EP1554388A1 - Transgene expressionskassetten zur expression von nukleinsäuren in der pflanzlichen blüte - Google Patents

Transgene expressionskassetten zur expression von nukleinsäuren in der pflanzlichen blüte

Info

Publication number
EP1554388A1
EP1554388A1 EP03793448A EP03793448A EP1554388A1 EP 1554388 A1 EP1554388 A1 EP 1554388A1 EP 03793448 A EP03793448 A EP 03793448A EP 03793448 A EP03793448 A EP 03793448A EP 1554388 A1 EP1554388 A1 EP 1554388A1
Authority
EP
European Patent Office
Prior art keywords
promoter
seq
sequence
nucleic acid
cyclase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03793448A
Other languages
English (en)
French (fr)
Inventor
Christel Renate Schopfer
Matt Sauer
Martin Klebsattel
Ralf Flachmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SunGene GmbH
Original Assignee
SunGene GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SunGene GmbH filed Critical SunGene GmbH
Priority claimed from PCT/EP2003/008394 external-priority patent/WO2004027069A1/de
Publication of EP1554388A1 publication Critical patent/EP1554388A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation

Definitions

  • the invention relates to methods for the targeted, transgenic expression of nucleic acid sequences in plant flowers, and to transgenic expression cassettes and expression vectors which contain promoters with an expression specificity for plant flowers.
  • the invention further relates to organisms (preferably plants) transformed with these transgenic expression cassettes or expression vectors, cultures, parts or propagation material derived therefrom, and the use thereof for the production of foodstuffs, animal feed, seeds, pharmaceuticals or fine chemicals.
  • the aim of biotechnological work on plants is the production of • plants with advantageous, new properties, for example to increase agricultural productivity, to improve the quality of food or to produce certain chemicals or pharmaceuticals (Dunwell M (2000) J Exp Bot 51 Spec No: 487- 96).
  • a basic requirement for the transgenic expression of certain genes is the provision of promoters which are functional in plants. Promoters are important tools in plant biotechnology to control the expression of certain genes in a transgenic plant and thus achieve certain essential characteristics of the plant.
  • promoters which are functional in plants are known, for example constitutive promoters such as the promoter, de ⁇ nopaline synthase from agrobacterium, the TR double promoter or the promoter of the 35S transcript of the cauliflower mosaic virus (CaMV) (Odell et al. (1985) Nature 313: 810-812).
  • CaMV cauliflower mosaic virus
  • a disadvantage of these promoters is that they are constitutively active in almost all tissues of the plant. A targeted expression of genes in certain parts of plants or at certain times of development is not possible with these promoters. The need for promoters with a defined activity profile and specificity for certain plant tissues is therefore particularly great.
  • Promoters with specificities for various plant tissues such as anthers, ovaries, flowers, leaves, stems, roots, tubers or seeds are described.
  • the stringency of the specificity as well as the expression activity of these promoters is very different.
  • the plant flower is used for the sexual reproduction of the seed plants. Vegetable flowers - especially the petals (petals) - often accumulate large amounts of secondary plant substances, such as terpenes, anthocyanins, carotenoids, alkaloids and phenylpropanoids, which serve the flowers as fragrances, repellents or dyes. Many of these substances are of economic interest.
  • the flower bud and flower of the plant is a sensitive organ, especially against stress factors such as cold.
  • a first subject of the invention relates to methods for the targeted, transgenic expression of nucleic acid sequences in the flowering in plants, the following steps being included
  • transgenic expression cassette containing at least the following elements
  • promoter sequences and a further nucleic acid sequence are functionally linked to one another and the further nucleic acid sequence is heterologous with respect to the promoter sequence or the plant cell, and
  • transgenic expression cassettes such as e.g. can be used in the method according to the invention.
  • the transgene expression cassettes preferably comprise for the targeted, transgenic expression of nucleic acid sequences in the plant flower,
  • promoter sequence of a gene coding for an ⁇ -cyclase means a sequence selected from the group of sequences consisting of
  • promoter sequence of a gene coding for an ⁇ -cyclase means the promoter sequence from Tagetes erecta according to SEQ ID NO: 1 and functionally equivalent fragments thereof.
  • the expression cassettes according to the invention can contain further genetic control sequences and / or additional functional elements.
  • the transgenic expression cassettes can preferably enable the expression of a protein encoded by said nucleic acid sequence and / or the expression of a nucleic acid sequence encoded by the nucleic acid sequence, vo-said, by said nucleic acid sequence, anti-sense RNA or double-stranded RNA by the transgenic expression.
  • Another object of the invention relates to transgenic
  • Expression vectors which contain one of the expression cassettes according to the invention.
  • the invention further relates to transgenic organisms which contain one of the expression cassettes or expression vectors according to the invention.
  • the organism can be selected from the group consisting of bacteria, yeasts, fungi, non-human animal and plant organisms or cells, cell cultures, parts, tissues, organs or propagation material derived from them, the organism is preferably selected from the group of agricultural useful plants .
  • Another object of the invention therefore relates to an isolated nucleic acid sequence comprising the promoter of the ⁇ -cyclase from Tagetes erecta according to SEQ ID NO: 1 and functionally equivalent fragments thereof. 5
  • the nucleic acid sequence according to the invention or the transgenic expression cassette according to the invention in the form of a functionally equivalent promoter sequence comprises, in addition to the sequence according to SEQ ID NO: 1, also 10 coding the sequence for the 5'-untranslated region of the ⁇ -cyclase gene from Tagetes erecta.
  • the sequence described by SEQ ID NO: 2 is particularly preferred.
  • the 15th nucleic acid sequence according to the invention or the transgenic expression cassette according to the invention in the form of a functionally equivalent promoter sequence comprises, in addition to the sequence according to SEQ ID NO: 1, the sequence coding for the 5'-untranslated region of the ⁇ -cyclase gene from Tagetes erecta and a sequence coding for a transit peptide, preferably for the transit peptide of the ⁇ -cyclase protein from Tagetes erecta according to SEQ ID NO: 4.
  • This sequence is preferably oriented in the 3 'direction with respect to one of the promoters according to the invention.
  • the sequence described by 5 SEQ ID NO: 3 is particularly preferred in this connection as the promoter sequence.
  • Another object relates to the use of the isolated nucleic acid sequences, transgenic expression vectors or transgenic organisms for the transgenic expression of 0 nucleic acids and / or proteins.
  • Another object of the invention relates to the use of the nucleic acid sequence according to the invention for reducing the expression of an ⁇ -cyclase.
  • expression cassettes are included according to the invention which are capable of expressing a double-stranded RNA corresponding to the promoter sequence.
  • transgenic organisms or derived cells, cell cultures, parts, tissues, organs or propagation material derived therefrom for the production of foodstuffs, animal feed, seeds, pharmaceuticals or fine chemicals
  • the fine chemicals preferably enzymes, vitamins, Amino acids, sugars, saturated or unsaturated fatty acids, natural or synthetic flavors, aromas or colors.
  • the invention also encompasses processes for the production of said foodstuffs, animal feeds, seeds, Pharmaceuticals or fine chemicals using the transgenic organisms according to the invention or derived cells, cell cultures, parts, tissues, organs or propagation material derived therefrom.
  • “Expression” means the transcription of the nucleic acid sequence to be expressed transgenically, but can - in the case of an open reading frame in "sense” orientation - also include the translation of the transcribed RNA of the transgenic nucleic acid sequence to be expressed into a corresponding polypeptide.
  • Transgene means - for example in relation to a transgenic expression cassette, a transgenic expression vector, a transgenic organism or methods for the transgenic expression of nucleic acids - all such constructions which have been obtained by genetic engineering methods or methods using the same, in which either
  • an ⁇ -cyclase promoter e.g. according to SEQ ID NO: 1, 7 or 8 or a functional equivalent thereof or a functionally equivalent • F-röcrc ⁇ nt of the aforementioned, or
  • transgenic nucleic acid sequence to be expressed in functional linkage with a promoter according to a), or
  • the promoter sequence according to the invention contained in the expression cassettes is preferably heterologous in relation to the further nucleic acid sequence to be functionally linked and transgenically expressed.
  • heterologous means that the further nucleic acid sequence does not code for the gene, which is naturally under the control of said promoter.
  • Natural genetic environment means the natural chro o-somal locus in the organism of origin or the presence in a genomic library.
  • the natural, genetic environment of the nucleic acid sequence is preferably at least partially preserved.
  • the environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp.
  • a naturally occurring expression construct for example the naturally occurring combination of the promoter according to SEQ ID NO: 1 and a gene coding for a protein according to SEQ ID NO: 10 or 12 becomes a transgenic expression construct if this is caused by unnatural, synthetic ("artificial") Methods such as mutagenization in vitro are changed. Corresponding methods are described (US 5,565,350; WO 00/15815; see also above).
  • transgenic expression preferably means all those expressions realized using a transgenic expression cassette, transgenic expression vector or transgenic organism - according to the definitions given above.
  • transgenic expression cassettes according to the invention, the transgenic expression vectors derived from them and transgenic organisms can comprise functional equivalents to the ⁇ -cyclase promoter sequence described under SEQ ID NO: 1, 7th or .8 ⁇ .
  • Functional equivalents also include all the sequences which are derived from the complementary counter strand of the sequences defined by SEQ ID NO: 1, 7 or 8 and which have essentially the same promoter activity. Particularly preferred are the sequences according to SEQ ID NO: 2 or 3, which in addition to the promoter sequence contain the 5'-untranslated region or the 5'-untranslated region and the region coding for the transit peptide of the ⁇ -cyclase from Tagetes erecta ,
  • Functional equivalents mean in particular natural or artificial mutations of the ⁇ -cyclase promoter sequence described under SEQ ID NO: 1, 7 or 8 and their homologues from other plant genera and species, which continue to be essentially have the same promoter activity as the ⁇ -cyclase promoter according to SEQ ID NO: 1, 7 or 8.
  • Promoter activity is said to be essentially the same if the transcription of a particular gene to be expressed is under the control of e.g. a functional equivalent of the ⁇ -cyclase promoter sequence described by SEQ ID NO: 1, 7 or 8 or a functionally equivalent fragment thereof - under otherwise unchanged conditions - is higher in at least one flower tissue than in another non-flower tissue , for example the root or the leaves.
  • the expression under control of one of the promoters according to the invention in a flower tissue is preferably at least twice or five times, very particularly preferably at least ten times or fifty times, most preferably at least one hundred times than in another non-flower tissue, for example that Root or the leaves.
  • “Blossom” generally means a sprout of limited growth, the leaves of which are transformed into reproductive organs.
  • the flower consists of different “flower tissues” such as the sepals (sepals), the petals, the stamens (or dust “vessels”; stamina) or the fruit leaves (carpels).
  • Androeceu is the totality of the stamens in the flower.
  • the stamens are located within the circle of petals or sepals.
  • a stamen is divided into a filament and an anther sitting at the end. This in turn is divided into two counters, which are connected to each other by a connective. Each counter consists of two pollen sacks in which the pollen is formed.
  • targeted preferably means that the expression under control of one of the promoters according to the invention in at least one plant flower tissue is at least ten times, particularly preferably at least fifty times, very particularly preferably at least one hundred times than in one Non-flower tissues such as leaves.
  • Reporter proteins such as "green fluorescence protein” (GFP) (Chui WL et al. (1996) Curr Biol 6: 325 -330; Leffel SM et al. (1997) Biotechniques 23 (5): 912-8), chloramphenicol transferase, luciferase (Millar et al. (1992) Plant Mol Biol Rep 10: 324-414), ⁇ -glucuronidase or ß-galactosidase.
  • GFP green fluorescence protein
  • chloramphenicol transferase Cillar et al. (1992) Plant Mol Biol Rep 10: 324-414
  • ⁇ -glucuronidase (Jefferson et al. (1987) EMBO J 6: 3901-3907) is very particularly preferred.
  • “Otherwise unchanged conditions” means that the expression which is initiated by one of the transgenic expression cassettes to be compared is not modified by combination with additional genetic control sequences, for example enhancer sequences. Unchanged conditions also means that all framework conditions such as plant type, development stage of the plants, breeding conditions, assay conditions (such as buffer, temperature, substrates etc.) are kept identical between the expressions to be compared.
  • SEQ ID NO: 1, 7 or 8 preferably comprises such sequences
  • a) have essentially the same promoter activity as the ⁇ -cyclase promoter according to SEQ ID NO: 1, 7 or 8 and
  • b) which have a homology of at least 50%, preferably 70%, preferably at least 80%, particularly preferably at least 90%, very particularly preferably at least 95%, most preferably 99% to the sequence of the ⁇ -cyclase promoter according to SEQ ID NO: 1, 7 or 8, the homology extending over a length of at least 100 base pairs, preferably at least 200 base pairs, particularly preferably of at least 300 base pairs, very particularly preferably of at least 400 base pairs, most preferably of at least 500 base pairs.
  • the level of expression of the functional equivalents can differ both downwards and upwards compared to a comparison value. Preference is given to those sequences whose expression level, measured on the basis of the transcribed mRNA or the protein translated as a result, under otherwise unchanged conditions, quantitatively by no more than 50%, preferably 25%, particularly preferably 10%, of a comparison value obtained with those obtained by SEQ ID NO : 1, 7 or 8 described promoters differs. Particularly preferred are those sequences whose expression level, measured on the basis of the transcribed mRNA or the protein translated as a result, under otherwise unchanged conditions, quantitatively by more than 50%, preferably 100%, particularly preferably 500%, very particularly preferably 1000%, is compared with that promoter described by SEQ ID NO: 1, 7 or 8. Further examples of the functionally equivalent promoter sequences used in the transgenic expression cassettes or transgenic expression vectors according to the invention can be found, for example, in various organisms, the genomic sequence of which is at least partially known, for example
  • Arabidopsis thaliana, Brassica napus, Nicotiana tabacum, Solanum tuberosum, Helianthium annuus, Linu sativum or Oryza sativa can be easily found by comparing homology in databases.
  • the corresponding homologous genes - and thus the associated promoter regions - can - can be easily identified in other plant species by screening databases or gene banks (using appropriate gene probes) in the manner familiar to the person skilled in the art.
  • functional equivalents to the ⁇ -cyclase promoter according to SEQ ID NO: 1, 7 or 8 comprise those sequences which are located in a plant organism in the 5 'direction in front of a genomic sequence which are suitable for an ⁇ - Cyclase encoded.
  • ⁇ -Cyclase generally means all those proteins which have ⁇ -cyclase activity.
  • ⁇ -Cyclase activity means the enzyme activity of an ⁇ -cyclase.
  • An ⁇ -cyclase is understood to mean a protein which has the enzymatic activity to convert a terminal, linear residue of lycopene into an ⁇ -ionone ring.
  • ⁇ -cyclase generally means all those proteins which are capable of catalyzing the ring formation of lycopene to ⁇ -carotene (and possibly further to ⁇ -carotene) and / or of neurospores to ⁇ -zeacarotin.
  • the ⁇ -cyclase preferably has an oxidoreductase activity and / or naturally shows a predominant localization in the plastids, in particular the chloroplasts and chromoplasts.
  • An ⁇ -cyclase is preferably understood to mean a protein which has the enzymatic activity to convert lycopene to ⁇ -carotene. Accordingly, the ⁇ -cyclase activity in understood a certain time by the protein ⁇ -cyclase converted amount of lycopene or amount of ⁇ -carotene formed.
  • the determination of the ⁇ -cyclase activity in 5 genetically modified plants according to the invention and in wild-type or reference plants is preferably carried out under the following conditions:
  • the ⁇ -cyclase activity can be determined in vitro according to Fräser and Sandmann (Biochem. Biophys. Res. Comm. 185 (1) (1992) 9-15) if potassium phosphate is used as a buffer for a certain amount of plant extract (pH 7.6) , Lycopene as substrate, Stromaprotein from paprika, NADP +, NADPH and ATP are added.
  • 20 holds 50 mM potassium phosphate (pH 7, 6) different amounts of plant extract, 20 nM lycopene, 0.25 mg of chromoplastic paprika stromal protein, 0.2 mM NADP +, 0.2 mM NADPH and 1 mM ATP.
  • NADP / NADPH and ATP are dissolved in 0.01 ml ethanol with 1 mg Tween 80 immediately before adding to the incubation medium. After a reaction time of 60 minutes at 30 ° C., the reaction is terminated by adding chloroform / methanol (2: 1). The reaction products extracted in chloroform are analyzed by HPLC.
  • functional equivalents of the ⁇ -cyclase promoter described by SEQ ID NO: 1, 7 or 8 comprise all those promoters which are located in a 5 'direction in front of a genomic sequence in a plant organism which are for encode an ⁇ -cyclase with a homology 0 of at least 60%, preferably at least 80%, particularly preferably at least 90%, most preferably at least 95% to a protein according to SEQ ID NO: 10, 12, 14 or 16, said promoters represent the natural promoter of said genomic sequence.
  • ⁇ -cyclase promoter described by SEQ ID NO: 1, 7 or 8 particularly preferably comprise all those promoters which are located in a plant organism in the 5 'direction in front of a genomic sequence which codes for a nucleic acid sequence thereof derived cDNA has a homology of at least 60%, preferably at least 80%, particularly preferably at least 90%, most preferably at least 95% to the nucleic acid sequence according to SEQ ID NO: 9, 11, 13 or 15, said promoters being the natural promoter of the represent said genomic sequence and the cDNA codes for an ⁇ -cyclase.
  • promoters which comprise a sequence range of at least 250 base pairs, preferably at least 500 base pairs, particularly preferably 1000 base pairs, most preferably at least 2000 base pairs in the 5 'direction calculated from the ATG start codon of the said genomic sequences.
  • ⁇ -cyclase promoter Functional equivalents of the ⁇ -cyclase promoter are particularly preferred described by SEQ ID NO: 1, 7 or 8 all those promoters which are located in a plant organism in the 5 'direction in front of a genomic sequence which codes for an ⁇ -cyclase that contains at least one of the following sequence motifs:
  • Functional equivalents of the promoter described by SEQ ID NO: 1, 7 or 8 are those promoters which are located in a plant organism in the 5 'direction in front of a genomic sequence which codes for a protein, the said Protein comprises at least one of the following sequences:
  • the most preferred functional equivalents of the promoter described by SEQ ID NO: 1, 7 or 8 are those promoters which are located in a plant organism in the 5 'direction in front of a genomic sequence which codes for a nucleic acid sequence whose derived cDNA is at least one of the following sequences, includes:
  • SEQ ID NO: 29 the homologous sequences (H5 and H6) from Citrus x paradisi according to SEQ ID NO: 31 or 33 the homologous sequence (H7) from Citrus sinensis according to
  • SEQ ID NO: 35 the homologous sequence (H8) from Spinacea oleracea according to
  • SEQ ID NO: 37 The homologous sequence (H9) from Solanum tuberosum according to
  • SEQ ID NO: 41 or 43 the homologous sequence (H12) from tomato according to SEQ ID NO: 45
  • promoter sequences used in the transgenic expression cassettes or transgenic expression vectors according to the invention can be found, for example, in various organisms whose genomic sequence is at least partially known, such as, for example, Arabidopsis thaliana, Brassica napus, Oryza sativa, Nicotiana tabacu, Solanum tuberosum, easily find Helianthium annuus, Linum sativum by comparing homology in databases.
  • Another object of the invention relates to the use of at least one nucleic acid sequence or a part thereof in methods for the identification and / or isolation of promoters of genes coding for said nucleic acid sequence, wherein said nucleic acid sequence codes for an amino acid sequence which comprises at least one sequence motif according to SEQ ID NO: 17, 18, 1 * 9, 20, 21 or 22 or a variation 5 given for these sequence motifs.
  • Said nucleic acid sequence preferably codes for an amino acid sequence comprising a sequence according to SEQ ID NO: 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 or 46.
  • said nucleic acid sequence comprises a sequence according to SEQ ID NO : 23, 25, 27, 29, 29, 31, 33, 35, 37, 39, 41, 43 or 10 45.
  • "part” preferably means a sequence of at least 10 bases, preferably 15 bases, particularly preferably 20 bases, most preferably 30 bases.
  • Said nucleic acid sequence preferably codes for an amino acid sequence comprising a sequence according to SEQ ID NO: 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 or 46.
  • Said nucleic acid sequence particularly preferably comprises a sequence according to SEQ ID NO: 23, 25, 27, 29, 29, 31, 33, 35, 37, 39, 41, 43 or 45. “Part” in relation to the nucleic acid sequence preferably means one Sequence of at least 10 bases, preferably 15 bases, particularly preferably 20 bases, most preferably
  • the method according to the invention is based on the polymerase chain reaction, said nucleic acid sequence or a part thereof being used as a primer.
  • iPCR inverse PCR
  • TAIL PCR Thermal Asymmetry Interlaced PCR
  • genomic DNA of the organism from which the functionally equivalent promoter is to be isolated is completely digested with a given restriction enzyme and then the individual fragments are re-ligated in a diluted batch, ie linked to themselves to form a ring-shaped molecule .
  • the large number of ring-shaped DNA molecules which are formed also contain those which contain the known sequence (for example the sequence coding for the homologous protein). Based on this, the ring-shaped molecule can be amplified by means of PCR using a pair of primers in which both primers can attach to the known sequence section.
  • An example of an embodiment of the "iPCR" is shown in Example 2.
  • the "TAIL-PCR” is based on the use of, on the one hand, a set of successively shortened, highly specific primers which attach to the known genomic sequence (for example the sequence coding for the homologous protein), and on the other hand a set of shorter random primers with a low melting temperature, so that there is a more sequence-unspecific attachment to the known genomic sequence flanking genomic DNA.
  • the attachment of the primers to the DNA to be amplified can be designed with such a pri combination in such a way that a specific amplification of the desired target sequence is possible.
  • An example of an embodiment of the "TAIL-PCR” is shown in Example 2.
  • the invention further relates to methods for producing a transgenic expression cassette with specificity for the plant flowers, comprising the following steps:
  • nucleic acid sequence coding for an amino acid sequence which has at least one sequence motif according to SEQ ID NO: 17, 18, 19, 20, 21 or 22 or one for this sequence motifs includes specified variation.
  • Said nucleic acid sequence preferably codes for an amino acid sequence comprising a sequence according to SEQ ID NO: 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 or 46.
  • said nucleic acid sequence comprises a sequence according to SEQ ID NO : 23, 25, 27, 29, 29, 31, 33, 35, 37, 39, 41, 43 or 45.
  • “Part” in relation to the nucleic acid sequence preferably means a sequence of at least 10 bases, preferably 15 bases, particularly preferably 20 bases, most preferably 30 bases.
  • the method according to the invention is based on the polymerase chain reaction, said nucleic acid sequence or a part thereof being used as a primer. In the context of the functional linkage, methods known to the person skilled in the art such as ligation etc. can be used (see below).
  • the level of expression of a functionally equivalent promoter can differ both downwards and upwards compared to the promoter according to SEQ ID NO: 1, 7 or 8. Preference is given to those sequences whose expression level, measured on the basis of the transcribed mRNA or the protein translated as a result, under otherwise unchanged conditions, quantitatively by no more than 50%, preferably 25%, particularly preferably 10%, of a comparison value obtained with those obtained by SEQ ID NO : 1, 7 or 8 described promoters differs.
  • Preferred as a comparison value is the expression level of the mRNAs of an ⁇ -cyclase naturally expressed by the promoter or of the protein resulting therefrom.
  • Also preferred as a comparative value is the level of expression obtained with any, but certain, nucleic acid sequence, preferably those nucleic acid sequences which code for easily quantifiable proteins.
  • Reporter proteins such as the "green fluorescence protein" (GFP) (Chui WL et al. (1996) Curr Biol 6 : 325-330; Leffel SM et al. (1997) Biotechniques. 23 (5): 912-8), chloramphenicol transferase, a luciferase (Millar et al. (1992) Plant Mol Biol Rep 10: 324-414) or the ⁇ -glucuronidase, ⁇ -glucuronidase is very particularly preferred (Jefferson et al. (1987) EMBO J 6: 3901-3907).
  • Functional equivalents also include natural or artificial mutations of the promoter sequence described under SEQ ID NO: 1, 7 or 8. Mutations include substitutions, additions, deletions, inversions or insertions of one or more nucleotide residues.
  • the present invention also includes those nucleotide sequences which can be obtained by modifying the ⁇ -cyclase promoter according to SEQ ID NO: 1, 7 or 8 receives. The aim of such a modification may be to further narrow down the sequence contained therein or, for example, to insert or remove restriction endonuclease interfaces, to remove unnecessary DNA or to add further sequences, for example further regulatory sequences.
  • Transition means a base pair exchange of a purine / pyridine pair into another purine / pyrimidine pair (e.g. A-T for G-C).
  • Transversion means a base pair exchange of a purine / pyrimidine pair for a pyrimidine / purine pair (e.g. A-T for T-A).
  • Deletion means the removal of one or more base pairs.
  • Insertion means the introduction of one or more base pairs.
  • GAP Garnier ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • Gap Weight 12 Length Weight: 4
  • a sequence which has a homology of at least 50% on a nucleic acid basis with the sequence SEQ ID NO: 1 is understood to mean a sequence which, when compared with the sequence SEQ ID NO: 1 according to the above program algorithm with the above parameter set Has at least 50% homology.
  • Homology between two polypeptides means the identity of the amino acid sequence over the respective sequence length, which can be determined by comparison using the program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA) using the following parameters:
  • Gap Weight 8 Length Weight: 2
  • a sequence which has a homology of at least 60% on a protein basis with the sequence SEQ ID NO: 10 is understood to mean a sequence which, when compared with the sequence SEQ ID NO: 10 according to the above program algorithm with the above parameter set, has a homology of has at least 60%.
  • Functional equivalents also means DNA sequences which hybridize under standard conditions with the nucleic acid sequence coding for the ⁇ -cyclase promoter according to SEQ ID NO: 1, 7 or 8 or the nucleic acid sequences complementary to it and which have essentially the same promoter properties.
  • standard hybridization conditions is to be understood broadly and means both stringent and less stringent hybridization conditions. Such hybridization conditions are described, inter alia, in Sambrook J, Fritsch EF, Maniatis T et al., In Molecular Cloning - A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory Press, 1989, pages 9.31-9.57 or in Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989), 6.3.1-6.3.6. described.
  • the conditions during the washing step can be selected from the range of conditions limited to those with low stringency (with approximately 2X SSC at 50 ° C) and those with high stringency (with approximately 0.2X SSC-bs-i 50 ° C) preferably at 65 ° C) (20X SSC: 0.3 M sodium citrate, 3 M NaCl, pH 7.0).
  • the temperature during the washing step can be raised from low stringent conditions at room temperature, about 22 ° C, to more stringent conditions at about 65 ° C. Both parameters, salt concentration and temperature, can be varied simultaneously, one of the two parameters can be kept constant and only the other can be varied. Denaturing agents such as formamide or SDS can also be used during hybridization. In the presence of 50% formamide, the hybridization is preferably carried out at 42 ° C.
  • 0.1X SSC at 65 ° C
  • 0.1X SSC 0.5% SDS at 68 ° C
  • 0.1X SSC 0.5% SDS, 50% formamide at 42 ° C
  • 0.2X SSC 0.1% SDS at 42 ° C
  • e) 2X SSC at 65 ° C (weakly stringent condition)
  • 40 mM sodium phosphate buffer pH 7.0 1% SDS, 2 mM EDTA.
  • Methods for producing functional equivalents according to the invention preferably include the introduction of mutations into the ⁇ -cyclase promoter according to SEQ ID NO: 1, 7 or 8. Mutagenesis can be carried out in an undirected ("random") manner, the mutagenized sequences then being based on their Properties are screened after a "trial-and-error" procedure. Particularly advantageous selection criteria include, for example, the level of the resulting expression of the introduced ⁇ small acid sequence in a flower tissue.
  • Methods for mutagenizing nucleic acid sequences include, for example, the use of oligonucleotides with one or more mutations in comparison to the region to be mutated (for example as part of a "site-specific utagenesis").
  • primers with approximately 15 to approximately 75 nucleotides or more are used, preferably approximately 10 to approximately 25 or more nucleotide residues being located on both sides of the sequence to be changed.
  • the details and implementation of said mutagenesis methods are known to the person skilled in the art (Kunkel et al. (1987) Methods Enzymol 154: 367-382; Tomic et al.
  • Mutagenesis can also be achieved by treating, for example, transgenic expression vectors that contain one of the nucleic acid sequences according to the invention contain, can be realized with mutagenizing agents such as hydroxylamine.
  • non-essential sequences of a promoter according to the invention can be deleted without significantly impairing the essential properties mentioned.
  • deletion variants are functionally equivalent fragments to the promoters described by SEQ ID NO: 1, 7 or 8 or to the equivalent thereof.
  • the restriction of the promoter sequence to certain essential regulatory regions can e.g. using the search routine to search for promoter elements. Certain promoter elements are often abundant in the regions relevant to promoter activity. This analysis can be carried out, for example, with computer programs such as the program PLACE ("Plant Cis-acting Regulatory DNA Elements"; Higo K et al.
  • the functionally equivalent fragments of one of the promoters according to the invention - for example the ⁇ -cyclase promoters described by SEQ ID NO: 1, 7 or 8 - preferably comprise at least 200 base pairs, very particularly preferably at least 500 base pairs, most preferably at least 1000 base pairs of the 3 ' -End of the respective promoter according to the invention - for example the promoters described by SEQ ID NO: 1, 7 or 8 -, the length from the translation start ("ATG" codon) being calculated upstream in the 5 'direction.
  • fragments can be generated, for example, by deleting any 5 'untranslated regions which are still present.
  • start of transcription of the corresponding genes can be determined by methods familiar to the person skilled in the art (such as 5'-RACE) and the 5'-untranslated can be deleted by PCR-mediated methods or endonuclease digestion.
  • the 5 'untranslated regions included in the promoters according to SEQ ID NO: 7 or 8 can be deleted without the promoter being essential
  • transgenic expression cassettes according to the invention at least one of the promoters according to the invention (for example described by SEQ ID NO: 1, 7 or 8) is functionally linked xa.it with at least one nucleic acid sequence to be expressed transgenically.
  • a functional link is understood to mean, for example, the sequential arrangement of one of the promoters according to the invention (described, for example, by SEQ ID NO: 1, 7 or 8) with a nucleic acid sequence to be expressed transgenically and, if appropriate, further genetic control sequences such as, for example, a terminator or a polyadenylation sequence of this kind that the promoter can fulfill its function in the transgenic expression of the nucleic acid sequence under suitable conditions and the expression of the nucleic acid sequence (ie transcription and, if necessary, translation) takes place.
  • Suitable conditions preferably means the presence of the expression cassette in a plant cell, preferably a plant cell encompassed by a plant flower.
  • nucleic acid sequence to be expressed transgenically is positioned behind one of the promoters according to the invention (e.g. described by SEQ ID NO: 1, 7 or 8), so that both sequences are covalently linked to one another.
  • the distance between the promoter sequence and the nucleic acid sequence to be expressed transgenically is preferably less than 200 base pairs, particularly preferably less than 100 base pairs, very particularly preferably less than 50 base pairs.
  • transgenic expression can be achieved using common recombination and cloning techniques, such as those described in Maniatis T, Fritsch EF and Sambrook J (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor ( NY), in Silhavy TJ, Berman ML and Enquist LW (1984) Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY) and in Ausubel FM et al. (1987) Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience.
  • further sequences can also be positioned between the two sequences, which for example have the function of a linker with certain restriction enzyme interfaces or a signal peptide.
  • the insertion of sequences can also lead to the expression of fusion proteins.
  • the transgenic expression construct consisting of a linkage of promoter and nucleic acid sequence to be expressed, can preferably be integrated are present in a vector and can be inserted into a plant genome by, for example, transformation.
  • an expression cassette is also to be understood to mean those constructions in which one of the promoters according to the invention (described, for example, by SEQ ID NO: 1, 7 or 8), without it having first been functionally linked to a nucleic acid sequence to be expressed, for example is introduced via a targeted homologous recombination or a random insertion into a host genome, takes over regulatory control over endogenous nucleic acid sequences then functionally linked to it and controls the transgenic expression thereof.
  • an expression cassette according to the invention is obtained which specifically controls the expression of the specific polypeptide in the plant flower.
  • the natural promoter of an endogenous gene can also be exchanged for one of the promoters according to the invention (e.g. described by SEQ ID NO: 1, 7 or 8) and the expression behavior of the endogenous gene can be modified in this way.
  • the insertion of the promoter can also take place in such a way that antisense RNA or a double-stranded RNA (e.g. in the form of an inverted "repeat") is expressed to the nucleic acid coding for a specific polypeptide. This selectively down-regulates or switches off the expression of the particular polypeptide in the plant flower.
  • a nucleic acid sequence to be expressed transgenically - for example by an '-h-i ⁇ ologic recombination - can code behind the sequence for one of the promoters according to the invention (for example described by SEQ ID NO: 1, 7 or 8) which is in its natural chromosomal Context is placed so that an expression cassette according to the invention is obtained which controls the expression of the nucleic acid sequence to be expressed transgenically in the plant flower.
  • the transgenic expression cassettes according to the invention can comprise further genetic control sequences.
