsgemäß besonders bevorzugte unlösliche Zinksalze sind Zinksilikat, Zinkcarbonat, Zinkoxid, basisches Zinkcarbonat (Zn2(OH)2CO3), Zinkhydroxid, Zinkoxalat, Zinkmonophosphat (Zn3(PO4)2), und Zinkpyrophosphat (Zn2(P2O7)).
  • Die genannten Zinkverbindungen werden in den erfindungsgemäßen Mitteln in Mengen eingesetzt, die einen Gehalt der Mittel an Zinkionen zwischen 0,02 und 10 Gew.-%, vorzugsweise zwischen 0,1 und 5,0 Gew.-% und insbesondere zwischen 0,2 und 1,0 Gew.-%, jeweils bezogen auf das Mittel ohne den Behälter, bewirken. Der exakte Gehalt der Mittel am Zinksalz bzw. den Zinksalzen ist naturgemäß abhängig von der Art der Zinksalze - je weniger löslich das eingesetzte Zinksalz ist, umso höher sollte dessen Konzentration in den erfindungsgemäßen Mitteln sein.
  • Eine weitere bevorzugte Klasse von Verbindungen sind Magnesium- und/oder Zinksalz(e) mindestens einer monomeren und/oder polymeren organischen Säure. Diese bewirken, daß auch bei wiederholter Benutzung die Oberflächen gläsernen Spülguts nicht korrosiv verändert, insbesondere keine Trübungen, Schlieren oder Kratzer aber auch kein Irisieren der Glasoberflächen verursacht werden.
  • Obwohl erfindungsgemäß alle Magnesium- und/oder Zinksalz(e) monomerer und/oder polymerer organischer Säuren in den beanspruchten Mitteln enthalten sein können, werden doch, wie vorstehend beschrieben, die Magnesium- und/oder Zinksalze monomerer und/oder polymerer organischer Säuren aus den Gruppen der unverzweigten gesättigten oder ungesättigten Monocarbonsäuren, der verzweigten gesättigten oder ungesättigten Monocarbonsäuren, der gesättigten und ungesättigten Dicarbonsäuren, der aromatischen Mono-, Di- und Tricarbonsäuren, der Zuckersäuren, der Hydroxysäuren, der Oxosäuren, der Aminosäuren und/oder der polymeren Carbonsäuren bevorzugt. Innerhalb dieser Gruppen werden im Rahmen der vorliegenden Erfindung wiederum die in der Folge genannten Säuren bevorzugt:
  • Das Spektrum der erfindungsgemäß bevorzugten Zinksalze organischer Säuren, vorzugsweise organischer Carbonsäuren, reicht von Salzen die in Wasser schwer oder nicht löslich sind, also eine Löslichkeit unterhalb 100 mg/L, vorzugsweise unterhalb 10 mg/L, insbesondere keine Löslichkeit aufweisen, bis zu solchen Salzen, die in Wasser eine Löslichkeit oberhalb 100 mg/L, vorzugsweise oberhalb 500 mg/L, besonders bevorzugt oberhalb 1 g/L und insbesondere oberhalb 5 g/L aufweisen (alle Löslichkeiten bei 20°C Wassertemperatur). Zu der ersten Gruppe von Zinksalzen gehören beispielsweise das Zinkcitrat, das Zinkoleat und das Zinkstearat, zu der Gruppe der löslichen Zinksalze gehören beispielsweise das Zinkformiat, das Zinkacetat, das Zinklactat und das Zinkgluconat.
  • In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäßen Mittel wenigstens ein Zinksalz, jedoch kein Magnesiumsalz einer organischen Säure, wobei es sich vorzugsweise um mindestens ein Zinksalz einer organischen Carbonsäure, besonders bevorzugt um ein Zinksalz aus der Gruppe Zinkstearat, Zinkoleat, Zinkgluconat, Zinkacetat, Zinklactat und/oder Zinkcitrat handelt. Auch Zinkricinoleat, Zinkabietat und Zinkoxalat sind bevorzugt.
  • Ein im Rahmen der vorliegenden Erfindung bevorzugtes Mittel enthält Zinksalz in Mengen von 0,1 bis 5 Gew.-%, vorzugsweise von 0,2 bis 4 Gew.-% und insbesondere von 0,4 bis 3 Gew.-%, bzw. Zink in oxidierter Form (berechnet als Zn2+) in Mengen von 0,01 bis 1 Gew.-%, vorzugsweise von 0,02 bis 0,5 Gew.-% und insbesondere von 0,04 bis 0,2 Gew.-%, jeweils bezogen auf das Mittel ohne den Behälter.
  • Besonders bevorzugte Mittel enthalten mindestens ein Zinksalz einer organischen Säure, vorzugsweise ausgewählt aus der Gruppe Zinkoleat, Zinkstearat, Zinkgluconat, Zinkacetat, Zinklactat und Zinkcitrat.
  • Im Rahmen der vorliegenden Erfindung besonders bevorzugte Wasch- oder Reinigungsmittelzusammensetzungen lassen sich mittels eines modifizierten Olten-Tests ermitteln. Gemäß dieses modifizierten Tests werden 300 g der flüssigen Wasch- oder Reinigungsmittelzusammensetzung auf 20°C temperiert, unter Rühren (Laborrührer, 3-Flügel-Propeller, 800 Upm) in eine auf 80°C temperierte Lösung von 50 g Natriumsulfat in 200 mL Wasser in einem 1 L Zylinder Dewar (Halbwertzeit: 10 Stsunden) eingetragen und anschließend die Temperaturänderung in Abhängigkeit von der Zeit bestimmt. Bevorzugte flüssige Wasch- oder Reinigungsmittelzusammensetzung zeichnen sich in diesem Test dadurch aus, daß fünf Minuten nach Eintrag von 300 g einer auf 20°C temperierten Probe der flüssigen Wasch- oder Reinigungsmittelzusammensatzung in eine auf 80°C temperierte Lösung von 50 g Natriumsulfat in 200 mL Wasser die Temperatur dieser Lösung weniger als 72°C, bevorzugt weniger als 70°C, besonders bevorzugt weniger als 68°C und insbesondere weniger als 65°C beträgt.
  • Die erfindungsgemäßen flüssigen Wasch- und Reinigungsmittelzusammensetzungen sind in wasserdispergierbarer oder wasserlöslicher Behältern verpackt. Die entsprechenden Verpackungsmaterialien sind aus dem Stand der Technik bekannt und entstammen beispielsweise der Gruppe (acetalisierter) Polyvinylalkohol, Polyvinylpyrrolidon, Polyethylenoxid, Gelatine und Mischungen hieraus.
  • Besonders bevorzugte erfindungsgemäße portionierte Wasch- oder Reinigungsmittelzusammensetzungen sind dadurch gekennzeichnet, daß der wasserlösliche oder wasserdispergierbare Behälter ein oder mehrere wasserlösliche(s) Polymer(e), vorzugsweise ein Material aus der Gruppe (gegebenenfalls acetalisierter) Polyvinylalkohol (PVAL), Polyvinylpyrrolidon, Polyethylenoxid, Gelatine, Cellulose, und deren Derivate und deren Mischungen umfaßt.
  • "Polyvinylalkohole" (Kurzzeichen PVAL, gelegentlich auch PVOH) ist dabei die Bezeichnung für Polymere der allgemeinen Struktur
    Figure imgb0015
    die in geringen Anteilen (ca. 2%) auch Struktureinheiten des Typs
    Figure imgb0016
    enthalten.
  • Handelsübliche Polyvinylalkohole, die als weiß-gelbliche Pulver oder Granulate mit Polymerisationsgraden im Bereich von ca. 100 bis 2500 (Molmassen von ca. 4000 bis 100.000 g/mol) angeboten werden, haben Hydrolysegrade von 98-99 bzw. 87-89 Mol-%, enthalten also noch einen Restgehalt an Acetyl-Gruppen. Charakterisiert werden die Polyvinylalkohole von Seiten der Hersteller durch Angabe des Polymerisationsgrades des Ausgangspolymeren, des Hydrolysegrades, der Verseifungszahl bzw. der Lösungsviskosität.
  • Polyvinylalkohole sind abhängig vom Hydrolysegrad löslich in Wasser und wenigen stark polaren organischen Lösungsmitteln (Formamid, Dimethylformamid, Dimethylsulfoxid); von (chlorierten) Kohlenwasserstoffen, Estern, Fetten und Ölen werden sie nicht angegriffen. Polyvinylalkohole werden als toxikologisch unbedenklich eingestuft und sind biologisch zumindest teilweise abbaubar. Die Wasserlöslichkeit kann man durch Nachbehandlung mit Aldehyden (Acetalisierung), durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure od. Borax verringern. Die Beschichtungen aus Polyvinylalkohol sind weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Helium, Wasserstoff, Kohlendioxid, lassen jedoch Wasserdampf hindurchtreten.
  • Im Rahmen der vorliegenden Erfindung ist es bevorzugt, daß der wasserlösliche oder wasserdispergierbare Behälter einen Polyvinylalkohol umfaßt, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt.
  • Vorzugsweise werden als Materialien für die Behälter Polyvinylalkohole eines bestimmten Molekulargewichtsbereichs eingesetzt, wobei erfindungsgemäß bevorzugt ist, daß der wasserlösliche oder wasserdispergierbare Behälter einen Polyvinylalkohol umfaßt, dessen Molekulargewicht im Bereich von 10.000 bis 100.000 gmol-1, vorzugsweise von 11.000 bis 90.000 gmol-1, besonders bevorzugt von 12.000 bis 80.000 gmol-1 und insbesondere von 13.000 bis 70.000 gmol-1 liegt.
  • Der Polymerisationsgrad solcher bevorzugten Polyvinylalkohole liegt zwischen ungefähr 200 bis ungefähr 2100, vorzugsweise zwischen ungefähr 220 bis ungefähr 1890, besonders bevorzugt zwischen ungefähr 240 bis ungefähr 1680 und insbesondere zwischen ungefähr 260 bis ungefähr 1500.
  • Die vorstehend beschriebenen Polyvinylalkohole sind kommerziell breit verfügbar, beispielsweise unter dem Warenzeichen Mowiol® (Clariant). Im Rahmen der vorliegenden Erfindung besonders geeignete Polyvinylalkohole sind beispielsweise Mowiol® 3-83, Mowiol® 4-88, Mowiol® 5-88 sowie Mowiol® 8-88.
  • Weitere als Material für den Behälter besonders geeignete Polyvinylalkohole sind der nachstehenden Tabelle zu entnehmen:
    Bezeichnung Hydrolysegrad [%] Molmasse [kDa] Schmelzpunkt [°C]
    Airvol® 205 88 15-27 230
    Vinex® 2019 88 15-27 170
    Vinex® 2144 88 44 - 65 205
    Vinex® 1025 99 15-27 170
    Vinex® 2025 88 25-45 192
    Gohsefimer® 5407 30-28 23.600 100
    Gohsefimer® LL02 41-51 17.700 100
  • Weitere als Material für den Behälter geeignete Polyvinylalkohole sind ELVANOL® 51-05, 52-22, 50-42, 85-82, 75-15, T-25, T-66, 90-50 (Warenzeichen der Du Pont), ALCOTEX® 72.5, 78, B72, F80/40, F88/4, F88/26, F88/40, F88/47 (Warenzeichen der Harlow Chemical Co.), Gohsenol® NK-05, A-300, AH-22, C-500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11Q, KZ-06 (Warenzeichen der Nippon Gohsei K.K.).
  • Die Wasserlöslichkeit von PVAL kann durch Nachbehandlung mit Aldehyden (Acetalisierung) oder Ketonen (Ketalisierung) verändert werden. Als besonders bevorzugt und aufgrund ihrer ausgesprochen guten Kaltwasserlöslichkeit besonders vorteilhaft haben sich hierbei Polyvinylalkohole herausgestellt, die mit den Aldehyd bzw. Ketogruppen von Sacchariden oder Polysacchariden oder Mischungen hiervon acetalisiert bzw. ketalisiert werden. Als äußerst vorteilhaft einzusetzen sind die Reaktionsprodukte aus PVAL und Stärke.
  • Weiterhin läßt sich die Wasserlöslichkeit durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure, Borax verändern und so gezielt auf gewünschte Werte einstellen. Folien aus PVAL sind weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Helium, Wasserstoff, Kohlendioxid, lassen jedoch Wasserdampf hindurchtreten.
  • Beispiele geeigneter wasserlöslicher PVAL-Folien sind die unter Bezeichnung "SOLUBLON®" von der Firma Syntana Handelsgesellschaft E. Harke GmbH & Co. erhältlichen PVAL-Folien. Deren Löslichkeit in Wasser läßt sich Grad-genau einstellen, und es sind Folien dieser Produktreihe erhältlich, die in allen für die Anwendung relevanten Temperaturbereichen in wäßriger Phase löslich sind.
  • Polyvinylpyrrolidone, kurz als PVP bezeichnet, lassen sich durch die folgende allgemeine Formel beschreiben:
    Figure imgb0017
  • PVP werden durch radikalische Polymerisation von 1-Vinylpyrrolidon hergestellt. Handelsübliche PVP haben Molmassen im Bereich von ca. 2.500 bis 750.000 g/mol und werden als weiße, hygroskopische Pulver oder als wäßrige Lösungen angeboten.
  • Polyethylenoxide, kurz PEOX, sind Polyalkylenglykole der allgemeinen Formel

