WO1999028619A1 - Kraftstoffeinspritzventil für brennkraftmaschinen - Google Patents

Kraftstoffeinspritzventil für brennkraftmaschinen Download PDF

Info

Publication number
WO1999028619A1
WO1999028619A1 PCT/DE1998/001760 DE9801760W WO9928619A1 WO 1999028619 A1 WO1999028619 A1 WO 1999028619A1 DE 9801760 W DE9801760 W DE 9801760W WO 9928619 A1 WO9928619 A1 WO 9928619A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
stroke stop
valve
fuel injection
stop ring
Prior art date
Application number
PCT/DE1998/001760
Other languages
English (en)
French (fr)
Inventor
Detlev Potz
Stephan Haas
Thomas Kuegler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP52960399A priority Critical patent/JP2001510530A/ja
Priority to EP98941233A priority patent/EP0977945A1/de
Priority to US09/355,501 priority patent/US6113011A/en
Publication of WO1999028619A1 publication Critical patent/WO1999028619A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/08Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series the valves opening in direction of fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • F02M61/045The valves being provided with fuel discharge orifices

Definitions

  • the invention is based on a fuel injection valve for internal combustion engines according to the preamble of claim 1.
  • a fuel injector known from the unpublished German patent application with the file number 1 96 34 716.5 has a valve body with an axial through-bore, in which a piston-shaped valve member is guided, which controls a
  • Injection cross-section is displaceable outward by the high fuel pressure against the force of a valve spring.
  • the valve member has at its combustion chamber end a projecting from the bore of the valve body closing head, which forms a valve closing member and at the
  • a valve sealing surface is arranged on the side facing the valve body, with which the closing head interacts with a valve seat surface arranged on the end face of the valve body on the combustion chamber side. At least one injection opening on the valve member is still at the level of the
  • Closing head provided, which starts from a pressure chamber formed between the valve member and the bore.
  • the outlet opening of the injection opening is covered in the firing position of the valve member by the valve body and is only in the course of the outward opening stroke of the Valve member released by dipping out of the hole.
  • the valve member With its end facing away from the closing head and away from the combustion chamber, the valve member projects into a spring chamber which is formed in a holding body axially braced with the valve body. The valve member points to its distant combustion chamber
  • the maximum opening stroke movement of the valve member is limited by the contact of a contact surface formed by a collar on the valve member shaft on a stationary stroke stop ring, the size of which allows the maximum opening stroke to be set.
  • the known fuel injection valve has the disadvantage that the entire supporting force of the valve spring is transmitted to the valve body only via the stroke stop ring. As a result of the small contact surface of the stroke stop ring, there is a so-called hammering into the valve body, as a result of which the opening stroke of the valve member can be adjusted. Furthermore, the setting of different opening stroke paths is carried out by means of stroke stop rings of different sizes, whereby the spring preload force of the valve spring also changes and thus again adjusts the opening characteristics of the fuel injection valve.
  • the fuel injection valve for internal combustion engines according to the invention with the characterizing features of claim 1 has the advantage that the supporting force of the valve spring via the spacer ring on the support ring surrounding the split stroke stop ring is tested.
  • This support ring is fixed in place with respect to the valve body, it being able to be supported directly on the valve body with its ring end face or by clamping the stroke stop ring. In this way, a large contact surface for the introduction of force into the valve body is achieved, which reliably prevents the components from hammering into the end face of the valve body.
  • the stroke stop ring is preferably formed in two parts, but can alternatively be divided into more sub-segments.
  • the preferably two half-shells of the axially divided stroke stop ring form in the assembled state in the fuel injection valve a completely closed stroke stop ring which has a conical stroke stop surface on its end face facing the spacer ring and which rests on the valve body with its opposite ring end face. Both the stroke stop surface on the stroke stop ring and the contact surface interacting with it on the valve member are conical.
  • the preferably two half-shells of the axially divided stroke stop ring are preferably produced by targeted breaking (cracking).
  • the stroke stop ring is made of a brittle material at least in the area of the predetermined breaking points, so that the half-shells are without
  • the stroke stop ring is advantageously produced by a non-cutting process, preferably pressing, forging, sintering.
  • the spacer ring and the support ring surrounding the divided stroke stop ring are designed as a one-piece component, preferably as a sleeve.
  • This sleeve is guided with its outer circumference in a receiving bore in a valve holding body clamped axially with the valve body.
  • the inner diameter of this sleeve is designed as a stepped bore, the smaller bore diameter forming the original spacer ring and the larger bore diameter forming the original support ring.
  • the sleeve can rest axially on a flat end face region of the stroke stop ring, it being particularly advantageous to provide a conical ring collar on the stroke stop ring, on which the sleeve is braced with a conical end face.
  • the cone angles on this contact surface are advantageously designed so that the clamping force of the valve spring on the sleeve is oriented radially inwards in the direction of the stroke stop ring, so that the holding force of the two stroke stop ring half-shells is caused by an inward action
  • the fuel injection valve according to the invention is designed as an outward opening injection valve, the use of the stroke stop components described on a so-called vario-register nozzle with spray hole cross sections arranged one above the other being particularly advantageous.
  • FIG. 1 shows the fuel injection valve according to the invention in a longitudinal section
  • FIG. 2 shows a first exemplary embodiment in an enlarged detail from FIG. 1, in which the spacer ring and support ring are designed as two separate components
  • FIG. 3 shows a second exemplary embodiment in an enlarged form Individual part representation, in which the spacer ring and support ring are designed as a common sleeve which is supported directly on the valve body
  • FIG. 4 shows a third exemplary embodiment according to the illustration in FIG. 3, in which the sleeve is supported on a ring shoulder of the stroke stop ring
  • FIG. 5 shows a fourth Exemplary embodiment analogous to the representation of Figures 3 and 4, in which the contact surfaces between the
  • Sleeve and the stroke stop ring are conical and Figure 6 is a schematic representation of the manufacturing process of the stroke stop ring of the fuel injector according to the invention. Description of the embodiments
  • the fuel injection valve according to the invention for internal combustion engines shown in FIG. 1 has a valve body 1 which is clamped axially against a valve holding body 5 by means of a union nut 3.
  • the valve body 1 which projects into the combustion chamber of the internal combustion engine with its free end, has an axial guide bore 7, in which a piston-shaped valve member 8 is axially displaceably guided, and a valve closing head 9 is arranged on the combustion chamber-side end which projects from the guide bore 7.
  • This valve closing head 9 has a conical valve sealing surface 11 which faces the valve body 1 and which interacts with a corresponding conical valve seat surface 13 on the end face of the valve body 1 on the combustion chamber side.