  • the term “genetic control sequences” is to be understood broadly and means all those sequences which have an influence on the formation or the function of a transgenic expression cassette according to the invention. Genetic control sequences modify, for example, transcription and translation in prokaryotic or eukaryotic organisms.
  • the transgenic expression cassettes according to the invention preferably comprise 3 ′ downstream a terminator sequence as an additional genetic control sequence, as well as, if appropriate, other customary regulatory elements, each functionally linked to the nucleic acid sequence to be expressed transgenically from the respective nucleic acid sequence to be expressed.
  • Genetic control sequences also include further promoters, promoter elements or minimal promoters that can modify the expression-controlling properties. Genetic control sequences can, for example, also result in tissue-specific expression depending on certain stress factors. Corresponding elements are, for example, for water stress, abscisic acid (La E and Chua NH, J Biol Chem 1991; 266 (26): 17131-17135) and heat stress (Schoffl F et al. (1989) Mol Gen Genetics 217 (2- 3): 246-53).
  • promoters can be functionally linked to the nucleic acid sequence to be expressed, which enable transgenic expression in other plant tissues or in other organisms, such as E. coli bacteria.
  • all promoters which are functional in plants are suitable as promoters.
  • 'Promoters which are functional in plants basically mean any promoter which can control the expression of genes, in particular foreign genes, in plants or plant parts, cells, tissues or crops. The expression can be constitutive, inducible or development-dependent, for example.
  • Promoters development-dependent promoters, chemically inducible stress-inducible or pathogen-inducible promoters.
  • Corresponding promoters - s-inci- ' ⁇ 2ea ⁇ expert generally known.
  • control sequences can be found, for example, in the promoters of gram-positive bacteria such as amy and SP02 or in the yeast or fungal promoters ADCl, MFa, AC, P-60, CYCl, GAPDH, TEF, rp28, ADH.
  • Genetic control sequences also include the 5'-untranslated regions, introns or non-coding 3 'regions of genes, such as the actin-1 intron, or the Adhl-S
  • Introns 1, 2 and 6 (general: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, New York (1994)) of the genes with the locus At2g46720, At3g01980 and Atlg63140 from Arabidopsis thaliana. It can be shown that such regions can play a significant role in the regulation of gene expression. It has been shown that 5'-untranslated sequences can increase the transient expression of heterologous genes.
  • An example of translation enhancers is the 5 'leader sequence from the tobacco mosaic virus (Gallie et al. (1987) Nucl Acids Res 15: 8693-8711) and the like. They can also promote tissue specificity (Rouster J et al. (1998) Plant J 15: 435-440).
  • the nucleic acid sequences given under SEQ ID NO: 2, 7 or 8 each represent the promoter region and the 5 'untranslated regions up to the ATG start codon of the respective genes.
  • the transgenic expression construct can advantageously contain one or more so-called “enhancer sequences” functionally linked to the promoter, which enable increased transgenic expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory elements or terminators, can also be inserted at the 3 'end of the nucleic acid sequences to be expressed transgenically.
  • the nucleic acid sequences to be expressed transgenically can be contained in one or more copies in the gene construct.
  • Polyadenylation signals suitable as control sequences are plant polyadenylation signals, preferably those which essentially contain T-DNA polyadenylation signals from Agrobacterium turne faciens.
  • Examples of particularly suitable terminator sequences are the OCS (octopine synthase) terminator and the NOS (nopalin synthase) terminator.
  • Control sequences are also to be understood as those which enable homologous recombination or insertion into the genome of a host organism or which allow removal from the genome.
  • the coding sequence of a specific endogenous gene can be specifically exchanged for the sequence coding for a dsRNA.
  • Methods such as cre / lox technology allow tissue-specific, possibly inducible removal of the transgenic expression construct from the genome of the host organism (Sauer B (1998) Methods 14 (4).-381-92).
  • certain flanking sequences are added to the target gene (lox sequences), which later enable removal using the cre recombinase.
  • a transgenic expression cassette and / or the transgenic expression vectors derived from it can contain further functional elements.
  • the term functional element is to be broadly understood and means all those elements which have an influence on the production, multiplication or function of the transgenic expression constructs according to the invention, the transgenic expression vectors or the transgenic organisms. Examples include, but are not limited to:
  • a) Selection markers which are resistant to biocides such as metabolism inhibitors (for example 2-deoxyglucose-6-phosphate; WO 98/45456), antibiotics (for example kanamycin, G 418, bleomycin, hygro ycin) or - preferably - herbicides (for example phosphinotricin ) to lend.
  • metabolism inhibitors for example 2-deoxyglucose-6-phosphate; WO 98/45456
  • antibiotics for example kanamycin, G 418, bleomycin, hygro ycin
  • - - herbicides for example phosphinotricin
  • selection markers are: phosphinothricin acetyltransferases (bar and pat gene), which inactivate glutamine synthase inhibitors, 5-enolpyruvylshikimate-3-phosphate synthases (EPSP synthase genes), which confer resistance to Glyphosate ® (N- (phosphonomethyl) glycine) Glyphosat ® degrading enzymes (gox gene product; glyphosate oxidoreductase), dehalogenases which inactivate, for example, dalapon (deh gene product), sulfonylurea and imidazolinone inactivating acetolactate synthases and nitrilases which, for example, degrade bromoxynil (bxn gene product), the aasa gene product Resistance to the antibiotic apectinomycin, streptomycin phosphotransferases (SPT), which confer resistance to streptomycin, neomycin phosphotransfera
  • Hygromycin phosphotransferases which confer resistance to hygromycin
  • ALS acetolactate synthases
  • sulfonylurea herbicides e.g. mutated ALS variants with, for example, the S4 and / or Hra mutation.
  • reporter genes which code for easily quantifiable proteins and which, by means of their own color or enzyme activity, ensure an evaluation of the transformation efficiency or of the location or time of expression.
  • Reporter proteins Schoenborn E, Groskreutz D. Mol Biotechnol. 1999; 13 (1): 29-44) such as the "green fluorescence protein” (GFP) (Sheen et al. (1995) Plant Journal 8 (5): 777-784), the chloramphenicol transferase, a luciferase (Ow et al. (1986) Science 234: 856-859), the aequorin gene (Prasher et al.
  • GFP green fluorescence protein
  • insertion comprises all methods which are suitable for directly or indirectly inserting a nucleic acid sequence (for example an expression cassette according to the invention) into an organism (for example a plant) or a cell, compartment, tissue, organ or propagation material ( to introduce or generate seeds or fruits) of the same.
  • a nucleic acid sequence for example an expression cassette according to the invention
  • organism for example a plant
  • cell, compartment, tissue, organ or propagation material to introduce or generate seeds or fruits
  • Introducing includes, for example, methods such as transfection, transduction or transformation.
  • the organisms used in the processes are grown or cultivated in a manner known to those skilled in the art.
  • transgenic expression cassettes can be, for example, plasmids, cosmids, phages, viruses or even agrobacteria.
  • the transgenic expression cassettes can be inserted into the vector (preferably a plasmid vector) via a suitable restriction site.
  • the resulting vector can first be introduced into E. coli and amplified. Correctly transformed E. coli are selected, grown and the recombinant vector obtained using methods familiar to the person skilled in the art. Restriction analysis and sequencing can be used to check the cloning step.
  • Preferred vectors are those which enable stable integration of the expression cassette into the host genome.
  • a transformed organism or a transformed cell or tissue
  • the corresponding DNA eg the expression vector
  • RNA be incorporated into the appropriate host cell
  • transformation or transduction or transfection
  • the DNA or RNA can be introduced directly by microinjection or by bombardment with DNA-coated microparticles.
  • the cell can also be chemically permeabilized, for example with polyethylene glycol, so that the DNA can get into the cell by diffusion.
  • the DNA can also be obtained by protoplast fusion with other DNA-containing units such as minicells, cells, lysosomes or liposomes.
  • Electroporation is another suitable method for introducing DNA, in which the cells are reversibly permeabilized by an electrical impulse. Appropriate methods are described (for example in Bilang et al. (1991) Gene 100: 247-250; Scheid et al. (1991) Mol Gen Genet 228: 104-112; Guerche et al. (1987) Plant Science 52: 111- 116; Neuhause et al. (1987) Theor Appl Genet 75: 30-36; Klein et al. (1987) Nature 327: 70-73; Howell et al.
  • Preferred vectors for expression in E. coli are pQE70, pQE60 and pQE-9 (QIAGEN, Inc.); pBluescript vectors, Phagescript vectors, pNH8A, pNHl ⁇ a, pNH18A, pNH46A (Stratagene Cloning Systems, Inc.); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia Biotech, Inc.).
  • Preferred vectors for expression in mammalian cells include pWLNEO, pSV2CAT, pOG44, pXTl and pSG (Stratagene Inc.); pSVK3, pBPV, pMSG and pSVL (Pharmacia Biotech, Inc.).
  • inducible vectors examples include pTet-tTak, pTet-Splice, pcDNA4 / TO, pcDNA4 / TO / LacZ, pcDNA6 / TR, pcDNA4 / T0 / Myc-His / LacZ, pcDNA4 / TO / Myc-His A, pcDNA4 / TO / Myc -His B, pcDNA4 / TO / Myc-His C, pVgRXR (Invitrogen, Inc.) or the pMAM series (Clontech, Inc .; GenBank Accession No.: U02443). These already provide the inducible regulatory control element, for example for chemical, inducible expression.
  • Vectors for expression in yeast include, for example, pYES2, pYDl, pTEFl / Zeo, pYES2 / GS, pPICZ, pGAPZ, pGAPZalph, pPIC9, pPIC3.5, PHIL-D2, PHIL-SI, pPIC3SK, pPIC9K, and PA0 In15 (Invitrogen .).
  • Cloning vectors and techniques for the genetic manipulation of ciliates and algae are known to the person skilled in the art (WO 98/01572; Falciatore et al. (1999) Marine Biotechnology 1 (3): 239-251; Dunahay et al. (1995) J Phycol 31: 10004 -1012).
  • processes similar to those for the "direct" transformation of plant cells are to be used for the transformation of animal cells or of yeast cells.
  • methods such as the transformation mediated by calcium phosphate or liposomes or else electroporation are preferred.
  • Simple plasmids such as those of the pUC series, pBR322, M13mp series, pA-CYC184 etc. can be used. Should be whole plants regenerated from the transformed cells, it is necessary that there is an additional selectable marker gene on the plasmid.
  • a transformation can also be carried out by bacterial infection using an agrobacterium (for example EP 0 116 718), viral infection using viral vectors (EP 0 067 553; US 4,407,956; WO 95/34668; WO 93/03161) or using pollen (EP 0 270 356; WO 85/01856; US 4,684,611).
  • an agrobacterium for example EP 0 116 718
  • viral infection using viral vectors EP 0 067 553; US 4,407,956; WO 95/34668; WO 93/03161
  • pollen EP 0 270 356; WO 85/01856; US 4,684,611.
  • the transformation is preferably carried out using agrobacteria which contain "disarmed" Ti plasmid vectors, the natural ability of which for gene transfer to plants to be used (EP-A 0 270 355; EP-A 0 116 718).
  • Agrobacterium transformation is widely used for the transformation of dicotyledons, but is also increasingly being applied to monocotyledons (Toriyama et al. (1988) Bio / Technology 6: 1072-1074; Zhang et al. (1988) Plant Cell Rep 7: 379-384; Zhang et al. (1988) Theor Appl Genet 76: 835-840; Shimamoto et al. (1989) Nature 338: 274-276; Datta et al. (1990) Bio / Technology 8: 736-740; Christou et al. (1991) Bio / Technology 9: 957-962; Peng et al. (1991) International Rice Research Institute, Manila, Philippines 563-574; Cao et al.
  • the strains Agrobacterium tumefaciens or Agrobacterium rhizogenes mostly used for Agrobacterium transformation contain a plasmid (Ti or Ri plasmid) which is transferred to the plant after Agrobacterium infection. Part of this plasmid, called T-DNA (transferred DNA), is integrated into the genome of the plant cell.
  • T-DNA transferred DNA
  • binary vectors mini-Ti plasmids
  • Agrobacterium tumefaciens for the transformation of plants using tissue culture explants has been described (inter alia Horsch RB et al. (1985) Science 225: 1229ff .; Fraley et al. (1983) Proc Natl Acad Sei USA 80: 4803-4807; Bevans et al. (1983) Nature 304: 184-187).
  • Many strains of Agrobacterium tumefaciens are able to transfer genetic material - for example the 5 expression cassettes according to the invention - such as the strains
  • EHA101 [pEHAl01], EHA105 [pEHA105], LBA4404 [pAL4404], C58Cl [pMP90] and C58Cl [pGV2260] (Hood et al. (1993) Transgenic Res 2: 208-218; Hoekema et al. (1983) Nature 303: 179-181; Koncz and Schell (1986) Gen Genet 204: 383-396; Deblaere et al. (1985) Nucl Acids Res 13: 10 4777-4788).
  • the expression cassette is to be integrated into special plasmids, either into an intermediate vector (English: shuttle or intermediate vector) or one
  • Binary vectors which can replicate both in E. coli and in Agrobacterium are preferably used. They usually contain a selection marker gene and a linker or polylinker, flanked by the right and left T-DNA restriction sequences. They can be transformed directly into Agrobacterium 0 (Holsters et al. (1978) Mol Gen Genet
  • the agrobacterium which acts as the host organism in this case should already contain a plasmid with the vir region. This is necessary for the transfer of T-DNA to the plant cell.
  • An agrobacterium 5 transformed in this way can be used to transform plant cells.
  • the use of T-DNA for the transformation of plant cells has been intensively investigated and described (EP-A 0 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters BV, Alblasserdam, Chapter V; An et al. (1985) EMBO J 4: 277-287).
  • Encryption 0 different binary vectors are known and partially commercially available • as for example, pBI101.2 or pBIN19 (Clontech Laboratories, Inc. USA; Bevan et al (1984) Nucl Acids Res. 12: 8711th), pBinAR, pPZP200 or pPTV ,
  • the agrobacteria transformed with such a vector can then be used in a known manner for the transformation of plants, in particular crop plants, such as, for example, oilseed rape, for example by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media ,
  • the transformation of plants by agrobacteria is described (White FF (1993) Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, edited by SD Kung and R Wu, Academic Press, pp. 15-38 ; Jenes B et al. (1993) Techniques for 5 Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, edited by SD Kung and R.
  • transgenic plants can be regenerated in a known manner, which plants contain the above-described expression systems according to the invention.
  • Stably transformed cells i.e. those that contain the inserted DNA integrated into the DNA of the host cell
  • a selectable marker is part of the inserted DNA.
  • Any gene that can confer resistance to a biocide for example an antibiotic or herbicide (see above) can act as a marker, for example).
  • Transformed cells which express such a marker gene are able, in the presence of concentrations, of a The selection marker allows the selection of transformed cells from untransformed ones (McCorick et al. (1986) Plant Cell Reports 5: 81-84).
  • the plants obtained can be cultivated and crossed in the customary manner Two or more generations should be cultivated to ensure that genomic integration is stable and inheritable.
  • a complete plant can be obtained using methods known to those skilled in the art. For example, callus cultures, individual cells (e.g. protoplasts) or leaf disks are used here (Vasil et al. (1984) Cell Culture and Somatic Cel Genetics of Plants, Vol I, II and III, Laboratory Procedures and Their Applications, Academic Press; Weissbach and Weissbach (1989) Methods for Plant Molecular Biology, Academic Press). From these still undifferentiated callus cell masses. can the..BilcTut ⁇ - be induced by shoot and root in a known manner. The sprouts obtained can be planted out and grown. Appropriate methods have been described (Fennell et al. (1992) Plant Cell Rep. 11: 567-570; Stoeger et al (1995) Plant Cell Rep. 14: 273-278; Jahne et al. (1994) Theor Appl Genet 89: 525-533).
  • transgenically expressed nucleic acids can be determined, for example, in vitro by increasing the shoot meristem using one of the selection methods described above.
  • a change in the type and level of expression of a target gene and the effect on the phenotype of the plant on test plants can be tested in greenhouse experiments.
  • Another object of the invention relates to transgenic organisms, transformed with at least one expression cassette according to the invention or a vector according to the invention, as well as cells, cell cultures, tissues, parts - such as leaves, roots etc. in plant organisms - or propagation material derived from such organisms.
  • Organism starting or host organisms are understood to mean prokaryotic or eukaryotic organisms, such as, for example, microorganisms or plant organisms.
  • Preferred microorganisms are bacteria, yeast, algae or fungi.
  • Preferred bacteria are bacteria of the genus Escherichia, Erwinia, Agrobacterium, Flavobacterium, Alcaligenes, Pseudomonas, Bacillus or Cyanobacteria, for example of the genus Synechocystis and others in Brock Biology of Microorganisms Eighth Edition on pages A-8, A-9, A10 and All described types of bacteria.
  • microorganisms which are capable of infecting plants and thus of transmitting the constructs according to the invention.
  • Preferred microorganisms are those from the genus Agrobacterium and in particular from the type Agrobacterium tumefaciens.
  • Particularly preferred microorganisms are those which are used to produce toxins (for example botulinum toxin), pigments (for example carotenoids or flavonoids), antibiotics (for example penicillin), phenylpropanoids (for example tocopherol), polyunsaturated fatty acids (for example arachidonic acid) or vitamins (for example vitamin B12) are qualified.
  • Preferred yeasts are Oandida, Saccharomyces, Hansenula • ⁇ *> 3_ "Pichia.
  • Preferred mushrooms are Aspergillus, Trichoderma, Ashbya, Neurospora, Fusarium, Beauveria or others in Indian Chem Engr. Section B. Vol 37, No 1,2 (1995) on page 15, Table 6 described mushrooms.
  • Plant organism or cells derived therefrom generally means any cell, tissue, part or propagation material (such as seeds or fruits) of an organism capable of photosynthesis. Included in the scope of the invention are all genera and species of higher and lower plants in the plant kingdom. Annual, perennial, monocot and dicot plants are preferred.
  • Plant in the context of the invention means all genera and species of higher and lower plants in the plant kingdom. Included under the term are the mature plants, seeds, shoots and seedlings, as well as parts derived from them, propagation material (e.g. tubers, seeds or fruits), plant organs, tissues, protoplasts, callus and other cultures, e.g. row or callus cultures, as well all other types of groupings of plant cells into functional or structural units. Mature plants mean plants at any stage of development beyond the seedling. Seedling means a young, immature plant at an early stage of development.
  • Plant organisms in the sense of the invention are further photosynthetically active organisms, such as algae, cyanobacteria and mosses.
  • Preferred algae are green algae, such as algae of the genus Haematococcus,
  • plant organisms in particular are preferably selected from the group of flowering plants (Phylum anthophyta "Angiospen ⁇ en'H " '.'”All annual and perennial, monocotyledonous and dicotyledonous plants are included.
  • the plant is preferably selected from the following plant families: Amaranthaceae , Asteraceae, Brassicaceae, Caryophyllaeeae, Chenopodiaceae, Compositae, Cruciferae, Cucurbitaceae, Labiatae, Leguminosae, Papilionoideae, Liliaceae, Linaceae, Malvaceae, Rosaceae, Rubiaceae, Scifragaceaeaeaea, Saxifraga- aceaeaeae, Saxifraga- aceaeaeaeae
  • the invention is particularly preferably applied to dicotyledonous plant organisms.
  • Preferred dicotyledonous plants are selected in particular from the dicotyledonous crop plants, such as, for example, the following
  • Compositae especially the genus Lactuea, especially the species sativa (lettuce), as well as sunflower, dandelion, tagetes or calendula and others,
  • Brassicaceae especially the genus Brassica, especially the species napus (rape), campestris (turnip), oleracea (e.g. cabbage, cauliflower or broccoli and other types of cabbage); and the genus Arabidopsis, especially the species thaliana as well as cress, radish, canola and others,
  • Cucurbitaceae such as melon, pumpkin, cucumber or zucchini and others
  • Fabaceae especially the genus Glycine, especially the type max (soybean) soybean as well as A3 f lfa, pea, bean family, lupine or peanut and others,
  • Rubiaceae preferably of the subclass Lamiidae such as Coffea arabica or Coffea liberica (coffee bush) and others,
  • Solanaceae especially the genus Lycopersicon, especially the species esculentum (tomato) and the genus Solanum, especially the species tuberosum (potato) and melongena (eggplant) and the genus Capsicum, especially the species annum (paprika), and tobacco, Petunia and others, Sterculiaceae, preferably of the subclass Dilleniidae such as Theobroma cacao (cocoa bush) and others,
  • Theaceae preferably of the subclass Dilleniidae, such as, for example, Camellia sinensis or Thea sinensis (tea bush) and others,
  • monocot plants are also suitable. These are preferably selected from the monocotyledonous crop plants, such as, for example, the families
  • Iridaceae irises, gladiolus, crocuses
  • Gramineae such as rice, corn, wheat or other types of cereals such as barley, millet, rye, triticale or oats 'and sugar cane' and all types are very particularly preferred. of grasses.
  • the expression of a specific nucleic acid by a promoter with specificity for plant flowering can lead to the formation of sense RNA, antisense RNA or double-stranded RNA in the form of an inverse repeat (dsRNAi).
  • dsRNAi double-stranded RNA in the form of an inverse repeat
  • the sense RNA can be translated into certain polypeptides.
  • the antisense RNA and dsRNAi the expression of certain genes can be downregulated.
  • double-stranded RNA interference double-stranded RNA interference
  • dsRNAi double-stranded RNA interference
  • the specificity of the expression constructs and vectors according to the invention for plant flowers is particularly advantageous.
  • the flower has a function in attracting beneficial insects through pigment storage or synthesis of volatile chemicals.
  • the plant's natural defense mechanisms for example against pathogens, are often inadequate.
  • the introduction of foreign genes from plants, animals, or microbial sources can strengthen the immune system. Examples are protection against insect damage in tobacco by expression of the Bacillus thuringiensis endotoxin (Vaeck et al. (1987) Nature 328: 33-37) or protection of the tobacco against fungal attack by expression of a chitinase from the bean (Broglie et al. (1991 Science 254: 1194-1197).
  • Promoters with specificity for flowering are advantageous for this.
  • a large number of proteins are known to the person skilled in the art, the recombinant expression of which in flower is advantageous.
  • genes are known to the person skilled in the art, by means of their repression or elimination by means of expression of a corresponding antisense RNA, advantageous effects can also be achieved. Examples include, but are not limited to, advantageous effects: achieving resistance to abiotic stress factors (heat, cold, dryness, increased humidity, environmental toxins, UV radiation) and biotic stress factors (pathogens, viruses, insects and diseases), improving Food or feed properties, improving the growth rate or yield, achieving a longer or earlier flowering period, changing or intensifying the fragrance or color of the flowers.
  • abiotic stress factors heat, cold, dryness, increased humidity, environmental toxins, UV radiation
  • pathogens, viruses, insects and diseases pathogens, viruses, insects and diseases
  • improving Food or feed properties improving the growth rate or yield, achieving a longer or earlier flowering period, changing or intensifying the fragrance
  • Preferred nucleic acids are those for the chalcone synthase from Arabidopsis thaliana (GenBank Acc.-No .: M20308), the 6-4 photolyase from Arabidopsis thaliana (GenBank Acc.-No.: BAB00748) or the
  • Embryogenesis genes for example from barley (WO 97/13843), calcium-dependent protein kinase genes (WO 98/26045), calcine neurins (WO 99/05902), farnesyltransferases (WO 99/06580; Pei ZM et al. (1998 ) Science 282: 287-290), Ferritin (Deak M et al. (1999) Nature Biotechnology 17: 192-196), Oxalatoxidase (WO 99/04013; Dunwell JM (1998) Biotechnology- and Genetic Engeneering Reviews 15: 1- 32), DREBIA factor (dehydration response element B 1A; Kasuga M et al.
  • genes of mannitol or trehalose synthesis e.g. trehalose phosphate synthases; trehalose phosphate phosphatases, WO 97/42326 ); or by inhibiting genes such as trehalase (WO 97/50561).
  • Nucleic acids which are particularly preferred are those for the transcriptional activator CBF1 from Arabidopsis thaliana (Gen-Bank Acc.-No .: U77378) or the "antifreeze" protein from Myoxocephalus octodecemspinosus (GenBank Acc.-No .: AF306348) or functional equivalents encode them.
  • Glucosinolates nematode defense
  • ribosome-inactivating proteins RIPs
  • other proteins of the plant resistance and stress reaction such as those caused by injury or microbial attack on plants or chemically by Example, salicylic acid, jasmonic acid or ethylene can be induced
  • lysozymes from non-plant sources such as, for example, T4 lysozyme or lysozm from various mammals
  • insecticidal proteins such as Bacillus thuringiensis endotoxin, ⁇ -amylase inhibitor or protease inhibitors (cowpea trypsin inhibitor), glucanases, lectins Phytohemagglutinin, snowdrop lectin, wheat germ
  • Nucleic acids which are particularly preferred are those for the chit42 endochitinase from Trichoderma harzianum (GenBank Acc.-No .: S78423) or for the N-hydroxylating, multifunctional cytochrome P-450 (CYP79) from Sorghum bicolor (GenBank Acc.-No .: U32624 ) or encode functional equivalents thereof.
  • nucleic acids are those for the cationic amino acid transporter from Arabidopsis thaliana (GenBank Acc.-No .: X92657) or for the monosaccharide transporter from Arabidopsis thaliana (Gen-Bank Acc.-No .: AJ002399) or functional equivalents encode them. 7.
  • genes which cause an accumulation of fine chemicals such as tocopherols, tocotrienols, phenylpropanoids, isoprenoids or carotenoids, in the flower.
  • examples include the deoxyxylulose-5-phosphate syntases, phytoene synthases, lycopene- ⁇ -cyclases and the ⁇ -carotene ketolases.
  • Preference is given to nucleic acids which code for the Haematoccus pluvialis NIES-144 (Acc. No. D45881) ketolase or functional equivalents thereof.
  • EXGT-Al Arabidopsis thaliana endo-xyloglucan transferase
  • nucleic acids which are suitable for the chalcone synthase from Arabidopsis thaliana (GenBank Acc.- No .: M20308), the 6-4 photolyase from Arabidopsis thaliana (GenBank Acc.No.: BAB00748) or the blue light photoreceptor / photolyase homolog (PHHl) from Arabidopsis thaliana (GenBank Acc.-No .: U62549) or functional parts Encode equivalents thereof.
  • nucleic acids that are used for enzymes and regulators of iso-prenoid biosynthesis such as deoxyxylulose-5-phosphate synthases and carotenoid biosynthesis such as phytoene synthases, lycopene cyclases and ketolases such as tocopherols, tocotrienols, phenylpropanoids, isoprenoids, or carotenoids of flowering.
  • examples include the deoxyxylulose-5-phosphate synthases, phytoene synthases, lycopene cyclases and the carotene ketolases.
  • Nucleic acids which code for the Hae atoccus pluvialis, NIES-144 (Acc. No. D45881) ketolase or functional equivalents are particularly preferred.
  • polyunsaturated fatty acids such as arachidonic acid or EP (eicosapentaenoic acid) or DHA (docosahexaenoic acid) by expression of fatty acid elongases and / or desaturases or production of proteins with improved nutritional value such as, for example, with a high proportion of essential amino acids (e.g. the 2S albumingens of Brazil nut).
  • Preferred nucleic acids are those which, for the methionine-rich 2S albumin from Bertholletia excelsa (GenBank Acc.-No .: AB044391), the ⁇ 6-acyl lipid desaturase from Physcomitrella patens (GenBank Acc.-No .: AJ222980; Girke et al. (1998) Plant J 15: 39-48), the ⁇ 6-desaturase from Mortierella alpina (Sakura-dani et al 1999 Gene 238: 445-453), the ⁇ 5-desaturase from Caenorhabditis elegans (Michaelson et al.
  • Another object of the invention relates to the use of the transgenic organisms according to the invention described above and the cells, cell cultures, parts derived therefrom - such as roots, leaves etc. for transgenic plant organisms - and transgenic propagation material such as seeds or fruits for the production of food or feed, pharmaceuticals or fine chemicals.
  • This process is widely applicable to fine chemicals such as enzymes, vitamins, amino acids, sugars, fatty acids, natural and synthetic flavors, aromas and colors.
  • the production of tocopherols and tocotrienols and carotenoids such as astaxanthin is particularly preferred.
  • the transformed host organisms are grown and isolated from the host organisms or from the growth medium using methods known to those skilled in the art.
  • the invention further relates to the use of the ⁇ -cyclase promoter sequences according to the invention (preferably the sequences according to SEQ ID NO: 1, 7 or 8) for reducing the amount of protein, mRNA and / or activity of an ⁇ -cyclase.
  • ⁇ -cyclase activity is reduced compared to the wild type, the amount of lycopene converted or the amount of ⁇ -carotene formed is reduced in a certain time by the protein ⁇ -cyclase in comparison to the wild type.
  • Reduction or “decrease” is to be interpreted broadly in connection with an ⁇ -cyclase, or be the amount of protein, amount of mRNA and / or activity, and includes the partial or essentially complete prevention or blocking of the functionality of a, based on different cell biological mechanisms ⁇ -Cyclase in a plant cell, plant or a part derived therefrom, tissue, organ, cells or seeds.
  • a reduction in the sense of the invention also includes a quantitative reduction of an ⁇ -cyclase up to an essentially complete absence of the ⁇ -cyclase (i.e. lack of detectability of ⁇ -cyclase activity or lack of immunological detectability of the ⁇ -cyclase).
  • a certain ⁇ -cyclase (or the associated amount of protein, amount of mRNA and / or activity) in a cell or an organism is preferably reduced by at least 5, more preferably at least 20%, more preferably at least 50%, further preferably 100% ,
  • reduction also means the complete absence of ⁇ -cyclase (or its amount of protein, amount of mRNA and / or activity).
  • various strategies for reducing the amount of protein, amount of mRNA and / or activity of the ⁇ -cyclase are included.
  • the person skilled in the art recognizes that a number of different methods are available in order to influence the protein amount, mRNA amount and / or activity of an ⁇ -cyclase in the desired manner.
  • the reduction can be achieved by introducing at least one double-stranded ribonucleic acid sequence which has at least partial homology to the ⁇ -cyclase promoter sequences according to the invention ( ⁇ -cyclase promoter dsRNA).
  • expression cassettes ensuring dsRNA expression can also be attached.
  • double-stranded RNA interference double-stranded RNA interference
  • dsRNAi double-stranded RNA interference
  • dsRNAi methods are based on the phenomenon that the simultaneous introduction of complementary strand and counter strand of a gene transcript leads to a highly efficient suppression of the expression of the corresponding gene.
  • the phenotype caused is very similar to that of a corresponding knock-out mutant (Waterhouse PM et al. (1998) Proc Natl Acad Sei USA 95: 13959-64).
  • double-stranded RNA molecule preferably means one or more ribonucleic acid sequences which, on the basis of complementary sequences, are theoretically (for example according to the base pair rules of Waston and Crick) and / or factually (for example are based on hybridization experiments in vitro and / or in vivo ) in the Are able to form double-stranded RNA structures.
  • the person skilled in the art is aware that the formation of double-stranded RNA structures represents an equilibrium state.
  • the ratio of double-stranded molecules to corresponding dissociated forms is preferably at least 1 to 10, preferably 1: 1, particularly preferably 5: 1, most preferably 10: 1.
  • Another object of the invention therefore relates to • double-stranded RNA molecules (dsRNA molecules) which, when introduced into a plant organism (or a cell, tissue, organ or propagation material derived therefrom), reduce at least one ⁇ -cyclase.
  • dsRNA molecules double-stranded RNA molecules
  • the double-stranded RNA molecule for reducing the expression of an ⁇ -cyclase ( ⁇ -cyclase-dsRNA) preferably comprises
  • RNA strand comprising at least one ribonucleotide sequence which is essentially identical to at least part of a nucleic acid sequence coding for the promoter region of an ⁇ -cyclase
  • RNA strand which is essentially — preferably completely — complementary to the RNA “sense” strand under a).
  • the promoter region of the ⁇ -cyclase is preferably described by a sequence according to SEQ ID NO: 1, 7 or 8.
  • dsRNA sequence can also have insertions, deletions and individual point mutations in comparison to the ⁇ -cyclase promoter target sequence and the oe-h-. r'sn ⁇ .efficient reduction in expression causes-.
  • the homology (according to the definition below) is preferably at least 75%, preferably at least 80%, very particularly preferably at least 90%, most preferably 100% between the "sense" strand of an inhibitory dsRNA and at least part of the nucleic acid sequence coding for one ⁇ -cyclase promoter (or between the "antisense" strand the complementary strand of a nucleic acid sequence coding for an ⁇ -cyclase promoter).
  • the person skilled in the art is aware that when comparing homology between RNA and DNA, the bases uracil and thymine are to be regarded as equivalent.
  • a 100% sequence identity between dsRNA and an ⁇ -cyclase promoter is not absolutely necessary in order to bring about an efficient reduction in ⁇ -cyclase expression.
  • the method is tolerant of sequence deviations such as those resulting from genetic mutations, poly- morphisms or evolutionary divergences may exist.
