EP1554487A1 - Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine - Google Patents

Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine

Info

Publication number
EP1554487A1
EP1554487A1 EP03808667A EP03808667A EP1554487A1 EP 1554487 A1 EP1554487 A1 EP 1554487A1 EP 03808667 A EP03808667 A EP 03808667A EP 03808667 A EP03808667 A EP 03808667A EP 1554487 A1 EP1554487 A1 EP 1554487A1
Authority
EP
European Patent Office
Prior art keywords
fuel
injection device
valve element
fuel injection
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03808667A
Other languages
English (en)
French (fr)
Inventor
Friedrich Boecking
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1554487A1 publication Critical patent/EP1554487A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • F02M45/086Having more than one injection-valve controlling discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/46Valves, e.g. injectors, with concentric valve bodies

Definitions

  • the invention relates to a fuel injection device for an internal combustion engine, with a housing, with at least one valve element which cooperates with a valve seat at an injection end of the housing and which is assigned to at least two fuel outlet channels on the housing side.
  • Such a fuel injection device is known from DE 40 23 223 AI. This shows an injector with two coaxial valve needles. The valve needles are pressed against a valve seat by a helical compression spring. From this they are pushed away against the force of the helical compression springs when the pressure of the fuel is increased in the area of the valve seat.
  • Valve elements are arranged downstream of the valve seat and start from a blind hole.
  • the inner valve element thus works together with a "blind hole nozzle”.
  • the outer valve element is located in close proximity to the fuel outlet opening. This is called “seat hole nozzle” designated .
  • the object of the present invention is to develop a fuel injection device of the type mentioned at the outset such that the fuel distribution over the individual spray holes is as symmetrical as possible and the exhaust gas behavior of the internal combustion engine is improved.
  • blind-hole nozzles can be realized in the case of fuel outlet channels, which are arranged at any desired locations on the fuel injection device. So far, blind hole nozzles have been limited to the realization with a central blind hole in the housing of the fuel injection device. However, since an annular groove can be attached at almost any point, you now have a significantly larger free space in the positioning of the fuel outlet channels.
  • the advantages of a blind hole nozzle in the fuel injection device according to the invention can be realized on any fuel outlet channels, at the same time the disadvantages of blind hole nozzles are reduced, since the flow space can be kept comparatively small depending on the cross-sectional area of the annular groove.
  • the annular groove enables an extremely symmetrical distribution of the fuel onto the individual, arbitrarily positionable fuel outlet channels of a fuel injection device, and at the same time improves the emission behavior of the internal combustion engine.
  • the annular groove be formed in the housing. Due to the relatively large wall thickness of the housing in the area of the injection end, such an annular groove does not result in any loss of strength.
  • annular groove can also be formed both in the housing and another in the valve element.
  • a relatively large overall cross-section can be realized, which connects the fuel outlet channels to one another, with at the same time little loss of strength.
  • the annular groove has an approximately semicircular cross section, it can be introduced easily. However, it can also have an asymmetrical cross section with an overall lower curvature upstream of the fuel outlet channel than downstream. This could, for example, lead to a half-drop-shaped cross section, which has advantages in terms of flow technology.
  • fuel injection device which has at least two coaxial valve elements, the annular groove being present in the region of the fuel outlet channels of the radially outer valve element, and the fuel outlet channels of the radially inner valve element starting from a central blind hole which is formed at the injection end of the housing.
  • Figure 1 is a schematic representation of a
  • FIG. 2 shows a partial section through one of the fuel injection devices from FIG. 1;
  • FIG. 3 shows a detailed illustration III of the fuel injection device from FIG. 2;
  • Figure 4 is a representation similar to Figure 3 of a modified embodiment of a fuel injection device;
  • FIG. 5 shows an illustration similar to FIG. 3 of a further modified exemplary embodiment of a fuel injection device
  • FIG. 6 shows a representation similar to FIG. 3 of a further modified exemplary embodiment of a
  • a fuel system carries one
  • the fuel system 10 includes a fuel tank
  • Internal combustion engine is driven. It compresses the fuel to a very high pressure and prompts it to a fuel manifold 20 in which the fuel is stored under high pressure.
  • a plurality of fuel injection devices 22 are connected to the fuel rail 20. For this purpose, they have a high-pressure connection 24.
  • the fuel injection devices 22 inject the fuel directly into the combustion chambers 26 assigned to them.
  • the operation the internal combustion engine in general, the fuel system 10 and in particular the fuel injection devices 22 is controlled or regulated by a control and regulating device 28.
  • the fuel injection device 22 comprises an elongate housing 30.
  • An elongate recess 32 is present in this.
  • Two valve elements 34 and 36 are arranged coaxially to one another in the recess. These are acted upon by helical compression springs 38 and 40 in the direction of the lower end of the recess 32 in FIG. 2.
  • the lower end of the housing 30 in FIG. 2 bears the reference number 41 and is also referred to below as the “injection end” and is shown in more detail in FIGS. 3 and 4.
  • the inner valve element 34 tapers conically at its lower end in FIGS. 2 and 3. It has two areas of different conicity, between which a sealing edge 42 is formed. The area radially outward from the sealing edge 42 forms a pressure surface 44, the function of which will be discussed in more detail below.
  • the sealing edge 42 works together with a valve seat 46 on the house side.