  • the portion of the valve closing head 9 which projects into the guide bore 7 and is radially offset from the part which has the sealing surface 11 is designed as a piston slide valve which, with its annular end face 15 remote from the combustion chamber, forms a pressure chamber 17 within the
  • the high-pressure fuel supply into the pressure chamber 17 takes place via a high-pressure channel 23, which axially penetrates the valve body 1 and the valve holding body 5 and to which an injection line leading away from a fuel injection pump, not shown, is connected.
  • the valve member 8 With its valve member shaft facing away from the combustion chamber, the valve member 8 projects into a spring chamber 25 provided in the valve holding body 5, into which a valve spring 27 is applied, which acts on the valve member 8 in the closing direction towards the valve seat 13.
  • a spring plate 29 is arranged on the end of the valve member 8 remote from the combustion chamber, between which and a housing-fixed spacer ring 31 the valve spring 27 is clamped.
  • the spacer ring 31 shown in FIG. 2 in an enlarged detail from the first exemplary embodiment of FIG. 1 rests with its ring end face facing away from the valve spring 27 against a support ring 33, which with its ring end face facing away from the spacer ring 31 rests against the end face of the valve body 1 remote from the racing space supports.
  • a stroke stop ring 35 is inserted radially within this support ring 33, the lower ring end face of which rests against the valve body 1 and has a conical stroke stop surface 37 at its end remote from the combustion chamber. This conical stroke stop surface is formed at the cross-sectional transition between a flat end face region 39 and the through hole in the stroke stop ring 35.
  • this contact surface 41 is conical in accordance with the stroke stop surface 37, the two conical contact surfaces having the same cone angle, in order to provide the largest possible contact and force application surface.
  • the stroke stop ring 35 is formed for mounting on the cross-sectional constriction of the valve member 8 from two half-shells which are produced by dividing a finished stroke stop ring 35 in a manner to be described later.
  • the half-shells of the stroke stop ring 35 are inserted into the support ring 33 so that the spreading forces introduced on the half-shells are absorbed by the support ring 33.
  • the axial height of the support ring 33 is, as shown in FIG. 2, greater than the axial height of the two-part stroke stop ring 35, so that the support forces F of the valve spring 27 are transmitted to the valve body 1 via the spacer ring 31 and the support ring 33.
  • the stroke stop ring 35 only absorbs the valve member opening forces.
  • the fuel injection valve for internal combustion engines works in the following manner.
  • the valve spring 27 holds the valve member 8 with its sealing surface 11 in contact with the valve seat surface 13 on the valve body 1, the injection openings 21 being covered by the wall of the guide bore 7 are so that the injection valve is closed.
  • the fuel delivered by the high-pressure injection pump (not shown in any more detail) reaches the pressure chamber 17 in a known manner via the high-pressure channel 23 and the annular gap between the guide bore 7 and the valve member 8.
  • the high-pressure fuel engages the annular end face 15 of the valve closing head 9 in the opening direction of the valve member 8, and after reaching a certain opening pressure, the valve member 8 lifts outward against the restoring force of the valve spring 27 from the valve seat 13.
  • the injection openings 21 emerge from the overlap with the wall of the guide bore 7, so that the fuel from the pressure chamber 17 passes through the inlet channel 19 and the injection openings 21 for injection into the combustion chamber of the internal combustion engine.
  • the maximum opening stroke movement of the valve member 8 is limited by the contact of the valve member contact surface 41 on the fixed stroke stop surface 37 on the stroke stop ring 35, whereby the conical configuration of these two contact surfaces allows the supporting cross section on the valve member 8 to be increased such that fractures of the valve member 8 as a result of the hard impact on the stroke stop 37 can be safely avoided.
  • FIGS. 3 to 5 differ from the first exemplary embodiment shown in FIGS. 1 and 2 in the design of the stroke stop area and the adjacent components.
  • FIG. 3 shows a second embodiment in which the spacer ring 31 and the support ring 33 are designed as a common, one-piece component.
  • This common component is in the form of a sleeve 45, which is guided with its outer circumference on the wall of the spring chamber 25 and whose inner through bore is designed as a stepped bore.
  • a small inner bore Knife area 47 of the sleeve 45 functions as the original spacer ring 31.
  • An area 49 of the sleeve 45 with a larger inner bore diameter takes over the function of the original support ring 33.
  • the sleeve 45 lies with a ring shoulder 51 formed on the inner diameter transition on the flat end face area 39 of the stroke stop ring 35 radially outside the conical stroke stop surface 37.
  • the sleeve 45 rests with its ring end face 53 facing the valve body 1 against an annular shoulder 55 formed on a cross-sectional widening on the outer circumference of the stroke stop ring 35.
  • the force transmission from the valve spring 27 now takes place via the sleeve 45 and the entire end face of the stroke stop ring 35 on the valve body side.
  • the end face 53 of the sleeve 45 and the ring shoulder 55 of the stroke stop ring 35 are conical, the cone angle of the contact surfaces being designed such that the axial clamping force on the sleeve 45 is directed radially inwards Direction stroke stop ring 35 is aligned.
  • the axial clamping force of the sleeve 45 can support the inward-acting supporting force and thus ensure that the two half-shells of the stroke stop ring 35 are securely pressed together.
  • the one-piece design of the spacer ring 31 and support ring 33 in FIGS. 3 to 5 has the advantage that the radial forces introduced by the stroke stop ring 35 into the relatively thin-walled support ring 33 are also absorbed by the considerably more stable spacer ring 31.
  • FIG. 6 schematically shows the manufacturing steps of the preferably two-part lifting stop ring 35.
  • the lifting stop ring 35 is first produced in a non-cutting process, the lifting stop ring 35 being made of a brittle material at least in the area of the predetermined breaking points of the later two half-shells. These predetermined breaking points are preferably along a central plane 57 of the stroke stop ring 35.
  • the stroke stop ring 35 which is initially in one piece, is produced, it is divided into the two half-shells, this division of the ring profile by targeted breaking, e.g. done by a wedge or by cracking.
  • the half-shells break in the brittle predetermined breaking area in such a way that they can be reassembled without any gaps when later inserted on the fuel injector, so that a completely closed round profile is created again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem in einer Bohrung (7) eines Ventilkörpers (1) axial verschiebbar geführten Ventilglied (8), das an seinem brennraumseitigen Ende eine Ventildichtfläche (11) aufweist, mit der es zu einer Steuerung eines Einspritzquerschnittes mit einer Ventilsitzfläche (13) am Ventilkörper (1) zusammenwirkt und mit einer gegenüber dem Ventilkörper (1) ortsfesten Hubanschlagfläche (37), an der das Ventilglied (8) nach Durchlaufen eines nach außen gerichteten maximalen Öffnungshubweges mit einer Anlagefläche (41) zur Anlage gelangt, wobei die Hubanschlagfläche (37) an einer Stirnfläche eines axial geteilten Hubanschlagringes (35) angeordnet ist, der von einem Stützring (33) umschlossen ist, sowie mit einer das Ventilglied (8) in Schließrichtung beaufschlagenden Ventilfeder (27), die sich über einen Distanzring (31) und ein Zwischenglied ortsfest am Ventilkörper (1) abstützt. Dabei ist der den Hubanschlagring (35) umschließende Stützring (33) ortsfest gegenüber dem Ventilkörper (1) gelagert und liegt ständig am Distanzring (31) an.