            H-[O-CH2-CH2]n-OH

    die technisch durch basisch katalysierte Polyaddition von Ethylenoxid (Oxiran) in meist geringe Mengen Wasser enthaltenden Systemen mit Ethylenglykol als Startmolekül hergestellt werden. Sie haben Molmassen im Bereich von ca. 200 bis 5.000.000 g/mol, entsprechend Polymerisationsgraden n von ca. 5 bis >100.000. Polyethylenoxide besitzen eine äußerst niedrige Konzentration an reaktiven Hydroxy-Endgruppen und zeigen nur noch schwache Glykol-Eigenschaften.
  • Gelatine ist ein Polypeptid (Molmasse: ca. 15.000 bis >250.000 g/mol), das vornehmlich durch Hydrolyse des in Haut und Knochen von Tieren enthaltenen Kollagens unter sauren oder alkalischen Bedingungen gewonnen wird. Die Aminosäuren-Zusammensetzung der Gelatine entspricht weitgehend der des Kollagens, aus dem sie gewonnen wurde, und variiert in Abhängigkeit von dessen Provenienz. Die Verwendung von Gelatine als wasserlösliches Hüllmaterial ist insbesondere in der Pharmazie in Form von Hart- oder Weichgelatinekapseln äußerst weit verbreitet. In Form von Folien findet Gelatine wegen ihres im Vergleich zu den vorstehend genannten Polymeren hohen Preises nur geringe Verwendung.
  • Bevorzugt sind im Rahmen der vorliegenden Erfindung auch erfindungsgemäße Mittel, deren Verpackung aus zumindest zum Teil wasserlöslicher Folie aus mindestens einem Polymer aus der Gruppe Stärke und Stärkederivate, Cellulose und Cellulosederivate, insbesondere Methylcellulose und Mischungen hieraus besteht.
  • Stärke ist ein Homoglykan, wobei die Glucose-Einheiten α-glykosidisch verknüpft sind. Stärke ist aus zwei Komponenten unterschiedlichen Molekulargewichts aufgebaut: aus ca. 20 bis 30% geradkettiger Amylose (MG. ca. 50.000 bis 150.000) und 70 bis 80% verzweigtkettigem Amylopektin (MG. ca. 300.000 bis 2.000.000). Daneben sind noch geringe Mengen Lipide, Phosphorsäure und Kationen enthalten. Während die Amylose infolge der Bindung in 1,4-Stellung lange, schraubenförmige, verschlungene Ketten mit etwa 300 bis 1.200 Glucose-Molekülen bildet, verzweigt sich die Kette beim Amylopektin nach durchschnittlich 25 Glucose-Bausteinen durch 1,6-Bindung zu einem astähnlichen Gebilde mit etwa 1.500 bis 12.000 Molekülen Glucose. Neben reiner Stärke sind zur Herstellung wasserlöslicher Umhüllungen der Waschmittel-, Spülmittel- und Reinigungsmittel-Portionen im Rahmen der vorliegenden Erfindung auch Stärke-Derivate geeignet, die durch polymeranaloge Reaktionen aus Stärke erhältlich sind. Solche chemisch modifizierten Stärken umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Stärken, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Stärke-Derivate einsetzen. In die Gruppe der Stärke-Derivate fallen beispielsweise Alkalistärken, Carboxymethylstärke (CMS), Stärkeester und -ether sowie Aminostärken.
  • Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5.000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Ein im Rahmen der vorliegenden Erfindung mit besonderem Vorzug als wasserlösliches oder wasserdispergierbares Verpackungsmaterial eingesetztes Cellulose Derivat ist die Hydroxypropylmethylcellulose (HPMC).
  • Die wasserlöslichen oder wasserdispergierbaren Behälter, welche die erfindungsgemäßen Mittel enthalten, können nach jedem der im Stand der Technik beschriebenen Verfahren hergestellt werden. In bevorzugten Ausführungsformen der vorliegenden Erfindung handelt es sich bei diesen Behältern um Folienbeutel (sogenannte Pouches) bzw. um Spritzguß-, Tiefzieh- oder Blasformkörper. Bevorzugte erfindungsgemäße Wasch- oder Reinigungsmittelzusammensetzungen sind demnach dadurch gekennzeichnet, daß der wasserlösliche oder wasserdispergierbare Behälter eine Folie und/oder ein Spritzgußteil und/oder ein Blasformteil und/oder ein Tiefziehteil umfaßt.
  • Werden die erfindungsgemäß als Verpackung gewählten Behälter in Form von Folienbeuteln ausgebildet, so ist es bevorzugt, daß die wasserlösliche Folie, die den Beutel bildet, eine Dicke von 1 bis 150 µm, vorzugsweise von 2 bis 100 µm, besonders bevorzugt von 5 bis 75 µm und insbesondere von 10 bis 50 µm, aufweist.
  • Werden als wasserlösliche oder wasserdispergierbare Behälter hingegen Spritzguß- oder Tiefziehkörper eingesetzt, so weist die Wand bevorzugter Behälter eine Dicke von 50 bis 300 µm, vorzugsweise von 70 bis 200 µm und insbesondere von 80 bis 150 µm auf.
  • Ein für die Herstellung erfindungsgemäßer wasserlöslicher oder-wasserdispergierbarer Behälter in besonderer Weise geeignetes Verfahren ist das Spritzgießen. Spritzgießen bezeichnet dabei das Umformen einer Formmasse derart, daß die in einem Massezylinder für mehr als einen Spritzgießvorgang enthaltene Masse unter Wärmeeinwirkung plastisch erweicht und unter Druck durch eine Düse in den Hohlraum eines vorher geschlossenen Werkzeuges einfließt. Das Verfahren wird hauptsächlich bei nichthärtbaren Formmassen angewendet, die im Werkzeug durch Abkühlen erstarren. Der Spritzguß ist ein sehr wirtschaftliches modernes Verfahren zur Herstellung spanlos geformter Gegenstände und eignet sich besonders für die automatisierte Massenfertigung. Im praktischen Betrieb erwärmt man die thermoplastische Formmassen (Pulver, Körner, Würfel, Pasten u. a.) bis zur Verflüssigung (bis 180 °C) und spritzt sie dann unter hohem Druck (bis 140 MPa) in geschlossene, zweiteilige, das heißt aus Gesenk (früher Matrize) und Kern (früher Patrize) bestehende, vorzugsweise wassergekühlte Hohlformen, wo sie abkühlen und erstarren. Einsetzbar sind Kolben- und Schneckenspritzgußmaschinen. Als Formmassen (Spritzgußmassen) eignen sich wasserlösliche Polymere wie beispielsweise die oben genannten Celluloseether, Pektine, Polyethylenglycole, Polyvinylalkohole, Polyvinylpyrrolidone, Alginate, Gelatine oder Stärke.
  • Gegenstand der vorliegenden Anmeldung ist daher weiterhin ein Verfahren zur Herstellung eines befüllten wasserlöslichen Behälters umfassend die Schritte:
    1. a) Spritzgießen eines Behälters aus einem wasserlöslichen oder wasserdispergierbaren Material,
    2. b) Befüllen des Basisformkörpers mit einer flüssigen Wasch- oder Reinigungsmittelzusammensetzung, umfassend eine wasserarme Matrix und darin dispergierte Phosphate,
    3. c) Verschließen des befüllten Behälters mit einer wasserlöslichen oder wasserdispergierbaren Verschlußeinheit,
    dadurch gekennzeichnet, daß das dispergierte Phosphat Natriumtripolyphosphat umfaßt und der Phase-I Anteil des dispergierten Natriumtripolyphosphats bezogen auf das Gesamtgewicht des dispergierten Natrimtripolyphosphat weniger als 25 Gew.-% beträgt.
  • Bei der wasserlöslichen oder wasserdispergierbaren Verschlußeinheit, welche in Schritt c) zum Verschließen des gefüllten Behälters eingesetzt wird, handelt es sich vorzugsweise um einen spritzgegossen Körper, wobei dieser Körper vorzugsweise die gleich Raumform aufweist wie der Basisformkörper. Bevorzugt wird im Rahmen der vorliegenden Erfindung folglich insbesondere ein Verfahren, in welchem die Verschlußeinheit die gleiche Raumform aufweist wie der in Schritt a) hergestellte Behälter.
  • In einer weiteren bevorzugten Ausführungsform des beschriebenen erfindugnsgemäßen Verfahrens wird als Verschlußeinheit eine Folie eingesetzt, wobei diese Folie beispielsweise zuvor durch Tiefziehverfahren formgebend verarbeitet werden kann. Ein weiterer bevorzugter Gegenstand der vorliegenden Anmeldung ist demnach ein vorgenanntes Verfahren, dadurch gekennzeichnet, daß es sich bei der in Schritt c) eingeführten wasserlöslichen Verschlußeinheit um eine wasserlösliche oder wasserdispergierbare Folie handelt.