  • the radially outer valve element 36 is tubular. It has a conical shoulder on its outer lateral surface approximately at the height of its axial center, which forms a pressure surface 48 (FIG. 2). In the area of the pressure surface 48 there is an annular extension in the recess 32 available, which represents a pressure chamber 50. This is connected to the high-pressure connection 24 via a high-pressure duct 52. Above the pressure chamber 50, the inner diameter of the recess 32 in the housing 30 corresponds approximately to the outer diameter of the outer valve element 36. In this way, the latter is guided in the housing 30 in a fluid-tight and sliding manner. Below the pressure chamber 50, the valve element 36 has a slightly smaller outer diameter than the inner diameter of the recess 32. As a result, an annular flow channel 54 is formed between the outer valve element 36 and the recess 32, which leads to the injection end 41.
  • the outer valve element 36 is guided in a sliding fit by the inner valve element 34. Its lower end in FIGS. 2 and 3 also tapers conically with two areas of different conicity. Between these two areas of different conicity there is a sealing edge 56 which, like the valve element 34, cooperates with a valve seat 58. The conical area radially outside of the sealing edge 56 in turn represents a pressure surface 60, the function of which is explained below.
  • the recess 32 in the region of the injection end 41 ends in a central blind hole 62. From this, a plurality of fuel outlet channels 6 extend radially outward. These are evenly distributed over the circumference at the injection end 41 of the housing 30.
  • a circumferential annular groove 66 which is concentric with the longitudinal axis of the recess 32, is introduced into the inner wall of the recess 32.
  • This has a circular segment-shaped cross section.
  • a plurality of fuel outlet channels 68 extend radially outward from the circumferential annular groove 66. These are likewise distributed over the circumference of the injection end 41 of the housing 30.
  • the circumferential annular groove 66 is particularly well visible in Figure 4, which the
  • Injection end 41 of the housing 30 shows with the omission of the two valve elements 34 and 36.
  • the fuel injection device 22 shown in FIGS. 2 to 4 operates as follows: at low and medium loads, it is sufficient if relatively little fuel is injected into the combustion chamber 26 by the fuel injection device 22. In this case, the pressure in the fuel rail 20 is regulated to a comparatively low level in a manner not of interest here. If an injection is to take place, the high-pressure connection 24 is connected to the fuel collecting line 20 by a control valve (not shown in FIG. 1). As a result, the pressure in the pressure chamber 50 rises, and subsequently also in the annular flow channel 54. The hydraulic force acting on the pressure surface 60 thus increases.
  • the fuel pressure is selected so high that the hydraulic force acting on the pressure surface 60 is sufficient to push the outer valve element 36 upward against the force of the helical compression spring 40, so that the sealing edge 56 lifts off the valve seat 58.
  • fuel can get into the circumferential annular groove 66 and from there via the fuel outlet channels 68 into the combustion chamber 26 assigned to the fuel injection device 22.
  • the pressure in the fuel collecting line 20 is, however, selected only so high that the pressure on the pressure surface 48 when the valve element 36 is open hydraulic force acting on the inner valve element 34 is not sufficient to lift the inner valve element 34 from the valve seat 46.
  • valve element 36 can be connected to a control chamber which is delimited by a pressure surface, the force resultant of which acts in the closing direction. If the pressure in the control chamber is briefly reduced, the valve element 36 is lifted off the valve seat due to the high pressure still present on the surface 60, so that fuel can flow out.
  • the circumferential annular groove 66 realizes the positive properties of a blind hole nozzle: in particular, the communication of the individual fuel outlet channels 68 distributed over the circumference leads to a relatively uniform spitting image.
  • Fuel is injected on the one hand through the fuel outlet channels 68 and on the other hand additionally through the fuel outlet channels 64.
  • the pressure m of the fuel manifold 20 is increased, which is expressed in a corresponding increase in the pressure in the pressure chamber 50, in the annular flow channel 54, and on the pressure surfaces 60 and 48 of the valve elements 36 and 34 when the control valve is open.
  • the pressure is now selected so high that the hydraulic force acting on the pressure surface 48 of the valve element 34 is sufficient to lift the valve element 34 against the force of the helical compression spring 38 from the valve seat 46. Because of the gap that now arises between the sealing edge 42 and the valve seat 46, the fuel can flow into the central blind hole 62 and from there via the fuel Exit channels 64 exit into the combustion chamber 26. At the same time, of course, fuel also escapes into the combustion chamber 26 via the circumferential annular groove 66 and the fuel outlet channels 6.
  • FIG. 5 A possible variant of a fuel injection device 22 is shown in FIG. 5.
  • areas and elements which have functions equivalent to areas and elements of the exemplary embodiment shown in FIGS. 2 to 4 have the same reference numerals and are not explained again in detail.
  • the difference between the fuel injection device 22 shown in FIG. 5 and the fuel injection device 22 shown in FIGS. 2 to 4 relates to the position of the circumferential annular groove 66. In the embodiment shown in FIG. 5, this is not in the inner wall of the recess 32 of the housing 30 introduced, but in the conical end surface of the outer valve element 36 lying radially inward from the sealing edge 56.
  • FIG. 6 A further modified embodiment of a fuel injection device 22 is shown in FIG. 6. Again, such elements and
  • the exemplary embodiment shown in FIG. 6 consists of a combination of a fuel injection device 22 according to FIGS. 2 to 4 on the one hand, and a fuel injection device 22 according to FIG. 5 on the other hand.
  • Injection device 22 namely has two circumferential annular grooves 66a and 66b, one in the inner wall of the recess 32 of the housing 30, whereas the other is arranged in the conical surface of the outer valve element 36 lying radially inward from the sealing edge 56. In this way, an almost circular cross-section is created from which the fuel outlet channels 64 run.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Eine Kraftstoff-Einspritzvorrichtung (22) für eine Brennkraftmaschine umfasst ein Gehäuse (30) und mindestens ein Ventilelement (34, 36). Dieses arbeitet mit einem Ventilsitz (46, 58) an einem Einspritzende des Gehäuses (30) zusammen. Dem Ventilelement (34, 36) sind mehrere gehäuseseitige Kraftstoff-Austrittskanäle (64, 68) zugeordnet. Es wird vorgeschlagen, dass im Bereich des Beginns der Kraftstoff-Austrittskanäle (68) ein Strömungsraum vorhanden ist, welcher durch mindestens eine zur Längsachse des Ventilelements (36) konzentrische Ringnut (66) gebildet wird.