  • the length of the section is at least 10 bases, preferably at least 25 bases, particularly preferably at least 50 bases, very particularly preferably at least 100 bases, most preferably at least 200 bases or at least 300 bases.
  • an "essentially identical" dsRNA can also be defined as a nucleic acid sequence which is capable of hybridizing with part of an ⁇ -cyclase gene or promoter sequence (for example in 400 mM NaCl, 40 mM PIPES pH 6.4, 1 mM EDTA at 50 ° C or 70 ° C for 12 to 16 h).
  • “Essentially complementary” means that the “antisense” RNA strand can also have insertions, deletions and individual point mutations in comparison to the complement of the “sense” RNA strand.
  • the homology is preferably at least 80%, preferably at least 90%, very particularly preferably at least 95%, most preferably 100% between the “antisense” RNA strand and the complement of the “sense” RNA strand.
  • Part of a nucleic acid sequence coding for an ⁇ -cyclase promoter means fragments of a nucleic acid sequence coding for an ⁇ -cyclase promoter, preferably the promoter sequences according to SEQ ID NO: 1, 2 or 3 or functional equivalents thereof.
  • the fragments preferably have a sequence length of at least 20 bases, preferably at least 50 bases, particularly preferably at least 100 bases, very particularly preferably at least 200 bases, most preferably at least 500 bases.
  • ⁇ -cyclase promoter region to reduce the ⁇ -cyclase activity is particularly advantageous, since there are only slight homologies to other genes and a high specificity of the reduction can be achieved without affecting the expression of other genes.
  • the dsRNA can consist of one or more strands of polyribonucleotides.
  • several individual dsRNA molecules each comprising one of the ribonucleotide sequence sections defined above, can be introduced into the cell or the organism.
  • the double-stranded dsRNA structure can be formed from two complementary, separate RNA strands or - preferably - from a single, self-complementary RNA strand. In this case there are "sense" RNA strand and "antisense" RNA strand preferably covalently linked together in the form of an inverted "repeat".
  • a further object of the invention comprises ribonucleic acid molecules
  • the promoter region of the cyclase is preferably described by a sequence according to SEQ ID NO: 1, 7 or 8.
  • the dsRNA can also comprise a hairpin structure by connecting the “sense” and “antisense” strand by means of a connecting sequence (“linker”; for example an intron).
  • linker for example an intron
  • the self-complementary dsRNA structures are preferred since they only require the expression of an RNA sequence and always comprise the complementary RNA strands in an equi-olar ratio.
  • the connecting sequence is an intron (e.g. an intron of the ST-LSI gene a ⁇ c-Kartoffel; Vancanneyt GF et al .. (1990). Mol Gen Genet 220 (2): 245-250).
  • the two strands of the dsRNA are to be brought together in a cell or plant, this can be done, for example, in the following way:
  • RNA duplex The formation of the RNA duplex can be initiated either outside the cell or inside it.
  • the dsRNA can be synthesized either in vivo or in vitro.
  • a DNA sequence coding for a dsRNA can be placed in an expression cassette under the control of at least one genetic control element (such as, for example, a promoter). Polyadenylation is not required, and there is no need for elements to initiate translation.
  • the expression cassette for the ⁇ -cyclase promoter dsRNA is preferably contained on the expression vector. Corresponding expression vectors are included according to the invention.
  • the expression of the dsRNA takes place starting from an expression construct under the functional control of a flower-specific promoter.
  • the promoter used in this connection is preferably not the ⁇ -cyclase promoter from which the dsRNA was derived. However, it can very well be a ⁇ -cyclase promoter of a different type. For example, the ⁇ -cyclase
  • Sunflower promoter can be used to express the dsRNA derived from the ⁇ -cyclase promoter from Tagetes erecta.
  • the expression of the dsRNA derived from an ⁇ -cyclase promoter is preferably under the control of a promoter which is not an ⁇ -cyclase promoter, particularly preferably under the control of the CHRC promoter from Cucumis sativus (SEQ ID NO: 81) or the 'P3P- Promotors (SEQ ID NO: 77) or a " functionally equivalent part thereof
  • the expression cassettes coding for the "antisense” and / or the “sense” strand of an ⁇ -cyclase dsRNA or for the self-complementary strand of the dsRNA are preferably inserted into a transformation vector for this purpose and into the plant cell introduced.
  • a stable insertion into the genome is advantageous for the method according to the invention.
  • the dsRNA can be introduced in an amount that enables at least one copy per cell. Larger quantities (e.g. at least 5, 10, 100, 500 or 1000 copies per cell) can possibly result in an efficient reduction.
  • the invention furthermore encompasses processes for the preparation of ketocarotenoids, the amount of mRNA and / or activity of at least one ⁇ -cyclase being reduced by introducing at least one of the double-stranded RNA sequences or ribonucleic acid sequences or one thereof
  • Ketocarotenoids means carotenoids which contain at least one keto group, such as astaxanthin, canthaxanthin, echinenone, 3-hydroxyechinenone, 3'-hydroxyechinenone, adonirubin and adonixanthin.
  • SEQ ID NO: 1 nucleic acid sequence coding for the
  • SEQ ID NO: 2 nucleic acid sequence coding for the
  • SEQ ID NO: 3 nucleic acid sequence coding for the
  • Promoter including 5 'untranslated region and region coding for the transit peptide of the ⁇ -cyclase from Tagetes erecta
  • SEQ ID NO: 4 amino acid sequence coding for the putative transit peptide of the ⁇ -cyclase from Tagetes erecta
  • SEQ ID NO: 5 nucleic acid sequence coding for the
  • SEQ ID NO: 6 nucleic acid sequence coding for the
  • Promoter including 5 'untranslated region and region coding for the transit peptide of the ⁇ -cyclase from Tagetes erecta flanked by restriction sites for the cloning
  • SEQ ID NO: 7 nucleic acid sequence coding for the
  • SEQ ID NO: 8 nucleic acid sequence coding for the
  • SEQ ID NO: 9 nucleic acid sequence coding for an ⁇ -cyclase from Tagetes erecta 10.
  • SEQ ID NO: 11 nucleic acid sequence coding for a 5 ⁇ -cyclase from Tagetes erecta
  • SEQ ID NO: 12 amino acid sequence coding for the ⁇ -cyclase Tagetes erecta
  • SEQ ID NO: 13 nucleic acid sequence coding for an ⁇ -cyclase from Arabidopsis thaliana
  • SEQ ID NO: 14 amino acid sequence coding for an ⁇ -cyclase from Arabidopsis thaliana 15
  • SEQ ID NO: 15 nucleic acid sequence coding for an ⁇ -cyclase from rice
  • SEQ ID NO: 17 to 22 sequence motifs for ⁇ -cyclase proteins
  • SEQ ID NO: 23 nucleic acid sequence coding for one
  • SEQ ID NO: 24 amino acid sequence coding for an ⁇ -cyclase (homologous sequence Hl) from Lactuea 30 sative
  • SEQ ID NO: 25 nucleic acid sequence coding for an ⁇ -cyclase (homologous sequence H2) from Adonis palaestina 35
  • SEQ ID NO: 26 amino acid sequence coding for an ⁇ -cyclase (homologous sequence H2) from Adonis palaestina
  • SEQ ID NO: 27 Nucleic acid sequence coding for an ⁇ -cyclase (homologous sequence H3) from Adonis palaestina
  • SEQ ID NO: 28 amino acid sequence coding for a 45 ⁇ -cyclase (homologous sequence H3) from Adonis palaestina 29.
  • SEQ ID NO: 29 nucleic acid sequence coding for an ⁇ -cyclase (homologous sequence H4) from Arabidopsis thaliana
  • SEQ ID NO: 30 amino acid sequence coding for an ⁇ -cyclase (homologous sequence H4) from Arabidopsis thaliana
  • SEQ ID NO: 31 nucleic acid sequence coding for one
  • SEQ ID NO: 32 amino acid sequence coding for an ⁇ -cyclase (homologous sequence H5) from Citrus X 15 paradisi
  • SEQ ID NO: 33 nucleic acid sequence coding for an ⁇ -cyclase (homologous sequence H6) from Citrus X paradisi 20
  • SEQ ID NO: 34 amino acid sequence coding for an ⁇ -cyclase (homologous sequence H6) from Citrus X paradisi
  • SEQ ID NO: 35 nucleic acid sequence coding for an ⁇ -cyclase (homologous sequence H7) from Citrus sinensis
  • SEQ ID NO: 36 amino acid sequence coding for one
  • SEQ ID NO: 37 nucleic acid sequence coding for an ⁇ -cyclase (homologous sequence H8) from Spinacea 35 oleracea
  • SEQ ID NO: 38 amino acid sequence coding for an ⁇ -cyclase (homologous sequence H8) from Spinacea oleracea 40
  • SEQ ID NO: 39 nucleic acid sequence coding for an ⁇ -cyclase (homologous sequence H9) from Solanum tuberosum
  • SEQ ID NO: 41 nucleic acid sequence coding for an ⁇ -cyclase (homologous sequence H10) from Daucus carota
  • SEQ ID NO: 42 amino acid sequence coding for one
  • SEQ ID NO: 43 nucleic acid sequence coding for an ⁇ -cyclase (homologous sequence Hll) from Daucus 15 carota
  • SEQ ID NO: 44 amino acid sequence coding for an ⁇ -cyclase (homologous sequence Hll) from Daucus carota 20
  • SEQ ID NO: 45 nucleic acid sequence coding for an ⁇ -cyclase (homologous sequence H12) from tomato
  • SEQ ID NO: 46 amino acid sequence coding for one
  • SEQ ID NO: 47 nucleic acid sequence coding for ⁇ -cyclase-specific probe (cycled; 510 bp)
  • SEQ ID NO: 48 oligonucleotide primer PR16
  • SEQ ID NO: 49 oligonucleotide primer PR22
  • SEQ ID NO: 50 nucleic acid sequence comprising part of the
  • SEQ ID NO: 51 nucleic acid sequence comprising part of the
  • Tagetes erecta ⁇ -cyclase promoters obtained by TAIL-PCR
  • oligonucleotide primer PR50 45 5'-cgccttgtatctgtttggattgg-3 ' 53.
  • SEQ ID NO: 53 oligonucleotide primer PR51
  • SEQ ID NO: 54 oligonucleotide primer PR60
  • SEQ ID NO: 55 oligonucleotide primer PR61
  • SEQ ID NO: 56 oligonucleotide primer PR63
  • SEQ ID NO: 57 oligonucleotide primer from the set of ADl
  • SEQ ID NO: 58 nucleic acid sequence encoding iPCR fragment
  • SEQ ID NO: 60 oligonucleotide primer OL2
  • SEQ ID NO: 61 oligonucleotide primer OL3
  • SEQ ID NO: 62 oligonucleotide primer OL4
  • SEQ ID NO: 63 oligonucleotide primer OL5
  • SEQ ID NO: 65 oligonucleotide primer PR2
  • SEQ ID NO: 66 nucleic acid sequence coding for
  • SEQ ID NO: 67 oligonucleotide primer PR7
  • SEQ ID NO: 69 oligonucleotide primer PR9
  • SEQ ID NO: 70 oligonucleotide primer PR10
  • SEQ ID NO: 71 oligonucleotide primer PR40
  • SEQ ID NO: 72 oligonucleotide primer PR41
  • SEQ ID NO: 73 oligonucleotide primer PR124
  • SEQ ID NO: 74 oligonucleotide primer PR125
  • SEQ ID NO: 75 oligonucleotide primer PR126
  • SEQ ID NO: 76 oligonucleotide primer PR127
  • SEQ ID NO: 77 nucleic acid sequence coding for a modified version (AP3P) of the flower-specific promoter AP3 from Arabidopsis thaliana
  • SEQ ID NO: 78 nucleic acid sequence coding for PIV2
  • SEQ ID NO: 79 nucleic acid sequence coding for the sense
  • SEQ ID NO: 81 nucleic acid sequence coding for the
  • CHRC chromoplast-specific carotenoid-associated protein
  • SEQ ID NO: 82 oligonucleotide primer PRCHRC5
  • SEQ ID NO: 83 oligonucleotide primer PRCHRC3 5 '-aagcttatta tttccaaatt ccg-3'
  • GUSI-Intron-GUSII reporter gene (bacterial ß-glucuronidase)
  • NosT Terminator sequence of nopaline synthase (NOS) RB / LB: Right or left T-DNA boundary
  • 35-T 35S CaMV terminator
  • NosP promoter sequence of nopaline synthase (NOS) aadA: bacterial spectinomycin resistance colEl: origin of replication
  • Fig. 1 Analysis of the ecyclase transcript level total RNA isolated from leaves (L) and flower stages (1-7) of Tagetes erecta by means of RNA gel blot analysis
  • Fig.- 2 ⁇ € hematic representation of the vector pEcycPl: GUS for flower-specific expression of the ß-glucuronidase reporter gene
  • ecycPl promoter of the e-cyclase from Tagetes erecta including the 5 'untranslated region (SEQ ID NO: 2)
  • Fig. 3 Schematic representation of the vector pEcycP2: GUS for the flower-specific expression of the ⁇ -glucuronidase reporter gene (GUS) under the control of the Tagetes erecta ecycP2 regulatory element (promoter and 5 'untranslated region and transit peptide)
  • ecycP2 Tagetes erecta e-cyclase promoter including 5 'untranslated region and transit peptide (SEQ ID NO: 3)
  • Fig. 4 Schematic representation of the vector pEcycP2: KETO for the flower-specific expression of the Hae atococcus pluvialis ketolase (KETO; SEQ ID NO: 66) under the control of the Tagetes erecta ecycP2 regulatory element (promoter and 5'-untranslated region and transit peptide ; SEQ ID NO: 3).
  • KETO Hae atococcus pluvialis ketolase
  • Fig. 5 Schematic representation of the vector pS5AI7 for the flower-specific expression of ⁇ -cyclase promoter-specific dsRNA under control of the AP3P promoter fragment for the flower-specific reduction of the ⁇ -cyclase transcript level.
  • ⁇ P3P modified AP3P promoter (777 bp),
  • P-sense 358 bp promoter fragment of the cyclase in sense
  • Fig. 6 Schematic representation of the vector pS5CI7 for the flower-specific expression of ⁇ -cyclase promoter specific dsRNA under control of the CHRC promoter fragment for the flower-specific reduction of the ⁇ -cyclase transcript level
  • CHRC CHRC promoter (1537 bp)
  • Fig. 7 iPCR certificate which contains the 312 bp fragment of the ⁇ -cyclase promoter
  • Fig. 8 TAIL PCR certificate which contains the 199 bp fragment of the ⁇ -cyclase promoter
  • Fig. 9 Comparison of nucleotide sequences between the published sequence of Haematococcus pluvialis ketolase (GenBank Acc. No.: X86782) and the sequence provided in the context of the invention (cf. Example 3). 10. Fig. 10: Comparison of protein sequences between the published sequence of Haematococcus pluvialis ketolase (GenBank Acc.-No .: X86782) and the sequence provided in the context of the invention (cf. Example 3).
  • Fig. 11 Cloning cassette for the production of inverted repeat expression cassettes for the flower-specific expression of ⁇ -cyclase dsRNAs.
  • AP3P modified AP3P promoter (777 bp), rbcs: rbcS transit peptide from pea (206 bp), intron: PIV2 intron of the ST-LSI gene (SEQ ID NO: 78) te m: 35S polyadenylation signal from CaMV (762 bp).
  • Fig. 12A-C sequence comparison of various plant ⁇ -cyclases.
  • GenBank Acc.-No AF152246 (524 Citrus x pardisi "lycopene cyclase"
  • E GenBank Acc.-No. AF321535 (529 Adonis palaestina ecyclase
  • F GenBank Acc.-No.
  • AF321536 (529 Adonis palaestina ecyclase G: GenBank Acc .-No. AF321537 (382 Solanum tuberosum partial ecyclase sequence H: GenBank Acc.-No.: AF321538 (533 Lactuea sativa ecyclase I: GenBank Acc. -No.: AF450280 (262 Citrus sinensis ecyclase J.: • GenBank .Acc. -No .: AF463497 (517 Spinacea oleracea ecyclase
  • Fig.13 Schematic representation of inverse PCR ("iPCR")
  • genomic DNA of a target organism with the promoter sequence to be isolated is completely digested with a given restriction enzyme and then the individual fragments are re-ligated in a diluted batch, that is, they are linked to form a ring-shaped molecule.
  • the large number of ring-shaped DNA molecules which are formed also contain those which contain the known sequence (ie the sequence coding for a homologous protein).
  • the ring-shaped molecule can be amplified by PCR using a pair of primers in which both primers can attach to the known sequence section.
  • P - promoter sequence CR coding region
  • L - ligation point PCR - polymerase chain reaction. Arrows show the binding site of potential oligonucleotide primers in the region of the coding region.
  • oligonucleotides can, for example, be carried out in a known manner using the phosphoamidite method (Voet & Voet (1995), 2nd edition, Wiley Press New York, pages 896-897).
  • the cloning steps carried out in the context of the present invention e.g. Restriction cleavage, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking of DNA fragments, transformation of E. coli cells, cultivation of bacteria, multiplication of phages and sequence analysis of recombinant DNA are the same as with Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6.
  • the sequencing of recombinant DNA molecules takes place with a laser fluorescence DNA sequencer from ABI according to the method of Sanger (Sanger et al. (1977) Pro Natl Acad Sei USA 74.54-63-5467).
  • Example 1 Analysis of ⁇ -cyclase RNA transcript levels during the flower development of Tagetes erecta
  • RNA from the leaves and flowers of Tagetes erecta To prepare total RNA from the leaves and flowers of Tagetes erecta, plant tissue is harvested, frozen in liquid nitrogen and pulverized in a mortar. Then 100 mg of the frozen, pulverized plant tissue are transferred to a reaction vessel and placed in 0.8 ml Trizol ® buffer (Life-
  • the suspension is extracted with 0.2 ml of chloroform. After centrifugation at 12,000 g for 15 minutes, the aqueous supernatant is removed and transferred to a new reaction vessel and extracted with a volume of ethanol.
  • the RNA is precipitated with a volume of isopropanol, washed with 75% ethanol and the pellet in DEPC water (overnight incubation of water with 1/1000 volume of diethyl pyrocarbonate (DEPC) at room temperature, then autoclaved). The RNA concentration is determined photometrically.
  • RNA gel blot as described in Sambrook & Trunk (2001, Molecular Cloning: A laboratory manual, 3rd Edition, Cold Spring Harbor Laboratory Press, - Cold Spring Harbor, New York Chapter 7, Protocol 6), analyzed: Approx. 10 to 15 ⁇ g total RNA per sample are separated in a formaldehyde agarose gel. The relative amounts of total RNA can be estimated from the rRNA bands stained with ethidium bromide (FIG. 1A). To estimate the ⁇ -cyclase transcript amounts, the separated RNA is transferred to a nylon membrane using a capillary blot.
  • PCR polymerase chain reaction
  • leaf material from Tagetes erecta is harvested, frozen in liquid nitrogen and pulverized in a mortar. 100 mg of the frozen, pulverized plant tissue are then transferred to a reaction vessel, taken up in 0.75 ml of extraction buffer and incubated at 65 ° C. for 60 min.
  • the extraction buffer is freshly prepared from 25 ml buffer 1 (0.35 M sorbitol, 0.1 M.
  • the upper aqueous phase is then transferred to a new reaction vessel, and the DNA is pelleted by adding 1 ml of isopropanol and then centrifuging for 5 min at 10,000 g.
  • the DNA pellet is washed with 0.5 ml of 75% ethanol, then dried and then resuspended in 0.05 ml of sterile water by incubation at 65 ° C. for 5 minutes.
  • the PCR conditions for the amplification of a ⁇ -cyclase-specific fragment from genomic DNA from Tagetes erecta are as follows:
  • the PCR for the amplification of a ⁇ -cyclase-specific fragment is carried out in a 50 ⁇ l reaction mixture, which contains:
  • the PCR was carried out under the following cycle conditions: 1 cycle at 94 ° C. for 2 minutes. 35 cycles at 94 ° C for 1 minute, 51 ° C for 2 minutes and 72 ° C for 3 minutes. Finally, a cycle at 72 ° C for 10 minutes.
  • the PCR amplification with PR16 and PR22 results in a 510 bp fragment (SEQ ID NO: 47) which hybridizes specifically under stringent hybridization conditions with the ⁇ -cyclase but not with the lycopene ß-cyclase from Tagetes erecta.
  • the amplification product is cleaned with the NucleonSpin Extraet Kit (Machery & Nagel) according to the manufacturer's instructions and used for a radioactive labeling reaction with the Highprime Kit (Boehringer Mannheim) according to the manufacturer's instructions.
  • the prehybridization, hybridization and washing steps are carried out as in Sambrook & Hinssel (2001, Molecular Cloning: A laboratory manual, 3 r E-itjon, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York Chapter 6, Protocol 10 ).
  • the last washing step with 0.1x SSC / 0.1% SDS at 65 ° C. results in high stringency of the hybridization, which is sufficient to specifically detect the ⁇ -cyclase, but not the lycopene ß-cyclase, with the probe described.
  • the relative ⁇ -cyclase transcript levels can be estimated on the basis of the hybridization signals, detected with the aid of a phosphoimager. As can be seen in FIG.
  • ⁇ -cyclase transcript levels in the leaves are below the detection limit under the given experimental conditions, while large amounts of ⁇ -cyclase transcripts can be detected throughout the flower development.
  • Example 2 Cloning of the ⁇ -cyclase promoter
  • a 199 bp fragment or the 312 bp fragment of the Tagetes erecta ⁇ -cyclase promoter can be separated by two independent cloning strategies, Inverse PCR (iPCR; adapted Long et al. Proc Natl Acad Sei USA 90: 10370) and TAIL-PCR (Liu YG et al. (1995) Plant J 8: 457-463) using genomic DNA (as described above) from the Tagetes erecta line Orange Prince.
  • Inverse PCR adapted Long et al. Proc Natl Acad Sei USA 90: 10370
  • TAIL-PCR Liu YG et al. (1995) Plant J 8: 457-463
  • genomic DNA are digested in a 25 ⁇ l reaction mixture with EcoRV and Rsal, then diluted to 300 ⁇ l and religated overnight at 16 ° C. with 3U ligase.
  • primers PR50 (SEQ ID NO: 52) and PR51 (SEQ ID NO: 53) a fragment is produced by PCR amplification which, in each sense orientation, contains 354 bp of the ⁇ -cyclase cDNA (Genbank Acc. -NO .: AF251016), ligated to 312 bp of the ⁇ -cyclase promoter and 70 bp of the 5'-terminal region of the ⁇ -cyclase contains cDNA (see FIG. 7).
  • the PCR for the amplification of the PR50-PR51 DNA fragment which contains, among other things, the 312 bp promoter fragment of ⁇ -cyclase, is carried out in a 50 ⁇ l reaction mixture, which contains:
  • the PCR reactions are carried out under the following cycle conditions: 1 cycle at 94 ° C. for 2 minutes. 35 cycles at 94 ° C for 1 minute, 53 ° C for 1 minute and 72 ° C for 1 minute. Finally 1 cycle at 72 ° C for 10 minutes.
  • the PCR amplification with primers PR50 and PR51 results in a 734 bp fragment which contains, among other things, the 312 bp promoter fragment of ⁇ -cyclase (FIG. 7).
  • the amplificate is cloned into the PCR cloning vector pCR2.1 (Invitrogen) using standard methods. Sequencing with primers M13 and T7 results in the sequence SEQ ID NO: 50 for the certificate.
  • TAIL-PCR approach three successive PCR reactions are carried out, each with different gene-specific primers (“nested primers”).
  • the TAILl-PCR is carried out in a 20 ⁇ l reaction mixture, which contains:
  • TAKARA 0.5 U R Taq Polymerase
  • the primer mixture AD1 was initially a mixture of primers of the sequences
  • the TAILI PCR reaction is carried out under the following cycle conditions: 1 cycle at 93 ° C. for 1 minute and 95 ° C. for 1 minute,
  • the TAIL2-PCR is carried out in a 21 ⁇ l reaction mixture, which contains:
  • PCR reaction TAIL2 0.5 UR Taq Polymerase (TAKARA) made up to 21 ⁇ l with sterile, distilled water
  • TAIL2 0.5 UR Taq Polymerase
  • the TAIL3-PCR is carried out in a 100 ⁇ l reaction mixture, which contains:
  • the PCR reaction TAIL3 is carried out under the following cycle conditions:
  • the PCR amplification with primer PR63 and AD1 results in a 280 bp fragment which contains, inter alia, the 199 bp promoter fragment of ⁇ -cyclase (FIG. 8).
  • the amplificate was cloned into the PCR cloning vector pCR2.1 (Invitrogen) using standard methods. Sequencing with the primers M13 and T7 results in the sequence SEQ ID NO: 51. This sequence is identical in the overlap region to the sequence SEQ ID NO: 50, which is isolated using the iPCR strategy, and thus represents the nucleotide sequence in the Tagetes erecta line used Orange Prince.
  • the pCR2.1 clone which contains the 734 bp fragment (SEQ ID NO: 58), which is isolated by the iPCR strategy, is called pTA-ecycP and is used for the production of the expression constructs.
  • pTA-ecycP The pCR2.1 clone, which contains the 734 bp fragment (SEQ ID NO: 58), which is isolated by the iPCR strategy, is called pTA-ecycP and is used for the production of the expression constructs.
  • Example 3 Production of transgenic ⁇ -cyclase expression cassettes and expression vectors
  • the ⁇ -cyclase regulatory element ecycPl containing a promoter fragment and the 5 'untranslated region of the ⁇ -cyclase from Tagetes erecta, is used to convert the ß-glucuronidase (Jefferson et al. (1987) EMBO J 6: 3901 -3907) in tomato flowers (Lycopersicon esculentum).
  • the ⁇ -cyclase regulatory element ecycP2 containing a promoter fragment, the 5 'untranslated region and the putative transit peptide of the ⁇ -cyclase from Tagetes erecta, is used to express either the ß-glucuronidase or the Haematococcus pluvialis ketolase in plastids of tomato flowers.
  • transgenic expression vectors pEcycPl: GUS, pEcycP2: GUS, pEcycP2: KET0 for the Agrobacterium-mediated transformation in Lycopersicon esculentum was carried out using the binary vector pS0301 (WO 02/00900).
  • the fragments ecycPl and ecycP2 are generated by means of PCR using the clone pTA-ecycP and the primers OL1 (SEQ ID NO: 59) and OL2 (SEQ ID NO: 60) (for ecycPl) and the primer OLl (SEQ ID NO: 59) and OL3 (SEQ ID NO: 61) (for ecycP2).
  • the PCR for the amplification of a ⁇ -cyclase-specific fragment is carried out in a 50 ⁇ l reaction mixture, which contains:
  • the PCR is carried out under the following cycle conditions: 1 cycle at 94 ° C for 2 minutes, 35 cycles at 94 ° C for 1 minute, 50 ° C for 2 minutes and 72 ° C for 3 minutes, finally 1 cycle at 72 ° C for 10 mins.
  • the PCR amplification with OLl and OL2 results in a 456 bp fragment (ecycPl, SEQ ID NO: 5), the PCR amplification with OLl and OL3 results in a 543 bp fragment (ecycP2, SEQ ID NO: _6).
  • the amplificates ecycPl or ecycP2 are cloned into the PCR cloning vector pCR2.1 (Invitrogen) using standard methods and the clones pTA-ecycPl or pTA-ecycP2 obtained. Sequencing of the two clones confirm sequences that are identical to SEQ ID NO: 47 or SEQ ID NO: 58 in the respective overlap area. These clones are therefore used for ligation in the transformation vector pS0301 (WO 02/00900).
  • pEcycPl GUS
  • the 454 bp Xhol-Ncol ecycPl fragment is isolated from pTA-ecycPl and ligated into the Xhol-Ncol cut vector pS0301.
  • the clone that contains the ecycPl fragment in the correct orientation is called pEcycPl: GUS (Fig. 2, construct map).
  • pEcycP2 GUS
  • the 541 bp Xhol-Ncol ecycPl fragment is isolated from pTA-ecycP2 and ligated into the Xhol-Ncol cut vector pS0301.
  • the clone that contains the ecycP2 fragment in the correct orientation is called pEcycP2: GUS (FIG. 3, construct map).
  • the region "GUSI / intron / GUSII / 35ST" is delimited by an Ncol and a Hindlll restriction site in pEcycP2: GUS against a "Ketolase / 35S terminator” region.
  • the plasmid is replaced pEcycP2: GUS linearized with HindIII according to standard methods, the resulting 5 overhangs filled with Klenow fragment and finally the "GUSI / intron / GUSII / 35ST" region removed by restriction digestion with Ncol.
  • the "Ketolase / 35STerminator" region is manufactured by
  • the cDNA coding for the ketolase from Haematococcus pluvialis is amplified by means of PCR from Haematococcus pluvialis (strain 192.80 from the "Collection of algal cultures of the University of Göttingen") suspension culture.
  • RNA For the preparation of total RNA from a suspension culture of Haematococcus pluvialis (strain 192.80), which was exposed to indirect daylight at room temperature for 2 weeks in Haematococcus medium (1.2 g / 1 sodium acetate, 2 g / 1 yeast extract, 0.2 g / 1 MgCl x 6 H 2 0, 0.02 CaCl x 2 H 2 0; pH 6.8; after autoclaving, adding 400 mg / 1 L-asparagine, 10 mg / 1 FeS ⁇ x H0), the cells are harvested, frozen in liquid nitrogen and pulverized in a mortar.
  • Haematococcus medium 1.2 g / 1 sodium acetate, 2 g / 1 yeast extract, 0.2 g / 1 MgCl x 6 H 2 0, 0.02 CaCl x 2 H 2 0; pH 6.8; after autoclaving, adding 400 mg / 1 L-asparagine, 10 mg / 1 FeS ⁇
  • RNA is precipitated with a volume of isopropanol, washed with 75% ethanol and the pellet is dissolved in DEPC water (incubation of water overnight with 1/1000 volume of diethyl pyrocarbonate at room temperature, then autoclaved). The RNA concentration is determined photometrically.
  • RNA For the cDNA synthesis, 2.5 ⁇ g of total RNA are used for 10 min. denatured at 60 ° C, cooled on ice for 2 min and using a cDNA kit (Ready-to-go-you-prime beads, Pharmacia Biotech) according to the manufacturer's instructions using an antisense-specific primer (PRI SEQ ID NO: 64) rewritten in cDNA.
  • a cDNA kit Ready-to-go-you-prime beads, Pharmacia Biotech
  • PRI SEQ ID NO: 64 an antisense-specific primer
  • the nucleic acid encoding a kematolase from Haematococcus pluvialis (strain 192.80) is obtained by polymerase chain reaction (PCR) from Haematococcus pluvialis cDNA using a sense-specific primer (PR2; SEQ ID NO: 65) and an antisense-specific primer (PRI; SEQ ID NO: 64 ) amplified.
  • PCR polymerase chain reaction
  • PR2 sense-specific primer
  • PRI antisense-specific primer
  • the PCR for the amplification of the cDNA which codes for a ketolase protein consisting of the entire primary sequence, is carried out in a 50 ⁇ l reaction mixture, in which i-
  • the PCR is carried out under the following cycle conditions: 1 cycle at 94 ° C. for 2 minutes; 35 cycles at 94 ° C for 1 minute, 53 ° C for 2 minutes and 72 ° C for 3 minutes. Finally 1 cycle at 72 ° C for 10 minutes.
  • the PCR amplification with PR1 and PR2 results in an 1155 bp fragment which codes for a protein consisting of the entire primary sequence.
  • the ketolase amplificate is cloned into the PCR cloning vector pGEM-Teasy (Promega) and the clone pGKET02 is obtained.
  • Sequencing of the clone pGKET02 with the T7 and the SP6 primer confirms a sequence which differs from the published sequence only in the three codons 73, 114 and 119 in one base each (Genbank Acc.No .: X86782). These nucleotide exchanges are reproduced in an independent amplification experiment and thus represent the nucleotide sequence in the Haematococcus pluvialis strain 192.80 used (FIGS. 9 and 10, sequence comparisons).
  • This clone is used for cloning into the expression vector pJITH7 (Guerineau et al. (1988) Nucl Acids Res 16: 11380).
  • the further cloning is carried out by isolating the 1031 bp SpHI fragment from pGKET02 and ligation into the SpHI-cut vector pJIT117.
  • the clone that contains the Haematococcus pluvialis ketolase in the correct orientation as an N-terminal translational fusion with the rbcs transit peptide is called pJKET02.
  • the 1795 bp ketolase / 35S terminator region is produced by means of PCR using pJKET02 and the primers 0L4 (SEQ ID NO: 62) and OL5 (SEQ ID NO: 63).
  • the conditions of the PCR reactions are as follows:
  • the PCR for the amplification of the OL4-OL5 DNA fragment which contains the coding region of the ketolase followed by the 35S terminator from caMV, is carried out in a 50 ⁇ l reaction mixture which contains:
  • PCR reactions are carried out under the following cycle conditions: 1 cycle at 94 ° C. for 2 minutes. 35 cycles at 94 ° C for 1 minute, 53 ° C for 2 minutes and 72 ° C for 3 minutes. Finally 1 cycle at 72 ° C for 10 minutes.