  • Aus den vorherigen Angaben ergibt sich, daß die Dicke der wasserlöslichen Außenwand erfindungsgemäßer Behälter nicht notwendigerweise homogen ist, sondern in Abhängigkeit von dem gewählten Herstellungsverfahren schwanken kann. Im Rahmen der vorliegenden Anmeldung ist es dabei bevorzugt, daß diese Schwankungen sich innerhalb der oben genannten bevorzugten Bereiche für die Wanddicke erfindungsgemäßer Behälter bewegen.
  • Auch das Verschließen von Basisformkörper mit der Verschlußeinheit kann auf unterschiedliche Weise erfolgen. Bevorzugt im Rahmen der vorliegenden Erfindung werden Verschlußverfahren, welche auf anteilsweiser Solvatisierung der Oberfläche des Behälters und/oder der Verschlußeineheit und/oder auf Erwärmen des Behälters und/oder der Verschlußeinheit auf eine Temperatur, bei welcher diese plastisch deformierbar sind, beruhen. Sowohl die teilweise Solvatisierung als auch die Erwärmung wird dabei vorzugsweise nicht auf der gesamten Oberfläche des Behälters und/oder der gesamten Oberfläche der Verschlußeinheit erfolgen, sondern nur in den Bereichen in welchen die nachfolgende Versiegelung unter Ausbildung einer Siegelnaht erfolgen soll. Die Erwärmung der Oberfläche des Behälters und/oder der Verschlußeinheit erfolgt vorzugsweise durch den Einsatz von Heißluft, Heizplatten, beheizten Walzen oder von Wärmestrahlung, vorzugsweise Laserstrahlung oder andere IR-Quellen wie Glasfaserleiter (optical fibre). Bevorzugter Gegenstand der vorliegenden Anmneldung ist folglich ein zuvor beschriebenes Verfahren, in welchem das Verschließen in Schritt c) mittels einer Schmelzverklebung erfolgt.
  • Neben dem beschriebenen Spritzgußverfahren ist das Rotary-Die-Verfahren in besonderer Weise zur Herstellung erfindungsgemäßer Mittel geeignet, wobei unter dem Begriff des Rotary-Die-Verfahrens im Rahmen der vorliegenden Anmeldung auch Verfahrensvarianten wie das Accogel-Verfahren, das Reciprocating-Die-Verfahren mittels einer Norton Verkapselungsmaschine, das Colton- sowie das Upjohn-Verfahren zusammengefaßt. Der Begriff des Rotary-Die-Verfahrens ist demnach nicht beschränkend zu verstehen, sondern umfaßt alle dem Fachmann bekannten Verfahrensvarianten, welche unter Einsatz von Formwalzen zur Herstellung befüllter Behälter geeignet sind.
  • Besonders bevorzugt wird im Rahmen der vorliegenden Anmeldung jedoch ein automatisches Rotary-Die-Verfahren mittels zweier rotierender Formwalzen umfassend die Schritte:
    • a) Zuführen zweier unter Lösungsmitteleinfluß und/oder Temperatureinfluß plastisch deformierbarer wasserlösllicher oder wasserdispergbierbar Folien auf zwei sich gegensinnig drehende Formwalzen, wobei mindestens eine dieser Formwalzen in ihrer Oberfläche Vertiefungen zur Aufnahme des herzustellenden Behälters aufweist, welche durch Stege begrenzt sind,
    • b) Auftragen eines Lösungsmittels auf mindestens eine dieser Folien unter mindestens anteilsweiser Solvatisierung der Oberfläche dieser Folie und/oder Erwärmen mindestens einer dieser Folien auf eine Temperatur bei welcher diese Folie plastisch deformierbar ist,
    • c) optionales Tiefziehen und/oder Eindrücken und/oder Einsinken lassen mindestens einer dieser Folien in die Vertiefungen der Formwalze,
    • d) Einfüllen, einer flüssigen Wasch- oder Reinigungsmittelzusammensetzung, umfassend eine wasserarme Matrix und darin dispergiertes Phosphat,
    • d) optionales Auftragen eines Klebemittels,
    • e) Zusammenführen der zwei unter Lösungsmitteleinfluß und/oder Temperatureinfluß plastisch deformierbarer wasserlösllicher Folien im Zwischenraum der zwei sich gegensinnig drehenden Formwalzen,
    • f) Verkleben und/oder Abquetschen der Folien durch Krafteinwirkung der Stege auf die Folien unter Heraustrennung des Behälters,
    dadurch gekennzeichnet, daß das dispergierte Phosphat Natriumtripolyphosphat umfaßt und der Phase-I Anteil des dispergierten Natriumtripolyphosphats bezogen auf das Gesamtgewicht des dispergierten Natrimtripolyphosphat weniger als 25 Gew.-% beträgt.
  • Bei der Durchführung dieses Verfahrens ist zu beachten, daß sich die Temperaturen für die plastische Deformierung in Schritt b) sowie die Hitzeversiegelung deutlich unterscheiden können. Generell gilt, das die in den Schritten b) und c) gewählte Temperatur unterhalb der für oben beschriebene Schmelzverklebung im Rahmen des Spritzgußverfarhens notwendigen Temperaturen liegt. Werden beispielsweise HPMC-Folien eingesetzt, so beträgt die Temperatur für die plastische Deformierung vorzugsweise 85 bis 90°C, während die Schmelzverklebung im Temperaturbereich von 150 bis 170°C erfolgt. Für PVA-Folien liegen die Temperaturen für die plastische Verformung bei etwa 150°C, während die Schmelzverklebung im Bereich von 160 bis 200°C erfolgt. Wie in den vorgenannten Fällen kann die Erwärmung der Behältermaterialien durch Heißluft, Wärmestrahlung oder den direkten Kontakt mit geeigneten Heizplatten oder beheizten Walzen erfolgen.
  • Ein weiteres für die Herstellung wasserlöslicher oder wasserdispergierbarer Behälter geeignetes Verfahren ist das sogenannte Tiefziehverfahren, insbesondere das Thermoform-Verfahren, wobei die in typischen Thermoform-Verfahren eingesetzte Erwärmung plastisch deformierbarer Folien in Rahmen der vorliegenden Anmeldung optional durch eine mindestens anteilsweise Solvatisierung dieser Folien ergänzt/ersetzt werden kann. Gegenstand der vorliegenden Anmeldung ist daher weiterhin ein Verfahren zur Herstellung eines wasserlöslichen Behälters umfassend die Schritte:
    1. a) Zuführen einer unter Lösungsmitteleinfluß und/oder Temperatureinfluß plastisch deformierbaren wasserlösllichen oder wasserdispergierbaren Folie auf eine Matrize, welche Vertiefungen zur Aufnahme des herzustellenden Behälters aufweist,
    2. b) Auftragen eines Lösungsmittels auf diese Folie unter mindestens anteilsweiser Solvatisierung der Oberfläche dieser Folie und/oder Erwärmen dieser Folie bis zu einer Temperatur, bei welche diese plastisch deformierbar ist,
    3. c) Tiefziehen und/oder Eindrücken und/oder Einsinken lassen dieser Folie in die Vertiefungen der Matrize,
    4. d) Beaufschlagen der Folie mit einer flüssigen Wasch- oder Reinigungsmittelzusammensetzung, umfassend eine wasserarme Matrix und darin dispergiertes Phosphat,
    5. e) Zuführen einer weiteren wasserlöslichen oder wasserdispergierbaren Folie und Verschließen der tiefgezogenen Form mit dieser Folie,
    dadurch gekennzeichnet, daß das dispergierte Phosphat Natriumtripolyphosphat umfaßt und der Phase-I Anteil des dispergierten Natriumtripolyphosphats bezogen auf das Gesamtgewicht des dispergierten Natrimtripolyphosphat weniger als 25 Gew.-% beträgt.
  • Während das Einsinken lassen oder Eindrücken der plastisch deformierbaren Folie in Schritt c) des beanspruchten Verfahrens geeignete Vorgehensweisen zur Deformation dieser Folien darstellen, ist im Rahmen der vorliegenden Anmeldung dennoch ein Verfahren besonders bevorzugt, in welchem die Folie in Schritt c) unter Einwirkung eines Vakuums auf die plastisch deformierbare Folie tiefgezogen wird, welches vorzugsweise bis nach dem Abschluß des Verfahrens in Schritt e) bestehen bleibt und die Folie in der Vertiefung zurückbehält.
  • Das Verschließen eines erfindungsgemäßen Behälters in Schritt e) des vorgenannten Tiefziehverfahrens, kann wie auch in den übrigen beschriebenen Verfahren durch Verklebung oder Schmelzverklebung erfolgen, wobei beide Verfahren optional in Kombination mit einer zusätzlichen Druckeinwirkung durchgeführt werden können. Als Klebemittel eignen sich in Abhängigkeit von der Zusammensetzung der Folien neben den dem Fachmann bekannten Klebern ebenfalls Lösungsmittel, wie beispielsweise Wasser. Die Auftragung des Klebemittels auf die Folie erfolgt in einer bevorzugten Verfahrensvariante des letztgenannten Verfahrens vorzugsweise nach Schritt b) und/oder Schritt c) und/oder Schritt d).