Description

Kraftstoffeinspritzventil für Brennkraftmaschinen
Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 aus. Ein derartiges aus der nicht vorveröffentlichten deutschen Patentanmeldung mit dem Aktenzeichen 1 96 34 716.5 bekanntes Kraftstoffeinspritzventil weist einen Ventilkörper mit einer axialen Durchgangsbohrung auf, in der ein kolben- förmiges Ventilglied geführt ist, das zur Steuerung eines
Einspritzquerschnittes durch den Kraftstoffhochdruck entgegen der Kraft einer Ventilfeder nach außen verschiebbar ist. Das Ventilglied weist dabei an seinem brennraumseitigen Ende einen aus der Bohrung des Ventilkörpers ragenden Schließkopf auf, der ein Ventilschließglied bildet und an dessen dem
Ventilkörper zugewandter Seite eine Ventildichtfläche angeordnet ist, mit der der Schließkopf mit einer an der brennraumseitigen Stirnseite des Ventilkörpers angeordneten Ventilsitzfläche zusammenwirkt. Dabei ist weiterhin wenig- stens eine Einspritzöffnung am Ventilglied in Höhe des
Schließkopfes vorgesehen, die von einem zwischen dem Ventil- glied und der Bohrung gebildeten Druckraum ausgeht. Die Austrittsöffnung der Einspritzöffnung ist in Schießstellung des Ventilgliedes vom Ventilkörper abgedeckt und wird erst im Verlauf des nach außen gerichteten Öffnungshubes des Ventilgliedes durch Austauchen aus der Bohrung freigegeben. Mit seinem dem Schließkopf abgewandten brennraumfernen Ende ragt das Ventilglied in einen Federraum, der in einem axial mit dem Ventilkörper verspannten Haltekörper gebildet ist. Dabei weist das Ventilglied an seinem brennraumfernen
Schaftende einen Federteller auf, zwischen dem und einem am Ventilkörper anliegenden gehäusefesten Anschlag die Schließfeder eingespannt ist.
Die maximale Öffnungshubbewegung des Ventilgliedes wird dabei durch die Anlage einer durch einen Bund am Ventilgliedschaft gebildeten Anlagefläche an einem ortsfesten Hubanschlagring begrenzt, über dessen Größe sich der maximale Öffnungshub einstellen läßt.
Dabei weist das bekannte Kraftstoffeinspritzventil jedoch den Nachteil auf, daß die gesamte Abstützkraft der Ventil- feder lediglich über den Hubanschlagring auf den Ventilkörper übertragen werden. Dabei kommt es infolge der geringen Anlagefläche des Hubanschlagringes zu einem sogenannten Einhämmern in den Ventilkörper in dessen Folge sich der Öffnungshub des Ventilgliedes verstellen kann. Des weiteren wird die Einstellung verschiedener Öffnungshubwege durch verschieden große Hubanschlagringe vorgenommen, wodurch sich jeweils auch die Federvorspannkraft der Ventilfeder verändert und somit erneut die Öffnungscharakteristik des Kraftstoffeinspritzventils verstellt.
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzventil für Brennkraftmaschinen mit dem kennzeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil, daß die Abstützkraft der Ventilfeder über den Distanzring auf den den geteilten Hubanschlagring umschließenden Stützring eingelei- tet wird. Dieser Stützring ist dabei gegenüber dem Ventil- körper ortsfest gelagert, wobei er sich direkt mit seiner Ringstirnfläche oder aber unter Einspannung des Hubanschlagringes am Ventilkörper abstützen kann. Auf diese Weise wird eine große Auflagefläche zur Krafteinleitung in den Ventil- körper erreicht, was ein Einhämmern der Bauteile in die Stirnfläche des Ventilkörpers sicher vermeidet. Zudem beeinflußt die Verwendung verschieden hoher Hubanschlagringe zur Einstellung der maximalen Ventilgliedöffnungshubbewegung nunmehr nicht mehr die Federvorspannkraft der Ventilfeder, da diese sich über den Stützring am Ventilkörper abstützt und der Hubanschlagring vorzugsweise ein Spiel zum Distanz- ring aufweist. Der Hubanschlagring ist dabei vorzugsweise zweiteilig ausgebildet, kann jedoch alternativ auch in mehr Teilsegmente unterteilt sein. Die vorzugsweise zwei Halbschalen des axial geteilten Hubanschlagringes bilden dabei in montiertem Zustand im Kraftstoffeinspritzventil einen vollständig geschlossenen Hubanschlagring, der an seiner dem Distanzring zugewandten Stirnseite eine konische Huban- schlagfläche aufweist und der mit seiner gegenüberliegenden Ringstirnfläche am Ventilkörper anliegt. Dabei sind sowohl die Hubanschlagfläche am Hubanschlagring als auch die mit dieser zusammenwirkende Anlagefläche am Ventilglied konisch ausgebildet .
Die vorzugsweise zwei Halbschalen des axial geteilten Hubanschlagringes werden dabei vorzugsweise durch ein gezieltes Brechen (Cracken) hergestellt. Dazu ist der Hubanschlagring wenigstens im Bereich der Sollbruchstellen aus einem spröden Werkstoff hergestellt, so daß sich die Halbschalen ohne