  • PCR amplification with primers 0L4 and 0L5 results in a 1795 bp fragment which contains the coding region of the ketolase followed by the 35S terminator from CaMV.
  • This 1795 bp certificate is cloned into the PCR cloning vector pCR2.1 (Invitrogen) using standard methods and the clone "pTA-KETO / Term" is obtained.
  • the constructs pEecycPl: GUS, pEcycP2: GUS and pEcycP2: KETO were transformed into tomato by Agrobacterium tumefaciens mediated transformation. Cotyledons and hypocotyls of seven to ten day old seedlings of the Microtome line serve as the starting explant for the transformation.
  • the culture medium according to Murashige and Skoog (Murashige & Skoog (1962) Physiol Plant 15,473-497) with 2% sucrose, pH 6.1 is used for germination. Germination takes place at 21 ° C with little light (20 to 100 ⁇ E).
  • the cotyledons are divided transversely and the hypocotyls are cut into sections approx. 5 to 10 mm long and placed on the medium MSBN (MS, pH 6.1, 3% sucrose with 1 mg / 1 benzylaminopurine (BAP), 0 , 1 mg / 1 naphthalene acetate
  • NAAA Agrobacterium tumefaciens strain LBA4404, which carries the binary plasmid with the gene to be transformed, as follows: The strain which has been cultivated overnight in YEB medium with the antibiotic for the binary plasmid at 28 ° C. centrifuged. The bacterial pellet is resuspended with liquid MS medium (3% sucrose, pH 6.1) and adjusted to an optical density of 0.3 (at 600 nm).
  • the precultivated explants are transferred to the suspension and incubated for 30 minutes at room temperature with gentle shaking.
  • the explants are then dried with sterile filter paper and placed back on their preculture medium for the three-day co-culture (21 ° C).
  • the explants are transferred to MSZ2 medium (MS pH 6.1 with 3% sucrose, 2 mg / 1 zeatin, 100 mg / 1 kanamycin, 160 mg / 1 titanium) and for selective regeneration at 21 ° C stored under low light conditions (20 to 5 100 ⁇ E, light / dark rhythm 16h / 8h).
  • the explants are transferred every two to three weeks until shoots form.
  • the transgenicity of rooted tomato plants is confirmed by PCR using genomic DNA.
  • the activity profile of the ⁇ -cyclase promoter fragment can be examined in the case of the ecycP: GUS construct by GUS assay according to standard methods (Jefferson et al. (1987) EMBO J 6: 3901-3907).
  • the activity profile of the ⁇ -cyclase promoter fragment can be determined in the case of the construct pEcycP2: KETO by Northern blot analysis according to standard methods using a ketolase-specific hybridization probe or by ketolase-specific real-time PCR (Sambrook & Jossel, 2001, Molecular Cloning: A laboratory manual, examine 3rd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York).
  • Example 5 Production of a transgenic expression vector for the production of double-stranded ⁇ -cyclase-ribonucleic acid sequence
  • inverted "repeat” transcripts consisting of fragments of the ⁇ -cyclase promoter in Tagetes erecta takes place under the control of a modif-izie ⁇ ?
  • Ten-s-rsi.on (AP3P) of the flower-specific promoter AP3 from Arabidopsis thaliana GenBank Acc. -NO .: AL132971: nucleotide region 9298 to 10200; Hill et al. (1998) Development 125: 1711-1721).
  • the inverted "repeat” transcript each contains a fragment in the correct orientation (sense fragment) and a sequence-identical fragment in the opposite orientation (antisense fragment), which is generated by a functional intron, the PIV2 intron of the ST-LH1 gene from potato (Vancanneyt G et al. (1990) Mol Gen Genet 220: 245-50).
  • the cDNA coding for the AP3 promoter (-902 to +15) from Arabidopsis thaliana is PCR-analyzed using genomic DNA (isolated from Arabidopsis thaliana according to the standard method) and the primers PR7 (SEQ ID NO: 67) and PR10 (SEQ ID NO: 70).
  • the PCR conditions are as follows: The PCR for the amplification of the DNA encoding the AP3 promoter fragment (-902 to +15) is carried out in a 50 ⁇ l reaction mixture which contains:
  • the PCR is carried out under the following cycle conditions:
  • the 922 bp amplificate is cloned into the PCR cloning vector pCR 2.1 (Invitrogen) using standard methods and the plasmid pTAP3 is obtained. Sequencing of the clone pTAP3 confirms a sequence which is only in an insert (a G in position 9765 of the sequence GenBank Acc.-No .: AL132971) and a base exchange (a G instead of an A in position 9726 of the sequence GenBank Acc.- No .: AL132971) differs from the published AP3 sequence (GenBank Acc.-No .: AL132971, nucleotide region 9298 to 10200) (position 33: T instead of G, position 55: T instead of G). These nucleotide differences can be reproduced in an independent amplification experiment and thus represent the nucleotide sequence in the Arabidopsis thaliana plant used.
  • the modified version AP3P is produced by means of recombinant PCR using the plasmid pTAP3.
  • the region 10200 to 9771 is amplified with the primers PR7 (SEQ ID NO: 67) and primers PR9 (SEQ ID NO: 69) (certificate A7 / 9), the region 9526 to 9285 was with the PR8 (SEQ ID NO: 68 ) and PR10 (SEQ ID NO: 70) amplified (certificate A8 / 10).
  • the PCR conditions are as follows: The PCR reactions for the amplification of the DNA fragments which code for the regions 10200 to 9771 and 9526 to 9285 of the AP3 promoter are carried out in 50 ⁇ l reaction batches which contain:
  • primer PR7 SEQ ID NO: 67
  • primer PR8 SEQ ID NO: 68
  • , .22 ⁇ ⁇ MM primer PR9 SEQ ID NO: 69
  • the PCR is carried out under the following cycle conditions: 1 cycle at 94 ° C. for 2 minutes. 35 cycles at 94 ° C for 1 minute, 50 ° C for 2 minutes and 72 ° C for 3 minutes. Finally 1 cycle at 72 ° C for 10 minutes.
  • the recombinant PCR includes annealing of the amplificates A7 / 9 and A8 / 10, which overlap over a sequence of 25 nucleotides, completion into a double strand and subsequent amplification. This creates a modified version of the
  • AP3 promoters 25 AP3 promoters (AP3P) in which positions 9670 to 9526 are deleted.
  • the denaturation (5 min at 95 ° C) and annealing (slow cooling at room temperature to 40 ° C) of both amplificates A7 / 9 and A8 / 10 takes place in a 17.6 ⁇ l reaction mixture, which contains:
  • the nucleic acid coding for the modified promoter version AP3P is PCR by means of a sense-specific primer (PR7 SEQ ID NO: 67) and an antisense-specific Primers (PR10 SEQ ID NO: 70) amplified.
  • the PCR conditions are as follows:
  • the PCR for the amplification of the AP3P fragment is carried out in a 50 ⁇ l reaction mixture, which contains:
  • the PCR is carried out under the following cycle conditions: 1 cycle at 94 ° C. for 2 minutes. 35 cycles at 94 ° C for 1 minute, 50 ° C for 1 minute and 72 ° C for 1 minute. Finally 1 cycle at 72 ° C for 10 minutes.
  • the amplificate is cloned into the cloning vector pCR2.1 (Invitrogen). Sequencing with the primers T7 and M13 confirmed a sequence identical to the sequence GenBank Acc.-No .: AL132971, region 10200 to 9298, the internal region 9285 to 9526 being deleted. This clone is used for cloning into the expression vector pJITH7 (Guerineau et al. (1988) Nucl Acids Res 16: 11380).
  • the cloning is carried out by isolating the 775 bp SacI-HindIII fragment from pTAP3P and ligating into the SacI-HindIII cut vector pJIT117.
  • the clone that contains the AP3P promoter instead of the original d35S promoter is called pJAP3P.
  • a DNA fragment which contains the PIV2 intron of the ST-LS1 gene is PCR by means of plasmid DNA p35SGUS INT (Vancanneyt G. et al. (1990) Mol Gen Genet 220: 245-250) and the primer PR40 ( SEQ ID NO: 71) and PR41 (SEQ ID NO: 72).
  • the PCR conditions are as follows: The PCR for the amplification of the sequence of the intron PIV2 of the ST-LS1 gene is carried out in a 50 ⁇ l reaction mixture which contains:
  • the PCR is carried out under the following cycle conditions: 1 cycle at 94 ° C. for 2 minutes. 35 cycles at 94 ° C for 1 minute, 53 ° C for 1 minute and 72 ° C for 1 minute. Finally 1 cycle at 72 ° C for 10 minutes.
  • PCR amplification with PR40 and PR41 results in a 212 bp fragment (SEQ ID NO: 78).
  • the standard is cloned into the PCR cloning vector pBluntII (Invitrogen) using standard methods and the clone pBluntII-40-41 is obtained. Sequencing of this clone with the primer SP6 confirms a sequence which is identical to the corresponding sequence from the vector p35SGUS INT. This clone is used for cloning into the vector pJAP3P (see above).
  • the cloning is carried out by isolating the 210 bp Sall-BamHI fragment from pBluntII-40-41 and ligation with the Sall-BamHI cut vector pJAP3P.
  • the clone which contains the intron PIV2 of the gene ST-LSl in the correct orientation after the 3 "end of the rbcs transit peptide, is called pJAIl and is suitable, expression cassette-te? I -. 'For the flower-specific expression of inverted repeat transcripts manufacture.
  • Example 6 Production of inverted “repeat” expression cassettes for the flower-specific expression of ⁇ -cyclase promoter dsRNAs in Tagetes erecta
  • inverted “repeat” transcripts consisting of promoter fragments of ⁇ -cyclase in Tagetes erecta was carried out under the control of a modified version (AP3P) of the flower-specific promoter AP3 from Arabidopsis (see Example 5) or of the flower-specific promoter CHRC (Genbank Acc.-No AF099501).
  • the inverted “repeat” transcript each contains an ⁇ -cyclase promoter fragment in the correct orientation (sense fragment) and a sequence-identical ⁇ -cyclase promoter fragment in the opposite orientation (antisense fragment), which are indicated by a functional intron (see example 5) are connected to each other.
  • the promoter fragments are PCR by means of plasmid DNA (clone pTA-ecycP, see Example 2) and the primers PR124 (SEQ ID NO: 73) and PR126 (SEQ ID NO: 75) or the primer PR125 (SEQ ID NO : 74) and PR127 (SEQ ID NO: 76).
  • the conditions of the PCR reactions are as follows:
  • the PCR for the amplification of the PR124-PR126 DNA fragment, which contains the promoter fragment of ⁇ -cyclase, is carried out in a 50 ⁇ l reaction mixture, which contains:
  • the PCR for the amplification of the PR125-PR127 DNA fragment, which contains the 312bp promoter fragment of ⁇ -cyclase, is carried out in a 50 ⁇ l reaction mixture, which contains:
  • the PCR reactions are carried out under the following cycle conditions: 1 cycle at 94 ° C. for 2 minutes. 35 cycles at 94 ° C for 1 minute, 53 ° C for 1 minute and 72 ° C for 1 minute. Finally 1 cycle at 72 ° C for 10 minutes.
  • PCR amplification with primers PR124 and PR126 resulted in a 358 bp fragment
  • PCR amplification with primers PR125 and PR127 resulted in a 361 bp fragment.
  • the two amplificates, the PR124-PR126 (HindIII-Sall sense) fragment and the PR125-PR127 (EcoRI-BamHI antisense) fragment, are cloned into the PCR cloning vector pCR-BluntII (Invitrogen) using standard methods. Sequencing with the primer SP6 confirms one Sequence which, apart from the restriction sites introduced, is identical to SEQ ID NO: 58. These clones are therefore used for the production of an inverted repeat construct in the cloning vector pJAII (see Example 5).
  • the first cloning step is carried out by isolating the 356 bp PR124-PR126 Hindlll-Sall fragment from the cloning vector pCR-Bluntll (Invitrogen) and ligation with the Hindlll-Sall cut vector pJAIl.
  • the clone that contains the ⁇ -cyclase promoter fragment in the sense orientation is called cs43.
  • the sense fragment of the ⁇ -cyclase promoter is inserted between the AP3P promoter and the intron by the ligation.
  • the second cloning step is carried out by isolating the 359 bp PR125-PR127 BamHI-EcoRI fragment from the cloning vector pCR-BluntII (Invitrogen) and ligation with BamHI-EcoRI cut vector cs43.
  • the clone that contains the ⁇ -cyclase promoter fragment in the antisense orientation is called cs44.
  • the ligation creates a transcriptional fusion between the intron and the antisense fragment of the ⁇ -cyclase promoter.
  • a CHRC promoter fragment using genomic DNA from petunia (produced according to standard methods) and the primers PRCHRC5 ⁇ (SEQ ID NO 82) and PRCHRC3 ⁇ (SEQ ID NO : 83) amplified.
  • the amplificate is cloned into the cloning vector pCR2.1 (Invitrogen). Sequencing of the resulting clone pCR2.1-CHRC with the primers M13 and T7 confirm a sequence identical to the sequence GenBank Acc.-No .: AF099501. This clone is therefore used for the cloning into the expression vector cs44.
  • the clone that contains the CHRC promoter instead of the original AP3P promoter is called cs45.
  • the transformation plasmids for the Agrobacterium -mediated transformation of the AP3P-controlled inverted repeat transcript in Tagetes erecta are produced using the binary vector pSUN5 (WO 02/00900).
  • the 1683 bp Sacl-Xhol fragment from cs44 is ligated with the Sacl-Xhol cut vector pSUN5 (FIG. 5, construct map).
  • the 2448 bp Sacl-Xhol fragment from cs45 is ligated with the Sacl-Xhol cut vector pSUN5 (FIG. 6, construct map).
  • transformation plasmids pS5AI7 and pS5CI7 are transformed into Tagetes by Agrobacterium tumefaciens-mediated transformation.
  • germination medium MS medium; Murashige & Skoog (1962) Physiol Plant 15: 473-497) pH 5.8, 2% sucrose). Germination takes place in a temperature / light / time interval of 18 to 28 ° C / 20 to 200 ⁇ E / 3 to 16 weeks, but preferably at 21 ° C, 20 to 70 ⁇ E, for 4 to 8 weeks.
  • the bacterial strain can be grown as follows: A single colony of the corresponding strain ird ' ⁇ - ⁇ ⁇ S (0.1% yeast extract, 0.5% beef extract, 0.5% peptone, 0.5% sucrose, 0.5% magnesium sulfate x 7 H 2 0) inoculated with 25 mg / 1 kanamycin and dressed at 28 ° C for 16 to 20 h. The bacterial suspension is then harvested by centrifugation at 6000 g for 10 min and resuspended in liquid MS medium in such a way that an OD OOO of approximately 0.1 to 0.8 was obtained.
  • the MS medium in which the leaves have been kept is replaced by the bacterial suspension.
  • the leaflets were incubated in the agrobacterial suspension for 30 min with gentle shaking at room temperature.
  • the infected explants are then placed on an MS medium solidified with agar (for example 0.8% Plant Agar (Duchefa, NL) with growth regulators, such as 3 mg / 1 benzylaminopurine (BAP) and 1 mg / 1 indolylacetic acid (IAA)
  • BAP benzylaminopurine
  • IAA indolylacetic acid
  • the explants are cultivated for 1 to 8 days, but preferably for 6 days, the following conditions can be used: light intensity: 30 to 80 ⁇ mol / m 2 x sec, temperature: 22 to 24 ° C., light / dark change from 16/8 hours.
  • the co-cultivated explants are then transferred to fresh MS medium, preferably with the same growth regulators, this second medium additionally containing an antibiotic to suppress bacterial growth.
  • Timentin in a concentration of 200 to 500 mg / 1 is very suitable for this purpose.
  • the second selective component is used to select the success of the transformation.
  • Phosphinothricin in a concentration of 1 to 5 mg / 1 selects very efficiently, but other selective components according to the method to be used are also conceivable.
  • the explants are transferred to fresh medium until shoot buds and small shoots develop, which are then on the same basal medium including timentin and PPT or alternative components with growth regulators, namely, for example, 0.5 mg / 1 indolylbutyric acid (IBA) and 0.5 mg / 1 gibberillic acid GA 3 , are transferred for rooting. Rooted shoots can be transferred to the greenhouse.
  • IBA indolylbutyric acid
  • GA 3 gibberillic acid
  • the explants Before the explants are infected with the bacteria, they can be pre-incubated for 1 to 12 days, preferably 3 to 4, on the medium described above for the co-culture. The infection, co-culture and selective regeneration then take place as described above.
  • the pH for regeneration (usually 5.8) can be lowered to pH 5.2. This improves the control of agrobacterial growth.
  • Liquid culture medium can also be used for the entire process.
  • the culture can also be incubated on commercially available carriers which are positioned on the liquid medium.
  • the transgenicity of rooted shoots can be examined using isolated genomic DNA using a polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • the reduction of the ⁇ -cyclase transcript levels (compared to the one used to transform wild-type) as a result of transformation with the transformation plasmid pS5Al7 or pS5CI7 can be examined by Northerngelblot analyses by standard methods (Sambrook & Russel, 2001 Molecular Cloning: rd A laboratory manual, 3 Edition , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York) using an ⁇ -cyclase-specific hybridization probe, for example as described in Example 1.
  • the reduction in the ⁇ -cyclase transcript amounts (in comparison with the wild type used for the transformation) can be investigated by means of ⁇ -cyclase-specific realtime PCR.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

Die Erfindung betrifft Verfahren zur gezielten, transgenen Expression von Nukleinsäuresequenzen in der pflanzlichen Blüte, sowie transgene Expressionskassetten und Expressionsvektoren, die Promotoren mit einer Expressionsspezifität für die pflanzliche Blüte enthalten. Die Erfindung betrifft ferner mit diesen transgenen Expressionskassetten oder Expressionsvektoren transformierte Organismen (bevorzugt Pflanzen), davon abgeleitete Kulturen, Teile oder Vermehrungsgut, sowie die Verwendung derselben zur Herstellung von Nahrungs-, Futtermitteln, Saatgut, Pharmazeutika oder Feinchemikalien.

Description

Transgene Expressionskassetten zur Expression von Nukleinsäuren in der pflanzlichen Blüte
' Beschreibung
Die Erfindung betrifft Verfahren zur gezielten, transgenen Expression von Nukleinsäuresequenzen in der pflanzlichen Blüte, sowie transgene Expressionskassetten und Expressionsvektoren, die Promotoren mit einer Expressionsspezifität für die pflanzliche Blüte enthalten. Die Erfindung betrifft ferner mit diesen transgenen Expressionskassetten oder Expressionsvektoren transformierte Organismen (bevorzugt Pflanzen) , davon abgeleitete Kulturen, Teile oder Vermehrungsgut, sowie die Verwendung der- selben zur Herstellung von Nahrungs-, Futtermitteln, Saatgut, Pharmazeutika oder Feinchemikalien.
Ziel biotechnologischer Arbeiten an Pflanzen ist die Herstellung von Pflanzen mit vorteilhaften, neuen Eigenschaften zum Beispiel zur Steigerung der landwirtschaftlichen Produktivität, zur Qualitätssteigerung bei Nahrungsmitteln oder zur Produktion bestimmter Chemikalien oder Pharmazeutika (Dunwell M (2000) J Exp Bot 51 Spec No: 487-96). Eine Grundvoraussetzung für die transgene Expression bestimmter Gene ist die Bereitstellung von in Pflanzen funktionellen Promotoren. Promotoren sind wichtige Werkzeuge in der Pflanzenbiotechnologie, um die Expression bestimmter Gene in einer transgenen Pflanze zu steuern und so bestimmte Wesensmerkmals der Pflanze zu erzielen.
Verschiedene in Pflanzen funktioneile Promotoren sind bekannt, zum Beispiel konstitutive Promotoren wie der Promotor ,deτ Nopalinsynthase aus Agroba-kterium, der TR-Doppelpromotor oder der Promotor des 35S-Transkriptes des Blumenkohlmosaikvirus (CaMV) (Odell et al.(1985) Nature 313:810-812). Nachteilig bei diesen Promotoren ist, dass sie in fast allen Geweben der Pflanze konstitutiv aktiv sind. Eine gezielte Expression von Genen in bestimmten Pflanzenteilen oder zu bestimmten Entwicklungszeitpunkten ist mit diesen Promotoren nicht möglich. Besonders groß ist daher der Bedarf an Promotoren mit einem definierten Aktivi- tätsprofil und einer Spezifität für bestimmte pflanzliche Gewebe.
Beschrieben sind Promotoren mit Spezifitäten für verschiedene pflanzliche Gewebe wie Antheren, Ovarien, Blüten, Blätter, Stengel, Wurzeln, Knollen oder Samen. Die Stringenz der Spezifi- tat, als auch die Expressionsaktivität dieser Promotoren ist sehr unterschiedlic . Die pflanzliche Blüte dient der geschlechtlichen Fortpflanzung der Samenpflanzen. Pflanzliche Blüten - vor allem die Blütenblätter (Petalen) - akkumulieren häufig große Mengen sekundärer Pflanzenstoffe, wie beispielsweise Terpene, Anthocyane, Carotinoide, Alkaloide und Phenylpropanoide, die der Blüte als Duftstoffe, Abwehrstoffe oder als Farbstoffe dienen. Viele dieser Substanzen sind von ökonomischem Interesse. Zudem ist die Blütenknospe und die Blüte der Pflanze ein empfindliches Organ, besonders gegen Stressfaktoren wie Kälte.
Blütenspezifische Promotoren, wie beispielsweise der Phytoen- synthase Promotor (WO 92/16635) , der Promotor des P-rr Gens (WO 98/22593) oder der Promoter des APETALA3 Gens (Hill TA et al. (1998) Development 125:1711-1721) sind bekannt. Diese Promotoren weisen jedoch alle einen oder mehrere Nachteile auf, die eine breite Nutzung beeinträchtigen:
1) Sie sind innerhalb der Blüte spezifisch für ein oder mehrere Blütengewebe und gewährleisten nicht die Expression in allen Geweben der Blüte.
2 Sie sind - wie im Beispiel des an der Blütenentwicklung beteiligten APETALA3 Gens - während der Blütenentwiσklung stark reguliert und nicht zu allen Phasen der Blüten- entwicklung aktiv.
3) Sie zeigen mitunter starke Nebenaktivitäten in anderen pflanzlichen Geweben.
Trotz der Vielzahl bekannter pflanzlicher Promotoren, besteht ein Bedarf an Promotoren mit einer Spezifität für, die pflanzliche Blüte, die über einen langen Zeitraum der Blütenentwiσklung und Blüte eine hohe Expression gewährleisten.
Es bestand daher die Aufgabe, Verfahren und geeignete Promotoren für die gezielte, transgene Expression von Nukleinsäuren in den Blütengeweben bereitzustellen. Diese Aufgabe wurde durch Bereitstellung von Promotoren der ε-Cyclase gelöst. Diese Promotoren zeigen eine ungewöhnliche starke Expression in zahlreichen Blütenorganen. Ein erster Gegenstand der Erfindung betrifft Verfahren zur gezielten, transgenen Expression von Nukleinsäuresequenzen in der in der pflanzlichen Blüte, wobei nachfolgende Schritte umfasst sind
I. Einbringen einer transgenen Expressionskassette in pflanzliche Zellen, wobei die transgene Expressionskassette mindestens nachfolgende Elemente enthält
a) mindestens eine Promotorsequenz eines Gens kodierend für eine ε-Cyclase, und
b) mindestens eine weitere Nukleinsäuresequenz, und
c) gegebenenfalls weitere genetische Kontrollelemente,
wobei mindestens eine der besagten Promotorsequenzen und eine weitere Nukleinsäuresequenz funktioneil miteinander verknüpft sind und die weitere Nukleinsäuresequenz in Bezug auf die Promotorsequenz oder die pflanzliche Zelle heterolog ist, und
II. Auswahl von transgenen Zellen, die besagte Expressionskassette stabil in das Genom integriert enthalten, und
III . Regeneration von vollständigen Pflanzen aus besagten transgenen Zellen, wobei mindestens eine der weiteren Nukleinsäuresequenz in der Blüte expri iert wird.
Ein weiterer Gegenstand betrifft transgene Expressionskassetten, wie sie z.B. in dem erfindungsgemäßen Verfahren zum Einsatz kommen können. Bevorzugt umfassen die transgenep Expressionskassetten zur gezielten, transgenen Expression von Nukleinsäuresequenzen in der pflanzlichen Blüte,
a) mindestens eine Promotorsequenz eines Gens kodierend für eine ε-Cyclase, und
b) mindestens eine weitere Nukleinsäuresequenz, und
c) gegebenenfalls weitere genetische Kontrollelemente,
wobei mindestens eine Promotorsequenz und eine weitere Nukleinsäuresequenz funktioneil miteinander verknüpft sind und die weitere Nukleinsäuresequenz in Bezug auf die Promotorsequenz heterolog ist. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens und/oder der erfindungsgemäßen Expressionskassetten meint "Promotorsequenz eines Gens kodierend für eine ε-Cyclase" eine Sequenz ausgewählt aus- der Gruppe von Sequenzen bestehend aus
i) der Promotorsequenz der ε-Cyclase aus Tagetes erecta gemäß SEQ ID NO: 1, der ε-Cyclase aus Arabidopsis thaliana gemäß SEQ ID NO: 7, der ε-Cyclase aus Oryza sativa gemäß SEQ ID NO: 8, und
ii) funktioneilen Äquivalenten der Promotorsequenzen gemäß SEQ ID NO: 1, 7 oder 8 mit im wesentlichen der gleichen Promotoraktivität wie der Promotor der ε-Cyclasen gemäß SEQ ID NO: 1, 7 oder 8 und
iii) funktioneil äquivalenten Fragmenten der Sequenzen unter i) oder ii) mit im wesentlichen der gleichen Promotoraktivität wie der Promotor der ε-Cyclasen gemäß SEQ ID NO: 1, 7 oder 8.
Besonders bevorzugt meint "Promotorsequenz eines Gens kodierend für eine ε-Cyclase" die Promotorsequenz aus Tagetes erecta gemäß SEQ ID NO: 1 und funktionell äquivalente Fragmente derselben.
Die erfindungsgemäßen Expressionskassetten können weiteren genetischen Kontrollsequenzen und/oder zusätzliche Funktionselemente enthalten.
Bevorzugt können die transgenen Expressionskassetten durch die transgen zu exprimierende Nukleinsäuresequenz die Expression eines von besagter Nukleinsäuresequenz kodierten Proteins, und/oder -die Expression eines, vo -besagter., nukleinsäuresequenz kodierter sense-RNA, anti-sense-RNA oder doppelsträngigen RNA ermöglichen.
Ein weiterer Gegenstand der Erfindung betrifft transgener
Expressionsvektoren, die eine der erfindungsgemäßen Expressionskassette enthalten.
Ein weiterer Gegenstand der Erfindung betrifft transgene Organismen, die eine der erfindungsgemäßen Expressionskassetten oder Expressionsvektoren enthalten. Der Organismus kann ausgewählt sein aus der Gruppe bestehend aus Bakterien, Hefen, Pilzen, nicht-menschlichen tierischen und pflanzlichen Organismen oder von diesen abgeleitete Zellen, Zellkulturen, Teile, Gewebe, Organe oder Vermehrungsgut, bevorzugt ist der Organismus ausgewählt aus der Gruppe der landwirtschaftlichen Nutzpflanzen. Ein weiterer Gegenstand der Erfindung betrifft daher eine isolierte Nukleinsäuresequenz umfassend den Promotor der der ε-Cyclase aus Tagetes erecta gemäß SEQ ID NO: 1 sowie funktionell äquivalente Fragmente derselben. 5
In einer bevorzugten Ausführungsform umfasst die erfindungsgemäße Nukleinsäuresequenz bzw. die erfindungsgemäße transgenen Expressionskassette in Form einer funktioneil äquivalenten Promotorsequenz neben der Sequenz gemäß SEQ ID NO: 1 zudem noch 10 die Sequenz kodierend für die 5'-untranslatierte Region des ε-Cyclase-Gens aus Tagetes erecta. Besonders bevorzugt ist die durch SEQ ID NO: 2 beschriebene Sequenz.
In einer weiterhin bevorzugten Ausführungsform umfasst die 15. erfindungsgemäße Nukleinsäuresequenz bzw. die erfindungsgemäße transgenen Expressionskassette in Form einer funktioneil äquivalenten Promotorsequenz neben der Sequenz gemäß SEQ ID NO: 1 zudem noch die Sequenz kodierend für die 5'-untranslatierte Region des ε-Cyclase-Gens aus Tagetes erecta und eine Sequenz kodierend 20 für ein Transitpeptid, bevorzugt für das Transitpeptid des ε-Cyclase-Proteins aus Tagetes erecta gemäß SEQ ID NO: 4. Bevorzugt ist diese Sequenz in 3 '-Richtung in Bezug auf einen der erfindungsgemäßen Promotoren orientiert. Als Promotorsequenz in diesem Zusammenhang besonders bevorzugt ist die durch 5 SEQ ID NO: 3 beschriebene Sequenz.
Ein weiterer Gegenstand betrifft die Verwendung der erfindungsgemäßen isolierten Nukleinsäuresequenzen, transgenen Expressionsvektoren oder transgenen Organismen zur transgenen Expression von 0 Nukleinsäuren und/oder Proteinen.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der erfindungsgemäßen Nukleinsäuresequenz zur Verminderung der Expression einer ε-Cyclase. In diesem Rahmen sind- Expressions- 5 kassetten erfindungsgemäß umfasst, die eine zu der Promotorsequenz korrespondierende doppelsträngige RNA zu exprimieren vermögen.
Insbesonders bevorzugt ist die Verwendung der besagten trans- 0 genen Organismen oder von diesem abgeleitete abgeleitete Zellen, Zellkulturen, Teile, Gewebe, Organe oder Vermehrungsgut zur Herstellung von Nahrungs-, Futtermitteln, Saatgut, Pharmazeutika oder Feinchemikalien, wobei die Feinchemikalien bevorzugt Enzyme, Vitamine, Aminosäuren, Zucker, gesättigte oder ungesättigte Fett- 5 säuren, natürliche oder synthetische Geschmacks-, Aroma- oder Farbstoffe sind. Erfindungsgemäß umfasst sind ferner Verfahren zur Herstellung besagter Nahrungs-, Futtermitteln, Saatgut, Pharmazeutika oder Feinchemikalien unter Einsatz der erfindungsgemäßen transgenen Organismen oder von diesen abgeleitete abgeleitete Zellen, Zellkulturen, Teile, Gewebe, Organe oder Vermehr ngsgut .
Die erfindungsgemäßen transgenen Expressionskassetten sind aus nachfolgendem Grund besonders vorteilhaft:
a) Sie gewähren eine selektive Expression in der Blüte von Pflanze und ermöglichen zahlreiche Anwendungen, wie beispielsweise eine Resistenz gegen Stressfaktoren wie Kälte oder eine gezielte Synthese von sekundären Pflanzenstoffen. Die Expression erfolgt über den gesamten EntwicklungsZeitraum der Blüte mit hoher Aktivität.
"Expression" meint die Transkription der transgen zu exprimierenden Nukleinsäuresequenz, kann aber - im Falle eines offenen Leserasters in "sense"-Orientierung - auch die Translation der transkribierten RNA der transgen zu exprimierenden Nukleinsäuresequenz in ein korrespondierendes Polypeptid mit einschließen.
"Transgen" meint - beispielsweise in Bezug auf eine transgene Expressionskassette, einen transgenen Expressionsvektor, einen transgenen Organismus oder Verfahren zur transgenen Expression von Nukleinsäuren - alle solche durch gentechnische Methoden zustande gekommene Konstruktionen oder Verfahren unter Verwendung derselben, in denen entweder
a) ein ε-Cyclase-Promotor (z.B. gemäß SEQ ID NO: 1, 7 oder 8) oder ein funktionelles Äquivalent desselben oder ein funktioneil äquivalentes •F-röcrc^nt der vorgenannten, oder
b) die transgen zu exprimierende Nukleinsäuresequenz in funktioneller Verknüpfung mit einem Promotor gemäß a) , oder
c) (a) und (b)
sich nicht in ihrer natürlichen, genetischen Umgebung befinden oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Nukleotidreste sein kann. Bevorzugt ist die in den Expressionskassetten enthaltene erfindungsgemäße Promotorsequenz (z.B. die Sequenz gemäß SEQ ID NO: 1, 7 oder 8) heterolog in Bezug auf die mit ihr funktioneil verknüpfte, transgen zu exprimierende weitere Nukleinsäuresequzenz . "Heterolog" meint in diesem Zusammenhang, dass die weitere Nukleinsäuresequenz nicht für das Gen kodiert, das natürlicherweise unter der Kontrolle des besagten Promotors steht .