  • Die Versiegelung kann jedoch auch durch Schmelzversiegelung oder Druckeinwirkung erfolgen. Um Wiederholungen zu vermeiden sei bezüglich der Schmelzversiegelung an dieser Stelle auf die ausführlichen Beschreibungen im Rahmen der Spritzguß- und Rotary-Die-Verfahren verwiesen. In einer bevorzugten Verfahrensvariante des Thermoformverfahrens erfolgt demnach das Verschließen in Schritt e) durch Temperatur- und/oder durch Druckeinwirkung.
  • Ein viertes zur Herstellung der wasserlöslichen oder wasserdispergierbaren Behälter besonders geeignetes Verfahren ist das Blasformen. Ein derartiges Verfahren umfaßt die Schritte:
    1. (a) Urformen eines Vorformlings aus einer Blasformmasse basierend auf einem wasserlöslichen polymeren Thermoplasten;
    2. (b) Blasformen des Vorformlings zu einem Hohlkörper;
    3. (c) Füllen des Hohlkörpers mit dem erfindungsgemäßen Wasch- oder Reinigungsmittel; und
    4. (d) flüssigkeitsdichtes Verschließen des blasgeformten Hohlkörpers;
  • In einer besonders bevorzugten Ausführungsform weist der nach einer der vorstehend beschriebenen Verfahren hergestellte wasserlösliche oder wasserdispergierbare Behälter eine oder mehrere Prägung(en) und/oder einen oder mehrere Aufdruck(e) auf. Auch können die in dem Behälter umschlossenen Feststoffe derartige Prägungen oder Aufdrucke aufweisen. Die Prägung bzw. de Aufdruck kann neben Schriftzügen auch Muster, Formen usw. beinhalten. Auf diese Weise können beispielsweise Universalwaschmittel durch ein T-Shirt-Symbol, Colorwaschmittel durch ein Wollsymbol, Reinigungsmittel für das maschinelle Geschirrspülen durch Symbole wie Gläser, Teller, Töpfe, Pfannen usw. kenntlich gemacht werden. Der Kreativität von Produktmanagern sind hierbei keine Grenzen gesetzt. Als Schriftzüge eignen sich beispielsweise weiterhin der Name des Produktes oder des Herstellers.
  • Diese wasserlöslichen Folien können nach verschiedenen Herstellverfahren hergestellt werden. Hier sind prinzipiell Blas-, Kalandrier- und Gießverfahren zu nennen. Bei einem bevorzugten Verfahren werden die Folien dabei ausgehend von einer Schmelze mit Luft über einen Blasdorn zu einem Schlauch geblasen. Bei dem Kalandrierverfahren, das ebenfalls zu den bevorzugt eingesetzten Herstellverfahren gehört, werden die durch geeignete Zusätze plastifizierten Rohstoffe zur Ausformung der Folien verdüst. Hier kann es insbesondere erforderlich sein, an die Verdüsungen eine Trocknung anzuschließen. Bei dem Gießverfahren, das ebenfalls zu den bevorzugten Herstellverfahren gehört, wird eine wäßrige Polymerzubereitung auf eine beheizbare Trockenwalze gegeben, nach dem Verdampfen des Wassers wird optional gekühlt und die Folie als Film abgezogen. Gegebenenfalls wird dieser Film vor oder während des Abziehens zusätzlich abgepudert.
  • Als Behältermaterialien kommen grundsätzlich alle Materialien infrage, die sich unter den gegebenen Bedingungen eines Waschvorgangs, Spülvorgangs oder Reinigungsvorgangs (Temperatur, pH-Wert, Konzentration an waschaktiven Komponenten) in wäßriger Phase vollständig oder teilweise lösen können. Die Polymer-Materialien können besonders bevorzugt den Gruppen (gegebenenfalls teilweise acetalisierter) Polyvinylalkohol, Polyvinylpyrrolidon, Polyethylenoxid, Gelatine, Cellulose und deren Derivate, Stärke und deren Derivate, insbesondere modifizierte Stärken, und Mischungen (Polymerblends, Verbünde, Koextrudate etc.) der genannten Materialien zugehören - siehe oben. Besonders bevorzugt sind Gelatine und Polyvinylalkohole sowie die genannten beiden Materialien jeweils im Verbund mit Stärke oder modifizierter Stärke. Es kommen auch anorganische Salze und Mischungen daraus als Materialien für die zumindest teilweise wasserlösliche Umhüllung infrage.
  • Erfindungsgemäß bevorzugt ist eine Ausführungsform, gemäß der der Behälter als ganzes wasserlöslich ist, d. h. sich bei bestimmungsgemäßem Gebrauch beim Waschen oder maschinellen Reinigen, vollständig auflöst, wenn die für das Lösen vorgesehenen Bedingungen erreicht sind. Wesentlicher Vorteil dieser Ausführungsform ist, daß sich der Behälter innerhalb einer praktisch relevant kurzen Zeit - als nicht begrenzendes Beispiel lassen sich wenige Sekunden bis 5 min - unter genau definierten Bedingungen in der Reinigungsflotte zumindest partiell lösen und damit entsprechend den Anforderungen den umhüllten Inhalt, d. h. das reinigungsaktive Material oder mehrere Materialien, in die Flotte einbringt.
  • In einer anderen, ebenfalls aufgrund vorteilhafter Eigenschaften bevorzugten Ausführungsform der Erfindung umfaßt der wasserlösliche Behälter weniger gut oder gar nicht wasserlösliche oder erst bei höherer Temperatur wasserlösliche Bereiche und gut wasserlösliche oder bei niedriger Temperatur wasserlösliche Bereiche. Mit anderen Worten: Der Behälter besteht nicht aus einem einheitlichen, in allen Bereichen die gleiche Wasserlöslichkeit aufweisenden Material, sondern aus Materialien unterschiedlicher Wasserlöslichkeit. Dabei sind Bereiche guter Wasserlöslichkeit einerseits zu unterscheiden von Bereichen mit weniger guter Wasserlöslichkeit, mit schlechter oder gar fehlender Wasserlöslichkeit oder von Bereichen, in denen die Wasserlöslichkeit erst bei höherer Temperatur oder erst bei einem anderen pH-Wert oder erst bei einer geänderten Elektrolytkonzentration den gewünschten Wert erreicht, andererseits. Dies kann dazu führen, daß sich bei bestimmungsgemäßem Gebrauch unter einstellbaren Bedingungen bestimmte Bereiche des Behälters lösen, während andere Bereiche intakt bleiben. So bildet sich ein mit Poren oder Löchern versehener Behälter, in den Wasser und/oder Flotte eindringen, waschaktive, spülaktive oder reinigungsaktive Inhaltsstoffe lösen und aus dem Behälter ausschleusen kann. In gleicher Weise können auch Systeme in Form von Mehrkammer-Behältern oder in Form von ineinander angeordneten Behältern ("Zwiebelsystem") vorgesehen werden. So lassen sich Systeme mit kontrollierter Freisetzung der waschaktiven, spülaktiven oder reinigungsaktiven Inhaltsstoffe herstellen.
  • Zur Ausbildung derartiger Systeme unterliegt die Erfindung keinen Beschränkungen. So können Behälter vorgesehen werden, in denen ein einheitliches Polymer-Material kleine Bereiche eingearbeiteter Verbindungen (beispielsweise von Salzen) umfaßt, die schneller wasserlöslich sind als das Polymer-Material. Andererseits können auch mehrere Polymer-Materialien mit unterschiedlicher Wasserlöslichkeit gemischt werden (Polymer-Blend), so daß das schneller lösliche Polymer-Material unter definierten Bedingungen durch Wasser oder die Flotte schneller desintegriert wird als das langsamer lösliche.
  • Es entspricht einer besonders bevorzugten Ausführungsform der Erfindung, daß die weniger gut wasserlöslichen Bereiche oder gar nicht wasserlöslichen Bereiche oder erst bei höherer Temperatur wasserlöslichen Bereiche der Behälter Bereiche aus einem Material sind, das chemisch im wesentlichen demjenigen der gut wasserlöslichen Bereiche oder bei niedrigerer Temperatur wasserlöslichen Bereiche entspricht, jedoch eine höhere Schichtdicke aufweist und/oder einen geänderten Polymerisationsgrad desselben Polymers aufweist und/oder einen höheren Vernetzungsgrad derselben Polymerstruktur aufweist und/oder einen höheren Acetalisierungsgrad (bei PVAL, beispielsweise mit Sacchariden, Polysacchariden, wie Stärke) aufweist und/oder einen Gehalt an wasserunlöslichen Salzkomponenten aufweist und/oder einen Gehalt an einem wasserunlöslichen Polymeren aufweist. Selbst unter Berücksichtigung der Tatsache, daß sich die Behälter nicht vollständig lösen, können so portionierte Wasch- oder Reinigungsmittelzusammensetzungen gemäß der Erfindung bereitgestellt werden, die vorteilhafte Eigenschaften bei der Freisetzung der Wasch- oder Reinigungsmittelzusammensetzung in die jeweilige Flotte aufweisen.