Verformung brechen lassen, was den Vorteil aufweist, daß sie sich anschließend bei der Montage des Kraftstoffeinspritz- ventils spaltfrei wieder zusammensetzen lassen. Auf diese Weise wird die Auflagefläche der Hubanschlagfläche vergrö- ßert und Unrundheiten am Hubanschlagring vermieden, was die Krafteinleitung in den Hubanschlagring und weiter in den diesen umgebenden Stützring weiter verbessert. Der Hubanschlagring ist dabei in vorteilhafter Weise durch ein spanloses Verfahren, vorzugsweise pressen, schmieden, sintern hergestellt.
In einem bevorzugten Ausführungsbeispiel sind der Distanz- ring und der den geteilten Hubanschlagring umschließende Stützring als einteiliges Bauteil, vorzugsweise als Hülse ausgebildet. Diese Hülse ist mit ihrem Außenumfang in einer Aufnahmebohrung in einem axial mit dem Ventilkörper verspannten Ventilhaltekörper geführt. Der Innendurchmesser dieser Hülse ist dabei als Stufenbohrung ausgebildet, wobei der kleinere Bohrungsdurchmesser den ursprünglichen Distanz- ring und der größere Bohrungsdurchmesser den ursprünglichen Stützring bildet. Die Hülse kann dabei axial an einem planen Stirnflächenbereich des Hubanschlagringes anliegen, wobei es besonders vorteilhaft ist, am Hubanschlagring einen konischen Ringbund vorzusehen an dem die Hülse mit einer konischen Stirnfläche verspannt ist. Die Konuswinkel an dieser Berührungsfläche sind dabei in vorteilhafter Weise so ausgebildet, daß die Einspannkraft der Ventilfeder an der Hülse radial einwärts in Richtung Hubanschlagring ausgerichtet ist, so daß die Zusammenhaltekraft der beiden Huban- schlagring-Halbschalen durch eine nach innen wirkende
Radialkraft unterstützt wird. Des weiteren hat das Abstützen der kombinierten Stütz- und Distanzhülse über den Hubanschlagring den Vorteil, daß nunmehr die Federkraft über eine große Ringstirnfläche auf den Ventilkörper eingeleitet wird, wobei diese große Ringstirnfläche nunmehr erfindungsgemäß aus der Summe der Ringstirnflächen des ursprünglichen Stützringes und Hubanschlagringes gebildet ist . Das erfindungsgemäße Kraftstoffeinspritzventil ist dabei als nach außen öffnendes Einspritzventil ausgebildet, wobei die Verwendung der beschriebenen Hubanschlagbauteile an einer sogenannten Vario-Register-Düse mit übereinander angeordneten Spritzlochquerschnitten besonders vorteilhaft ist.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung, der Zeichnung und den Patentansprüchen entnehmbar .
Zeichnung
Vier Ausführungsbeispiele des erfindungsgemäßen Kraftstoffeinspritzventils für Brennkraftmaschinen sind in der Zeich- nung dargestellt und werden in der folgenden Beschreibung näher erläutert .
Es zeigen die Figur 1 das erfindungsgemäße Kraftstoffeinspritzventil in einem Längsschnitt, die Figur 2 ein erstes Ausfuhrungsbeispiel in einem vergrößerten Ausschnitt aus der Figur 1, bei dem Distanzring und Stützring als zwei separate Bauteile ausgebildet sind, die Figur 3 ein zweites Ausfüh- rungsbeispiel in einer vergrößerten Einzelteildarstellung, bei dem Distanzring und Stützring als gemeinsame Hülse ausgebildet sind, die sich direkt am Ventilkörper abstützt, die Figur 4 ein drittes Ausführungsbeispiel gemäß der Darstellung der Figur 3, bei dem sich die Hülse an einem Ringabsatz des Hubanschlagringes abstützt, die Figur 5 ein viertes Ausfuhrungsbeispiel analog der Darstellung der Figuren 3 und 4, bei dem die Anlageflächen zwischen der
Hülse und dem Hubanschlagring konisch ausgebildet sind und die Figur 6 eine Prinzipdarstellung des Herstellungsverfahrens des Hubanschlagringes des erfindungsgemäßen Kraftstoffeinspritzventils . Beschreibung der Ausführungsbeispiele
Das in der Figur 1 dargestellte erfindungsgemäße Kraftstoffeinspritzventil für Brennkraftmaschinen weist einen Ventil- körper 1 auf, der mittels einer Überwurfmutter 3 axial gegen einen Ventilhaltekörper 5 verspannt ist. Der mit seinem freien Ende in den Brennraum der Brennkraftmaschine ragende Ventilkörper 1 weist eine axiale Führungsbohrung 7 auf, in der ein kolbenförmiges Ventilglied 8 axial verschiebbar geführt ist, an dessen brennraumseitigen, aus der Führungsbohrung 7 ragenden Ende ein Ventilschließkopf 9 angeordnet ist. Dieser Ventilschließkopf 9 weist eine dem Ventilkörper 1 zugewandte konische Ventildichtfläche 11 auf, die mit einer entsprechenden konischen Ventilsitzfläche 13 an der brennraumseitigen Stirnseite des Ventilkörpers 1 zusammenwirkt. Der in die Führungsbohrung 7 ragende, gegenüber dem die Dichtfläche 11 aufweisenden Teil radial abgesetzte Abschnitt des Ventilschließkopfes 9 ist dabei als Kolbenschieber ausgebildet, der mit seiner brennraumfernen Ringstirnfläche 15 einen Druckraum 17 innerhalb der