Description

Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine
Stand der Technik
Die Erfindung betrifft eine Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine, mit einem Gehäuse, mit mindestens einem Ventilelement, welches mit einem Ventilsitz an einem Einspritzende des Gehäuses zusammenarbeitet und dem mindestens zwei gehäuseseitige Kraftstoff-Austrittskanäle zugeordnet ist.
Eine solche Kraftstoff-Einspritzvorrichtung ist aus der DE 40 23 223 AI bekannt. Diese zeigt einen Injektor mit zwei koaxialen Ventilnadeln. Die Ventilnadeln werden jeweils von einer Schraubendruckfeder gegen einen Ventilsitz gedrückt. Von diesem werden sie gegen die Beaufschlagungskraft der Schraubendruckfedern weggedrückt, wenn der Druck des Kraftstoffs im Bereich des Ventilsitzes erhöht wird.
Die Kraftstoff-Austrittsöffnungen des inneren
Ventilelements sind stromabwärts vom Ventilsitz angeordnet und gehen von einem Sackloch aus. Das innere Ventilelement arbeitet also mit einer "Sacklochdüse" zusammen. Das äußere Ventilelement hat seinen Sitz in unmittelbarer Nähe zu der Kraftstoff-Austrittsöffnung. Dieses wird als "Sitzlochdüse" bezeichnet .
Aufgabe der vorliegenden Erfindung ist es, eine Kraftstoff- Einspritzvorrichtung der eingangs genannten Art so weiterzubilden, dass die Kraftstoffverteilung auf die einzelnen Spritzlöcher möglichst symmetrisch ist und das Abgasverhalten der Brennkraftmaschine verbessert wird.
Diese Aufgabe wird bei einer Kraftstoff- Einspritzvorrichtung der 'eingangs genannten Art- dadurch gelöst, dass die einem Ventilelement (36) zugeordneten Kraftstoff-Austrittskanäle (68) durch eine Ringnut (66) fluidisch miteinander verbunden sind.
Vorteile der Erfindung
Bei der erfindungsgemäßen Kraftstoff-Einspritzvorrichtung können die Vorteile von Sacklochdüsen bei Kraftstoff- Austrittskanälen realisiert werden, welche an beliebigen Stellen der Kraftstoff-Einspritzvorrichtung angeordnet sind. Bisher waren Sacklochdüsen auf die Realisierung mit einem zentrischen Sackloch im Gehäuse der Kraftstoff- Einspritzvorrichtung beschränkt. Da eine Ringnut jedoch an beinahe jeder beliebigen Stelle anbringbar ist, erhält, man nun einen deutlich größeren Freiraum bei der Positionierung der Kraftstoff-Austrittskanäle.
Darüber hinaus werden zwar zum einen die Vorteile einer Sacklochdüse bei der erfindungsgemäßen Kraftstoff- Einspritzvorrichtung an beliebigen Kraftstoff- Austrittskanälen realisierbar, gleichzeitig werden jedoch die Nachteile von Sacklochdüsen reduziert, da der Strömungsraum je nach Querschnittsfläche der Ringnut vergleichsweise klein gehalten werden kann. Durch die Ringnut wird eine äußerst symmetrische Kra tstoffverteilung auf die einzelnen, beliebig positionierbaren Kraftstoff-Austrittskanäle einer Kraftstoff-Einspritzvorrichtung ermöglicht, und gleichzeitig wird das Emissionsverhalten der Brennkraftmaschine verbessert.
Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.
In einer ersten Weiterbildung wird vorgeschlagen, dass die Ringnut im Gehäuse ausgebildet ist. Aufgrund der im Bereich des Einspritzendes ohnehin relativ großen Wanddicke des Gehäuses führt eine derartige Ringnut zu keinen Festigkeitseinbußen.
Möglich ist aber auch, dass die Ringnut im Ventilelement ausgebildet ist. Dort ist sie aufgrund der guten Zugänglichkeit relativ einfach und preiswert einbringbar.
Schließlich kann aber auch eine Ringnut sowohl im Gehäuse und eine weitere im Ventilelement ausgebildet werden. In diesem Fall kann ein relativ großer Gesamtquerschnitt realisiert werden, welcher die Kraftstoff-Austrittskanäle miteinander verbindet, bei gleichzeitig geringen Festigkeitseinbußen.