  • Es hat sich gezeigt, daß sich bei den in wasserlöslichen oder wasserdispergierbaren Behältern verpackten Wasch- und Reinigungsmittelzusammensetzungen herstellbedingte Probleme ergeben. Beim Abpacken der Wasch- und Reinigungsmittelzusammensetzungen in den wasserlöslichen Behälter bleiben feine Partikel an dem Behälter haften und gelangen bei der Versiegelung des Behälters in die gebildeten Nähte. Durch diese Partikel in der Versiegelung sind die betreffenden Nähte gegen die Atmosphäre nicht vollständig dicht, was zu Stabilitätsproblemen der Wasch- oder Reinigungsmittelzusammensetzung sowie zu Leckagen durch die entsprechenden Nähte führen kann.
  • Bei den flüssigen Wasch- oder Reinigungsmittelzusammensetzungen kann es zusätzlich passieren, daß die Tropfen oder Produktfäden, die in der zu bildenden Naht eingeschlossen sind, bei Verwendung eines Heißsiegelverfahrens thermisch so stark beansprucht werden, daß die Zusammensetzung siedet und dabei zu weiteren Undichtigkeiten, Verfärbungen oder im Ernstfall sogar Unfällen durch thermische Zersetzung führen kann.
  • Interessanterweise führt eine Änderung der Viskosität der flüssigen Wasch- oder Reinigungsmittelzusammensetzung nicht zum Erfolg; sie muß vielmehr durch geeignete weitere Maßnahmen bei der Produktkonfektionierung unterstützt werden, wobei diese Maßnahmen auch unabhängig von der Viskosität der Mittel zu verbesserten Ergebnissen führen.
  • Zur Vermeidung dieser Probleme und für die Bereitstellung einer portionierten flüssigen, d.h. gießbaren Wasch- oder Reinigungsmittelzusammensetzung, bei der die Nähte der aus wasserdispergierbarer oder wasserlöslicher Folie bestehenden Behälter gegenüber der Atmosphäre dicht sind, hat es sich als vorteilhaft erwiesen, wenn die zu portionierenden wasserhaltigen flüssigen Wasch- oder Reinigungsmittelzusammensetzungen bestimmte Kriterien hinsichtlich der Teilchengröße der in der wasserarmen, flüssigen Matrix suspendierten Teilchen erfüllen.
  • Bevorzugte Wasch- oder Reinigungsmittelzusammensetzungen im Rahmen der vorliegenden Erfindung sind daher dadurch gekennzeichnet, daß mindestens 70 Gew.-%, vorzugsweise mindestens 80 Gew.-%, bevorzugt mindestens 85 Gew.-%, besonders bevorzugt mindestens 90 Gew.-% und insbesondere mindestens 95 Gew.-% des dispergierten Phosphats Teilchengrößen unterhalb 200 µm, vorzugsweise unterhalb 160 µm, besonders bevorzugt unterhalb 120 µm und insbesondere unterhalb 100 µm, aufweisen.
  • Im genannten Teilchengrößenbereich treten die vorstehend genannten Probleme des Einsiegelns in der Naht verbleibender Tropfen oder Flüssigkeitsfäden, nicht mehr auf. Dabei sind die mindestens 70 Gew.-% der Teilchen sowie die 200 µm als Obergrenzen zu verstehen, die beispielsweise daraus resultieren, daß aus technischen Gründen eingesetzte Feststoffe auch geringe Mengen Grobanteile enthalten können. Es ist im Rahmen der vorliegenden Erfindung aber bevorzugt, einen möglichst hohen und deutlich über 70 Gew.-% liegenden Anteil von Teilchen mit Größen unterhalb von 200 µm in der Wasch- und Reinigungsmittelzusammensetzung vorliegen zu haben. Ein Anteil an besonders feinen Teilchen, deren Partikelgrößen deutlich unter 200 µm liegen, kann ebenfalls vorteilhaft sein.
  • Das wasserlösliche oder wasserdispergierbare Behältermaterial ist vorzugsweise transparent. Unter Transparenz ist im Sinne dieser Erfindung zu verstehen, daß die Durchlässigkeit innerhalb des sichtbaren Spektrums des Lichts (410 bis 800 nm) größer als 20%, vorzugsweise größer als 30%, äußerst bevorzugt größer als 40% und insbesondere größer als 50% ist. Sobald somit eine Wellenlänge des sichtbaren Spektrums des Lichtes eine Durchlässigkeit größer als 20% aufweist, ist es im Sinne der Erfindung als transparent zu betrachten.
  • Erfindungsgemäße portionierte Wasch- oder Reinigungsmittelzusammensetzungen, die in transparenten Behältern verpackt sind, können als wesentlichen Bestandteil ein Stabilisierungsmittel enthalten. Stabilisierungsmittel im Sinne der Erfindung sind Materialien, die die Reinigungsmittelbestandteile in ihren wasserlöslichen, transparenten Behältern vor Zersetzung oder Desaktivierung durch Lichteinstrahlung schützen. Als besonders geeignet haben sich hier Antioxidantien, UV-Absorber und Fluoreszensfarbstoffe erwiesen.
  • Besonders geeignete Stabilisierungsmittel im Sinne der Erfindung sind die Antioxidantien. Um unerwünschte, durch Lichteinstrahlung und damit radikalischer Zersetzung verursachte Veränderungen an den Formulierungen zu verhindern, können die Formulierungen Antioxidantien enthalten. Als Antioxidantien können dabei beispielsweise durch sterisch gehinderte Gruppen substituierte Phenole, Bisphenole und Thiobisphenole verwendet werden. Weitere Beispiele sind Propylgallat, Butylhydroxytoluol (BHT), Butylhydroxyanisol (BHA), t-Butylhydrochinon (TBHQ), Tocopherol und die langkettigen (C8-C22) Ester der Gallussäure, wie Dodecylgallat. Andere Substanzklassen sind aromatische Amine, bevorzugt sekundäre aromatische Amine und substituierte p-Phenylendiamine, Phosphorverbindungen mit dreiwertigem Phosphor wie Phosphine, Phosphite und Phosphonite, Zitronensäuren und Zitronensäurederivate, wie Isopropylcitrat, Endiol-Gruppen enthaltende Verbindungen, sogenannte Reduktone, wie die Ascorbinsäure und ihre Derivate, wie Ascorbinsäurepalmitat, Organoschwefelverbindungen, wie die Ester der 3,3'-Thiodipropionsäure mit C1-18-Alkanolen, insbesondere C10-18-Alkanolen, Metallionen-Desaktivatoren, die in der Lage sind, die Autooxidation katalysierende Metallionen, wie z.B. Kupfer, zu komplexieren, wie Nitrilotriessigsäure und deren Abkömmlinge und ihre Mischungen. Antioxidantien können in den Formulierungen in Mengen bis 35 Gew.-%, vorzugsweise bis 25 Gew.-%, besonders bevorzugt von 0,01 bis 20 und insbesondere von 0,03 bis 20 Gew.-% enthalten sein.
  • Eine weitere Klasse bevorzugt einsetzbarer Stabilisierungsmittel sind die UV-Absorber. UV-Absorber können die Lichtbeständigkeit der Rezepturbestandteile verbessern. Darunter sind organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, wie beispielsweise das wasserlösliche Benzolsulfonsäure-3-(2H-benzotriazol-2-yl)-4-hydroxy-5-(methylpro-pyl)-mononatriumsalz (Cibafast® H), in 3-Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet. Besondere Bedeutung haben Biphenyl- und vor allem Stilbenderivate, die kommerziell als Tinosorb® FD oder Tinosorb® FR ex Ciba erhältlich sind. Als UV-B-Absorber sind zu nennen 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methylbenzyliden)campher; 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4-(Dimethylamino)benzoesäure-2-octyl-ester und 4-(Dimethylamino)benzoesäureamylester; Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäurepropylester, 4-Methoxyzimtsäureisoamylester, 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Octocrylene); Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropyl-benzylester, Salicylsäurehomomenthylester; Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon; Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester; Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin und Octyl Triazon oder Dioctyl Butamido Triazone (Uvasorb® HEB); Propan-1,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4'methoxy-phenyl)propan-1,3-dion; Ketotricyclo(5.2.1.0)decan-Derivate. Weiterhin geeignet sind 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze; Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und ihre Salze; Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornylidenmethyl)benzol-sulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
  • Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion, 4-tert.-Butyl-4'-methoxydibenzoylmethan (Parsol 1789), 1-Phenyl-3-(4'-isopropylphenyl)-propan-1,3-dion sowie Enaminverbindungen. Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse, vorzugsweise nanoisierte Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente bereits für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. Vorzugsweise wird mikronisiertes Zinkoxid verwendet.
  • UV-Absorber können in den Wasch- oder Reinigungsmittelzusammensetzungen in Mengen bis 5 Gew.-%, vorzugsweise bis 3 Gew.-%, besonders bevorzugt von 0,01 bis 2,0 und insbesondere von 0,03 bis 1 Gew.-% enthalten sein.
  • Eine weitere bevorzugt einzusetzende Klasse von Stabilisierungsmitteln sind die Fluoreszenzfarbstoffe. Zu ihnen zählen die 4,4'-Diamino-2,2'-stilbendisulfonsäuren (Flavonsäuren), 4,4'-Distyrylbiphenylen, Methyl-umbelliferone, Cumarine, Dihydrochinolinone, 1,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Hetero-cyclen substituierten Pyrenderivate. Von besonderer Bedeutung sind dabei die Sulfonsäuresalze der Diaminostilben-Derivate, sowie polymere Fluoreszenzstoffe.
  • Fluoreszenzstoffe können in den Formulierungen in Mengen bis 5 Gew.-%, vorzugsweise bis 1 Gew.-%, besonders bevorzugt von 0,01 bis 0,5 und insbesondere von 0,03 bis 0,1 Gew.-% enthalten sein.
  • In einer bevorzugten Ausführungsform werden die vorgenannten Stabilisierungsmittel in beliebigen Mischungen eingesetzt. Die Stabilisierungsmittel werden in Mengen bis 40 Gew.-%, vorzugsweise bis 30 Gew.-%, besonders bevorzugt von 0,01 bis 20 Gew.-%, insbesondere von 0,02 bis 5 Gew.-% eingesetzt.
  • Wie bereits weiter oben erwähnt, können erfindungsgemäße portionierte Wasch- oder Reinigungsmittelzusammensetzungen so bereitgestellt werden, daß die Verpackung einerseits wasserlöslich und andererseits dicht schließend, d.h. zur Umgebung hin abgeschlossen ist. Dabei lassen sich erfindungsgemäß zwei Ausführungsformen verwirklichen:
  • So entspricht es einer bevorzugten Ausführungsform der Erfindung, daß der/die Behälter abgeschlossen ist/sind und wenigstens ein mit der Wasch- oder Reinigungsmittelzusammensetzung nicht reagierendes Gas enthält/enthalten, weiter bevorzugt in einer Menge enthält/enthalten, daß der Gesamtdruck innerhalb des/der abgeschlossenen Behälter(s) über dem Außendruck liegt, noch weiter bevorzugt um mindestens 1 mbar über dem Außendruck liegt. Ganz besonders bevorzugte Ausführungsformen dieser Portionen gemäß der Erfindung enthalten wenigstens ein mit der Wasch- oder Reinigungsmittelzusammensetzung nicht reagierendes Gas in einer solchen Menge, daß der Gesamtdruck innerhalb der abgeschlossenen Behälter um mindestens 5 mbar, noch weiter bevorzugt um mindestens 10 mbar, ganz besonders bevorzugt im Bereich von 10 mbar bis 50 mbar über dem Außendruck liegt. Ganz besonders im Fall der bevorzugten Ausführungsformen mit deutlich über dem Außendruck liegenden Gesamtdruck innerhalb der Behälter kann das optische Erscheinungsbild, insbesondere von Folienbeuteln deutlich verbessert werden. Die entsprechend verpackten Zusammensetzungen weisen eine erhöhte Eigenstabilität auf und vermitteln den Eindruck eines prall gefüllten, "kraftvollen" Mittels. Im Zusammenhang mit der vorliegenden Erfindung wird unter "Außendruck" der Druck verstanden, der auf der Umgebungsseite der Behälter herrscht und auf das Äußere der Behälter wirkt, und zwar zum Zeitpunkt des Befüllens der Behälter mit dem jeweiligen wenigstens einen Gas.
  • Erfindungsgemäß können die Behälter entweder ein oder mehrere Gase enthalten. In der Praxis ist die Beaufschlagung der Behälter mit einem Gas aufgrund der damit verbundenen geringeren Kosten bevorzugt. Bevorzugte Wasch- oder Reinigungsmittel-Portionen gemäß der Erfindung umfassen als Gas(e) wenigstens ein Gas, das gewählt ist aus der Gruppe N2, Edelgas(e), CO2, N2O, O2, H2, Luft, gasförmige Kohlenwasserstoffe, ganz besonders N2, das überall preiswert verfügbar ist. Die genannten Gase sind vorteilhafterweise gegenüber den Komponenten der waschaktiven Zubereitung inert und werden daher im Rahmen der vorliegenden Erfindung auch mitunter als "Inertgase" bezeichnet.
  • Gemäß einer weiteren, ebenfalls bevorzugten Ausführungsform ist/sind der/die Behälter abgeschlossen und enthalten wenigstens eine Substanz, die bei Reaktion mit Wasser ein mit der/den waschaktiven Zubereitung(en) nicht reagierendes Gas in einer Menge freisetzt, daß der Gesamtdruck innerhalb der geschlossenen Behälter ansteigt. Von besonderem Vorteil sind solche Portionen, in denen die in dem/den Behälter(n) enthaltene wenigstens eine Substanz bei Reaktion mit Wasser das wenigstens eine Gas in einer Menge freisetzt, daß der Gesamtdruck innerhalb der geschlossenen Behälter um mindestens 1 mbar über den Außendruck ansteigt, bevorzugt um mindestens 5 mbar, besonders bevorzugt um einen Wert im Bereich von 5 bis 50 mbar höher liegt als der Außendruck. Diese Ausführungsform ist von besonderem Vorteil dahingehend, daß ihre Herstellung gegenüber derjenigen Ausführungsform, in der das Gas im abgeschlossenen Behälter enthalten ist, stark vereinfacht ist, da nur die wenigstens eine Substanz zugegeben werden muß, die bei Kontakt mit Feuchtigkeit/Wasser im abgeschlossenen Behälter wenigstens ein Gas erzeugt. Weiter wird etwaige, in den Behälter eingedrungene Feuchtigkeit gleich von der zur Reaktion mit Wasser befähigten Substanz aufgenommen und umgesetzt und steht daher für eine Verschlechterung der Qualität der Komponenten der Wasch- oder Reinigungsmittelzusammensetzung nicht mehr zur Verfügung. Denkbar sind auch Mischformen der Portionen, in denen von Anfang an sowohl (wenigstens) ein Gas im Behälter ist als auch eine mit Wasser zur Reaktion befähigte Substanz enthalten ist.
  • Gemäß einer bevorzugten Ausführungsform der Erfindung ist die mit Wasser ein Gas freisetzende Substanz Bestandteil der Wasch- oder Reinigungsmittelzusammensetzung und ist - noch mehr bevorzugt - eine hygroskopische Substanz, die mit den Komponenten der Wasch- oder Reinigungsmittelzusammensetzung verträglich ist. Vorzugsweise wird eine derartige Substanz getrennt von der erfindungsgemäßen flüssigen Wasch- oder Reinigungsmittelzusammensetzung in den wasserlöslichen oder wasserdispergierbaren Behälter dosiert, wobei dieser Behälter vorzugsweise bereits wenige Sekunden, insbesondere innerhalb von 10 Sekunden, nach dem Kontakt der gasfreisetzenden Substanz mit der Reinigungsmittelzusammensetzung verschlossen wird. Die Freisetzung des Gases erhöht dann den Innendruck innerhalb der Behälter auf einen Wert oberhalb des Atmosphärendrucks und erzielt so die oben genannten Vorteile.
  • Beispiele solcher Substanzen sind, ohne daß dies als beschränkend zu verstehen ist, Substanzen, die gewählt sind aus der Gruppe gebundenes Wasserstoffperoxid enthaltende Substanzen, -O-O- Gruppen enthaltende Substanzen, O-C-O- Gruppen enthaltende Substanzen, Hydride und Carbide, weiter bevorzugt eine Substanz ist, die gewählt ist aus der Gruppe Percarbonate (besonders bevorzugt Natriumpercarbonat), Persulfate, Perborate, Persäuren, MAMBH4, worin MA für ein Alkalimetall (besonders bevorzugt für Li oder Na) steht (beispielsweise LiAlH4, NaBH4, NaAlH4) und MB für B oder Al steht, oder MI 2C2 oder MIIC2, worin MI für ein einwertiges Metall und M" für ein zweiwertiges Metall steht (beispielsweise CaC2).