Führungsbohrung 7 begrenzt, von dem eine Vielzahl von axialen Zulaufkanälen 19 im Ventilschließkopf 9 ausgehen, von denen jeweils eine radiale Einspritzöffnung 21 abführt. Dabei sind die Austrittsöffnungen der Einspritzöffnungen 21 so angeordnet, daß sie bei geschlossenem Einspritzventil, bei am Ventilsitz 13 anliegendem Ventilglied 8, von der Wand der Führungsbohrung 7 verschlossen sind und erst im Verlauf des nach außen gerichteten Öffnungshubes des Ventilgliedes 8 aus der Überdeckung mit dem Ventilkörper 1 austauchen.
Die Kraftstoffhochdruckzufuhr in den Druckraum 17 erfolgt über einen Hochdruckkanal 23, der den Ventilkörper 1 und den Ventilhaltekörper 5 axial durchdringt und an den eine von einer nicht gezeigten Kraftstoffeinspritzpumpe abführende Einspritzleitung angeschlossen ist. Mit seinem brennraumabgewandten Ventilgliedschaft ragt das Ventilglied 8 in einen im Ventilhaltekörper 5 vorgesehenen Federraum 25, in den eine das Ventilglied 8 in Schließrichtung zum Ventilsitz 13 hin beaufschlagende Ventilfeder 27 eingesetzt ist. Dabei ist am brennraumfernen Ende des Ventilgliedes 8 ein Federteller 29 angeordnet, zwischen dem und einem gehäusefesten Distanzring 31 die Ventilfeder 27 eingespannt ist .
Der in der Figur 2 in einem vergrößerten Ausschnitt aus dem ersten Ausfuhrungsbeispiel der Figur 1 gezeigte Distanzring 31 liegt dabei mit seiner der Ventilfeder 27 abgewandten Ringstirnfläche an einem Stützring 33 an, der sich mit seiner dem Distanzring 31 abgewandten Ringstirnfläche an der rennraumfernen Stirnfläche des Ventilkörpers 1 abstützt. Radial innerhalb dieses Stützringes 33 ist ein Hubanschlagring 35 eingesetzt, der mit seiner unteren Ringstirnfläche am Ventilkörper 1 anliegt und der an seinem brennraumfernen Ende eine konische Hubanschlagfläche 37 aufweist. Diese konische Hubanschlagflache ist dabei am Querschnittsübergang zwischen einem planen Stirnflächenbereich 39 und der Durchgangsbohrung im Hubanschlagring 35 gebildet. Mit dieser Hubanschlagfläche 37 wirkt zur Begrenzung der nach außen gerichteten Ventilgliedöffnungshubbewegung eine Anlagefläche 41 am Ventilglied 8 zusammen, die an einer brennraumseitigen Schulter eines Ringbundes 43 am Ventilgliedschaft 8 gebildet ist und die bei geschlossenem Einspritzventil einen, den maximalen Öffnungshubweg definierenden Abstand zur Huban- schlagfläche 37 aufweist. Dabei ist diese Anlagefläche 41 entsprechend der Hubanschlagfläche 37 konisch ausgebildet, wobei die beiden konischen Kontaktflächen den gleichen Konuswinkel aufweisen, um so eine möglichst großflächige Anlage- und Krafteinleitungsflache bereitzustellen. Der Hubanschlagring 35 ist dabei zur Montage auf der Querschnittseinschnürung des Ventilgliedes 8 aus zwei Halbschalen gebildet, die durch Teilung eines fertig bearbeiteten Hubanschlagringes 35 in noch später zu beschreibender Weise hergestellt sind.
Die Halbschalen des Hubanschlagringes 35 sind dabei in den Stützring 33 eingesetzt, so daß die auf die Halbschalen eingeleiteten Spreizkräfte durch den Stützring 33 aufgenommen werden.
Die axiale Höhe des Stützringes 33 ist dabei wie in der Figur 2 dargestellt größer ausgebildet als die axiale Höhe des zweiteiligen Hubanschlagringes 35, so daß die Abstütz- kräfte F der Ventilfeder 27 über den Distanzring 31 und den Stützring 33 auf den Ventilkörper 1 übertragen werden. Der Hubanschlagring 35 nimmt lediglich die Ventilgliedöffnungs- kräfte auf.
Das erfindungsgemäße Kraftstoffeinspritzventil für Brennkraf maschinen arbeitet in folgender Weise. Im Ruhezustand, das heißt wenn keine Hochdruckförderung an der dem Einspritzventil zugeordneten Hochdruckeinspritzpumpe erfolgt, hält die Ventilfeder 27 das Ventilglied 8 mit seiner Dicht- fläche 11 in Anlage an der Ventilsitzfläche 13 am Ventilkörper 1, wobei die Einspritzöffnungen 21 durch die Wand der Führungsbohrung 7 abgedeckt sind, so daß das Einspritzventil geschlossen ist.