Wenn die Ringnut in etwa halbkreisförmigen Querschnitt aufweist, ist sie einfach einbringbar. Sie kann aber auch einen asymmetrischen Querschnitt aufweisen mit einer stromaufwärts vom Kraftstoff-Austrittskanal insgesamt geringeren Krümmung als stromabwärts. Dies könnte beispielsweise zu einem halbtropfenförmigen Querschnitt führen, was strömungstechnisch Vorteile hat. Besonders bevorzugt ist j ene Kraftstoff- Einspritzvorrichtung, welche mindestens zwei koaxiale Ventilelemente aufweist, wobei die Ringnut im Bereich der Kraftstoff-Austrittskanäle des radial äußeren Vent ilelements vorhanden ist , und wobei die Kraftstoff- Austrittskanäle des radial inneren Ventilelements von einem zentrischen Sackloch ausgehen, welches am Einspritzende des Gehäuses ausgebildet ist .
Bei einer derartigen Kraftstoff-Einspritzvorrichtung weisen also im Grunde alle Kraftstoff-Austrittskanäle die Eigenschaften von Sacklochdüsen auf . Dabei arbeitet nur das radial innere Ventilelement mit einem klassischen zentrischen Sackloch zusammen, wohingegen das radial äußere Ventilelement aufgrund der Ringnut Eigenschaften einer Sacklochdüse aufweist .
Zeichnung
Nachfolgend werden besonders bevorzugte
Ausführungsbeispiele der Erfindung unter Bezugnahme auf die beiliegende Zeichnung im Detail erläutert. In der Zeichnung zeigen :
Figur 1 eine schematische Darstellung eines
KraftstoffSystems einer Brennkraftmaschine mit t mehreren Kraftstoff-Einspritzvorriehtungen;
Figur 2 einen teilweisen Schnitt durch eine der Kraftstoff-Einspritzvorrichtungen von Figur 1;
Figur 3 eine Detaildarstellung III der Kraftstoff- Einspritzvorrichtung von Figur 2; Figur 4 eine Darstellung ahnlich Figur 3 eines abgewandelten Ausfuhrungsbeispiels einer Kraftstoff-Einspritz orrichtung;
Figur 5 eine Darstellung ahnlich Figur 3 eines nochmals abgewandelten Ausfuhrungsbeispiels einer Kraftstoff-Einspritz orrichtung; und
Figur 6 eine Darstellung ahnlich Figur 3 eines nochmals abgewandelten Ausfuhrungsbeispiels einer
Kraftstoff-Einspritz orrichtung.
Beschreibung der Ausfuhrungsbeispiele
In Figur 1 tragt ein KraftstoffSystem einer
Brennkraftmaschine insgesamt das Bezugszeichen 10. Die Brennkraftmaschine selbst ist weiter im Detail nicht dargestellt .
Das KraftstoffSystem 10 umfasst einen Kraftstoffbehälter
12, aus dem eine elektrische Niederdruck-Kraftstoffpumpe 14 den Kraftstoff m eine Niederdruck-Kraftstoffleitung 16 fordert. Diese fuhrt zu einer Kraftstoff-Hochdruckpumpe 18. Bei dieser handelt es sich um eine Kolbenpumpe, welche von einer Nockenwelle (nicht dargestellt) der
Brennkraftmaschine angetrieben wird. Sie komprimiert den Kraftstoff auf einen sehr hohen Druck und fordert ihn zu einer Kraftstoff-Sammelleitung 20, in der der Kraftstoff unter hohem Druck gespeichert ist.
An die Kraftstoff-Sammelleitung 20 sind mehrere Kraftstoff- Einspritzvorrichtungen 22 angeschlossen. Hierzu verfugen diese über einen Hochdruckanschluss 24. Die Kraftstoff- Einspritzvorrichtungen 22 spritzen den Kraftstoff direkt in ihnen jeweils zugeordnete Brennraume 26 ein. Der Betrieb der Brennkraftmaschine ganz allgemein, des KraftstoffSystems 10 und insbesondere der Kraftstoff- Einspritzvorrichtungen 22 wird von einem Steuer- und Regelgerat 28 gesteuert bzw. geregelt.
Der Aufbau einer der Kraftstoff-Emspritzvorrichtungen 22 wird nun im Detail unter Bezugnahme auf die Figuren 2 bis 4 erläutert. Dabei sind in Figur 2 aus Gründen der Übersichtlichkeit nicht alle Bezugszeichen eingetragen.
Die Kraftstoff-Einspritzvorrichtung 22 umfasst ein längliches Gehäuse 30. In diesem ist eine längliche Ausnehmung 32 vorhanden. In der Ausnehmung sind koaxial zueinander zwei Ventilelemente 34 und 36 angeordnet. Diese werden von Schraubendruckfedern 38 bzw. 40 in Richtung zum in Figur 2 unteren Ende der Ausnehmung 32 beaufschlagt. Das in Figur 2 untere Ende des Gehäuses 30 trägt das Bezugszeichen 41 und wird nachfolgend auch als "Einspritzende" bezeichnet und ist in den Figuren 3 und 4 genauer dargestellt.