Claims (19)

  1. Portionierte, flüssige, Wasch- oder Reinigungsmittelzusammensetzung in einem wasserlöslichen oder wasserdispergierbaren Behälter, umfassend eine wasserarme Matrix und darin dispergiertes Phosphat, dadurch gekennzeichnet, daß bezogen auf das Gesamtgewicht des dispergierten Phosphats mindestens 10 Gew.-% des dispergierten Phosphats eine Beschichtung aufweisen.
  2. Wasch- oder Reinigungsmittelzusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß bezogen auf das Gesamtgewicht des dispergierten Phosphats mindestens 30 Gew.-%, bevorzugt mindestens 50 Gew.-%, besonders bevorzugt mindestens 70 Gew.-% und insbesondere mindestens 90 Gew.-% eine Beschichtung aufweisen.
  3. Wasch- oder Reinigungsmittelzusammensetzung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Beschichtung mindestens eine Substanz ausgewählt aus der Gruppe der wasserlöslichen organischen Polymere, bevorzugt der wasserlöslichen organischen Homo- und/oder Copolymere, besonders bevorzugt aus der Gruppe der wasserlöslichen Homopolymere, insbesondere bevorzugt aus der Gruppe der Polyethylenglycole und/oder Polypropylenglycole und insbesondere aus der Gruppe der Polyethylenglycole und/oder Poylpropylenglycole mit einem Molekulargewicht oberhalb 2000, enthält.
  4. Wasch- oder Reinigungsmittelzusammensetzung nach Ansprüche 3, dadurch gekennzeichnet, daß das die Substanz einen Schmelzpunkt oberhalb 30°C, vorzugsweise oberhalb 60°C, besonders bevorzugt oberhalb 90°C und insbesondere oberhalb 120°C aufweist.
  5. Wasch- oder Reinigungsmittelzusammensetzung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Gewichtsanteil des/der Beschichtunngssubstanz(en) am Gesamtgewicht des beschichteten dispergierten Phosphats zwischen 0,5 und 15 Gew.-%, vorzugsweise zwischen 1 und 12 Gew.-% und insbesondere zwischen 2 und 8 Gew.-% beträgt/betragen.
  6. Wasch- und Reinigungsmittelzusammensetzung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Gesamtphosphatgehalt der Wasch- und Reinigungsmittelzusammensetzung zwischen 30 und 70 Gew.-%, vorzugsweise zwischen 35 und 65 Gew.-%, besonders bevorzugt zwischen 40 und 60 Gew.-% und insbesondere zwischen 45 und 55 Gew.-%, jeweils bezogen auf das Gesamtgewicht der flüssigen Wasch- und Reinigungsmittelzusammensetzung, ohne Berücksichtigung des wasserlöslichen oder wasserdispergierbaren Behälter, beträgt.
  7. Wasch- und Reinigungsmittel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das dispergierte Phosphat Polyphosphat(e), bevorzugt Tripolyphosphat(e), besonders bevorzugt Natrium- und/oder Kaliumtripolyphosphat, umfaßt.
  8. Wasch- oder Reinigungsmittelzusammensetzung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das dispergierte Phosphat Natriumtripolyphosphat umfaßt und der Phase-I Anteil des dispergierten Natriumtripolyphosphats bezogen auf das Gesamtgewicht des dispergierten Natriumtripolyphosphats weniger als 25 Gew.-%, bevorzugt weniger als 20 Gew.-%, besonders bevorzugt weniger als 16 Gew.-%, ganz besonders bevorzugt weniger als 12 Gew.-% und insbesondere weniger als 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht des dispergierten Natriumtripolyphosphats, beträgt.
  9. Wasch- oder Reinigungsmittelzusammensetzung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das dispergierte Phosphat einen Hydratwassergehalt von 0,5 bis 26 Gew.-%, vorzugsweise von 1 bis 24 Gew.-% und insbesondere von 2 bis 20 Gew.-%, jeweils bezogen auf das Gesamtgewicht der dispergierten hydratisierten Phosphats, aufweist.
  10. Wasch- oder Reinigungsmittelzusammensetzung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß mindestens 70 Gew.-%, vorzugsweise mindestens 80 Gew.-%, bevorzugt mindestens 85 Gew.-%, besonders bevorzugt mindestens 90 Gew.-% und insbesondere mindestens 95 Gew.-% des dispergierten Phosphats Teilchengrößen unterhalb 200 µm, vorzugsweise unterhalb 160 µm, besonders bevorzugt unterhalb 120 µm und insbesondere unterhalb 100 µm, aufweisen.
  11. Wasch- oder Reinigungsmittelzusammensetzung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Wasch- oder Reinigungsmittelzusammensetzung einen Gehalt an freiem, d.h. nicht in Form von Hydratwasser und/oder Konstitutionswasser vorliegendem Wasser zwischen 0,1 und 6 Gew.-%, vorzugsweise zwischen 0,1 und 5 Gew.-%, besonders bevorzugt zwischen 0,1 und 4 Gew.-% und insbesondere zwischen 0,1 und 3 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Wasch- und Reinigungsmittels, ohne Berücksichtigung des wasserlöslichen oder wasserdispergierbaren Behälter, aufweist.
  12. Wasch- oder Reinigungsmittelzusammensetzung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß es nichtwässrige(s) Lösungsmittel enthält, wobei das/die Lösungsmittel vorzugsweise ausgewählt ist/sind aus der Gruppe der bei Raumtemperatur flüssigen nichtionischen Tenside, der Polyethylenglycole, Polypropylenglycole, Glycerin, Glycerincarbonat, Triacetin, Ethylenglycol, Propylengylcol, Propylencarbonat, Hexylenglycol, Ethanol sowie n-Propanol und/oder iso-Propanol.
  13. Wasch- oder Reinigungsmittelzusammensetzung nach Anspruch 12, dadurch gekennzeichnet, daß der Gehalt der Wasch- oder Reinigungsmittelzusammensetzung an nichtwässrigen Lösungsmittel(n) 0,1 bis 70 Gew.-%, vorzugsweise von 0,5 bis 60 Gew.-%, besonders bevorzugt von 1 bis 50 Gew.-%, ganz besonders bevorzugt von 2 bis 40 Gew.-% und insbesondere von 2,5 bis 30 Gew.-%, jeweils bezogen auf die gesamte Zusammensetzung, beträgt.
  14. Wasch- oder Reinigungsmittelzusammensetzung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß der wasserlösliche oder wasserdispergierbare Behälter eine Folie und/oder ein Spritzgußteil und/oder ein Blasformteil und/oder ein Tiefziehteil umfaßt.
  15. Wasch- oder Reinigungsmittelzusammensetzung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß der wasserlösliche oder wasserdispergierbare Behälter ein oder mehrere wasserlösliche(s) Polymer(e), vorzugsweise ein Material aus der Gruppe (gegebenenfalls acetalisierter) Polyvinylalkohol (PVAL), Polyvinylpyrrolidon, Polyethylenoxid, Gelatine, Cellulose, und deren Derivate und deren Mischungen umfaßt.
  16. Wasch- oder Reinigungsmittelzusammensetzung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß der wasserlösliche oder wasserdispergierbare Behälter einen Polyvinylalkohol umfaßt, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt.
  17. Wasch- oder Reinigungsmittelzusammensetzung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß der wasserlösliche oder wasserdispergierbare Behälter einen Polyvinylalkohol umfaßt, dessen Molekulargewicht im Bereich von 10.000 bis 100.000 gmol-1, vorzugsweise von 11.000 bis 90.000 gmol-1, besonders bevorzugt von 12.000 bis 80.000 gmol-1 und insbesondere von 13.000 bis 70.000 gmol-1 liegt.
  18. Wasch- oder Reinigungsmittelzusammensetzung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß der wasserlösliche oder wasserdispergierbare Behälter ein Folienbeutel ist und die Folie eine Dicke von 1 bis 150 µm, vorzugsweise von 2 bis 100 µm, besonders bevorzugt von 5 bis 75 µm und insbesondere von 10 bis 50 µm, aufweist.
  19. Wasch- oder Reinigungsmittelzusammensetzung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß der wasserlösliche oder wasserdispergierbare Behälter einen Spritzguß- oder Blasform- oder Tiefziehkörper umfaßt, dessen Wand eine Dicke von 50 bis 300 µm, vorzugsweise von 70 bis 200 µm und insbesondere von 80 bis 150 µm aufweist.
EP03793670A 2002-08-14 2003-08-01 Portionierte wasch- oder reinigungsmittel mit phosphat i Expired - Lifetime EP1529099B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10237199 2002-08-14
DE10237199A DE10237199B4 (de) 2002-08-14 2002-08-14 Portionierte Wasch- oder Reinigungsmittel mit Phosphat I
PCT/EP2003/008533 WO2004022690A1 (de) 2002-08-14 2003-08-01 Portionierte wasch- oder reinigungsmittel mit phosphat i