Beim Einspritzvorgang gelangt der von der nicht näher dargestellten Hochdruckeinspritzpumpe geförderte Kraftstoff in bekannter Weise über den Hochdruckkanal 23 und den Ringspalt zwischen Führungsbohrung 7 und Ventilglied 8 in den Druckraum 17. Dort greift der Kraftstoffhochdruck an der Ring- Stirnfläche 15 des Ventilschließkopfes 9 in Öffnungsrichtung des Ventilgliedes 8 an, und hebt nach Erreichen eines bestimmten Öffnungsdruckes das Ventilglied 8 entgegen der Rückstellkraft der Ventilfeder 27 nach außen vom Ventilsitz 13 ab. Dabei tauchen nach einem kurzen Leerhub die Einspritzöffnungen 21 aus der Überdeckung mit der Wand der Führungsbohrung 7 aus, so daß der Kraftstoff aus dem Druckraum 17 über den Zulaufkanal 19 und die Einspritzöffnungen 21 zur Einspritzung in den Brennraum der Brennkraftmaschine gelangt. Die maximale Öffnungshubbewegung des Ventilgliedes 8 wird dabei durch die Anlage der Ventilgliedanlagefläche 41 an der ortsfesten Hubanschlagfläche 37 am Hubanschlagring 35 begrenzt, wobei durch die konische Ausbildung dieser beiden Kontaktflächen der tragende Querschnitt am Ventilglied 8 derart gesteigert werden kann, daß Brüche des Ventilgliedes 8 infolge des harten Aufschlagens am Hubanschlag 37 sicher vermieden werden können.
Das Ende der Kraftstoffeinspritzung erfolgt durch die Beendigung der Zufuhr von Kraftstoffhochdruck, so daß der Druck im Druckraum 17 wieder unter den Einspritzöffnungsdruck sinkt und die Ventilfeder 27 das Ventilglied 8 in Anlage an den Ventilsitz 13 zurück bewegt.
Die in den Figuren 3 bis 5 dargestellten Ausführungsbei- spiele unterscheiden sich vom in den Figuren 1 und 2 dargestellten ersten Ausführungsbeispiel in der Ausbildung des Hubanschlagbereiches und der benachbarten Bauteile.
Dabei zeigt die Figur 3 ein zweites Ausführungsbeispiel bei dem der Distanzring 31 und der Stützring 33 als gemeinsames, einstückiges Bauteil ausgebildet sind. Dieses gemeinsame Bauteil weist dabei die Form einer Hülse 45 auf, die mit ihrem Außenumfang an der Wand des Federraumes 25 geführt ist und deren Innendurchgangsbohrung als Stufenbohrung ausgebil- det ist. Dabei übernimmt ein kleiner Innenbohrungsdurch- messerbereich 47 der Hülse 45 die Funktion des ursprünglichen Distanzringes 31. Ein einen größeren Innenbohrungs- durchmesser aufweisender Bereich 49 der Hülse 45 übernimmt die Funktion des ursprünglichen Stützringes 33. Die Hülse 45 liegt dabei mit einem am InnendurchmesserÜbergang gebildeten Ringabsatz 51 am planen Stirnflächenbereich 39 des Hubanschlagringes 35 radial außerhalb der konischen Hubanschlagfläche 37 an. Die Kraftübertragung der Abstützkraft der Ventilfeder 27 erfolgt nun über die Hülse 45 sowie den Hubanschlagring 35 in den Ventilkörper 1, wobei nun die gesamte Ringstirnfläche beider Bauteile als Krafteinleitungsfläche zur Verfügung steht.
Bei dem in der Figur 4 dargestellten dritten Ausfuhrungsbei- spiel liegt die Hülse 45 mit ihrer dem Ventilkörper 1 zugewandten Ringstirnfläche 53 an einer, an einer Querschnittserweiterung am Außenumfang des Hubanschlagringes 35 gebildeten Ringschulter 55 an. Dabei erfolgt die Kraftübertragung von der Ventilfeder 27 nunmehr über die Hülse 45 und die gesamte ventilkörperseitige Stirnfläche des Hubanschlagringes 35.
Bei dem in der Figur 5 dargestellten vierten Ausführungsbei- spiel sind die Stirnfläche 53 der Hülse 45 und die Ring- schulter 55 des Hubanschlagringes 35 konisch ausgebildet, wobei der Konuswinkel der Kontaktflächen derart ausgebildet ist, daß die axiale Einspannkraft an der Hülse 45 radial einwärts in Richtung Hubanschlagring 35 ausgerichtet ist. Auf diese Weise kann wenigstens ein Teil der axialen Einspannkraft der Hülse 45 die nach innen wirkende Abstütz- kraft unterstützen und somit ein sicheres Zusammenpressen der beiden Halbschalen des Hubanschlagringes 35 gewährleisten . Dabei hat die einstückige Ausbildung des Distanzringes 31 und Stützringes 33 in den Figuren 3 bis 5 den Vorteil, daß die vom Hubanschlagring 35 in den relativ dünnwandigen ausgebildeten Stützring 33 eingeleiteten Radialkräfte auch von dem erheblich stabileren Distanzring 31 aufgenommen werden.
Die Figur 6 zeigt schematisch die Herstellungsschritte des vorzugsweise zweiteiligen Hubanschlagringes 35. Dabei wird der Hubanschlagring 35 zunächst in einem spanlosen Verfahren hergestellt, wobei der Hubanschlagring 35 wenigstens im Bereich der Sollbruchstellen der späteren beiden Halbschalen aus einem spröden Werkstoff gefertigt ist. Diese Sollbruchstellen liegen dabei vorzugsweise entlang einer Mittelebene 57 des Hubanschlagringes 35. Nach dem Herstellen des zunächst einstückigen Hubanschlagringes 35 wird dieser in die beiden Halbschalen geteilt, wobei dieses Teilen des Ringprofiles durch gezieltes Brechen, z.B. durch einen Keil oder durch Cracken erfolgt . Dabei brechen die Halbschalen im spröden Sollbruchbereich so, daß sie beim späteren Einsetzen am Kraftstoffeinspritzventil spaltfrei wieder zusammengesetzt werden können, so daß erneut ein vollständig geschlossenes Rundprofil entsteht.