Das innere Ventilelement 34 lauft an seinem in den Figuren 2 und 3 unteren Ende konisch spitz zu. Dabei weist es zwei Bereiche unterschiedlicher Konizitat auf, zwischen denen eine Dichtkante 42 gebildet wird. Der Bereich radial auswärts von der Dichtkante 42 bildet eine Druckflache 44, auf deren Funktion weiter unten noch starker im Detail eingegangen werden wird. Die Dichtkante 42 arbeitet mit einem gehauseseitigen Ventilsitz 46 zusammen.
Das radial äußere Ventilelement 36 ist rohrförmig. Es weist auf seiner äußeren Mantelflache in etwa auf Hohe seiner axialen Mitte einen konischen Absatz auf, der eine Druckflache 48 bildet (Figur 2). Im Bereich der Druckflache 48 ist in der Ausnehmung 32 eine ringförmige Erweiterung vorhanden, welche einen Druckraum 50 darstellt. Dieser ist über einen Hochdruckkanal 52 mit dem Hochdruckanschluss 24 verbunden. Oberhalb des Druckraums 50 entspricht der Innendurchmesser der Ausnehmung 32 im Gehäuse 30 in etwa dem Außendurchmesser des äußeren Ventilelements 36. Dieses ist auf diese Weise im Gehäuse 30 fluiddicht und gleitend geführt. Unterhalb des Druckraums 50 hat das Ventilelement 36 einen etwas kleineren Außendurchmesser als der Innendurchmesser der Ausnehmung 32. Hierdurch wird zwischen dem äußeren Ventilelement 36 und der Ausnehmung 32 ein ringförmiger Strömungskanal 54 gebildet, welcher bis zum Einspritzende 41 führt.
Das äußere Ventilelement 36 wird im Gleitsitz vom inneren Ventilelement 34 geführt. Sein in den Figuren 2 und 3 unteres Ende verjüngt sich ebenfalls konisch mit zwei Bereichen unterschiedlicher Konizität. Zwischen diesen beiden Bereichen unterschiedlicher Konizität ist eine Dichtkante 56 vorhanden, welche analog zum Ventilelement 34 mit einem Ventilsitz 58 zusammenarbeitet. Der konische Bereich radial außerhalb von der Dichtkante 56 stellt wiederum eine Druckfläche 60 dar, deren Funktion weiter unten erläutert ist.
Die Ausnehmung 32 im Bereich des Einspritzendes 41 endet in einem zentrischen Sackloch 62. Von diesem erstrecken sich nach radial auswärts mehrere Kraftstoff-Austrittskanäle 6 . Diese sind gleichmäßig über den Umfang am Einspritzende 41 des Gehäuses 30 verteilt.
Zwischen dem Ventilsit z 46 des inneren Ventilelements 34 und dem Ventilsitz 58 des äußeren Ventilelements 36 ist in die Innenwand der Ausnehmung 32 eine umlaufende und zur Längsachse der Ausnehmung 32 konzentrische Ringnut 66 eingebracht . Diese hat kreissegmentf örmigen Querschnitt . Von der umlaufenden Ringnut 66 erstrecken sich nach radial außen mehrere Kraftstoff-Austrittskanäle 68. Diese sind ebenfalls über den Umfang des Einspritzendes 41 des Gehäuses 30 verteilt angeordnet. Die umlaufende Ringnut 66 ist besonders gut in Figur 4 sichtbar, welche das
Einspritzende 41 des Gehäuses 30 unter Weglassung der beiden Ventilelemente 34 und 36 zeigt.
Die in den Figuren 2 bis 4 dargestellte Kraftstoff- Einspritzvorrichtung 22 arbeitet folgendermaßen : Bei geringer und mittlerer Last genügt es, wenn vergleichsweise wenig Kraftstoff von der Kraftstoff- Einspritzvorrichtung 22 in den Brennraum 26 eingespritzt wird. In diesem Fall wird der Druck in der Kraftstoff- Sammelleitung 20 auf hier nicht näher interessierende Art • und Weise auf ein vergleichsweise niedriges Niveau eingeregelt. Wenn eine Einspritzung erfolgen soll, wird durch ein in Figur 1 nicht dargestelltes Steuerventil der Hochdruckanschluss 24 mit der Kraftstoff-Sammelleitung 20 verbunden. Hierdurch steigt der Druck im Druckraum 50 an, in der Folge auch im ringförmigen Strömungskanal 54. Somit steigt die an der Druckfläche 60 wirkende hydraulische Kraft.
Der Kraftstoffdruck ist dabei so hoch gewählt, dass die an der Druckfläche 60 angreifende hydraulische Kraft ausreicht, um das äußere Ventilelement 36 gegen die Beaufschlagungskraft der Schraubendruckfeder 40 nach oben zu drücken, so dass die Dichtkante 56 vom Ventilsitz 58 abhebt. Hierdurch kann Kraftstoff in die umlaufende Ringnut 66 und von dort über die Kraftstoff-Austrittskanäle 68 in den der Kraftstoff-Einspritzvorrichtung 22 zugeordneten Brennraum 26 gelangen. Der Druck in der Kraftstoff- Sammelleitung 20 ist dabei jedoch nur so hoch gewählt, dass die bei geöffnetem Ventilelement 36 an der Druckfläche 48 des inneren Ventilelements 34 angreifende hydraulische Kraft nicht ausreicht, um das innere Ventilelement 34 vom Ventilsitz 46 abzuheben.