"Natürliche genetische Umgebung" meint den natürlichen chro o- somalen Locus in dem Herkunftsorganismus oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürliche, genetische Umgebung der Nukleinsäuresequenz bevorzugt zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsäuresequenz zumindest an einer Seite und hat eine Sequenzlänge von mindestens 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp. Eine natürlich vorkommendes Expressionskonstrukt - beispielsweise die natürlich vorkommende Kombination des Promotors gemäß SEQ ID NO: 1 und eines Gens kodierend für ein Protein gemäß SEQ ID NO: 10 oder 12 wird zu einem transgenen Expressionskonstrukt, wenn diese durch nichtnatürliche, synthetische ("künstliche") Verfahren wie beispielsweise einer in vitro Mutagenisierung geändert wird. Entsprechende Verfahren sind beschrieben (US 5,565,350; WO 00/15815; siehe auch oben) .
"Transgen" meint in Bezug auf eine Expression ("transgene Expression") bevorzugt all solche unter Einsatz einer transgenen Expressionskassette, transgenen Expressionsvektor oder transgenen Organismus - entsprechend dem oben gegebenen Definitionen - realisierten Expressionen.
Die erfindungsgemäßen transgenen Expressionskassetten, die von ihnen abgeleitete transgenen Expressionsvektoren und trans- genen Organismen können funktioneile Äquivalente zu den unter SEQ ID NO: l, 7.oder, .8 ^beschriebenen ε-Cyclase-Promotorsequenz umfassen.
Funktionelle Äquivalente umfasst auch all die Sequenzen, die von dem komplementären Gegenstrang der durch SEQ ID NO: 1, 7 oder 8 definierten Sequenzen abgeleitet sind und im wesentlichen die gleiche Promotoraktivität aufweisen. Besonders bevorzugt sind die Sequenzen gemäß SEQ ID NO: 2 oder 3 umfasst, die neben der Promotorsequenz die 5'-untranslatierte Region bzw. die 5'-un- translatierte Region und die Region kodierend für das Transitpeptid der ε-Cyclase aus Tagetes erecta enthalten.
Funktionelle Äquivalente meint insbesondere natürliche oder künstliche Mutationen der unter SEQ ID NO: 1, 7 oder 8 beschrie- benen ε-Cyclase-Promotorsequenz sowie deren Homologen aus anderen Pflanzengattungen und -arten, welche weiterhin im wesentlichen die gleiche Promotoraktivität wie der ε-Cyclase-Promotor gemäß SEQ ID NO: 1, 7 oder 8 aufweisen.
Eine Promotoraktivität wird im wesentlichen als gleich bezeich- net, wenn die Transkription eines bestimmten zu exprimierenden Gens unter Kontrolle von z.B. eines funktioneilen Äquivalentes der durch SEQ ID NO: 1, 7 oder 8 beschriebenen ε-Cyclase-Promotor- sequenz oder eines funktioneil äquivalenten Fragmentes derselben - unter ansonsten unveränderten Bedingungen - in mindestens einem Blüten-Gewebe höher ist als in einem anderen Nicht-Blüten Gewebe, beispielsweise der Wurzel oder den Blättern. Dabei beträgt die Expression unter Kontrolle eines der erfindungsgemäßen Promotoren in einem Blüten-Gewebe bevorzugt mindestens das doppelte oder das fünffache, ganz besonders bevorzugt mindestens das zehnfache oder das fünfzigfache, am meisten bevorzugt mindestens das hundertfache als in einem anderen Nicht-Blüten Gewebe, beispielsweise der Wurzel oder den Blättern.
"Blüte" meint allgemein einen Spross begrenzten Wachstums, dessen Blätter zu Fortpflanzungsorganen umgewandelt sind. Die Blüte besteht aus verschiedenen "Blütengeweben" wie z.B. den Kelchblätter (Sepalen) , den Kronblätter (Petalen) , den Staubblätter (oder Staub"gefäßen" ; Stamina) oder den Fruchtblätter (Karpellen) . Als Androeceu wird in der Blüte die Gesamtheit der Staub- blätter (Stamina) bezeichnet. Die Staubblätter befinden sich innerhalb des Petalen- bzw. Sepalenkreises . Ein Staubblatt gliedert sich in ein Filament und eine am Ende sitzende Anthere. Diese wiederum unterteilt sich in zwei Theken, welche durch ein Konnektiv miteinander verbunden sind. Jede Theke besteht aus je zwei Pollensäcken, in denen der Pollen gebildet wird.
"Gezielt" meint in Bezug auf die Expression in der pflanzlichen Blüten bevorzugt, dass die Expression unter Kontrolle eines der erfindungsgemäßen Promotoren in mindestens einem pflanzlichen Blütengewebe mindestens das zehnfache, besonders bevorzugt mindestens das fünfzigfache, ganz besonders bevorzugt bevorzugt mindestens das hundertfache beträgt als in einem Nicht-Blütengewebe wie beispielsweise den Blättern.
Bevorzugt werden im Rahmen der Ermittlung der Expressionshöhe solche Sequenzen eingesetzt, die für leicht quantifizierbare Proteine kodieren. Ganz besonders bevorzugt sind dabei Reporterproteine (Schenborn E, Groskreutz D. (1999) Mol Biotechnol 13(1): 29-44) wie "green fluorescence protein" (GFP) (Chui WL et al . (1996) Curr Biol 6:325-330; Leffel SM et al.(1997) Biotechniques 23 (5) :912-8) , Chloramphenicoltransferase, Luziferase (Millar et al. (1992) Plant Mol Biol Rep 10:324-414), ß-Glucuronidase oder ß-Galactosidase. Ganz besonders bevorzugt ist die ß-Glucuro- nidase (Jefferson et al. (1987) EMBO J 6:3901-3907).
"Ansonsten unveränderte Bedingungen" bedeutet, dass die Expression, die durch eine der zu vergleichenden transgenen Expressionskassetten initiiert wird, nicht durch Kombination mit zusätzlichen genetischen Kontrollsequenzen, zum Beispiel Enhancer-Sequenzen, modifiziert wird. Unveränderte Bedingungen bedeutet ferner, dass alle Rahmenbedingungen wie beispielsweise Pflanzenart, EntwicklungsStadium der Pflanzen, Zuchtbedingungen, Assaybedingungen (wie Puffer, Temperatur, Substrate etc.) zwischen den zu vergleichenden Expressionen identisch gehalten werden.
Funktionelle Äquivalente zu dem ε-Cyclase-Promotor gemäß
SEQ ID NO: 1, 7 oder 8 umfasst bevorzugt solche Sequenzen die
a) im wesentlichen die gleiche Promotoraktivität wie der ε-Cyclase-Promotor gemäß SEQ ID NO: 1, 7 oder 8 aufweisen und
b) die eine Homologie aufweisen von mindestens 50 %, bevorzugt 70 %, vorzugsweise mindestens 80 %, besonders bevorzugt mindestens 90 %, ganz besonders bevorzugt mindestens 95 %, am meisten bevorzugt 99% zu der Sequenz des der ε-Cyclase- Promotor gemäß SEQ ID NO: 1, 7 oder 8, wobei sich die Homologie über eine Länge von mindestens 100 Basenpaaren, bevorzugt mindestens 200 Basenpaaren, besonders bevorzugt von mindestens 300 Basenpaaren, ganz besonders bevorzugt von mindestens 400 Basenpaaren, am meistens bevorzugt von mindestens 500 Basenpaaren erstreckt.
Dabei kann die Expressionshöhe der funktionellen Äquivalente sowohl nach unten als auch nach oben im Vergleich zu einem Vergleichswert abweichen. Bevorzugt sind dabei solche Sequenzen, deren Expressionshöhe, gemessen anhand der transkribierten mRNA oder dem infolge translatierten Protein, unter ansonsten unveränderten Bedingungen quantitativ um nicht mehr als 50 %, bevorzugt 25 %, besonders bevorzugt 10 % von einem Vergleichswert erhalten mit denen durch SEQ ID NO: 1, 7 oder 8 beschriebenen Promotoren unterscheidet. Besonders bevorzugt sind solche Sequenzen, deren Expressionshöhe, gemessen anhand der transkribierten mRNA oder dem infolge translatierten Protein, unter ansonsten unveränderten Bedingungen quantitativ um mehr als 50 %, bevorzugt 100 %, besonders bevorzugt 500 %, ganz besonders bevorzugt 1000 % einen Vergleichswert erhalten mit dem durch SEQ ID NO: 1, 7 oder 8 beschriebenen Promotor übersteigt. Weitere Beispiele für die in den erfindungsgemäßen transgenen Expressionskassetten oder transgenen ExpressionsVektoren zum Einsatz kommenden funktioneil äquivalenten Promotorsequenzen lassen t sich beispielsweise in verschiedenen Organismen, deren genomische Sequenz zumindest teilweise bekannt ist, wie beispielsweise
Arabidopsis thaliana, Brassica napus, Nicotiana tabacum, Solanum tuberosum, Helianthium annuus, Linu sativum oder Oryza sativa durch Homologievergleiche in Datenbanken leicht auffinden. Bevorzugt kann man dazu von den kodierenden Regionen des Gens aus- gehen, dessen Promotor durch SEQ ID NO: 1, 7 oder 8 beschrieben ist. Ausgehend von beispielsweise den cDNA Sequenzen dieser Gene beschrieben durch SEQ ID NO: 9, 11, 13 oder 15 oder den davon abgeleiteten Proteinsequenz beschrieben durch SEQ ID NO: 10, 12, 14 oder 16 können die entsprechenden homologen Gene - und damit die zugehörigen Promotorregionen - in anderen Pflanzenarten durch Durchmusterung von Datenbanken oder Genbanken (unter Verwendung von entsprechenden Gensonden) leicht in der dem Fachmann geläufigen Weise identifiziert werden.
In einer weiterhin bevorzugten Ausführungsform umfassen funktionelle Äquivalente zu dem ε-Cyclase-Promotor gemäß SEQ ID NO: 1, 7 oder 8 solche Sequenzen, die sich in einem pflanzlichen Organismus in 5 '-Richtung vor einer genomischen Sequenz befinden, die für eine ε-Cyclase kodiert.
ε-Cyclase meint allgemein all solche Proteine, die eine ε-Cyclase- Aktivität aufweisen.
Unter ε-Cyclase-Aktivität wird die Enzymaktivität einer ε-Cyclase verstanden.
Unter einer ε-Cyclase wird ein Protein verstanden, das die enzymatische Aktivität aufweist, einen endständigen, linearen Rest von Lycopin in einen ε-Ionon-Ring zu überführen.
Insbesondere meint ε-Cyclase allgemein all solche Proteine, die befähigt sind, die Ringbildung von Lycopen zu δ-Carotin (und gegebenenfalls weiter zu ε-Carotin) und/oder von Neurosporen zu α-Zeacarotin zu katalysieren. Bevorzugt hat die ε-Cyclase eine Oxidoreduktase-Aktivität und/oder zeigt natürlicherweise eine überwiegende Lokalisation in den Piastiden insbesondere den Chloroplasten und Chromoplasten.
Bevorzugt wird unter einer ε-Cyclase ein Protein verstanden, das die enzymatische Aktivität aufweist, Lycopin in δ-Carotin umzuwandeln. Dementsprechend wird unter ε-Cyclase-Aktivität die in einer bestimmten Zeit durch das Protein ε-Cyclase umgesetzte Menge Lycopin bzw. gebildete Menge δ-Carotin verstanden.
Die Bestimmung der ε-Cyclase-Aktivität in erfindungsgemäßen 5 genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt vorzugsweise unter folgenden Bedingungen:
Die ε-Cyclase-Aktivität kann nach Fräser und Sandmann (Biochem. Biophys. Res . Comm. 185(1) (1992) 9-15) in vitro bestimmt werden, wenn zu einer bestimmten Menge an Pflanzenextrakt Kaliumphosphat als Puffer (ph 7.6), Lycopin als Substrat, Stromaprotein von Paprika, NADP+, NADPH und ATP zugegeben werden.
]_5 Die Bestimmung der ε-Cyclase-Aktivität in erfindungsgemäßen genetisch veränderten Pflanzen und in Wildtyp- bzw. Referenzpflanzen erfolgt besonders bevorzugt nach Bouvier, d'Harlingue und Ca ara (Arch Biochem Biophys 346(1) (1997) 53-64): Der in-vitro Assay wird in einem Volumen von 0,25 ml durchgeführt. Der Ansatz ent-
20 hält 50 mM Kaliumphosphat (pH 7, 6) unterschiedliche Mengen an Pflanzenextrakt, 20 nM Lycopin, 0,25 mg an chromoplastidärem Stromaprotein aus Paprika, 0,2 mM NADP+, 0,2 mM NADPH und 1 mM ATP. NADP/NADPH und ATP werden in 0,01 ml Ethanol mit 1 mg Tween 80 unmittelbar vor der Zugabe zum Inkubationsmedium gelöst. Nach 5 einer Reaktionszeit von 60 Minuten bei 30°C wird die Reaktion durch Zugabe von Chloroform/Methanol (2:1) beendet. Die in Chloroform extrahierten Reaktionsprodukte werden mittels HPLC analysiert.
0 Ein alternativer Assay mit radioaktivem Substrat ist beschrieben in Fräser >?nά- Sandmann (Biochem Biophys Res Comm 185(1) (1992) 9-15) . Eine weitere analytische Methode ist beschrieben in Beyer, Kröncke und Nievelstein (J Biol Chem 266(26) (1991) 17072-17078).
5 In einer bevorzugten Ausführungsform der Erfindung umfassen funktioneile Äquivalente des ε-Cyclase-Promotors beschrieben durch SEQ ID NO: 1, 7 oder 8 all solche Promotoren, die sich in einem pflanzlichen Organismus in 5 '-Richtung vor einer genomischen Sequenz befinden, die für eine ε-Cyclase mit einer Homologie 0 von mindestens 60 %, bevorzugt mindestens 80 %, besonders bevorzugt mindestens 90 %, am meisten bevorzugt mindestens 95 % zu einem Protein gemäß SEQ ID NO: 10, 12, 14 oder 16 kodieren, wobei besagte Promotoren den natürlichen Promotor der besagten genomischen Sequenz darstellen. 5 Besonders bevorzugt umfassen funktioneile Äquivalente des ε-Cyclase-Promotors beschrieben durch SEQ ID NO: 1, 7 oder 8 all solche Promotoren, die sich in einem pflanzlichen Organismus in 5 ' -Richtung vor einer genomischen Sequenz befinden, die für eine Nukleinsäuresequenz kodiert, deren abgeleitete cDNA eine Homologie von mindestens 60 %, bevorzugt mindestens 80 %, besonders bevorzugt mindestens 90 %, am meisten bevorzugt mindestens 95 % zu der Nukleinsäuresequenz gemäß SEQ ID NO: 9, 11, 13 oder 15 hat, wobei besagte Promotoren den natürlichen Promotor der besagten genomischen Sequenz darstellen und die cDNA für eine ε-Cyclase kodiert.
Bevorzugt sind Promotoren, die einen Sequenzbereich von mindestens 250 Basenpaare, bevorzugt mindestens 500 Basenpaare, besonders bevorzugt 1000 Basenpaare, am meisten bevorzugt mindestens 2000 Basenpaare in 5 '-Richtung gerechnet vom ATG-Start- kodon der besagten genomischen Sequenzen umfassen.
Besonders bevorzugt sind funktioneile Äquivalente des ε-Cyclase- Promotors beschrieben durch SEQ ID NO: 1, 7 oder 8 all solche Promotoren, die sich in einem pflanzlichen Organismus in 5 ' -Richtung vor einer genomischen Sequenz befinden, die für eine ε-Cyclase kodiert, die mindestens eines der nachfolgenden Sequenzmotive enthält:
1 G(G/C)GPAGL(A/S) (V/L)A (SEQ ID NO : 17 ) 2 (L/I) (N/G/S)RXYG(K/R) (V/L) ( SEQ ID NO : 18 ) 3 MVFMD(Y/W)RD ( SEQ ID NO : 19 ) 4 PTFLY(A/V)M(P/A) ( SEQ ID NO : 20 ) 5 AXMVHP (S/A) TGY(M/S)V(A/V) R ( SEQ ID- NO : 21 ) 6 - WP7S3R(R/K)RQRXFF (SEQ ID NO :- 22 )
Ganz besonders bevorzugt sind als funktioneile Äquivalente des Promotors beschrieben durch SEQ ID NO: 1, 7 oder 8 solche Promo- toren, die sich in einem pflanzlichen Organismus in 5 '-Richtung vor einer genomischen Sequenz befinden, welche für ein Protein kodiert, wobei besagtes Protein mindestens eine der nachfolgenden Sequenzen umfasst:
1. die homologe Sequenz (Hl) aus Lactuca sativa gemäß SEQ ID NO: 24,
2. die homologen Sequenzen (H2 und H3) aus Adonis palaestina gemäß SEQ ID NO: 26 oder 28,
3. die homologen Sequenz (H4) aus Arabidopsis thaliana gemäß SEQ ID NO: 30
4. die homologe Sequenzen (H5 und H6) aus Citrus x paradisi gemäß SEQ ID NO: 32 oder 34 5. die homologe Sequenz (H7) aus Citrus sinensis gemäß SEQ ID NO: 36
6. die homologe Sequenz (H8) aus Spinacea oleracea gemäß, SEQ ID NO: 38 7. die homologe Sequenz (H9) aus Solanum tuberosum gemäß SEQ ID NO: 40
8. die homologen Sequenzen (H10 und Hll) aus Daucus carota gemäß SEQ ID NO: 42 oder 44
9. die homologe Sequenz (H12) aus Tomate gemäß SEQ ID NO: 46
Am meisten bevorzugt sind als funktionelle Äquivalente des Promotors beschrieben durch SEQ ID NO: 1, 7 oder 8 solche Promotoren, die sich in einem pflanzlichen Organismus in 5 '-Richtung vor einer genomischen Sequenz befinden, welche für eine Nukleinsäuresequenz kodiert, deren abgeleitete cDNA mindestens eine der nachfolgenden Sequenzen, umfasst :
die homologe Sequenz (Hl) aus Lactuca sativa gemäß
SEQ ID NO: 23, 2. die homologen Sequenzen (H2 und H3) aus Adonis palaestina gemäß SEQ ID NO: 25 oder 27, die homologen Sequenzen (H4) aus Arabidopsis thaliana gemäß
SEQ ID NO: 29 die homologe Sequenzen (H5 und H6) aus Citrus x paradisi gemäß SEQ ID NO: 31 öder 33 die homologe Sequenz (H7) aus Citrus sinensis gemäß
SEQ ID NO: 35 die homologe Sequenz (H8) aus Spinacea oleracea gemäß
SEQ ID NO: 37 6. die homologe Sequenz (H9) aus Solanum tuberosum gemäß
.7ΞQ .ID NO: .39 die homologen Sequenzen (H10 und Hll) aus Daucus carota gemäß
SEQ ID NO: 41 oder 43 die homologe Sequenz (H12) aus Tomate gemäß SEQ ID NO: 45
Weitere Beispiele für die in den erfindungsgemäßen transgenen Expressionskassetten oder transgenen Expressionsvektoren zum Einsatz kommenden funktioneil äquivalenten Promotorsequenzen lassen sich beispielsweise in verschiedenen Organismen, deren genomische Sequenz zumindest teilweise bekannt ist, wie beispielsweise Arabidopsis thaliana, Brassica napus, Oryza sativa, Nicotiana tabacu , Solanum tuberosum, Helianthium annuus, Linum sativum durch Homologievergleiche in Datenbanken leicht auffinden.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung mindestens einer Nukleinsäuresequenz oder eines Teils derselben in Verfahren zur Identifikation und/oder Isolation von Promotoren von Genen, die für besagte Nukleinsäuresequenz kodieren, wobei besagte Nukleinsäuresequenz für eine Aminosäuresequenzen kodiert, die mindestens ein Sequenzmotiv gemäß SEQ ID NO: 17, 18, 1*9, 20, 21 oder 22 oder eine für diese Sequenzmotive angegebene Variation 5 umfasst. Bevorzugt kodiert besagte Nukleinsäuresequenz für eine Aminosäuresequenz umfassend eine Sequenz gemäß SEQ ID NO: 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 oder 46. Besonders bevorzugt umfasst besagte Nukleinsäuresequenz eine Sequenz gemäß SEQ ID NO: 23, 25, 27, 29, 29, 31, 33, 35, 37, 39, 41, 43 oder 10 45. "Teil" meint in Bezug auf die Nukleinsäuresequenz bevorzugt eine Sequenz von mindestens 10 Basen, bevorzugt 15 Basen, besonders bevorzugt 20 Basen, am meisten bevorzugt 30 Basen.
Erfindungsgemäß umfasst sind ferner Verfahren zur Identifikation
15 und/oder Isolation von Promotoren von Genen, die für einen Promotor mit Spezifität für die pflanzliche Blüte kodieren, wobei bei der Identifikation und/oder Isolation mindestens eine Nukleinsäuresequenz oder ein Teils derselben zum Einsatz kommt, wobei besagte Nukleinsäuresequenz für eine Aminosäuresequenzen
20 kodiert, die mindestens ein Sequenzmotiv gemäß SEQ ID NO: 17, 18, .19, 20, 21 oder 22 oder eine für diese Sequenzmotive angegebene Variation umfasst. Bevorzugt kodiert besagte Nukleinsäuresequenz für eine Aminosäuresequenz umfassend eine Sequenz gemäß SEQ ID NO: 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 oder 46.
25 Besonders bevorzugt umfasst besagte Nukleinsäuresequenz eine Sequenz gemäß SEQ ID NO: 23, 25, 27, 29, 29, 31, 33, 35, 37, 39, 41, 43 oder 45. "Teil" meint in Bezug auf die Nukleinsäuresequenz bevorzugt eine Sequenz von mindestens 10 Basen, bevorzugt 15 Basen, besonders bevorzugt 20 Basen, am meisten bevor-
30 zugt 30 Basen. In einer Bevorzugten Aus ührungsform basiert das c- findungsgemäße Verfahren auf der Polymerasekettenreaktion, wobei die besagte Nukleinsäuresequenz oder ein Teil derselben als Primer eingesetzt wird.
35 Dem Fachmann sind verschiedene Verfahren bekannt, um ausgehend von einer Nukleinsäuresequenz (z.B. einem Gentranskript wie beispielsweise einer cDNA) den Promotor des entsprechenden Genes zu identifizieren und zu isolieren. Dazu stehen beispielsweise prinzipiell alle Methoden zur Amplifikation flankierender
40 chromosomaler Sequenzen zur Verfügung. Die beiden am häufigsten genutzten Verfahren sind die inverse PCR ("iPCR"; schematisch dargestellt in Fig. 13) und die "Thermal Asymmetrie Interlaced PCR" ("TAIL PCR"). Geeignet ist ferner auch das Verfahren des "PCR Walkings" (Devic et al. (1997) Plant Physiol Biochem
45 35:331-339) . Für die "iPCR" wird genomische DNA des Organismus, aus dem der funktionell äquivalente Promotor zu isolieren ist, mit einem gegebenen Restriktionsenzym komplett verdaut und anschließend werden in einem verdünnten Ansatz die einzelnen Fragmente rück- ligiert, also mit sich selbst zu einem ringförmigen Molekül verbunden. In der Vielzahl entstehender ringförmiger DNA-Moleküle befinden sich auch solche, die die bekannte Sequenz (beispielsweise die Sequenz kodierend für das homologe Protein) enthalten. Ausgehend davon kann das ringförmige Molekül mittels PCR amplifi- ziert werden, indem ein Primerpaar verwendet wird, bei dem beide Primer sich an den bekannten Sequenzabschnitt anlagern können. Eine Ausführungsmöglichkeit für die "iPCR" ist beispielhaft in Beispiel 2 wiedergegeben.
Die "TAIL-PCR" beruht auf der Verwendung von einerseits einem Satz sukzessive verkürzter hochspezifischer Primer, die sich an die bekannte genomische Sequenz (beispielsweise die Sequenz kodierend für das homologe Protein) anlagern, und andererseits einem Satz kürzerer Zufallsprimer mit geringer Schmelztemperatur, so dass eine sequenzunspezifischere Anlagerung an die bekannte genomische Sequenz flankierende genomische DNA erfolgt . Die Anlagerung der Primer an die zu amplifizierende DNA kann mit einer solchen Pri erkombination so gestaltet werden, dass eine spezifische Amplifikation der gewünschten Zielsequenz möglich wird. Eine Ausführungsmöglichkeit für die "TAIL-PCR" ist beispielhaft in Beispiel 2 wiedergegeben.
Ein weiterer Gegenstand der Erfindung betrifft Verfahren zur Herstellung einer transgenen Expressionskassette mit Spezifität für die pflanzliche Blüten, umfassend nachfolgende Schritte:
I . Isolation einer Promotorsequenz , wobei bei der Isolation mindestens eine Nukleinsäuresequenz oder ein Teils derselben zum Einsatz kommt, wobei besagte Nukleinsäuresequenz für eine AminosäureSequenzen kodiert, die mindestens ein Sequenzmotiv gemäß SEQ ID NO: 17, 18, 19, 20, 21 oder 22 oder eine für diese Sequenzmotive angegebene Variation umfasst.
II. Funktionelle Verknüpfung besagter Promotorsequzenz mit einer weiteren Nukleinsäuresequenz, wobei besagte Nukleinsäuresequenz in Bezug auf den Promotor heterolog ist.
Bevorzugt kodiert besagte Nukleinsäuresequenz für eine Aminosäuresequenz umfassend eine Sequenz gemäß SEQ ID NO: 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44 oder 46. Besonders bevorzugt umfasst besagte Nukleinsäuresequenz eine Sequenz gemäß SEQ ID NO: 23, 25, 27, 29, 29, 31, 33, 35, 37, 39, 41, 43 oder 45. "Teil" meint in Bezug auf die Nukleinsäuresequenz bevorzugt eine Sequenz von mindestens 10 Basen, bevorzugt 15 Basen, besonders bevorzugt 20 Basen, am meisten bevorzugt 30 Basen. In einer bevorzugten Ausführungsform basiert das erfindungsgemäße Verfahren auf der Polymerasekettenreaktion, wobei die besagte Nukleinsäuresequenz oder ein Teil derselben als Primer eingesetzt wird. Im Rahmen der funktioneilen Verknüpfung können dem Fachmann bekannte Verfahren wie z.B. Ligation etc. eingesetzt werden (s.u.).
Die Expressionshöhe eines funktioneil äquivalenten Promotors kann sowohl nach unten als auch nach oben im Vergleich zu dem Promotor gemäß SEQ ID NO: 1, 7 oder 8 abweichen. Bevorzugt sind dabei solche Sequenzen, deren Expressionshöhe, gemessen anhand der transkribierten mRNA oder dem infolge translatierten Protein, unter ansonsten unveränderten Bedingungen quantitativ um nicht mehr als 50 %, bevorzugt 25 %, besonders bevorzugt 10 % von einem Vergleichswert erhalten mit denen durch SEQ ID NO: 1, 7 oder 8 beschriebenen Promotoren unterscheidet. Besonders bevorzugt sind solche Sequenzen, deren Expressionshöhe, gemessen anhand der transkribierten mRNA oder dem infolge translatierten Protein, unter ansonsten unveränderten Bedingungen quantitativ um mehr als 50 %, bevorzugt 100 %, besonders bevorzugt 500 %, ganz besonders bevorzugt 1000 % einen Vergleichswert erhalten mit dem durch SEQ ID NO: 1, 7 oder 8 beschriebenen Promotor übersteigt. Bevorzugt ist als Vergleichswert die Expressionshöhe der natürlicherweise von dem Promotor exprimierten mRNAs einer ε-Cyclase oder des daraus resultierenden Proteins. Bevorzugt ist ferner als Vergleichswert die Expressionshöhe erhalten mit einer beliebigen, aber bestimmten Nukleinsäuresequenz, bevorzugt solchen Nuklein- säuresequezen, die für leicht quantifizierbare Proteine- kodieren. Ganz besonders bevorzugt sind dabei Reporter-Proteine (Schenborn E & Groskreutz D (1999) Mol Biotechnol 13(l):29-44) wie das "green fluorescence protein" (GFP) (Chui WL et al. (1996) Curr Biol 6:325-330; Leffel SM et al. (1997) Biotechniques. 23 (5) :912-8) , die Chloramphenicoltransferase, eine Luziferase (Millar et al . (1992) Plant Mol Biol Rep 10:324-414) oder die ß-Glucuronidase, ganz besonders bevorzugt ist die ß~Glucuronidase (Jefferson et al. (1987) EMBO J 6:3901-3907).
Funktionelle Äquivalente umfassen auch natürliche oder künstliche Mutationen der unter SEQ ID NO: 1, 7 oder 8 beschriebenen Promotorsequenz . Mutationen umfassen Substitutionen, Additionen, Deletionen, Inversionen oder Insertionen eines oder mehrerer Nukleotidreste . Somit werden beispielsweise auch solche Nukleo- tidsequenzen durch die vorliegende Erfindung mit umfasst, welche man durch Modifikation des ε-Cyclase-Promotors gemäß SEQ ID NO: 1, 7 oder 8 erhält. Ziel einer solchen Modifikation kann die weitere Eingrenzung der darin enthaltenen Sequenz oder z.B. auch das Einfügen oder Entfernen von Restriktionsendonukleaseschnittstellen, die Entfernung überflüssiger DNA oder das Hinzufügen weiterer Sequenzen, zum Beispiel weiterer regulatorischer Sequenzen, sein.
Wo Insertionen, Deletionen oder Substitutionen, wie z.B. Transitionen und Transversionen, in Frage kommen, können an sich bekannte Techniken, wie in vitro-Mutagenese, "primer repair", Restriktion oder Ligation verwendet werden. Transition meint einen Basenpaaraustausch eines Purin/Pyri idin-Paares in ein anderes Purin/Pyrimidin-Paar (z.B. A-T gegen G-C) . Transversion meint einen Basenpaaraustausch eines Purin/Pyrimidin-Paares gegen ein Pyrimidin/Purin-Paar (z.B. A-T gegen T-A) . Deletion meint die Entfernung eines oder mehrerer Basenpaare. Insertion meint die Einführung eines oder mehrerer Basenpaare.
Durch Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "blunt ends" können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden. Zu analogen Ergebnissen kann man auch unter Verwendung der Polymerasekettenreaktion (PCR) unter Verwendung spezifischer Oligonukleotid-Primer kommen.
Unter Homologie zwischen zwei Nukleinsäuren wird die Identität der Nukleinsäuresequenz über die jeweils gesamte Sequenzlänge verstanden, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG) , Madison, USA) unter Einstellung folgender Parameter berechnet wird:
Gap Weight: 12 Length Weight: 4
Average Match: 2,912 Average Mismatch:-2, 003
Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 50 % auf Nukleinsäurebasis mit der Sequenz SEQ ID NO: 1 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 1 nach obigem Programm- algorithmus mit obigem Parametersatz eine Homologie von mindestens 50 % aufweist.
Unter Homologie zwischen zwei Polypeptiden wird die Identität der Aminosäuresequenz über die jeweilige Sequenzlänge ver- standen, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG) , Madison, USA) unter Einstellung folgender Parameter berechnet wird:
Gap Weight : 8 Length Weight : 2
Average Match: 2,912 Average Mismatch:-2, 003
Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 60 % auf Proteinbasis mit der Sequenz SEQ ID NO: 10 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 10 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 60 % aufweist.
Funktionelle Äquivalente meint ferner DNA Sequenzen, die unter Standardbedingungen mit der Nukleinsäuresequenz kodierend für den ε-Cyclase-Promotor gemäß SEQ ID NO: 1, 7 oder 8 oder der zu ihr komplementären Nukleinsäuresequenzen hybridisieren und die im wesentlichen gleichen Promotoreigenschaften haben. Der Begriff der Standardhybridisierungsbedingungen ist breit zu verstehen und meint sowohl stringente als auch weniger stringente Hybridi- sierungsbedingungen. Solche Hybridisierungsbedingungen sind unter anderem bei Sambrook J, Fritsch EF, Maniatis T et al., in Mole- cular Cloning - A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57 oder in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. beschrieben.
Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit ungefähr 2X SSC bei 50°C) und solchen mit hoher Stringenz (mit ungefähr- 0,2X SSC-bs-i 50°C bevorzugt bei 65°C) (20X SSC: 0,3 M Natriumeitrat, 3 M NaCl, pH 7.0). Darüber hinaus kann die Temperatur während des Waschschrittes von niedrig stringenten Bedingungen bei Raumtemperatur, ungefähr 22°C, bis zu stärker stringenten Bedingungen bei ungefähr 65°C angehoben werden. Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50 % Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt. Einige beispielhafte Bedingungen für Hybridisierung und Waschschritte sind infolge gegeben: (1) Hybridisierungsbedingungen mit zum Beispiel
a) 4X SSC bei 65°C, oder b) 6X SSC, 0,5 % SDS, 100 μg/ml denaturierte, fragmentierte Lachssperma-DNA bei 65°C, oder c) 4X SSC, 50 % Formamid, bei 42°C, oder d) 2X oder 4X SSC bei 50°C (schwach stringente Bedingung) , oder e) 2X oder 4X SSC, 30 bis 40 % Formamid bei 42°C (schwach stringente Bedingung) , oder f) 6x SSC bei 45°C, oder, g) 0,05 M Natriumphosphatpuffer pH 7,0, 2 mM EDTA, 1 % BSA und 7 % SDS.