Claims

Ansprüche
1. Kraftstoffeinspritzventil für Brennkraftmaschinen mit einem in einer Bohrung (7) eines Ventilkörpers (1) axial verschiebbar geführten Ventilglied (8), das an seinem brennraumseitigen, aus der Bohrung (7) ragenden Ende eine Ventildichtfläche (11) aufweist, mit der es zur Steuerung eines Einspritzquerschnittes mit einer Ventilsitzflache (13) am Ventilkörper (1) zusammenwirkt und mit einer gegenüber dem Ventilkörper (1) ortsfesten Hubanschlagfläche (37) an der das Ventilglied (8) nach Durchlaufen eines nach außen gerichteten maximalen Öffnungshubweges mit einer Anlage- fläche (41) zur Anlage gelangt, wobei die Hubanschlagfläche (37) an einer Stirnfläche eines axial geteilten Hubanschlagringes (35) angeordnet ist, der von einem Stützring (33) umschlossen ist, sowie mit einer das Ventilglied (8) in Schließrichtung beaufschlagenden Ventilfeder (27) , die sich über einen Distanzring (31) und ein Zwischenglied ortsfest am Ventilkörper (1) abstützt, dadurch gekennzeichnet, daß der den Hubanschlagring (35) umschließende Stützring (33) ortsfest gegenüber dem Ventilkörper (1) gelagert ist und ständig am Distanzring (31) anliegt.
2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die Anlagefläche (41) am Ventilglied (8) und die Hubanschlagfläche (37) am Hubanschlagring (35) konisch ausgebildet sind.
3. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß der Hubanschlagring (35) zweiteilig ausgebildet ist, wobei die zwei Halbschalen einen geschlossenen Anschlagring im Kraftstoffeinspritzventil bilden, der mit seiner der Hubanschlagfläche (37) abgewandten Ringstirnfläche am Ventilkörper (1) anliegt.
4. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß der zwischen dem Ventilkörper (1) und dem Distanzring (31) eingespannte Stützring (33) eine größere axiale Höhe aufweist als der Hubanschlagring (35) .
5. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß der Distanzring (31) und der Stützring (33) als gemeinsames, einstückiges Bauteil ausgebildet sind.
6. Kraftstoffeinspritzventil nach Anspruch 5, dadurch gekennzeichnet, daß Distanzring (31) und Stützring (33) als eine gemeinsame Hülse (45) ausgebildet sind, die mit ihrem Außenumfang in einem Gehäuse eines axial mit dem Ventilkörper (1) verspannten Ventilhaltekörpers (5) geführt ist.
7. Kraftstoffeinspritzventil nach Anspruch 6, dadurch gekennzeichnet, daß der Innendurchmesser der Hülse (45) als Stufenbohrung ausgebildet ist, wobei ein einen kleineren Innenbohrungsdurchmesser aufweisender Hülsenteil (45) die Funktion des Distanzringes (31) und ein einen größeren Innenbohrungsdurchmesser aufweisender Hülsenteil (49) die Funktion des den Hubanschlagring (35) umschließenden Stütz- ringes (33) übernimmt.
8. Kraftstoffeinspritzventil nach Anspruch 6, dadurch gekennzeichnet, daß die Hülse (45) axial am Hubanschlagring
(35) anliegt.
9. Kraftstoffeinspritzventil nach Anspruch 7 und Anspruch 8, dadurch gekennzeichnet, daß die Hülse (45) mit einem an Innendurchmesserübergang gebildeten Ringabsatz (51) an einem planen Stirnflächenbereich (39) radial außerhalb der konischen Hubanschlagfläche (37) des Hubanschlagringes (35) anliegt .
10. Kraftstoffeinspritzventil nach Anspruch 8, dadurch gekennzeichnet, daß die Hülse (45) mit ihrer dem Ventilkör- per (1) zugewandten Stirnfläche (53) an einer, an einer
Querschnittserweiterung am Außenumfang des Hubanschlagringes (35) gebildeten Ringschulter (55) anliegt.
11. Kraftstoffeinspritzventil nach Anspruch 10, dadurch gekennzeichnet, daß die dem Ventilkörper (1) zugewandte
Stirnfläche (53) der Hülse (45) und die mit dieser zusammenwirkende Ringschulter (55) am Hubanschlagring (35) konisch ausgebildet sind, wobei der Konuswinkel derart ausgebildet ist, daß ein Teil der axialen Einspannkraft an der Hülse radial einwärts in Richtung Hubanschlagring (35) ausgerichtet ist .
12. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß der Hubanschlagring (35) zweiteilig ausgebildet ist, wobei die beiden Halbschalen durch Brechen des geschlossenen Hubanschlagringes (35) gebildet sind.
13. Kraftstoffeinspritzventil nach Anspruch 12, dadurch gekennzeichnet, daß die Bruchlinien vorzugsweise entlang einer Mittelebene (57) des Hubanschlagringes (35) verlaufen.
14. Kraftstoffeinspritzventil nach Anspruch 12, dadurch gekennzeichnet, daß der Hubanschlagring (35) wenigstens im Bereich der Sollbruchstellen aus einem spröden Werkstoff hergestellt ist.
15. Kraftstoffeinspritzventil nach Anspruch 12, dadurch gekennzeichnet, daß der Hubanschlagring (35) in einem spanlosen Verfahren hergestellt wird.
PCT/DE1998/001760 1997-11-29 1998-06-26 Kraftstoffeinspritzventil für brennkraftmaschinen WO1999028619A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP52960399A JP2001510530A (ja) 1997-11-29 1998-06-26 内燃機関のための燃料噴射弁
EP98941233A EP0977945A1 (de) 1997-11-29 1998-06-26 Kraftstoffeinspritzventil für brennkraftmaschinen
US09/355,501 US6113011A (en) 1997-11-29 1998-06-26 Fuel injection valve for internal combustion engines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19753162.8 1997-11-29
DE19753162A DE19753162A1 (de) 1997-11-29 1997-11-29 Kraftstoffeinspritzventil für Brennkraftmaschinen