In einem nicht dargestellten Ausfuhrungsbeispiel kann das Ventilelement 36 mit einem Steuerraum verbunden sein, welcher von einer Druckflache begrenzt wird, deren Kraftresultierende in Schließrichtung wirkt. Wenn der Druck in dem Steuerraum kurzzeitig abgesenkt wird, wird das Ventilelement 36 aufgrund des weiterhin an der Flache 60 anliegenden hohen Drucks vom Ventilsitz abgehoben, so dass Kraftstoff ausströmen kann.
Durch die umlaufende Ringnut 66 werden dabei die positiven Eigenschaften einer Sacklochduse realisiert: Insbesondere kommt es durch die Kommunikation der einzelnen über den Umfang verteilten Kraftstoff-Austrittskanale 68 zu einem relativ gleichmaßigen Spπtzbild.
Bei hohen Lasten der Brennkraftmaschine soll eine
Einspritzung von Kraftstoff zum einen durch die Kraftstoff- Austrittskanale 68 und zum anderen zusätzlich durch die Kraftstoff-Austrittskanale 64 erfolgen. Hierzu wird der Druck m der Kraftstoff-Sammelleitung 20 erhöht, was sich bei geöffnetem Steuerventil in einer entsprechenden Erhöhung des Drucks im Druckraum 50, im ringförmigen Stromungskanal 54, und an den Druckflachen 60 und 48 der Ventilelement 36 und 34 ausdruckt. Der Druck ist nun so hoch gewählt, dass die an der Druckflache 48 des Ventilelements 34 angreifende hydraulische Kraft ausreicht, um das Ventilelement 34 gegen die Beaufschlagungskraft der Schraubendruckfeder 38 vom Ventilsitz 46 abzuheben. Durch den sich nun zwischen der Dichtkante 42 und dem Ventilsitz 46 ergebenden Spalt kann der Kraftstoff in das zentrische Sackloch 62 und von dort über die Kraftstoff- Austrittskanäle 64 in den Brennraum 26 austreten. Gleichzeitig tritt natürlich auch Kraftstoff über die umlaufende Ringnut 66 und die Kraftstoff-Austrittskanäle 6. in den Brennraum 26 aus.
Eine mögliche Variante einer Kraftstoff- Einspritzvorrichtung 22 ist in Figur 5 dargestellt. In dieser tragen solche Bereiche und Elemente, welche äquivalente Funktionen zu Bereichen und Elementen des in den Figuren 2 bis 4 dargestellten Ausführungsbeispiels aufweisen, die gleichen Bezugszeichen, und sie sind nicht nochmals im Detail erläutert.
Der Unterschied der in Figur 5 dargestellten Kraftstoff- Einspritzvorrichtung 22 zu der in den Figuren 2 bis 4 dargestellten Kraftstoff-Einspritzvorrichtung 22 betrifft die Position der umlaufenden Ringnut 66. Diese ist bei der in Figur 5 dargestellten Ausführungsform nicht in die Innenwand der Ausnehmung 32 des Gehäuses 30 eingebracht, sondern in die radial innen von der Dichtkante 56 liegende konische Endfläche des äußeren Ventilelements 36.
Eine nochmals abgewandelte Ausführungsform einer Kraftstoff-Einspritzvorrichtung 22 ist in Figur 6 dargestellt. Auch hier gilt, dass solche Elemente und
Bereiche, welche äquivalente Funktionen zu Elementen und Bereichen der Figuren 2 bis 5 aufweisen, die gleichen Bezugszeichen tragen und nicht mehr im Detail erläutert sind.
Im Grunde besteht das in Figur 6 dargestellte Ausführungsbeispiel aus einer Kombination einerseits einer Kraftstoff-Einsprit zvorrichtung 22 gemäß den Figuren 2 bis 4 und andererseits einer Kraftstoff-Einspritzvorrichtung 22 gemäß Figur 5 : Bei der in Figur 6 dargestellten Kraftstoff- Einspritzvorrichtung 22 sind nämlich zwei umlaufende Ringnuten 66a und 66b vorhanden, wobei die eine in der Innenwand der Ausnehmung 32 des Gehäuses 30 vorhanden ist, wohingegen die andere in der radial innen von der Dichtkante 56 liegenden konischen Fläche des äußeren Ventilelements 36 angeordnet ist. Auf diese Weise wird ein beinahe kreisförmigen Querschnitt aufweisender Ringraum geschaffen, von dem die Kraftstoff-Austrittskanäle 64 aus verlaufen.