(2) Waschschritte mit zum Beispiel
a) 0,1X SSC bei 65°C, oder b) 0,1X SSC, 0,5 % SDS bei 68°C, oder c) 0,1X SSC, 0,5 % SDS, 50 % Formamid bei 42°C, oder d) 0,2X SSC, 0,1 % SDS bei 42°C, oder e) 2X SSC bei 65°C (schwach stringente Bedingung) , oder f) 40 mM Natriumphosphatpuffer pH 7,0, 1 % SDS, 2 mM EDTA.
Verfahren zur Herstellung erfindungsgemäßer funktioneller Äqui- valente umfassen bevorzugt die Einführung von Mutationen in den ε-Cyclase-Promotor gemäß SEQ ID NO: 1, 7 oder 8. Eine Mutagenese kann ungerichtet ("random") erfolgen, wobei die mutagenisierten Sequenzen anschließend bezüglich ihrer Eigenschaften nach einer "trial-and-error" Prozedur durchmustert werden. Besonders vor- teilhafte Selektionskriterien umfassen beispielsweise die Höhe der resultierenden Expression der eingeführten-^kleinsäure- sequenz in einem Blüten-Gewebe.
Verfahren zur Mutagenisierung von Nukleinsäuresequenzen sind dem Fachmann bekannt und schließen beispielhaft die Verwendung von Oligonukleotiden mit einer oder mehr Mutationen im Vergleich zu der zu mutierenden Region ein (z.B. im Rahmen einer "Site- specific utagenesis") . Typischerweise kommen Primer mit ungefähr 15 bis ungefähr 75 Nukleotiden oder mehr zum Einsatz, wobei bevorzugt ca. 10 bis ca. 25 oder mehr Nukleotidreste an beiden Seiten der zu verändernden Sequenz lokalisiert sind. Details und Durchführung besagter Mutageneseverfahren sind dem Fachmann geläufig (Kunkel et al. (1987) Methods Enzymol 154:367-382; Tomic et al. (1990) Nucl Acids Res 12:1656; Upender et al. (1995) Biotechniques 18 (1) :29-30; US 4,237,224). Eine Mutagenese kann auch durch Behandlung von beispielsweise transgenen Expressionsvektoren, die eine der erfindungsgemäßen Nukleinsäuresequenzen enthalten, mit mutagenisierenden Agentien wie Hydroxylamin realisiert werden.
Alternativ können nicht-essentielle Sequenzen eines erfindungs- gemäßen Promotors deletiert werden, ohne die genannten wesentlichen Eigenschaften signifikant zu beeinträchtigen. Derartige Deletionsvarianten stellen funktioneil äquivalente Fragmente zu den Promotoren beschrieben durch SEQ ID NO: 1, 7 oder 8 oder zu funktioneilen Äquivalentes derselben dar. Die Eingrenzung der Promotorsequenz auf bestimmte, essentielle regulatorische Regionen kann z.B. mit Hilfe von Suchroutine zur Suche von Promotorelementen vorgenommen werden. Oft sind in den für die Promotoraktivität relevanten Regionen bestimmte Promotorelemente gehäuft vorhanden. Diese Analyse kann beispielsweise mit Computerprogrammen wie dem Programm PLACE ("Plant Cis-acting Regulatory DNA Elements"; Higo K et al . (1999) Nucl Acids Res 27(1): 297-300), der BIOBASE Datenbank "Transfac" (Biologische Datenbanken GmbH, Braunschweig; Wingender E et al. (2001) Nucleic Acids Res 29(l):281-3) oder Datenbank PlantCARE (Lescot M et al . (2002) Nucleic Acids Res 30(l):325-7) vorgenommen werden.
Bevorzugt umfassen die funktionell äquivalenten Fragmente eines der erfindungsgemäßen Promotoren - beispielsweise der ε-Cyclase- Promotoren beschrieben durch SEQ ID NO: 1, 7 oder 8 - mindestens 200 Basenpaar, ganz besonders bevorzugt mindestens 500 Basenpaare, am meisten bevorzugt mindestens 1000 Basenpaare des 3 '-Endes des jeweiligen erfindungsgemäßen Promotors - beispielsweise der Promotoren beschrieben durch SEQ ID NO: 1, 7 oder 8 -, wobei die Länge vom Translationsstart ("ATG"-Kodon) in 5 '-Richtung stromaufwärts gerechnet wird.
Weitere funktionell äquivalente Fragmente können beispielsweise durch Deletion eventuell noch vorhandener 5 ' -untranslatierter Bereiche erzeugt werden. Zu diesem Zweck kann der Transkriptions- start der entsprechenden Gene durch dem Fachmann geläufige Verfahren (wie beispielsweise 5'-RACE) bestimmt und die 5'-untrans- latierten durch PCR-vermittelte Methoden oder Endonukleaseverdau deletiert werden. So können beispielsweise die in den Promotoren gemäß SEQ ID NO: 7 oder 8 umfassten 5 ' -untranslatierten Regionen deletiert werden, ohne dass der Promotor seine wesentliche
Funktionalität verliert. Entsprechende Deletionsvarianten sind ausdrücklich als funktionelle Äquivalente umfasst. In erfindungsgemäßen transgenen Expressionskassetten steht mindestens einer der erfindungsgemäßen Promotoren (z.B. beschrieben durch SEQ ID NO: 1, 7 oder 8 in funktioneller Verknüpfung xa.it mindestens einer transgen zu exprimierenden Nukleinsäuresequenz .
Unter einer funktionellen Verknüpfung versteht man zum Beispiel die sequentielle Anordnung eines der erfindungsgemäßen Promotoren (z.B. beschrieben durch SEQ ID NO: 1, 7 oder 8) mit einer transgen zu exprimierenden Nukleinsäuresequenz und ggf. weiterer genetischer KontrollSequenzen wie zum Beispiel einem Terminator oder einer Polyadenylierungssequenz derart, dass der Promotor seine Funktion bei der transgenen Expression der Nukleinsäuresequenz unter geeigneten Bedingungen erfüllen kann und die Expression der Nukleinsäuresequenz (d.h. Transkription und gegebenenfalls Translation) erfolgt. "Geeignete Bedingungen" meint dabei bevorzugt das Vorliegen der Expressionskassette in einer pflanzlichen Zelle, bevorzugt einer pflanzlichen Zelle umfasst von einem pflanzlichen Blüte.
Bevorzugt sind Anordnungen, in denen die transgen zu exprimierende Nukleinsäuresequenz hinter einem der erfindungsgemäßen Promotoren (z.B. beschrieben durch SEQ ID NO: 1, 7 oder 8) positioniert wird, so dass beide Sequenzen kovalent miteinander verbunden sind. Bevorzugt ist dabei der Abstand zwischen der Promotorsequenz und der transgen zu exprimierenden Nukleinsäuresequenz geringer als 200 Basenpaare, besonders bevorzugt kleiner als 100 Basenpaare, ganz besonders bevorzugt kleiner als 50 Basenpaare.
Die Herstellung einer funktioneilen Verknüpfung als auch die
Herstellung eines transgenen -Expresoio^..ökonstruktes kann mittels gängiger Rekombinations- und Klonierungstechniken realisiert werden, wie sie beispielsweise in Maniatis T, Fritsch EF und Sambrook J (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY) , in Silhavy TJ, Berman ML und Enquist LW (1984) Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY) und in Ausubel FM et al. (1987) Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience beschrieben sind. Zwischen beide Sequenzen können aber auch weitere Sequenzen positioniert werden, die zum Beispiel die Funktion eines Linkers mit bestimmten Restriktionsenzymschnittstellen oder eines Signalpeptides haben. Auch kann die Insertion von Sequenzen zur Expression von Fusionsproteinen führen. Bevorzugt kann das trans- gene Expressionskonstrukt, bestehend aus einer Verknüpfung von Promoter und zu exprimierender Nukleinsäuresequenz , integriert in einem Vektor vorliegen und durch zum Beispiel Transformation in ein pflanzliches Genom insertiert werden.
Unter einer Expressionskassette sind aber auch solche Kon- struktionen zu verstehen, bei denen einer der erfindungsgemäßen Promotoren (z.B. beschrieben durch SEQ ID NO: 1, 7 oder 8), ohne dass er zuvor notwendigerweise mit einer zu exprimierenden Nukleinsäuresequenz funktionell verknüpft wurde, zum Beispiel über eine gezielte homologe Rekombination oder eine zufällige Insertion in ein Wirtsgenom eingeführt wird, dort regulatorische Kontrolle über mit ihm dann funktionell verknüpfte endogene Nukleinsäuresequenzen übernimmt und die transgene Expression derselben steuert. Durch Insertion des Promotors - zum Beispiel durch eine homologe Rekombination - vor eine für ein bestimmtes Polypeptid kodierende Nukleinsäure erhält man eine erfindungsgemäße Expressionskassette, die die Expression des bestimmten Polypeptides gezielt in der pflanzlichen Blüte steuert. Auch kann beispielsweise der natürliche Promotor eines endogenen Gens gegen einen der erfindungsgemäßen Promotoren (z.B. beschrieben durch SEQ ID NO: 1, 7 oder 8) ausgetauscht und so das Expressionsverhalten des endogenen Gens modifiziert werden.
Ferner kann die Insertion des Promotors auch derart erfolgen, dass antisense-RNA oder eine doppelsträngige RNA (z.B. in Form eines invertierten "Repeats") zu der für ein bestimmtes Polypeptid kodierenden Nukleinsäure exprimiert wird. Damit wird selektiv die Expression des bestimmten Polypeptides in der pflanzlichen Blüte herunterreguliert oder ausgeschaltet.
Analog kann auch eine transgen zu exprimierende Nukleinsäuresequenz - zum Beispiel durch eine' -h-iαologe Rekombination - hinter die Sequenz kodierend für einen der erfindungsgemäßen Promotoren (z.B. beschrieben durch SEQ ID NO: 1, 7 oder 8), die sich in ihrem natürlichen chromosomalen Kontext befindet, so plaziert werden, dass man eine erfindungsgemäße Expressionskassette erhält, die die Expression der transgen zu exprimierenden Nukleinsäuresequenz in der pflanzlichen Blüte steuert.
Die erfindungsgemäßen transgenen Expressionskassetten können weitere genetische Kontrollsequenzen umfassen. Der Begriff der genetischen Kontrollsequenzen ist breit zu verstehen und meint all solche Sequenzen, die einen Einfluss auf das Zustandekommen oder die Funktion einer erfindungsgemäßen transgenen Expressionskassette haben. Genetische KontrollSequenzen modifizieren zum Beispiel die Transkription und Translation in prokaryotischen oder eukaryotischen Organismen. Vorzugsweise umfassen die erfindungsgemäßen transgenen Expressionskassetten 3 '-stromab- wärts von der jeweiligen transgen zu exprimierenden Nukleinsäuresequenz eine Terminatorsequenz als zusätzliche genetische Kontrollsequenz, sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils funktionell verknüpft mit der transgen zu exprimierenden Nukleinsäuresequenz .
Genetische Kontrollsequenzen umfassen auch weitere Promotoren, Promotorelemente oder Minimalpromotoren, die die expressions- steuernden Eigenschaften modifizieren können. So kann durch genetische Kontrollsequenzen zum Beispiel die gewebespezifische Expression zusätzlich abhängig von bestimmten Stressfaktoren erfolgen. Entsprechende Elemente sind zum Beispiel für Wasser- stress, Abscisinsäure (La E und Chua NH, J Biol Chem 1991; 266(26) :17131-17135) und Hitzestress (Schoffl F et al. (1989) Mol Gen Genetics 217 (2-3) :246-53) beschrieben.
Es können ferner weitere Promotoren funktionell mit der zu exprimierenden Nukleinsäuresequenz verknüpft sein, die eine transgene Expression in weiteren Pflanzengeweben oder in anderen Organismen, wie zum Beispiel E. coli Bakterien ermöglichen. Als Promotoren kommen im Prinzip alle in Pflanzen funktionelle Promotoren in Frage. 'In Pflanzen funktioneile Promotoren meint grundsätzlich jeden Promotor, der die Expression von Genen, insbesondere Fremdgenen, in Pflanzen oder Pflanzenteilen, -zellen, -geweben, -kulturen steuern kann. Dabei kann die Expression beispielsweise konstitutiv, induzierbar oder entwicklungsabhängig sein.
Bevorzugt sind konstitutive Promotoren, gewebespezifische
Promotoren, entwicklungsabhängige Promotoren, chemisch-induzier- bare stress-induzierbare oder pathogen-induzierbare Promotoren. Entsprechende Promotoren--s-inci-' <2eaι Fachmann allgemein bekannt.
Weitere vorteilhafte Kontrollsequenzen sind beispielsweise in den Promotoren gram-positiver Bakterien wie amy und SP02 oder in den Hefe- oder Pilzpromotoren ADCl, MFa, AC, P-60, CYCl, GAPDH, TEF, rp28, ADH zu finden.
Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen wie die oben genannten für das erfindungs- gemäße Verfahren verwendet werden. Darüberhinaus können auch synthetische Promotoren vorteilhaft verwendet werden.
Genetische Kontrollsequenzen umfassen ferner auch die 5'-untrans- latierte Regionen, Introns oder nichtkodierende 3 '-Region von Genen wie beipielsweise das Actin-1 Intron, oder die Adhl-S
Introns 1, 2 und 6 (allgemein: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds . , Springer, New York (1994)), bevorzugt der Gene mit dem Genlocus At2g46720, At3g01980 und Atlg63140 aus Arabidopsis thaliana. Es kann gezeigt werden, dass derartige Regionen eine signifikante Funktion bei der Regulation der« Genexpression spielen können. So wurde gezeigt, dass 5'-untrans- latierte Sequenzen die transiente Expression heterologer Gene verstärken können. Beispielhaft für Translationsverstärker sei die 5 ' -Leadersequenz aus dem Tabak-Mosaik-Virus zu nennen (Gallie et al. (1987) Nucl Acids Res 15:8693-8711) und dergleichen. Sie können ferner die Gewebsspezifität fördern (Rouster J et al . (1998) Plant J 15:435-440). Die unter SEQ ID NO: 2, 7 oder 8 angegebenen Nukleinsäuresequenzen repräsentieren jeweils die Promotorregion und die 5 ' -untranslatierte Regionen bis zum ATG- Startcodon der jeweiligen Gene.
Das transgene Expressionskonstrukt kann vorteilhafterweise eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promoter enthalten, die eine erhöhte transgene Expression der Nukleinsäuresequenz ermöglichen. Auch am 3 '-Ende der transgen zu exprimierenden Nukleinsäuresequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden, wie weitere regulatorische Elemente oder Terminatoren. Die transgen zu exprimierenden Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.
Als Kontrollsequenzen geeignete Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA Polyadenylierungssignale aus Agrobakterium turne faciens. Beispiele für besonders geeignete Terminatorsequenzen sind der OCS (Octopin-Synthase) -Terminator und der NOS (Nopalin-Synthase) -Terminator .
Als Kontrollsequenzen sind weiterhin solche zu verstehen, die eine homologe Rekombination bzw. Insertion in das Genom eines Wirtsorganismus ermöglichen oder die Entfernung aus dem Genom erlauben. Bei der homologen Rekombination kann zum Beispiel die kodierende Sequenz eines bestimmten endogenen Gens gegen die für eine dsRNA kodierende Sequenz gezielt ausgetauscht werden. Methoden wie die cre/lox-Technologie erlauben eine gewebespezifische, unter Umständen induzierbare Entfernung des trans- genen Expressionskonstruktes aus dem Genom des Wirtsorganismus (Sauer B (1998) Methods 14 (4) .-381-92) . Hier werden bestimmte flankierende Sequenzen dem Zielgen angefügt (lox-Sequenzen) , die später eine Entfernung mittels der cre-Rekombinase ermöglichen.
Eine transgene Expressionskassette und/oder die von ihm abgeleiteten transgenen Expressionsvektoren können weitere Funktionselemente enthalten. Der Begriff Funktionselernent ist breit zu verstehen und meint all solche Elemente, die einen Ein- fluss auf Herstellung, Vermehrung oder Funktion der erfindungsgemäßen transgenen Expressionskonstrukte, der transgenen Expressionsvektoren oder der transgenen Organismen haben. Beispielhaft aber nicht einschränkend seien zu nennen:
a) Selektionsmarker, die eine Resistenz gegen Biozide wie Metabolismusinhibitoren (z.B. 2-Desoxyglucose-6-phosphat; WO 98/45456), Antibiotika (z.B. Kanamycin, G 418, Bleomycin, Hygro ycin) oder - bevorzugt - Herbizide (z.B. Phosphino- tricin) verleihen. Als Selektionsmarker seien beispielhaft genannt: Phosphinothricinacetyltransferasen (bar und pat Gen) , welche Glutaminsynthaseinhibitoren inaktivieren, 5-Enolpyruvylshikimat-3-phosphatsynthasen (EPSP Synthase- gene), die eine Resistenz gegen Glyphosat® (N-(phosphono- methyl)glycin) verleihen, Glyphosat® degradierende Enzyme (gox-Genprodukt; Glyphosatoxidoreduktase) , Dehalogenasen, welche z.B. Dalapon inaktivieren (deh Genprodukt), Sulfonyl- urea- und Imidazolinon inaktivierende Acetolactatsynthasen sowie Nitrilasen, welche z.B. Bromoxynil degradieren (bxn Genprodukt) , das aasa-Genprodukt, das eine Resistenz gegen das Antibiotikum Apectinomycin verleih, Streptomycinphospho- transferasen (SPT) , die eine Resistenz gegen Streptomycin gewähren, Neomycinphosphotransferasen (NPTII) , die eine Resistenz gegen Kanamycin oder Geneticidin verleihen, das
Hygromycinphosphotransferasen (HPT) , die eine Resistenz gegen Hygromycin vermitteln, das Acetolactatsynthasen (ALS) , die eine Resistenz gegen Sulfonylharnstoff-Herbizide verleihen (z.B. mutierte ALS-Varianten mit z.B. der S4 und/oder Hra Mutation) .
b) Reportergene, die für leicht quantifizierbare Proteine kodieren und über Eigenfarbe oder Enzymaktivität eine Bewertung der Transformationseffizienz oder des Expressions- ortes oder -Zeitpunktes gewährleisten. Ganz besonders bevorzugt sind dabei Reporter-Proteine (Schenborn E, Groskreutz D. Mol Biotechnol. 1999; 13(l):29-44) wie das "green fluore- scence protein" (GFP) (Sheen et al.(1995) Plant Journal 8 (5) :777-784) , die Chloramphenicoltransferase, eine Luzi- ferase (Ow et al. (1986) Science 234:856-859), das Aequorin- Gen (Prasher et al. (1985) Biochem Biophys Res Commun 126 (3) :1259-1268) , die ß-Galactosidase, ganz besonders bevorzugt ist die ß-Glucuronidase (Jefferson et al. (1987) EMBO J 6:3901-3907) . c) Replikationsursprünge, die eine Vermehrung der erfindungsgemäßen transgenen Expressionskonstrukte oder transgenen Expressionsvektoren in zum Beispiel E.coli gewährleisten. Beispielhaft seien genannt ORI (origin of DNA replication) , der pBR322 ori oder der P15A ori (Sambrook et al.: Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) .
d) Elemente, die für eine Agrobakterium vermittelte Pflanzentrans- formation erforderlich sind, wie zum Beispiel die rechte oder linke Begrenzung der T-DNA oder die vir-Region.
"Einführen" umfasst im Rahmen der Erfindung alle Verfahren, die dazu geeignet sind, eine Nukleinsäuresequenz (beispielsweise eine erfindungsgemäße Expressionskassette) direkt oder indirekt, in einen Organismus (z.B. ein Pflanze) oder eine Zelle, Komparti- ment, Gewebe, Organ oder Vermehrungsmaterial (z.B. Samen oder FRüchte) derselben einzuführen oder dort zu generieren. Direkte und indirekte Verfahren sind umfasst. Das Einbringen kann zu einer vorübergehenden (transienten) Präsenz besagter
Nukleinsäuresequenz führen oder aber auch zu einer dauerhaften (stabilen) . Einführen umfasst beispielsweise Verfahren wie Trans- fektion, Transduktion oder Transformation. Die in den Verfahren verwendeten Organismen werden je nach Wirtsorganismus in dem Fachmann bekannter Weise angezogen bzw. gezüchtet.
Das Einführen einer erfindungsgemäßen transgenen Expressionskassette in einen Organismus oder Zellen, Geweben, Organe, Teile bzw. Samen desselben (bevorzugt in Pflanzen bzw. pflanzliche Zellen, Gewebe, Organe, Teile oder Samen) kann vorteilhaft unter Verwendung -von-v ktoren realisiert werden, in denen die transgenen Expressionskassetten enthalten sind. Vektoren können beispielhaft Plasmide, Cosmide, Phagen, Viren oder auch Agro- bakterien sein. Die transgenen Expressionskassetten können in den Vektor (bevorzugt ein Plasmidvektor) über eine geeignete Restriktionsschnittstelle insertiert werden. Der entstandene Vektor kann zunächst in E.coli eingeführt und amplifiziert werden. Korrekt transformierte E.coli werden selektioniert, gezüchtet und der rekombinante Vektor mit dem Fachmann geläufigen Methoden gewonnen. Restriktionsanalyse und Sequenzierung können dazu dienen, den Klonierungsschritt zu überprüfen. Bevorzugt sind solche Vektoren, die eine stabile Integration der Expressions- kassette in das Wirtsgenom ermöglichen.
Die Herstellung eines transformierten Organismus (bzw. einer transformierten Zelle oder Gewebes) erfordert, dass die entsprechende DNA (z.B. der Expressionsvektor) oder RNA in die entsprechende Wirtszelle eingebracht wird. Für diesen Vorgang, der als Transformation (oder Transduktion bzw. Transfektion) bezeichnet wird, steht eine Vielzahl von Methoden zur Verfügung (Keown et al. (1990) Methods in Enzymology 185:527-537). So kann die DNA oder RNA beispielhaft direkt durch Mikroinjektion oder durch Bombardierung mit DNA-beschichteten Mikropartikeln eingeführt werden. Auch kann die Zelle chemisch, zum Beispiel mit Polyethylenglycol, permeabilisiert werden, so dass die DNA durch Diffusion in die Zelle gelangen kann. Die DNA kann auch durch Protoplastenfusion mit anderen DNA-enthaltenden Einheiten wie Minicells, Zellen, Lysosomen oder Liposomen erfolgen. Elektro- poration ist eine weitere geeignete Methode zum Einführen von DNA, bei der die Zellen reversibel durch einen elektrischen Impuls permeabilisert werden. Entsprechende Verfahren sind beschrieben (beispielsweise bei Bilang et al. (1991) Gene 100:247-250; Scheid et al . (1991) Mol Gen Genet 228:104-112; Guerche et al. (1987) Plant Science 52:111-116; Neuhause et al. (1987) Theor Appl Genet 75:30-36; Klein et al . (1987) Nature 327:70-73; Howell et al . (1980) Science 208:1265; Horsch et al.(1985) Science 227:1229-1231; DeBlock et al . (1989) Plant Physiology 91:694-701; Methods for Plant Molecular Biology (Weissbach and Weissbach, eds.) Academic Press Inc. (1988); and Methods in Plant Molecular Biology (Schuler and Zielinski, eds.) Academic Press Inc. (1989)).
Als Vektoren zur Expression in E.coli sind bevorzugt pQE70, pQE60 und pQE-9 (QIAGEN, Inc.); pBluescript Vektoren, Phagescript Vektoren, pNH8A, pNHlδa, pNH18A, pNH46A (Stratagene Cloning Systems, Inc.); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia Biotech, Inc.).
Bevorzugte Vektoren zur Expression in Säugerzellen umfassen pWLNEO, pSV2CAT, pOG44, pXTl und pSG (Stratagene Inc.); pSVK3 , pBPV, pMSG und pSVL (Pharmacia Biotech, Inc.). Als induzierbare Vektoren seien pTet-tTak, pTet-Splice, pcDNA4/TO, pcDNA4/TO / LacZ, pcDNA6/TR, pcDNA4/T0/Myc-His/LacZ, pcDNA4/TO/Myc-His A, pcDNA4/TO/Myc-His B, pcDNA4/TO/Myc-His C, pVgRXR (Invitrogen, Inc.) oder die pMAM-Serie (Clontech, Inc.; GenBank Accession No. : U02443) zu nennen. Diese stellen bereits das induzierbare regulatorische Kontrollelement beispielsweise für eine chemisch, induzierbare Expression zur Verfügung.
Vektoren für die Expression in Hefe umfassen beispielhaft pYES2, pYDl, pTEFl/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalph, pPIC9, pPIC3.5, PHIL-D2, PHIL-Sl, pPIC3SK, pPIC9K, und PA0815 (Invitrogen, Ine . ) . Klonierungsvektoren und Techniken zur genetischen Manipulation von Ciliaten und Algen sind dem Fachmann bekannt (WO 98/01572; Falciatore et al. (1999) Marine Biotechnology 1(3) :239-251; Dunahay et al . (1995) J Phycol 31:10004-1012).
Prinzipiell sind für die Transformation tierischer Zellen oder von Hefezellen ähnliche Verfahren wie für die "direkte" Tranformation von pflanzlichen Zellen anzuwenden. Insbesondere Verfahren wie die Calciumphosphat oder Liposomen vermittelte Trans- formation oder aber Elektroporation sind bevorzugt.
Verschiedene Methoden und Vektoren zum Einschleusen von Genen in das Genom von Pflanzen sowie zur Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen sind bekannt (Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), Kapitel 6/7, S. 71-119 (1993); White FF (1993) Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb. : Kung und Wu R, Academic Press, 15-38; Jenes B et al. (1993) Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, S.128-143; Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42:205-225; Haiford NG, Shewry PR (2000) Br Med Bull 56 (1) : 62-73) . Dazu zählen beispielhaft die oben erwähnten. Bei Pflanzen werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur trans- ienten oder stabilen Transformation genutzt. Geeignete Methoden sind vor allem die Protoplastentransformation durch Polyethylen- glykol-induzierte DNA-Aufnahme, Calciumphosphat-vermittelte Transformation, DEAE-Dextran-ver ittelte Transformation, Lipo- εoifte- vermittelte Transformation (Freeman et al . (1984) Plant Cell Physiol. 29:1353ff; US 4,536,475), biolistische Verfahren mit der Genkanone ( "particle bombardment" Methode; US 5,100,792; EP-A 0 444 882; EP-A 0 434 616; Fromm ME et al . (1990) Bio/Tech- nology 8(9):833-9; Gordon-Kamm et al. (1990) Plant Cell 2:603), die Elektroporation, die Inkubation trockener Embryonen in DNA- haltiger Lösung, Elektroporation (EP-A 290 395, WO 87/06614), Mikroinjektion (WO 92/09696, WO 94/00583, EP-A 0 331 083, EP-A 0 175 966) oder andere Methoden der direkten DNA-Einführung (DE 4 005 152, WO 90/12096, US 4,684,611). Physikalische Methoden der DNA-Einführung in pflanzliche Zellen sind im Überblick dargestellt bei Oard (1991) Biotech Adv 9:1-11.
Im Falle dieser "direkten" Transformationsmethoden sind keine besonderen Anforderungen an das verwendete Plasmid gestellt.
Einfache Plasmide wie die der pUC-Reihe, pBR322, M13mp Reihe, pA- CYC184 etc. können verwendet werden. Sollen vollständige Pflanzen aus den transformierten Zellen regeneriert werden, so ist es erforderlich, dass sich auf dem Plasmid ein zusätzliches selektionierbares Markergen befindet .
Neben diesen "direkten" Transformationstechniken kann eine Transformation auch durch bakterielle Infektion mittels Agrobakterium (z.B. EP 0 116 718), virale Infektion mittels viraler Vektoren (EP 0 067 553; US 4,407,956; WO 95/34668; WO 93/03161) oder mittels Pollen (EP 0 270 356; WO 85/01856; US 4,684,611) durchgeführt werden.
Bevorzugt erfolgt die Transformation mittels Agrobakterien, die "entwaffnete" (disarmed) Ti-Plasmidvektoren enthalten, wobei deren natürliche Fähigkeit zum Gentransfer auf Pflanzen genutzt wird (EP-A 0 270 355; EP-A 0 116 718).
Agrobakterium-Transformation ist weit verbreitet für die Transformation von Dicotyledonen, wird aber auch zunehmend auf Mono- cotyledonen angewandt (Toriyama et al. (1988) Bio/Technology 6: 1072-1074; Zhang et al . (1988) Plant Cell Rep 7:379-384; Zhang et al. (1988) Theor Appl Genet 76:835-840; Shimamoto et al . (1989) Nature 338:274-276; Datta et al . (1990) Bio/Technology 8: 736- 740; Christou et al . (1991) Bio/Technology 9:957-962; Peng et al. (1991) International Rice Research Institute, Manila, Philippines 563-574; Cao et al. (1992) Plant Cell Rep 11:585-591; Li et al. (1993) Plant Cell Rep 12:250-255; Rathore et al. (1993) Plant Mol Biol 21:871-884; Fromm et al. (1990) Bio/Technology 8:833-839; Gordon-Kamm et al. (1990) Plant Cell 2:603-618; D'Halluin et al . (1992) Plant Cell 4:1495-1505; Walters et al . (1992) Plant Mol Biol 18:189-200; Koziel et al . (1993) Bio- tscehnology 11:194-200; Vasil IK (1994) Plant Mol Biol 25 :.925-93-7- Weeks et al. (1993) Plant Physiol 102:1077-1084; So ers et al . (1992) Bio/Technology 10:1589-1594; WO 92/14828; Hiei et al. (1994) Plant J 6:271-282).
Die für die Agrobakterium-Transformation meist verwendeten Stämme Agrobakterium tumefaciens oder Agrobakterium rhizogenes enthalten ein Plasmid (Ti bzw. Ri Plasmid) , das auf die Pflanze nach Agrobakterium-Infektion übertragen wird. Ein Teil dieses Plasmids, genannt T-DNA (transferred DNA) , wird in das Genom der Pflanzenzelle integriert. Alternativ können durch Agrobakterium auch binäre Vektoren (Mini-Ti-Plasmide) auf Pflanzen übertragen und in deren Genom integriert werden.
Die Anwendung von Agrobakterium tumefaciens für die Transformation von Pflanzen unter Verwendung von Gewebekultur- explantaten ist beschrieben (u.a. Horsch RB et al. (1985) Science 225:1229ff.; Fraley et al. (1983) Proc Natl Acad Sei USA 80: 4803-4807; Bevans et al. (1983) Nature 304:184-187). Viele Stämme von Agrobakterium tumefaciens sind in der Lage, genetisches Material - beispielsweise die erfindungsgemäßen 5 Expressionskassetten - zu übertragen, wie z.B. die Stämme
EHA101[pEHAl01], EHA105 [pEHA105] , LBA4404 [pAL4404] , C58Cl[pMP90] und C58Cl[pGV2260] (Hood et al. (1993) Transgenic Res 2:208-218; Hoekema et al. (1983) Nature 303:179-181; Koncz and Schell (1986) Gen Genet 204:383-396; Deblaere et al. (1985) Nucl Acids Res 13: 10 4777-4788) .
Werden Agrobakterien verwendet, so ist die Expressionskassette in spezielle Plasmide zu integrieren, entweder in einen Zwischenvektor (englisch: Shuttle or intermediate vector) oder einen
15 binären Vektor. Bevorzugt werden binäre Vektoren verwendet, die sowohl in E.coli als auch in Agrobakterium replizieren können. Sie enthalten in der Regel ein Selektionsmarkergen und einen Linker oder Polylinker, flankiert von der rechten und linken T-DNA Begrenzungssequenz . Sie können direkt in Agrobakterium 0 transformiert werden (Holsters et al. (1978) Mol Gen Genet
163:181-187). Das in diesem Fall als Wirtsorganismus fungierende Agrobakterium sollte bereits ein Plasmid mit der vir-Region enthalten. Diese ist für die Übertragung der T-DNA auf die pflanzliche Zelle erforderlich. Ein so transformiertes Agrobakterium 5 kann zur Transformation pflanzlicher Zellen verwendet werden. Die Verwendung von T-DNA zur Transformation pflanzlicher Zellen ist intensiv untersucht und beschrieben (EP-A 0 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters B.V. , Alblasserdam, Chapter V; An et al. (1985) EMBO J 4:277-287). Ver- 0 schiedene binäre Vektoren sind bekannt und teilweise kommerziell erhältlich wie zum Beispiel pBI101.2 oder pBIN19 (Clontech. Laboratories, Inc. USA; Bevan et al.(1984) Nucl Acids Res 12:8711), pBinAR, pPZP200 oder pPTV.
5 Die mit einem solchen Vektor transformierten Agrobakterien können dann in bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie z.B. von Raps, verwendet werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeig- 0 neten Medien kultiviert werden. Die Transformation von Pflanzen durch Agrobakterien ist beschrieben (White FF (1993) Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von SD Kung und R Wu, Academic Press, S. 15-38; Jenes B et al. (1993) Techniques for 5 Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, S.128-143; Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42:205-225). Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen regeneriert werden, die integriert die oben beschriebenen erfindungsgemäßen ExpressionsSysteme enthalten.