Publications (2)

Publication Number Publication Date
EP1529099A1 EP1529099A1 (de) 2005-05-11
EP1529099B1 true EP1529099B1 (de) 2007-04-11

Family

ID=30775258

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03793670A Expired - Lifetime EP1529099B1 (de) 2002-08-14 2003-08-01 Portionierte wasch- oder reinigungsmittel mit phosphat i

Country Status (5)

Country Link
EP (1) EP1529099B1 (de)
AT (1) ATE359355T1 (de)
AU (1) AU2003255345A1 (de)
DE (2) DE10237199B4 (de)
WO (1) WO2004022690A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10237200A1 (de) 2002-08-14 2004-03-04 Henkel Kgaa Portionierte Wasch- oder Reinigungsmittelzusammensetzung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA663029B (de) * 1965-06-25
US5004556A (en) * 1987-06-17 1991-04-02 Colgate-Palmolive Company Built thickened stable non-aqueous cleaning composition and method of use
CA2175456C (en) * 1993-12-30 2005-05-17 Keith E. Olson Method of making highly alkaline solid cleaning compositions
DE19941480B4 (de) * 1999-09-01 2005-06-02 Henkel Kgaa Wasch- oder Reinigungsmittel-Portion mit wasserdurchlässiger Umfassung

Also Published As

Publication number Publication date
EP1529099A1 (de) 2005-05-11
DE10237199B4 (de) 2007-03-01
DE50307030D1 (de) 2007-05-24
ATE359355T1 (de) 2007-05-15
DE10237199A1 (de) 2004-02-26
WO2004022690A1 (de) 2004-03-18
AU2003255345A1 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
DE102004030318B4 (de) Mehrkammer-Pouch
EP1776448B2 (de) Verfahren zur herstellung portionierter wasch- oder reinigungsmittel
WO2006032371A1 (de) Reinigungsmittelkomponente
US20050187137A1 (en) Portioned cleaning agents or detergents containing phosphate
US20050181962A1 (en) Portioned detergent compositions comprising phosphate III
US20050187136A1 (en) Portioned detergent compositions comprising phosphate II
EP1802736A1 (de) Wasch- oder reinigungsmittel
EP1572858B1 (de) Grossvolumige wasch- oder reinigungsmittelformk rper
EP1529100B1 (de) Portionierte wasch- oder reinigungsmittel mit phosphat ii
DE10313453A1 (de) Portionierte Wasch- oder Reinigungsmittelzusammensetzung
EP1529096B1 (de) Portionierte wasch- oder reinigungsmittel mit phosphat iii
EP1529099B1 (de) Portionierte wasch- oder reinigungsmittel mit phosphat i
DE102004040330A1 (de) Beschichteter Wasch- oder Reinigungsmittelformkörper
WO2006063724A1 (de) Schneidwerkzeug für folienbahnen
WO2006066721A1 (de) Dosiereinheit für wasch- oder reinigungsmittel
DE10259848A1 (de) Portioniertes Wasch- oder Reinigungsmittel
DE10310932A1 (de) Portioniertes Wasch- oder Reinigungsmittel
EP1758726A1 (de) Verfahren zur herstellung von portionspackungen aus wasserlöslichem poylmerfilm für wasch-oder reinigungsaktive substanzen
DE10258585A1 (de) Portioniertes Wasch-oder Reinigungsmittel
EP1859018A1 (de) Mehrphasiger wasch- oder reinigungsmittelformkörper
DE10258584A1 (de) Portioniertes Wasch-oder Reinigungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041231

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50307030

Country of ref document: DE

Date of ref document: 20070524

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070911

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070411

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

26N No opposition filed

Effective date: 20080114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070712

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070411

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071012