Claims

Ansprüche
1. Kraftstoff-Einspritzvorrichtung (22) für eine Brennkraftmaschine, mit einem Gehäuse (30), mit mindestens einem Ventilelement (36), welches mit einem Ventilsitz (58) an einem Einspritzende des Gehäuses (30) zusammenarbeitet und dem mindestens zwei gehäuseseitige Kraftstoff- Austrittskanäle (68) zugeordnet sind, dadurch gekennzeichnet, dass die einem Ventilelement (36) zugeordneten Kraftstoff-Austrittskanäle (68) durch eine Ringnut (66) fluidisch miteinander verbunden sind.
2. Kraftstoff-Einspritzvorrichtung (22) nach Anspruch 1, dadurch gekennzeichnet, dass die Ringnut (66; 66a)) im Gehäuse (30) ausgebildet ist.
3. Kraftstoff-Einspritzvorrichtung (22) nach Anspruch 1, dadurch gekennzeichnet, dass die Ringnut (66; 66b)) im Ventilelement (36) ausgebildet ist.
4. Kraftstoff-Einspritzvorrichtung (22) nach Anspruch 1, dadurch gekennzeichnet, dass eine Ringnut (66a) im Gehäuse (30) und eine weitere (66b) im Ventilelement (36) ausgebildet ist.
5. Kraftstoff-Einspritzvorrichtung (22) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ringnut (66) in etwa halbkreisförmigen Querschnitt auf eist .
6. Kraftstoff-Einspritzvorrichtung (22) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Ringnut einen asymmetrischen Querschnitt aufweist mit einer stromaufwärts von den Kraftstoff-Austrittskanälen insgesamt geringeren Krümmung als stromabwärts.
7. Kraftstoff-Einspritzvorrichtung (22) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie mindestens zwei koaxiale Ventilelemente (34, 36) aufweist, wobei die Ringnut (66) im Bereich der Kraftstoff- Austrittskanäle (68) des radial äußeren Ventilelements (36) vorhanden ist, und wobei die Kraftstoff-Austrittskanäle (64) des radial inneren Ventilelements (34) von einem zentrischen Sackloch (62) ausgehen, welches am Einspritzende des Gehäuses (30) ausgebildet ist.
EP03808667A 2002-10-15 2003-07-23 Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine Withdrawn EP1554487A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10247958 2002-10-15
DE10247958A DE10247958A1 (de) 2002-10-15 2002-10-15 Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine
PCT/DE2003/002462 WO2004036026A1 (de) 2002-10-15 2003-07-23 Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine

Publications (1)

Publication Number Publication Date
EP1554487A1 true EP1554487A1 (de) 2005-07-20

Family

ID=32049265

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03808667A Withdrawn EP1554487A1 (de) 2002-10-15 2003-07-23 Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine

Country Status (5)

Country Link
US (1) US7364099B2 (de)
EP (1) EP1554487A1 (de)
JP (1) JP2006503207A (de)
DE (1) DE10247958A1 (de)
WO (1) WO2004036026A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR200402050A2 (tr) * 2004-08-18 2006-03-21 Robert Bosch Gmbh Eşeksenli alansal temaslı çift oturma çaplı enjektör
US20070200011A1 (en) * 2006-02-28 2007-08-30 Caterpillar Inc. Fuel injector having nozzle member with annular groove
WO2008093387A1 (ja) * 2007-01-29 2008-08-07 Mitsubishi Electric Corporation 燃料噴射弁
EP2071178A1 (de) * 2007-12-10 2009-06-17 Delphi Technologies, Inc. Einspritzdüse
CH704964A1 (de) * 2011-05-16 2012-11-30 Liebherr Machines Bulle Sa Düse.
JP6059915B2 (ja) * 2012-08-27 2017-01-11 日立オートモティブシステムズ株式会社 燃料噴射弁
EP3122468B1 (de) * 2014-03-28 2022-06-22 Deyang Hou Flexibler kraftstoffinjektor für einzel- und zweifacheinspritzung
DE102015001199B4 (de) 2015-01-31 2017-08-17 L'orange Gmbh 1Kraftstoffinjektor für den Betrieb mit Brenngas
DE102015220550A1 (de) * 2015-10-21 2017-04-27 Ford Global Technologies, Llc Kraftstoffeinspritzdüse
JP6390659B2 (ja) * 2016-04-15 2018-09-19 株式会社デンソー 燃料噴射弁
US20180051666A1 (en) * 2016-08-18 2018-02-22 Robert Bosch Gmbh Rotary needle fuel injector
WO2023166139A1 (de) * 2022-03-03 2023-09-07 Ganser-Hydromag Ag Brennstoffeinspritzventil für verbrennungskraftmaschinen