Stabil transformierte Zellen (d.h. solche, die die eingeführte DNA integriert in die DNA der Wirtszelle enthalten) können von untransformierten selektioniert werden, wenn ein selektionier- barer Marker Bestandteil der eingeführten DNA ist. Als Marker kann beispielhaft jedes Gen fungieren, dass eine Resistenz gegen ein Biozid (z.B. ein Antibiotikum oder Herbizid (s.o.) zu verleihen vermag (s.o.). Transformierte Zellen, die ein solches Markergen exprimieren, sind in der Lage, in der Gegenwart von Konzentrationen eines entsprechenden Biozids zu überleben, die einen untransformierten Wildtyp abtöten. Der Selektionsmarker erlaubt die Selektion von transformierten Zellen von untransformierten (McCor ick et al. (1986) Plant Cell Reports 5:81-84). Die erhaltenen Pflanzen können in üblicher Weise gezüchtet und gekreuzt werden. Zwei oder mehr Generationen sollten kultiviert werden, um sicherzustellen, dass die genomische Integration stabil und vererblich ist.
Sobald eine transformierte Pflanzenzelle hergestellt wurde, kann eine vollständige Pflanze unter Verwendung von dem Fachmann be- kannten Verfahren erhalten werden. Hierbei geht man beispielhaft von Kalluskulturen, einzelnen Zellen (z.B. Protoplasten) oder Blattscheiben aus (Vasil et al. (1984) Cell Culture and Somatic Cel Genetics of Plants, Vol I, II and III, Laboratory Procedures and Their Applications, Academic Press; Weissbach and Weissbach (1989) Methods for Plant Molecular Biology, Academic Press) . Aus diesen noch undifferenzierten Kallus-Zellmassen. kann die..BilcTut^ - von Spross und Wurzel in bekannter Weise induziert werden. Die erhaltenen Sprösslinge können ausgepflanzt und gezüchtet werden. Entsprechende Verfahren sind beschrieben (Fennell et al. (1992) Plant Cell Rep. 11: 567-570; Stoeger et al (1995) Plant Cell Rep. 14:273-278; Jahne et al . (1994) Theor Appl Genet 89:525-533).
Die Wirksamkeit der Expression der transgen exprimierten Nukleinsäuren kann beispielsweise in vitro durch Sprossmeristemver- mehrung unter Verwendung einer der oben beschriebenen Selektionsmethoden ermittelt werden. Zudem kann eine in Art und Höhe veränderte Expression eines Zielgens und die Auswirkung auf den Phänotyp der Pflanze an Testpflanzen in Gewächshausversuchen getestet werden. Ein weiterer Gegenstand der Erfindung betrifft transgene Organismen, transformiert mit wenigstens einer erfindungsgemäßen Expressionskassette oder einem erfindungsgemäßen Vektor, »sowie Zellen, Zellkulturen, Gewebe, Teile - wie zum Beispiel bei pflanzlichen Organismen Blätter, Wurzeln usw.- oder Vermehrungsgut abgeleitet von solchen Organismen.
Unter Organismus, Ausgangs- oder Wirtsorganismen werden prokaryotisehe oder eukaryotisehe Organismen, wie beispielsweise Mikroorganismen oder pflanzliche Organismen verstanden. Bevorzugte Mikroorganismen sind Bakterien, Hefen, Algen oder Pilze.
Bevorzugte Bakterien sind Bakterien der Gattung Escherichia, Erwinia, Agrobakterium, Flavobacterium, Alcaligenes, Pseudomonas, Bacillus oder Cyanobakterien zum Beispiel der Gattung Synecho- cystis und weitere in Brock Biology of Microorganisms Eighth Edition auf den Seiten A-8, A-9, A10 und All beschriebenen Bakteriengattungen.
Bevorzugt sind vor allem Mikroorganismen, welche zur Infektion von Pflanzen und damit zur Übertragung der erfindungsgemäßen Konstrukte befähigt sind. Bevorzugte Mikroorganismus sind solche aus der Gattung Agrobakterium und insbesondere der Art Agrobakterium tumefaciens. Besonders bevorzugte Mikroorganismen sind solche, die zur Produktion von Toxinen (z.B. Botulinus Toxin) , Pigmenten (z.B. Carotinoiden oder Flavonoiden) , Antibiotika (z.B. Penicillin), Phenylpropanoiden (z.B. Tocopherol) , Polyungesättigten Fettsäuren (z.B. Arachidonsäure) oder Vitaminen (z.B. Vitamin B12) befähigt sind.
•Bevorzugte Hefen sind Oandida, Saccharomyces, Hansenula •<Ä*>3_" Pichia.
Bevorzugte Pilze sind Aspergillus, Trichoderma, Ashbya, Neurospora, Fusarium, Beauveria oder weitere in Indian Chem Engr. Section B. Vol 37, No 1,2 (1995) auf Seite 15, Tabelle 6 beschriebene Pilze.
Als transgene Organismen bevorzugte Wirts- oder Ausgangs- Organismen sind vor allem pflanzliche Organismen. "Pflanzlicher Organismus oder von diesem abgeleitete Zellen" meint allgemein jede Zelle, Gewebe, Teile oder Vermehrungsgut (wie Samen oder Früchte) eines zur Photosynthese befähigten Organismus . Eingeschlossen sind im Rahmen der Erfindung alle Gattungen und Arten höherer und niederer Pflanzen des Pflanzenreiches. Einjährige, mehrjährige, monocotyledone und dicotyledone Pflanzen sind bevorzugt.
"Pflanze" im Rahmen der Erfindung meint alle Gattungen und Arten höherer und niederer Pflanzen des Pflanzenreiches. Eingeschlossen unter dem Begriff sind die reifen Pflanzen, Saatgut, Sprosse und Keimlinge, sowie davon abgeleitete Teile, Vermehrungsgut (zum Beispiel Knollen, Samen oder Früchte) , Pflanzenorgane, Gewebe, Protoplasten, Kallus und andere Kulturen, zum Beispiel Zeil- oder Kalluskulturen, sowie alle anderen Arten von Gruppierungen von Pflanzenzellen zu funktioneilen oder strukturellen Einheiten. Reife Pflanzen meint Pflanzen zu jedem beliebigen EntwicklungsStadium jenseits des Keimlings. Keimling meint eine junge, unreife Pflanze in einem frühen Entwicklungs- Stadium.
Pflanzliche Organismen im Sinne der Erfindung sind weiterhin weitere photosynthetisch aktive Organismen, wie zum Beispiel Algen, Cyanobakterien sowie Moose. Bevorzugte Algen sind Grün- algen, wie beispielsweise Algen der Gattung Haematococcus ,
Phaedactylum tricornatum, Volvox oder Dunaliella. Insbesondere bevorzugt sind Synechocystis, Chlamydomonas und Scenedesmus .
Im Rahmen des erfindungsgemäßen Verfahrens sind insbesondere pflanzliche Organismen bevorzugt ausgewählt aus der Gruppe der Blütenpflanzen (Phylum Anthophyta "Angiospenαen'H"'.'"Umfasst sind alle einjährigen und mehrjährige, monokotyledonen und dikotyledonen Pflanzen. Bevorzugt ist die Pflanze aus nachfolgenden Pflanzenfamilien ausgewählt: Amaranthaceae, Asteraceae, Brassicaceae, Caryophyllaeeae, Chenopodiaceae, Compositae, Cruci- ferae, Cucurbitaceae, Labiatae, Leguminosae, Papilionoideae, Liliaceae, Linaceae, Malvaceae, Rosaceae, Rubiaceae, Saxifraga- ceae, Scrophulariaceae, Solanacea, Sterculiaceae, Tetragoniacea, Theaceae und Umbelliferae. Die Erfindung wird ganz besonders bevorzugt auf dikotyledone pflanzliche Organismen angewendet. Bevorzugte dikotyle Pflanzen sind insbesondere ausgewählt aus den dikotylen Kulturpflanzen, wie zum Beispiel den nachfolgenden
1) Kategorie: Dicotyledonae (Dicotyledonen) . Bevorzugte Familien:
- Aceraceae (Ahornhölzer)
- Cactaceae (Kakteen)
- Rosaceae (Rosen, Äpfel, Mandeln, Erdbeeren)
- Salicaceae (Weiden)
- Asteraeeae (Compositae) besonders die Gattung Lactuea, ganz besonders die Art sativa (Salat) , sowie Sonnenblume, Löwenzahn, Tagetes oder Calendula und andere mehr,
- Crueiferae (Brassicaceae) , besonders die Gattung Brassica, ganz besonders die Arten napus (Raps) , campestris (Rübe) , oleracea (z.B. Kohl, Blumenkohl oder Broccoli und weitere Kohlarten); und der Gattung Arabidopsis, ganz besonders die Art thaliana sowie Kresse, Rettich, Canola und andere mehr,
- Cucurbitaceae wie Melone, Kürbis, Gurken oder Zucchini und andere mehr,
- Leguminosae (Fabaceae) besonders die Gattung Glycine, ganz besonders die Art max (Sojabohne) -Soja sowie A3 f lfa, Erbse, Bohnengewächsen, Lupine oder Erdnuss und andere mehr,
- Malvaceae insbesondere Malve, Baumwolle, essbarer Eibisch, Hibiscus und andere mehr,
- Rubiaceae, bevorzugt der Unterklasse Lamiidae wie beispielsweise Coffea arabica oder Coffea liberica (Kaffeestrauch) und andere mehr,
- Solanaceae besonders die Gattung Lycopersicon, ganz besonders die Art esculentum (Tomate) und die Gattung Solanum, ganz besonders die Art tuberosum (Kartoffel) und melongena (Aubergine) und die Gattung Capsicum, ganz besonders die Art annum (Paprika) , sowie Tabak, Petunie und andere mehr, - Sterculiaceae, bevorzugt der Unterklasse Dilleniidae wie beispielsweise Theobroma cacao (Kakaostrauch) und andere mehr,
- Theaceae, bevorzugt der Unterklasse Dilleniidae wie beispiels- weise Camellia sinensis oder Thea sinensis (Teestrauch) und andere mehr,
- Umbelliferae (Apiaceae) , besonders die Gattung Daucus (ganz besonders die Art carota (Karotte) ) , Apium (ganz besonders die Art graveolens dulce (Sellerie) ) sowie Petersilie und andere mehr;
sowie Lein, Hanf, Flachs, Spinat, Möhre, Zuckerrübe und den verschiedenen Baum-, Nuss- und Weinarten, insbesondere Banane und Kiwi.
Darüberhinaus sind jedoch auch monokotyle Pflanzen geeignet. Bevorzugt sind diese ausgewählt aus den monokotylen Kulturpflanzen, wie zum Beispiel den Familien
- Arecaceae (Palmen)
- Bromeliaceae (Ananas, spanisches Moos)
- Cyperaceae (Seggen)
- Liliaceae (Lilien, Tulpen, Hyazinthen, Zwiebel, Knoblauch) - Orchidaceae (Orchideen)
- Poaceae (Gräser, Bambusse, Mais, Zuckerrohr, Weizen)
- Iridaceae (Blenden, Gladiolen, Krokusse)
Ganz besonders bevorzugt sind Gramineae wie Reis, Mais, Weizen oder andere Getreidearten wie Gerste, Hirse, Roggen, Triticale oder Hafer 'sowie dem Zuckerrohr' sowie -alle- A^rt-an. von Gräsern.
Im Rahmen der erfindungsgemäßen Expressionskassette kann die Expression einer bestimmten Nukleinsäure durch einen Promotor mit Spezifität für die pflanzliche Blüte zu Bildung von sense-RNA, antisense RNA oder doppelsträngiger RNA in Form einer inversen Wiederholung (dsRNAi) führen. Die sense-RNA kann infolge in bestimmte Polypeptide translatiert werden. Mit der antisense-RNA und dsRNAi kann die Expression bestimmter Gene herunterreguliert werden.
Das Verfahren der Genregulation mittels doppelsträngiger RNA ("double-stranded RNA interference"; dsRNAi) ist vielfach in tierischen und pflanzlichen Organismen beschrieben (z.B. Matzke MA et al. (2000) Plant Mol Biol 43:401-415; Fire A et al (1998) Nature 391:806-811; WO 99/32619; WO 99/53050; WO 00/68374; WO 00/44914; WO 00/44895; WO 00/49035; WO 00/63364). Auf die in den angegebenen Zitaten beschriebenen Verfahren und Methoden wird ausdrücklich Bezug genommen.
Die Spezifität der erfindungsgemäßen Expressionskonstrukte und Vektoren für pflanzliche Blüten ist besonders vorteilhaft. Die Blüte hat eine Funktion im Anlocken von Nutzinsekten durch Pigmenteinlagerung oder Synthese flüchtiger Chemikalien.
Oft sind die natürlichen Abwehrmechanismen der Pflanze zum Bei- spiel gegen Pathogene unzureichend. Die Einführung fremder Gene aus Pflanzen, Tieren, oder ikrobiellen Quellen kann die Abwehr verstärken. Beispiel sind der Schutz gegen Insektenfrass in Tabak durch Expression des Bacillus thuringiensis Endotoxin (Vaeck et al. (1987) Nature 328:33-37) oder der Schutz des Tabaks gegen Pilzbefall durch Expression einer Chitinase aus der Bohne (Broglie et al. (1991) Science 254:1194-1197).
Kälteeinbrüehe in der Blütezeit führen jedes Jahr zu erheblichen Ernteverlusten. Eine gezielte Expression schützender Proteine gezielt in der Blüteperiode kann einen Schutz gewähren.
Für eine hohe Effizienz solcher gentechnischer Ansätze ist eine konzentrierte Expression der entsprechenden transgen zu exprimierenden Nukleinsäuresequenz vor allem in den Petalen der Blüte vorteilhaft. Eine konstitutive Expression in der gesamten Pflanze kann den Effekt zum Beispiel durch eine Verdünnung in Frage stellen oder das Wachstum der Pflanze bzw. die Qualität des Pflanzenproduktes beeinträchtigen. Außerdem kann es durch eine konstitutive Expression verstärkt zum Abschalten des Transgens kommen ("gene silencing").
Hierzu sind Promotoren mit Spezifität für die Blüte vorteilhaft. Dem Fachmann ist eine Vielzahl von Proteinen bekannt, deren rekombinante Expression in der Blüte vorteilhaft sind. Ferner sind dem Fachmann eine Vielzahl von Genen bekannt, durch deren Reprimierung oder Ausschaltung mittels Expression einer entsprechenden antisense-RNA ebenfalls vorteilhafte Effekte erreicht werden können. Beispielhaft jedoch nicht einschränkend für vorteilhafte Effekte seien zu nennen: Das Erzielen einer Resistenz gegen abiotische Stressfaktoren (Hitze, Kälte, Trockenheit, erhöhte Feuchtigkeit, Umweltgifte, UV-Strahlung) und biotische Stressfaktoren (Pathogene, Viren, Insekten und Krankheiten) , die Verbesserung von Nahrungs- oder Futtereigenschaften, die Verbesserung der Wachstumsrate oder des Ertrages, das Erzielen einer längeren oder früheren Blütezeit, die Veränderung oder Verstärkung des Duftes oder der Farbgebung der Blüten. Für die in diesen Anwendungen einsetzbaren Nukleinsäuresequenzen oder Polypeptide seien beispielhaft, aber nicht einschränkend, zu nennen:
1. Verbesserter UV-Schutz der pflanzlichen Blüte durch Ver- änderung der Pigmentierung durch Expression bestimmter Polypeptide wie Enzyme oder Regulatoren der Flavonoidbiosynthese (z.B. Chalconsynthasen, Phenylalaninammoniumlyasen) , der DNA-Reparatur (z.B. Photolyasen; Sakamoto A et al.(1998) DNA Seq 9 (5-6) :335-40) , der Isoprenoidbiosynthese (z.B. Deoxyxy- lulose-5-phosphatsynthasen) , der IPP-Synthese oder der Caro- tinoidbiosynthese (z.B. Phytoensynthasen, Phytoendesaturasen, Lycopincyclasen, Hydroxylasen oder Ketolasen) . Bevorzugt sind Nukleinsäuren, die für die Chalconsynthase aus Arabidopsis thaliana (GenBank Acc.-No.: M20308) , die 6-4 Photolyase aus Arabidopsis thaliana (GenBank Acc.-No. :BAB00748) oder das
Blaulicht-Photorezeptor/Photolyase-Homolog (PHHl) aus Arabidopsis thaliana (GenBank Acc.-No.: U62549) oder funktioneile Äquivalente derselben kodieren.
2. Verbesserter Schutz der pflanzlichen Blüte gegen abiotische Stressfaktoren wie Trockenheit, Hitze, oder Kälte zum Beispiel durch Überexpression von dem "antifreeze"-Polypeptiden (z.B. aus Myoxocephalus Scorpius; WO 00/00512), dem Arabidopsis thaliana Transkriptionsaktivator CBFl, Glutamat- dehydrogenasen (WO 97/12983, WO 98/11240), einem späten
Embryogenesegen (LEA) zum Beispiel aus Gerste (WO 97/13843) , Calcium-abhängigen Proteinkinasegenen (WO 98/26045), Calci- neurinen (WO 99/05902), Farnesyltransferasen (WO 99/06580; Pei ZM et al. (1998) Science 282:287-290), Ferritin (Deak M et al. (1999) Nature Biotechnology 17:192-196), Oxalatoxidase (WO 99/04013; Dunwell JM (1998) Biotechnology- and Genetic Engeneering Reviews 15:1-32), DREBIA-Faktor (dehydration response element B 1A; Kasuga M et al. (1999) Nature Biotechnology 17:276-286), Genen der Mannitol- oder Trehalose- synthese (z.B. Trehalosephosphatsynthasen; Trehalosephosphat- phosphatasen, WO 97/42326); oder durch Inhibition von Genen wie der Trehalase (WO 97/50561) . Besonders bevorzugt sind Nukleinsäuren, die für den transkriptioneilen Aktivator CBFl aus Arabidopsis thaliana (Gen-Bank Acc.-No.: U77378) oder das "antifreeze"-Protein" aus Myoxocephalus octodecemspinosus (GenBank Acc.-No.: AF306348) oder funktionelle Äquivalente derselben kodieren.
3. Erreichen einer Resistenz zum Beispiel gegen Pilze, Insekten, Nematoden und Krankheiten durch gezielte Absonderung oder Anreicherung bestimmter Metaboliten oder Proteine in der Blüte . Beispielhaft seien genannt Glucosinolate (Nematoden- abwehr) , Chitinasen oder Glucanasen und andere Enzyme, die die Zellwand von Parasiten zerstören, Ribosom-inaktivierende Proteine (RIPs) und andere Proteine der pflanzlichen* Resistenz- und Stressreaktion, wie sie bei Verletzung oder mikro- biellen Befall von Pflanzen oder chemisch durch zum Beispiel Salicylsäure, Jasmonsäure oder Ethylen induziert werden, Lysozyme aus nicht-pflanzlichen Quellen wie zum Beispiel T4 Lysozym oder Lysozm aus verschiedenenen Säugern, insektizide Proteine wie Bacillus thuringiensis Endotoxin, α-Amylase- inhibitor oder Proteaseinhibitoren (cowpea Trypsininhibitor) , Glucanasen, Lektine (z.B. Phytohemagglutinin, Schnee- glöckchenlectin, Weizenkeimagglutinin) , RNAsen oder Ribozyme. Besonders bevorzugt sind Nukleinsäuren, die für die chit42 Endochitinase aus Trichoderma harzianum (GenBank Acc.-No.: S78423) oder für das N-hydroxylierende, multifunktionelle Cytochrom P-450 (CYP79) aus Sorghum bicolor (GenBank Acc.- No.: U32624) oder funktioneile Äquivalente derselben kodieren.
4. Erreichen einer Insektenabwehr oder -anlockung zum Beispiel durch erhöhte Freisetzung flüchtiger Duft- oder Botenstoffe durch zum Beispiel Enzyme der Terpenbiosynthese.
5. Erreichen einer Speicherfähigkeit in Blütengeweben, die normalerweise keine Speicherproteine oder -lipide enthalten mit dem Ziel, den Ertrag an diesen Substanzen zu erhöhen, z.B. durch Expression einer Acetyl-CoA-Carboxylase oder von Enzymen zur Veresterung von Metaboliten. Bevorzugt sind Nukleinsäuren, die für die Acetyl-CoA Carboxylase (Accase) aus Medicago sativa (GenBank Acc.-No.: L25042) oder funktioneile -Äquiva^en-t-e--derselben kodieren.
6. Expression von Transportproteinen, die die Aufnahme von Metaboliten, Nährstoffen oder Wasser in die Blüte verbessern und so das Blütenwachstum, die Metabolitenzusammensetzung oder den Ertrag optimieren, zum Beispiel durch Expression eines Aminosäuretransporters, der die Aufnahme von Aminosäuren beschleunigt, oder eines Monosaccharid-Transporters, der die Aufnahme von Zuckern fördert. Bevorzugt sind Nukleinsäuren, die für den kationische Aminosäure-Transporter aus Arabidopsis thaliana (GenBank Acc.-No.: X92657) oder für den Mono- saccharid-Transporter aus Arabidopsis thaliana (Gen-Bank Acc.-No.: AJ002399) oder funktioneile Äquivalente derselben kodieren. 7. Expression von Genen, die eine Akkumulation von Feinchemikalien, wie von Tocopherolen, Tocotrienolen, Phenyl- propanoiden, Isoprenoiden oder Carotinoiden, in der Blüte bewirken. Beispielhaft seien die Deoxyxylulose-5-phosphat- synt asen, Phytoensynthasen, Lycopin-ß-cyklasen und die ß-Carotinketolasen genannt. Bevorzugt sind Nukleinsäuren, die für die Haematoccus pluvialis NIES-144 (Acc. No. D45881) Ketolase oder funktioneile Äquivalente derselben kodieren.
8. Modifikation der Wachsesterbildung oder der Zusammensetzung der eingelagerten Oligosaccharide zur Verbesserung des Schutzes gegen Umwelteinflüsse oder zur Verbesserung der Verdaubarkeit beim Einsatz in Futter- oder Nahrungsmitteln. Beispielhaft sein die Überexpression der Endoxyloglucantr ns- ferase genannt. Bevorzugt sind Nukleinsäuren, die für die
Endo-xyloglucantransferase (EXGT-Al) aus Arabidopsis thaliana (Gen-Bank Acc.-No. :AF163819} oder funktioneile Äquivalente derselben kodieren.
9. Expression von Genen, DNA Bindeproteinen, dsRNA und antisense Konstruktionen, zur Veränderung der Blütenmorphologie, des Blühzeitpunktes und der Blütenseneszenz sowie des Blütenmetabolismus. Bevorzugt sind Konstruktionen, die die Anzahl der Petalen erhöhen z.B. durch Herunterregulation von AGAMOUS und dessen homologen Genen (Yanofsky MF et al. (1990) Nature 346:35-39) den Blühzeitpunkt verfrühen z.B. durch Herunterregulation von FLOWERING LOCUS C (FLC) (Tadege M et al . (2001) Plant J 28 (5) :545-53) oder verspäten z.B. durch Überexpression von FLC und die Seneszenz verzögern z.B. durch Vermittlung einer blütenspezifischen Ethyleninsensitivität .
10. Erzeugung von sterilen Pflanzen durch Verhinderung der Befruchtung und/oder der Keimung mit Hilfe der Expression eines geeigneten Inhibitors zum Beispiel eines Toxins in Blüten.
11. Produktion von Nutraceuticals wie zum Beispiel
a) Carotinoide und/oder Phenylpropanoide z.B. durch Opti- mierung der blüteneigenen Stoffwechselwege z.B. durch Expression von Enzymen und Regulatoren der Isoprenoid- biosynthese. Bevorzugt sind Nukleinsäuren, die für die Chalconsynthase aus Arabidopsis thaliana (GenBank Acc.- No.: M20308) , die 6-4 Photolyase aus Arabidopsis thaliana (GenBank Acc.No. :BAB00748) oder den Blaulicht-Photorezeptor / Photolyase Homolog (PHHl) aus Arabidopsis thaliana (GenBank Acc.-No. : U62549) oder funktioneile Äquivalente derselben kodieren. Ebenso bevorzugt sind Nukleinsäuren, die für Enzyme und Regulatoren der Iso- prenoidbiosynthese wie die Deoxyxylulose-5-phosphat- synthasen und der Carotinoidbiosynthese wie die Phytoen- synthasen, Lycopincyclasen und Ketolasen wie von Toco- pherolen, Tocotrienolen, Phenylpropanoiden, Isoprenoiden oder Carotiniden, in der Blüte bewirken. Beispielhaft seien die Deoxyxylulose-5-phosphatsynthasen, Phytoen- synthasen, Lycopincyclasen und die Carotinketolasen genannt. Besonders bevorzugt sind Nukleinsäuren, die für die Hae atoccus pluvialis, NIES-144 (Acc. No. D45881) Ketolase oder funktionelle Äquivalente kodieren.
b) Polyungesättigte Fettsäuren wie beispielsweise Arachidon- säure oder EP (Eicosapentaensäure) oder DHA (Docosa- hexaensäure) durch Expression von Fettsäureelongasen und/oder -desaturasen oder Produktion von Proteinen mit verbessertem Nahrungswert wie zum Beispiel mit einem hohen Anteil an essentiellen Aminosäuren (z.B. das methioninreiche 2S Albumingens der Brasilnuss) . Bevorzugt sind Nukleinsäuren, die für das methioninreiche 2S-Albumin aus Bertholletia excelsa (GenBank Acc.-No.: AB044391) , die Δ6-Acyllipiddesaturase aus Physcomitrella patens (GenBank Acc.-No. : AJ222980; Girke et al . (1998) Plant J 15:39-48), die Δ6-Desaturase aus Mortierella alpina (Sakura-dani et al 1999 Gene 238:445-453), die Δ5-Desaturase aus Caenorhabditis elegans (Michaelson et al. (1998) FEBS Letters 439:215-218), die Δ5-Fett- säuredesaturase (des-5) aus Caenorhabditis elegans (GenBank Acc.-No.: AF078796) , die Δ5-Desaturase aus
Mortiereil-a- -ώl ina (Michaelson et al. J Biol Chem 273:19055-19059), die Δ6-Elongase aus Caenorhabditis elegans (Beaudoin et al. (2000) Proc Natl. Acad. Sei. 97:6421-6426), die A6-Elongase aus Physcomitrella patens (Zank et al. (2000,) Biochemical Society Transactions
28:654-657) oder funktioneile Äquivalente derselben kodieren.
12. Produktion von Pharmazeutika, wie zum Beispiel Anti- körpern, Vakzinen, Hormonen und/oder Antibiotika wie z.B. beschrieben bei Hood EE &. Jilka JM (1999) Curr Opin Biotechnol 10(4):382-6; Ma JK & Vine ND (1999) CurrTop Microbiol Immunol 236:275-92. Weitere Beispiele für vorteilhafte Gene sind zum Beispiel genannt bei Dunwell JM (2000) Transgenic approaches to crop improvement. J Exp Bot. 51 Spec No: 487-96.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der oben beschriebenen erfindungsgemäßen, transgenen Organismen und der von ihnen abgeleitete Zellen, Zellkulturen, Teile - wie zum Beispiel bei transgenen pflanzlichen Organismen Wurzeln, Blätter etc.- , und transgenes Vermehrungsgut wie Saaten oder Früchte, zur Herstellung von Nahrungs- oder Futtermitteln, Pharmazeutika oder Feinchemikalien.
Bevorzugt ist ferner ein Verfahren zur rekombinanten Herstellung von Pharmazeutika oder Feinchemikalien in Wirtsorganismen, wobei ein WirtsOrganismus mit einer der oben beschriebenen Expressionskassetten transformiert wird und diese Expressionskassette ein oder mehrere Strukturgene enthält, die für die gewünschte Fein- chemikalie kodieren oder deren Biosynthese katalysieren, der transformierte Wirtsorganismus gezüchtet wird und die gewünschte Feinchemikalie aus dem Züchtungsmedium isoliert wird. Dieses Verfahren ist für Feinchemikalien wie Enzyme, Vitamine, Aminosäuren, Zucker, Fettsäuren, natürliche und synthetische Geschmacks-, Aroma- und Farbstoffe breit anwendbar. Besonders bevorzugt ist die Produktion von Tocopherolen und Tocotrienolen sowie Carotinoiden wie beispielsweise Astaxanthin. Die Züchtung der transformierten Wirtsorganismen sowie die Isolierung aus den Wirtsorganismen bzw. aus dem Züchtungsmedium erfolgt mit dem Fachmann bekannten Verfahren. Die Produktion von Pharmazeutika, wie zum Beispiel Antikörpern oder Vakkzinen ist beschrieben bei Hood EE & Jilka JM (1999) Curr Opin Biotechnol 10 (4)382-6; Ma JK & Vine NB ■-{-!$ 9D)-*. rιr.r Top Microbiol Immunol 236:275-92.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der erfindungsgemäßen ε-Cyclase-Promotorsequenzen (bevorzugt der Sequenzen gemäß SEQ ID NO: 1, 7 oder 8) zur Verminderung der Proteinmenge, mRNA-Menge und/oder Aktivität einer ε-Cyclase.
Bei einer verminderten ε-Cyclase-Aktivität gegenüber dem Wildtyp wird somit im Vergleich zum Wildtyp in einer bestimmten Zeit durch das Protein ε-Cyclase die umgesetzte Menge Lycopin bzw. die gebildete Menge δ-Carotin vermindert.
"Verminderung" oder "vermindern" ist im Zusammenhang mit einer ε-Cyclase, bzw. sei Proteinmenge, mRNA-Menge und/oder Aktivität weit auszulegen und umfasst die teilweise oder im wesentlichen vollständige, auf unterschiedliche zellbiologische Mechanismen beruhende Unterbindung oder Blockierung der Funktionalität einer ε-Cyclase in einer pflanzlichen Zelle, Pflanze oder einem davon abgeleiteten Teil, Gewebe, Organ, Zellen oder Samen.
Eine Verminderung im Sinne der Erfindung umfasst auch eine mengenmäßige Verringerung einer ε-Cyclase bis hin zu einem im wesentlichen vollständigen Fehlen der ε-Cyclase (d.h. fehlende Nachweisbarkeit von ε-Cyclase-Aktivität oder fehlende immunologische Nachweisbarkeit der ε-Cyclase) . Dabei wird eine bestimmte ε-Cyclases (bzw. die zugehörige Proteinmenge, mRNA-Menge und/oder Aktivität) in einer Zelle oder einem Organismus bevorzugt um mindestens 5 , weiter bevorzugt mindestens 20 %, weiter bevorzugt mindestens 50 %, weiter bevorzugt 100 % vermindert. Insbesondere meint Verminderung auch das vollständigen Fehlen der ε-Cyclase (bzw. seiner Proteinmenge, mRNA-Menge und/oder Aktivität) .
Erfindungsgemäß sind verschiedene Strategien zur Verminderung der Proteinmenge, mRNA-Menge und/oder Aktivität der ε-Cyclase umfasst. Der Fachmann erkennt, dass eine Reihe verschiedener Methoden zur Verfügung stehen, um die Proteinmenge, mRNA-Menge und/oder Aktivität einer ε~Cyclase in gewünschter Weise zu beeinflussen. Beispielhaft kann die Verminderung durch Einbringen mindestens einer doppelsträngigen Ribonukleinsäuresequenz, die eine zumindest teilweise Homologie zu den erfindungsgemäßen ε-Cyclase- Promotorsequenzen aufweist (ε-Cyclase-Promotor-dsRNA) , realisiert werden. Alternativ können auch die dsRNA-Expression gewährleistende Expressionskassetten angebracht werden.
Das Verfahren der Genregulation mittels doppelsträngiger RNA ("double-stranded RNA interference" ; dsRNAi) ist viel- fach für tierische und pflanzliche Organismen beschrieben (z.B. Matzke .'MΑ -e .^I-;- (2000) -Plant Mol Biol 43:401-415; Fire A. et al (1998) Nature 391:806-811; WO 99/32619; WO 99/53050; WO 00/68374; WO 00/44914; WO 00/44895; WO 00/49035; WO 00/63364). Auf die in den angegebenen Zitaten beschriebenen Verfahren und Methoden wird hiermit ausdrücklich Bezug genommen. dsRNAi-Verfahren beruhen auf dem Phänomen, dass durch gleichzeitiges Einbringen von komplementären Strang- und Gegenstrang eines Gentranskriptes eine hocheffiziente Unterdrückung der Expression des entsprechenden Gens bewirkt wird.. Der bewirkte Phänotyp kommt dem einer entsprechen- den knock-out Mutanten sehr ähnlich (Waterhouse PM et al . (1998) Proc Natl Acad Sei USA 95:13959-64) .
„Doppelsträngiges RNA-Molekül" meint im Rahmen der Erfindung bevorzugt eine oder mehr Ribonukleinsäuresequenzen, die aufgrund komplementärer Sequenzen theoretisch (z.B. gemäß den Basenpaar- regeln von Waston und Crick) und/oder faktisch (z.B. aufgrund von Hybridisierungsexperimenten in vitro und/oder in vivo) in der Lage sind, doppelsträngige RNA-Strukturen auszubilden. Dem Fachmann ist bewusst, dass die Ausbildung von doppelsträngigen RNA- Strukturen, einen Gleichgewichtszustand darstellt. Bevorzugt ist das Verhältnis von doppelsträngigen Molekülen zu entsprechenden dissoziierten Formen mindestens 1 zu 10, bevorzugt 1:1, besonders bevorzugt 5:1, am meisten bevorzugt 10:1.