Publications (1)

Publication Number Publication Date
WO1999028619A1 true WO1999028619A1 (de) 1999-06-10

Family

ID=7850336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/001760 WO1999028619A1 (de) 1997-11-29 1998-06-26 Kraftstoffeinspritzventil für brennkraftmaschinen

Country Status (5)

Country Link
US (1) US6113011A (de)
EP (1) EP0977945A1 (de)
JP (1) JP2001510530A (de)
DE (1) DE19753162A1 (de)
WO (1) WO1999028619A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9919424D0 (en) * 1999-08-18 1999-10-20 Lucas Industries Ltd Fuel injector
DE19939455A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
ES2662594T3 (es) 2000-11-07 2018-04-09 Cryolife, Inc. Biomateriales expandibles espumados y métodos.
DE10123218A1 (de) * 2001-05-12 2002-11-14 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
JP2009542979A (ja) * 2006-07-10 2009-12-03 マック トラックス インコーポレイテッド 浮動防止装置を備えた往復部材
US9599251B2 (en) * 2012-02-13 2017-03-21 Hyundai Heavy Industries Co., Ltd. Check valve driving device for injecting gas
FR3052193B1 (fr) * 2016-06-01 2018-06-22 Poclain Hydraulics Industrie Systeme de selection comprenant un verrouillage axial ameliore
WO2018098308A1 (en) * 2016-11-22 2018-05-31 Cummins Inc. Injector method of switching between injection state and drain state

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE750183C (de) * 1941-12-03 1944-12-16 Insbesondere fuer Brennkraftmaschinen bestimmtes, fluessigkeitsgesteuertes Einspritzventil
DE4310154A1 (de) * 1993-03-29 1994-10-06 Bosch Gmbh Robert Kraftstoff-Einspritzdüse für Brennkraftmaschinen
DE19543994A1 (de) * 1995-11-25 1997-05-28 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
EP0826878A1 (de) * 1996-08-28 1998-03-04 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522550A (en) * 1992-06-10 1996-06-04 Robert Bosch Gmbh Injection nozzle for internal combustion engines
DE4332124A1 (de) * 1993-09-22 1995-03-23 Bosch Gmbh Robert Kraftstoffeinspritzdüse für Brennkraftmaschinen
DE4340883A1 (de) * 1993-12-01 1995-06-08 Bosch Gmbh Robert Kraftstoff-Einspritzdüse für Brennkraftmaschinen
DE4442764A1 (de) * 1994-12-01 1996-06-05 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19547423B4 (de) * 1995-12-19 2008-09-18 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE750183C (de) * 1941-12-03 1944-12-16 Insbesondere fuer Brennkraftmaschinen bestimmtes, fluessigkeitsgesteuertes Einspritzventil
DE4310154A1 (de) * 1993-03-29 1994-10-06 Bosch Gmbh Robert Kraftstoff-Einspritzdüse für Brennkraftmaschinen
DE19543994A1 (de) * 1995-11-25 1997-05-28 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
EP0826878A1 (de) * 1996-08-28 1998-03-04 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19634716A1 (de) * 1996-08-28 1998-03-05 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen

Also Published As

Publication number Publication date
DE19753162A1 (de) 1999-06-02
US6113011A (en) 2000-09-05
EP0977945A1 (de) 2000-02-09
JP2001510530A (ja) 2001-07-31

Similar Documents

Publication Publication Date Title
EP2108080B1 (de) Injektor zum einspritzen von kraftstoff in brennräume von brennkraftmaschinen
DE4302668A1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
WO2003069151A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1552135B1 (de) Kraftstoffeinspritzvorrichtung für eine brennkraftmaschine
DE102005059169A1 (de) Kraftstoffinjektor mit direkt betätigbarem Einspritzventilglied
DE102007002445A1 (de) Rückschlagventil und Injektor mit hydraulischem Übersetzer und Rückschlagventil
DE3228079A1 (de) Kraftstoff-einspritzduese fuer brennkraftmaschinen
DE19618698A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2002090756A1 (de) Kraftstoff-einspritzvorrichtung für brennkraftmaschinen, insbesondere common-rail-injektor, sowie kraftstoffsystem und brennkraftmaschine
WO2007057252A1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine mit kraftstoff-direkteinspritzung
WO1999028619A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1554487A1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine
WO2000001936A2 (de) Druckventil
DE19536330A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1373710A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1719904A1 (de) Kraftstoffeinspritzdüse
EP1526274B1 (de) Kraftstoff-Einspritzvorrichtung, insbesondere für eine Brennkraftmaschine mit Direkteinspritzung
DE19642440A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE3907569A1 (de) Kraftstoff-einspritzduese fuer brennkraftmaschinen
EP0445126B1 (de) Kraftstoff-einspritzdüse für brennkraftmaschinen
DE19623759A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2003031803A1 (de) Kraftstoff-einspritzvorrichtung, insbesondere injektor für brennkraftmaschinen mit direkteinspritzung, sowie kraftstoffsystem und brennkraftmaschine
WO1995015435A1 (de) Kraftstoff-einspritzdüse für brennkraftmaschinen
EP0826878B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE19929881A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1998941233

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1999 529603

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09355501

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998941233

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998941233

Country of ref document: EP