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1565210A (en) * 1975-10-21 1980-04-16 Lucas Industries Ltd Fuel injection nozzles for direct injection internal combustion engine
EP0067143A1 (de) * 1981-06-10 1982-12-15 Friedmann & Maier Aktiengesellschaft Kraftstoffeinspritzdüse
CH669822A5 (de) * 1986-02-12 1989-04-14 Sulzer Ag
DE3824467A1 (de) * 1988-07-19 1990-01-25 Man B & W Diesel Ag Einspritzventil
JPH0267459A (ja) * 1988-08-31 1990-03-07 Nippon Denso Co Ltd 燃料噴射ノズル
JP2841770B2 (ja) * 1990-07-26 1998-12-24 日産自動車株式会社 ディーゼル機関用燃料噴射ノズル
JPH0583369U (ja) * 1992-04-20 1993-11-12 日産ディーゼル工業株式会社 燃料噴射ノズル
DE4214646A1 (de) * 1992-05-02 1993-11-04 Bosch Gmbh Robert Kraftstoffeinspritzduese fuer vor- und haupteinspritzung
DE4432686C2 (de) * 1994-09-14 1996-09-05 Man B & W Diesel Ag Querschnittgesteuerte Einspritzdüse
JPH10184495A (ja) * 1996-12-24 1998-07-14 Zexel Corp 可変噴孔型燃料噴射ノズルによる燃料噴射制御方法
GB9813476D0 (en) * 1998-06-24 1998-08-19 Lucas Ind Plc Fuel injector
DE19843616B4 (de) * 1998-09-23 2006-07-06 Siemens Ag Kraftstoffeinspritzdüse
JP3567838B2 (ja) * 1999-04-26 2004-09-22 トヨタ自動車株式会社 燃料噴射ノズル
GB9913314D0 (en) * 1999-06-09 1999-08-11 Lucas Ind Plc Fuel injector
DE60024334T2 (de) * 1999-06-25 2006-08-10 Delphi Technologies, Inc., Troy Brennstoffeinspritzventil
DE19931891A1 (de) * 1999-07-08 2001-01-18 Siemens Ag Kraftstoffeinspritzventil für eine Brennkraftmaschine
DE19942370A1 (de) * 1999-09-04 2001-03-22 Bosch Gmbh Robert Einspritzdüse für Brennkraftmaschinen mit einer Ringnut in der Düsennadel
JP4221898B2 (ja) * 2000-02-29 2009-02-12 株式会社デンソー 燃料噴射ノズル
DE10031264A1 (de) 2000-06-27 2002-01-17 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10050752B4 (de) * 2000-10-13 2005-06-02 Robert Bosch Gmbh Brennstoffeinspritzventil mit einem drallerzeugenden Element
DE10155227A1 (de) * 2001-11-09 2003-05-22 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004036026A1 *

Also Published As

Publication number Publication date
DE10247958A1 (de) 2004-04-29
US7364099B2 (en) 2008-04-29
WO2004036026A1 (de) 2004-04-29
US20060102752A1 (en) 2006-05-18
JP2006503207A (ja) 2006-01-26

Similar Documents

Publication Publication Date Title
DE10123775B4 (de) Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen, insbesondere Common-Rail-Injektor, sowie Kraftstoffsystem und Brennkraftmaschine
EP1552135B1 (de) Kraftstoffeinspritzvorrichtung für eine brennkraftmaschine
EP1395744B1 (de) Kraftstoff-einspritzvorrichtung für brennkraftmaschinen, insbesondere common-rail-injektor, sowie kraftstoffsystem und brennkraftmaschine
WO2008083881A1 (de) Injektor zum einspritzen von kraftstoff in brennräume von brennkraftmaschinen
WO2004036026A1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine
DE19834867B4 (de) Einspritzdüse für eine direkt einspritzende Brennkraftmaschine
EP1123461B1 (de) Injektor für ein common-rail-einspritzsystem für brennkraftmaschinen mit kompakter bauweise
WO2004033891A1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine
DE10117600C1 (de) Hochdruck-Kraftstoffpumpe für ein Kraftstoffsystem einer direkteinspritzenden Brennkraftmaschine, Kraftstoffsystem sowie Brennkraftmaschine
WO2000001936A2 (de) Druckventil
WO2006034890A1 (de) Injektor zur kraftstoffeinspritzung an einer brennkraftmaschine
EP1526274B1 (de) Kraftstoff-Einspritzvorrichtung, insbesondere für eine Brennkraftmaschine mit Direkteinspritzung
WO1999028619A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2002092999A1 (de) Druckverstärker einer kraftstoffeinspritzeinrichtung
DE10124238A1 (de) Hochdruck-Kraftstoffpumpe, insbesondere für direkteinspritzende Brennkraftmaschinen, sowie Kraftstoffsystem und Brennkraftmaschine
EP1671029A2 (de) Kraftstoff-einspritzvorrichtung, insbesondere f r eine brenn kraftmaschine mit kraftstoff-direkteinspritzung
DE10160490B4 (de) Kraftstoff-Einspritzvorrichtung, Kraftstoffsystem sowie Brennkraftmaschine
DE102018209399A1 (de) Rückschlagventil, hochdruckführendes Bauteil und Kraftstoffhochdruckpumpe
WO2004070191A1 (de) Kraftstoff-einspritzvorrichtung, insbesondere für brennkraftmaschinen mit kraftstoff-direkteinspritzung
DE10121340A1 (de) Common-Rail-Injektor
DE102006038533A1 (de) Kraftstoff-Überströmventil, insbesondere zur Druckbegrenzung in einem Niederdruckbereich eines Kraftstoffsystems
WO2004063553A1 (de) Kraftstoff-einspritzvorrichtung
EP0679803B1 (de) Verfahren in Verbindung mit der Kraftstoffeinspritzung in Brennkraftmaschinen
WO1988004726A1 (en) Fuel injection pump for internal combustion engines
WO2005014996A1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050517

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

R17C First examination report despatched (corrected)

Effective date: 20060705

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090407