Ein weiterer Gegenstand der Erfindung bezieht sich daher • auf doppelsträngige RNA-Moleküle (dsRNA-Moleküle) , die bei Einbringen in einen pflanzlichen Organismus (oder eine davon abgeleitete Zelle, Gewebe, Organ oder Vermehrungsmaterial) die Verminderung mindestens einer ε-Cyclase bewirken. Das doppelsträngige RNA-Molekül zur Verminderung der Expression einer ε-Cyclase (ε-Cyclase-dsRNA) umfasst dabei bevorzugt
a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonu- kleotidsequenz , die im wesentlichen identisch ist zu mindestens einem Teil einer Nukleinsäuresequenz kodierend für den Promotorbereich einer ε-Cyclase, und
b) einen "antisense"-RNA-Strang, der zu dem RNA-"sense"-Strang unter a) im wesentlichen - bevorzugt vollständig - komplementären ist.
Bevorzugt meint ist der Promotorbereich der ε-Cyclase durch eine Sequenz gemäß SEQ ID NO: 1, 7 oder 8 beschrieben.
"Im wesentlichen identisch" meint, dass die dsRNA Sequenz auch Insertionen, Deletionen sowie einzelne Punktmutationen im Ver- gleich zu der ε-Cyclase-Promotor Zielsequenz aufweisen kann und den oe-h-. r'sn^ .effizient Verminderung der Expression bewirkt-. Bevorzugt beträgt die Homologie (nach weiter unten folgender Definition) mindestens 75 %, bevorzugt mindestens 80 %, ganz besonders bevorzugt mindestens 90 % am meisten bevorzugt 100 % zwischen dem "sense"-Strang einer inhibitorischen dsRNA und mindestens einem Teil der Nukleinsäuresequenz kodierend für einen ε-Cyclase-Promotor (bzw. zwischen dem "antisense"-Strang dem komplementären Strang einer Nukleinsäuresequenz kodierend für einen ε-Cyclase-Promotor) . Dem Fachmann ist dabei bewusst, dass bei einem Homologievergleich zwischen RNA und DNA die Basen Uracil und Thymin als äquivalent zu werten sind.
Eine 100%ige Sequenzidentität zwischen dsRNA und einem ε-Cyclase- Promotor ist nicht zwingend erforderlich, um eine effiziente Ver- minderung der ε-Cyclase Expression zu bewirken. Demzufolge besteht der Vorteil, dass das Verfahren tolerant ist gegenüber Sequenzabweichungen, wie sie infolge genetischer Mutationen, Poly- morphismen oder evolutionärer Divergenzen vorliegen können.
Die Länge des Teilabschnittes beträgt mindestens 10 Basen, bevorzugt mindestens 25 Basen, besonders bevorzugt mindestens 50 Basen, ganz besonders bevorzugt mindestens 100 Basen, am meisten bevorzugt mindestens 200 Basen oder mindestens 300 Basen.
Alternativ, kann eine "im wesentlichen identische" dsRNA auch als Nukleinsäuresequenz definiert werden, die befähigt ist, mit einem Teil einer ε-Cyclase Gen- oder Promotorsequenz zu hybridisieren (z.B. in 400 mM NaCl, 40 mM PIPES pH 6,4, 1 mM EDTA bei 50°C oder 70°C für 12 bis 16 h) .
"Im wesentlichen komplementär" meint, dass der "antisense"- RNA-Strang auch Insertionen, Deletionen sowie einzelne Punktmutationen im Vergleich zu dem Komplement des "sense"-RNA- Stranges aufweisen kann. Bevorzugt beträgt die Homologie mindestens 80 %, bevorzugt mindestens 90 %, ganz besonders bevorzugt mindestens 95 %, am meisten bevorzugt 100 % zwischen dem "anti- sense"-RNA-Strang und dem Komplement des "sense"-RNA-Stranges .
"Teil einer Nukleinsäuresequenz kodierend für eine ε-Cyclase- Promotor" meint Fragmente einer für einen ε-Cyclase-Promotor kodierenden Nukleinsäuresequenz, bevorzugt den Promotorsequenzen gemäß SEQ ID NO: 1, 2 oder 3 oder funktionellen äquivalenten derselben. Dabei haben die Fragmente bevorzugt eine Sequenzlänge von mindestens 20 Basen, bevorzugt mindestens 50 Basen, besonders bevorzugt mindestens 100 Basen, ganz besonders bevorzugt mindestens 200 Basen, am meisten bevorzugt mindestens 500 Basen.
Die -V rwendung der ε-Cyclase-Promotorregion zur Verminderung der- ε-Cyclase-Aktivität ist insbesondere vorteilhaft, da hier nur geringe Homologien zu anderen Genen vorliegen und so eine hohe Spezifität der Verminderung ohne Auswirkung auf die Expression anderer Gene erreicht werden kann.
Die dsRNA kann aus einem oder mehr Strängen von Polyribonukleo- tiden bestehen. Natürlich können, um den gleichen Zweck zu erreichen, auch mehrere individuelle dsRNA Moleküle, die jeweils einen der oben definierten Ribonukleotidsequenzabschnitte umfassen, in die Zelle oder den Organismus eingebracht werden. Die doppelsträngige dsRNA-Struktur kann ausgehend von zwei komplementären, separaten RNA-Strängen oder - bevorzugt - ausgehend von einem einzelnen, selbstkomplementären RNA-Strang gebildet werden. In diesem Fall sind "sense"-RNA-Strang und "antisense"-RNA-Strang bevorzugt kovalent in Form eines invertierten "Repeats" miteinander verbunden.
In einer bevorzugten Ausführungsform umfasst ein weiterer Gegen- stand der Erfindung Ribonukleinsäuremoleküle umfassend
a) mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu mindestens einem Teil einer Nukleinsäuresequenz kodierend für den Promotorbereich einer ε-Cyclase, und
b) mindestens eine weitere Ribonukleotidsequenz, die zu mindestens einem Teil der Ribonukleotidsequenz unter a) im wesentlichen komplementären ist,
wobei a) und b) kovalent miteinander verbunden sind und zwischen a) und b) gegebenenfalls weitere Funktionselemente lokalisiert sein können.
Bevorzugt meint ist der Promotorbereich der -Cyclase durch eine Sequenz gemäß SEQ ID NO: 1, 7 oder 8 beschrieben.
Wie z.B. in WO 99/53050 beschrieben, kann die dsRNA auch eine HaarnadelStruktur umfassen, indem "sense"- und "antisense"- Strang durch eine verbindende Sequenz ("Linker"; beispielsweise ein Intron) verbunden werden. Die selbstkomplementären dsRNA- Strukturen sind bevorzugt, da sie lediglich die Expression einer RNA-Sequenz erfordern und die komplementären RNA-Stränge stets in einem äqui olaren Verhältnis umfassen. Bevorzugt kann ist die verbindende Sequenz ein Intron (z.B. ein Intron des ST-LSl Gens aπc- Kartoffel; Vancanneyt GF et al .. (1990). Mol Gen Genet 220(2) :245-250) .
Sollen die zwei Stränge der dsRNA in einer Zelle oder Pflanze zusammengebracht werden, so kann dies beispielhaft auf folgende Art geschehen:
a) Transformation der Zelle oder Pflanze mit einem Vektor, der beide Expressionskassetten umfasst,
b) Kotransformation der Zelle oder Pflanze mit zwei Vektoren, wobei der eine die Expressionskassetten mit dem "sense"-Strang, der andere die Expressionskassetten mit dem "antisense"-Strang umfasst. c) Kreuzung von zwei individuellen Pflanzenlinien, wobei die eine die Expressionskassetten mit dem "sense"-Strang, die andere die Expressionskassetten mit dem "antisense"-Strang umfasst.
Die Bildung der RNA Duplex kann entweder außerhalb der Zelle oder innerhalb derselben initiiert werden.
Die dsRNA kann entweder in vivo oder in vitro synthetisiert werden. Dazu kann eine DNA-Sequenz kodierend für eine dsRNA in eine Expressionskassette unter Kontrolle mindestens eines genetischen Kontrollelementes (wie beispielsweise einem Promotor) gebracht werden. Eine Polyadenylierung ist nicht erforderlich, ebenso müssen keine Elemente zur Initiierung einer Translation vorhanden sein. Bevorzugt ist die Expressionskassette für die ε-Cyclase-Promotor-dsRNA auf dem Expressionsvektor enthalten. Entsprechende Expressionsvektoren sind erfindungsgemäß umfasst.
In einer besonders bevorzugten Ausführungsform erfolgt die Expression der dsRNA ausgehend von einem Expressionskonstrukt unter funktioneller Kontrolle eines blütenspezifischen Promotors . Bevorzugt ist der in diesem Zusammenhang eingesetzte Promotor nicht der ε-Cyclase Promotor, von dem die dsRNA abgeleitet wurde. Es kann sich aber sehr wohl um einen ε-Cyclase Promotor einer anderen Art handeln. So könnte beispielsweise der ε-Cyclase
Promotor aus Sonnenblume dazu verwendet werden, die dsRNA abgeleitet von dem ε-Cyclase Promotor aus Tagetes erecta zu expri- ieren. Bevorzugt steht die Expression der dsRNA abgeleitet von einem ε-Cyclase Promotor jedoch unter Kontrolle eines Promotors der kein ε-Cyclase Promotor ist, besonders bevorzugt unter der Kontrolle des CHRC-Promotors aus Cucumis sativus (SEQ ID NO: 81) oder des ' P3P-Promotors (SEQ ID NO: 77) oder eines " funktionell äquivalenten Teils derselben
Die Expressionskassetten kodierend für den "antisense"- und/oder den "sense"-Strang einer ε-Cyclase -dsRNA oder für den selbst- komplementären-Strang der dsRNA, werden dazu bevorzugt in einen Transformationsvektor insertiert und mit den unten beschriebenen Verfahren in die pflanzliche Zelle eingebracht. Für das erfindungsgemäße Verfahren ist eine stabile Insertion in das Genom vorteilhaft.
Die dsRNA kann in einer Menge eingeführt werden, die zumindest eine Kopie pro Zelle ermöglicht. Höhere Mengen (z.B. mindestens 5, 10, 100, 500 oder 1000 Kopien pro Zelle) können ggf. eine effizienter Verminderung bewirken. Erfindungsgemäß umfasst sind ferner Verfahren zur Herstellung von Ketocarotinoiden, wobei die mRNA-Menge und/oder Aktivität mindestens einer ε-Cyclasevermindert wird durch Einbringen mindestens einer der erfindungsgemäßen doppelsträngigen RNA- Sequenzen oder Ribonukleinsäuresequenzen oder einer deren
Expression gewährleistenden Expressionskassette oder Expressionskassetten.
Ketocarotinoide meint Carotinoide, die mindestens eine Keto- Gruppe enthalten, wie beispielsweise Astaxanthin, Canthaxanthin, Echinenon, 3-Hydroxyechinenon, 3'-Hydroxyechinenon, Adonirubin und Adonixanthin.
Sequenzen
1. SEQ ID NO: 1 Nukleinsäuresequenz kodierend für den
Promotor der ε-Cyclase aus Tagetes erecta
2. SEQ ID NO: 2 Nukleinsäuresequenz kodierend für den
Promotor der ε-Cyclase einschließlich 5 ' -untranslatierter Region der ε-Cyclase aus Tagetes erecta
SEQ ID NO: 3 Nukleinsäuresequenz kodierend für den
Promotor einschließlich 5 '-untranslatierter Region und Region kodierend für das Transitpeptid der ε-Cyclase aus Tagetes erecta
4. SEQ ID NO: 4 Aminosäuresequenz kodierend für das mutmaßliche Transitpeptid der ε-Cyclase aus Tagetes erecta
5. SEQ ID NO: 5 Nukleinsäuresequenz kodierend für den
Promotor der ε-Cyclase einschließlich 5 ' -untranslatierter Region der ε-Cyclase aus Tagetes erecta flankiert von Restriktionsschnittstellen für die Klonierung
6. SEQ ID NO: 6 Nukleinsäuresequenz kodierend für den
Promotor einschließlich 5 '-untranslatierter Region und Region kodierend für das Transitpeptid der ε-Cyclase aus Tagetes erecta flankiert von Restriktionsschnittstellen für die Klonierung
7. SEQ ID NO: 7 Nukleinsäuresequenz kodierend für den
Promotor der ε-Cyclase einschließlich 5 ' -untranslatierter Region der ε-Cyclase aus Arabidopsis thaliana
8. SEQ ID NO: 8 Nukleinsäuresequenz kodierend für den
Promotor der ε-Cyclase einschließlich 5 ' -untranslatierter Region der ε-Cyclase aus Oryza sativa
9. SEQ ID NO: 9 Nukleinsäuresequenz kodierend für eine ε-Cyclase aus Tagetes erecta 10. SEQ ID NO: 10 Aminosäuresequenz kodierend für eine ε-Cyclase aus Tagetes erecta
11. SEQ ID NO: 11 Nukleinsäuresequenz kodierend für eine 5 ε-Cyclase aus Tagetes erecta
12. SEQ ID NO: 12 Aminosäuresequenz kodierend für die ε-Cyclase Tagetes erecta
10 13. SEQ ID NO : 13 Nukleinsäuresequenz kodierend für eine ε-Cyclase aus Arabidopsis thaliana
14. SEQ ID NO: 14 Aminosäuresequenz kodierend für eine ε-Cyclase aus Arabidopsis thaliana 15
15. SEQ ID NO : 15 Nukleinsäuresequenz kodierend für eine ε-Cyclase aus Reis
16. SEQ ID NO: 16 Aminosäuresequenz kodierend für eine 20 ε-Cyclase aus Reis
17.-22 SEQ ID NO: 17 bis 22: Sequenzmotive für ε-Cyclase Proteine
23. SEQ ID NO: 23 Nukleinsäuresequenz kodierend für eine
25 ε-Cyclase (homologe Sequenz Hl) aus Lactuea sativa
24. SEQ ID NO: 24 Aminosäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz Hl) aus Lactuea 30 sative
25. SEQ ID NO: 25 Nukleinsäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz H2) aus Adonis palaestina 35
26. SEQ ID NO: 26 Aminosäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz H2) aus Adonis palaestina
40 27. SEQ ID NO: 27 Nukleinsäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz H3) aus Adonis palaestina
28. SEQ ID NO: 28 Aminosäuresequenz kodierend für eine 45 ε-Cyclase (homologe Sequenz H3) aus Adonis palaestina 29. SEQ ID NO: 29 Nukleinsäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz H4) aus Arabidopsis thaliana
5 30. SEQ ID NO: 30 Aminosäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz H4) aus Arabidopsis thaliana
31. SEQ ID NO: 31 Nukleinsäuresequenz kodierend für eine
10 ε-Cyclase (homologe Sequenz H5) aus Citrus X paradisi
32. SEQ ID NO: 32 Aminosäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz H5) aus Citrus X 15 paradisi
33. SEQ ID NO: 33 Nukleinsäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz H6) aus Citrus X paradisi 20
34. SEQ ID NO: 34 Aminosäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz H6) aus Citrus X paradisi
25 35. SEQ ID NO: 35 Nukleinsäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz H7) aus Citrus sinensis
36. SEQ ID NO: 36 Aminosäuresequenz kodierend für eine
30 ε-Cyclase (homologe Sequenz H7) aus Citrus sinensis
37. SEQ ID NO: 37 Nukleinsäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz H8) aus Spinacea 35 oleracea
38. SEQ ID NO: 38 Aminosäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz H8) aus Spinacea oleracea 40
39. SEQ ID NO: 39 Nukleinsäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz H9) aus Solanum tuberosum
5 40. SEQ ID NO: 40 Aminosäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz H9) aus Solanum tuberosum
5 41. SEQ ID NO: 41 Nukleinsäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz H10) aus Daucus carota
42. SEQ ID NO: 42 Aminosäuresequenz kodierend für eine
10 ε-Cyclase (homologe Sequenz H10) aus Daucus carota
43. SEQ ID NO: 43 Nukleinsäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz Hll) aus Daucus 15 carota
44. SEQ ID NO: 44 Aminosäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz Hll) aus Daucus carota 20
45. SEQ ID NO: 45 Nukleinsäuresequenz kodierend für eine ε-Cyclase (homologe Sequenz H12) aus Tomate
46. SEQ ID NO: 46 Aminosäuresequenz kodierend für eine
25 ε-Cyclase (homologe Sequenz H12) aus Tomate
47. SEQ ID NO: 47 Nukleinsäuresequenz kodierend für ε-Cyclase- spezifische Sonde (gecycl; 510 bp)
30 48. SEQ ID NO: 48 Oligonukleotidprimer PR16
5 ' -gcrc ogaggcaaagcaaagg-3 '
49. SEQ ID NO: 49 Oligonukleotidprimer PR22
5 ' -cgataagtgcgacattcaagc-3 ' 35
50. SEQ ID NO: 50 Nukleinsäuresequenz umfassend Teil des
Promotor's der ε-Cyclase aus Tagetes erecta erhalten mittels iPCR
40 51. SEQ ID NO: 51 Nukleinsäuresequenz umfassend Teil des
Promotors der ε-Cyclase aus Tagetes erecta erhalten mittels TAIL-PCR
52. SEQ ID NO: 52 Oligonukleotidprimer PR50 45 5'-cgccttgtatctgtttggattgg-3' 53. SEQ ID NO: 53 Oligonukleotidprimer PR51
5 ' -ctaacaatcaatgagtatgagagc-3 '
54. SEQ ID NO: 54 Oligonukleotidprimer PR60
5 5 ' -agagcaaggccagcaggaccacaacc-3 '
55. SEQ ID NO: 55 Oligonukleotidprimer PR61
5 ' -ccttgggagcttttgggataggctag-3 '
10 56. SEQ ID NO: 56 Oligonukleotidprimer PR63
5 ' -tcacgccttgtatctgtttggattgg-3 '
57. SEQ ID NO: 57 Oligonukleotidprimer aus dem Satz der ADl
Primer, wie er in dem Amplifikat wieder 15 gefunden wurde 5 ' -gtcgagtatggagtt-3 '
58. SEQ ID NO: 58 Nukleinsäuresequenz kodierend iPCR-Fragment
(734 bp) aus pTA-ecycP
20 59. SEQ ID NO: 59 Oligonukleotidprimer OL1
5 ' -ctcgagagtaaaatcgttagttatg-3 '
60. SEQ ID NO: 60 Oligonukleotidprimer OL2
5 ' -ccatggccattgattgttagtaatgattc-3 ' 25
61. SEQ ID NO: 61 Oligonukleotidprimer OL3
5 ' -ccatggtaatttgcttcgtgtatctgatg-3 '
62. SEQ ID NO: 62 Oligonukleotidprimer OL4
30 5 ' -ccatggcgctagcagcgacagtaatg-3 '
63. SEQ ID NO: 63 Oligonukleotidprimer OL5
5 ' -gatatccggtgtgagggaactag-3 '
35 64. SEQ ID NO: 64 Oligonukleotidprimer PR1
5 ' -gcaagctcgacagctacaaacc-3 '
65. SEQ ID NO: 65 Oligonukleotidprimer PR2
5 ' -gaagcatgcagctagcagcgacag-3 ' 40
66. SEQ ID NO: 66 Nukleinsäuresequenz kodierend für
Ketolase-35S-Terminator Konstrukt
67. SEQ ID NO: 67 Oligonukleotidprimer PR7
45 5'-gagctcactc actgatttcc attgcttg-3 ' 68. SEQ ID NO: 68 Oligonukleotidprimer PR8
5 ' -cgccgttaagtcgatgtccgttgatttaaacagtgtc-3 '
69. SEQ ID NO: 69 Oligonukleotidprimer PR9
5 5 ' -atcaacggac atcgacttaa cggcgtttgt aaac-3 '
70. SEQ ID NO: 70 Oligonukleotidprimer PR10
5 ' -taagcttttt gttgaagaga tttgg-3 '
10 71. SEQ ID NO: 71 Oligonukleotidprimer PR40
5 ' -gtcgactacg taagtttctg cttctacc-3 '
72. SEQ ID NO: 72 Oligonukleotidprimer PR41
5 ' -ggatccggtg atacctgcac atcaac-3 ' 15
73. SEQ ID NO: 73 Oligonukleotidprimer PR124
5 ' -aagcttaccg atagtaaaat cgttagtt-3 '
74. SEQ ID NO: 74 Oligonukleotidprimer PR125
20 5 ' -ctcgagctta ccgatagtaa aatcgttagt t-3 '
75. SEQ ID NO: 75 Oligonukleotidprimer PR126
5 ' -gtcgacaaca acaacaaaca acctttgc-3 '
25 76. SEQ ID NO: 76 Oligonukleotidprimer PR127
5 ' -ggatccaaca acaacaaaca acctttgc-3 '
77. SEQ ID NO: 77 Nukleinsäuresequenz kodierend für eine modifizierte Version (AP3P) des blüten- 30 spezifischen Promoters AP3 aus Arabidopsis thaliana
78. SEQ ID NO: 78 Nukleinsäuresequenz kodierend für PIV2
Intron des ST-LSl Gens aus Kartoffel. 35
79. SEQ ID NO: 79 Nukleinsäuresequenz kodierend für den sense-
Strang der gegen den ε-Cyclase Promotor gerichteten dsRNA.
40 80. SEQ ID NO: 80 Nukleinsäuresequenz kodierend für den antisense-Strang der gegen den ε-Cyclase Promotor gerichteten dsRNA.
45 81. SEQ ID NO: 81 Nukleinsäuresequenz kodierend für den
Promotor des Chromoplasten-spezifischen Carotenoid-assoziierten Proteins (CHRC) aus Cucumis sativus
82. SEQ ID NO: 82 Oligonukleotidprimer PRCHRC5
5 ' -gagctctaca aattagggtt ac-3'
83. SEQ ID NO: 83 Oligonukleotidprimer PRCHRC3 5 ' -aagcttatta tttccaaatt ccg-3 '
Abbildungen
Die in nachfolgenden Abbildungen verwendeten allgemeinen Abkürzungen haben folgende Bedeutung:
GUSI-Intron-GUSII: Reportergen (bakterielle ß-Glucuronidase)
Intron: Intron
NosT: Terminatorsequenz der Nopalin-Synthase (NOS) RB/LB: Rechte bzw. linke T-DNA Begrenzung
35-T: 35S CaMV Terminator
Nptll: Kanamycin Resistenz
NosP: Promotorsequenz der Nopalin-Synthase (NOS) aadA: bakterielle Spectinomycin Resistenz colEl: Replikationsursprung
1. Fig. 1: Analyse der Ecyclase-Transkriptlevel Gesamt-RNA isoliert aus Blättern (L) und Blütenstadien (1-7) von Tagetes erecta mittels RNA-Gel-Blot Analyse
2. Fig.- 2: ■ €öhematische Darstellung des Vektors pEcycPl:GUS zur blütenspezifischen Expression des ß-Glucuronidase-Reportergens
(GUS) unter Kontrolle des Tagetes erecta ecycPl-Regulations- elements (Promoter und 5'Untranslatierte Region)
ecycPl: Promotor der e-Cyclase aus Tagetes erecta einschließlich 5 ' -untranslatierter Region (SEQ ID NO: 2)
3. Fig.3: Schematische Darstellung des Vektors pEcycP2:GUS zur blütenspezifischen Expression des ß-Glucuronidase- Reportergens (GUS) unter Kontrolle des Tagetes erecta ecycP2-Regulationselements (Promoter und 5 'Untranslatierte Region und Transitpeptid) ecycP2 : Promotor der e-Cyclase aus Tagetes erecta einschließlich 5 ' -untranslatierter Region und Transitpeptid (SEQ ID NO: 3)
4. Fig.4: Schematische Darstellung des Vektors pEcycP2:KETO zur blütenspezifischen Expression der Hae atococcus pluvialis Ketolase (KETO; SEQ ID NO: 66) unter Kontrolle des Tagetes erecta ecycP2-Regulationselements (Promoter und 5'-untrans- latierte Region und Transitpeptid; SEQ ID NO: 3) .
5. Fig.5 : Schematische Darstellung des Vektors pS5AI7 zur blütenspezifischen Expression von ε-Cyclase-Promoter spezifischer dsRNA unter Kontrolle des AP3P Promoterfragments zur blütenspezifischen Verminderung der ε-Cyclase Transkript- level.
ÄP3P: modifizierter AP3P Promoter (777 bp) ,
P-sense: 358 bp Promoterfragment der -Cyclase in sense
Orientierung, intron : IV2 Intron des Kartoffel-Gens ST-LSl P-anti : das 361 bp Promoterfragment ε-Cyclase in antisense Orientierung.
6. Fig.6: Schematische Darstellung des Vektors pS5CI7 zur blütenspezifischen Expression von ε-Cyclase-Promoter spezi- fischer dsRNA unter Kontrolle des CHRC Promoterfragments zur blütenspezifischen Verminderung der ε-Cyclase Transkriptlevel
CHRC: CHRC-Promoter (1537 bp) ,
P-sense: 358 bp Promoterfragment der ε-Cyclase in sense Orientierung, in ron: IV2 Intron des Kartoffel-Gens ST-LSl
P-anti : das 361 bp Promoterfragment ε-Cyclase in antisense
Orientierung.
7. Fig.7: iPCR Ämplifikat, das das 312 bp Fragment des ε-Cyclase Promotors enthält
8. Fig.8: TAIL PCR Ämplifikat, das das 199 bp Fragment des ε-Cyclase Promotors enthält
9. Fig.9: Nukleotidsequenzvergleich zwischen der publizierten Sequenz der Haematococcus pluvialis Ketolase (GenBank Acc.- No. : X86782) und der im Rahmen der Erfindung bereitgestellten Sequenz (vgl. Beispiel 3). 10. Fig.10: Proteinsequenzvergleich zwischen der publizierten Sequenz der Haematococcus pluvialis Ketolase (GenBank Acc.- No.: X86782) und der im Rahmen der Erfindung bereitgestellten Sequenz (vgl. Beispiel 3).
11. Fig.11: Klonierungskassette zur Herstellung von Inver- ted-Repeat-Expressionskassetten für die blütenspezifische Expression von ε-Cyclase dsRNAs .
AP3P: modifizierter AP3P Promoter (777 bp) , rbcs : rbcS Transitpeptid aus Erbse (206 bp) , intron : PIV2 Intron des ST-LSl Gens (SEQ ID NO: 78) te m : 35S Polyadenylierungssignal von CaMV (762 bp) .
12. Fig.l2A-C: Sequenzvergleich verschiedener pflanzlicher ε-Cyclasen.
A: GenBank Acc.-No AF152246 (524 Citrus x pardisi "lyco- pene cyclase" B: GenBank Acc . -No . : AF212130 (165 Daucus carota partial ecyclase sequence C: GenBank Acc . -No . : AF229684 (201 Daucus carota partial ecyclase sequence D: GenBank Acc . -No. : AF251016 (516 Tagetes erecta ecyclase E: GenBank Acc.-No. AF321535 (529 Adonis palaestina ecyclase F: GenBank Acc.-No. AF321536 (529 Adonis palaestina ecyclase G: GenBank Acc.-No. AF321537 (382 Solanum tuberosum partial ecyclase sequence H: GenBank Acc.-No. : AF321538 (533 Lactuea sativa ecyclase I: GenBank Acc . -No . : AF450280 (262 Citrus sinensis ecyclase J. :• GenBank .Acc . -No . : AF463497 (517 Spinacea oleracea ecyclase
K: GenBank Acc . -No . : AF486650 (437 Citrus x pardisi ecyclase L: GenBank Acc.-No.: AP003332 (540 Reis ecyclase
M: GenBank Acc.-No. : AY099485 (525 Tagetes erecta ecyclase
N: GenBank Acc . -No . : L40176 (501) Arabidopsis "lycopene cyclase" 0 : GenBank Acc . -No . : NM125085 (524) Arabidopsis ecyclase P: GenBank Acc . -No . : 065837 ecyclase (526) Tomate
13. Fig.13: Schematische Darstellung der inverse PCR ("iPCR")
Für die "iPCR" wird genomische DNA eines Zielorganismus mit der zu isolierenden Promotorsequenz mit einem gegebenen Restriktionsenzym komplett verdaut und anschließend werden in einem verdünnten Ansatz die einzelnen Fragmente rückligiert, also mit sich selbst zu einem ringförmigen Molekül verbunden. In der Vielzahl entstehender ringförmiger DNA-Moleküle befinden sich auch solche, die die bekannte Sequenz (d.h. die Sequenz kodierend für ein homologes Protein) enthalten. Ausgehend davon kann das ringförmige Molekül mittels PCR amplifiziert werden, indem ein Primerpaar verwendet wird, bei dem beide Primer sich an den bekannten Sequenzabschnitt anlagern können. Abkürzungen: P - Promotorsequenz ; CR - kodierende Region; L - Ligationsstelle; PCR - Polymerase- kettenreaktion. Pfeile geben die Bindestelle potentieller Oligonukleotidprimer im Bereich der kodierenden Region wieder.
Beispiele
Allgemeine Methoden:
Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet & Voet (1995), 2. Auflage, Wiley Press New York, Seite 896-897) er- folgen. Die im Rahmen der vorliegenden Erfindung durchgeführten Klonierungsschritte wie z.B. Restriktionsspaltungen, Agarosegel- elektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien, Vermehrung von Phagen und Sequenzanalyse rekombi- nanter DNA werden wie bei Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6 beschrieben durchgeführt. Die Sequenzierung rekombinanter DNA-Moleküle ,erfolgt mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al. (1977) Pro Natl Acad Sei USA 74.54-63-5467) .
Beispiel 1: Analyse von ε-Cyclase RNA-Transkriptspiegeln während der Blütenentwicklung von Tagetes erecta
Für die Präparation von Total-RNA aus Blättern und Blüten von Tagetes erecta wird Pflanzengewebe geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert. Anschließend werden 100 mg des gefrorenen, pulverisierten Pflanzengewebes in ein Reaktionsgefäß überführt und in 0,8 ml Trizol®-Puffer (Life-
Technologies) aufgenommen. Die Suspension wird mit 0,2 ml Chloroform extrahiert. Nach 15 inütiger Zentrifugation bei 12000 g wird der wässrige Überstand abgenommen und in ein neues Reaktionsgefäß überführt und mit einem Volumen Ethanol extrahiert . Die RNA wird mit einem Volumen Isopropanol gefällt, mit 75 % Ethanol gewaschen und das Pellet in DEPC Wasser (über Nacht Inkubation von Wasser mit 1/1000 Volumen Diethylpyrocarbonat (DEPC) bei Raumtemperatur, anschließend autoklaviert) gelöst. Die RNA-Konzentration wird photometrisch bestimmt.
Die • relative Menge an ε-Cyclase Transkript in Tagetes Blättern und Blütenstadien wird mittels RNA Gel Blot wie in Sambrook & Rüssel (2001, Molecular Cloning: A laboratory manual, 3rd Edition, Cold Spring Harbor Laboratory Press,- Cold Spring Harbor, New York Kapitel 7, Protokoll 6) beschrieben, analysiert: Pro Probe werden ca. 10 bis 15 μg Gesamt-RNA in einem Formaldehyd-Agarosegel auf- getrennt . Die relativen Mengen an Gesamt-RNA können anhand der mit Ethidiumbromid angefärbten rRNA Banden abgeschätzt werden (Fig. 1A) . Zur Abschätzung der ε-Cyclase Transkriptmengen wird die aufgetrennte RNA mittels eines Kapillarblots auf eine Nylonmembran übertragen.
Zur Herstellung einer radioaktiv markierten ε-Cyclase-spezifischen Sonde wurde das Fragment SEQ ID NO: 47 (gecycl) mittels Poly- merasekettenreaktion (PCR) aus genomischer DNA von Tagetes erecta unter Verwendung eines sense-spezifischen Primers (PR16 = 5 ' -ggcacgaggcaaagcaaagg-3 ' , SEQ ID NO: 48) und eines antisense spezifischen Primers (PR22 = 5 '-cgataagtgcgacattcaagc-3 ' , SEQ ID NO: 49) amplifiziert.
Zur Präparation genomischer DNA aus Tagtes erecta wird Blatt- material von Tagetes erecta geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert . Anschließend werden 100 mg des gefrorenen, pulverisierten Pflanzengewebes in ein Reaktionsgefäß überführt, in 0,75 ml Extraktionspuffer aufgenommen und für 60 min bei 65°C inkubiert. Der Extraktionspuffer wird frisch hergestellt aus 25 ml Puffer 1 (0,35 M Sorbitol, 0,1 M.Tris-Base, 5 mM EDTA, pH7.5),-25 ml Puffer 2 (0,2 M Tris-Base, 0,05 M EDTA, 2 M NaCL, 2 % CTAB) , 10 ml 5 % N-Lauroylsarcosine- sodium) und 0,24 g Natriumbisulfit. Anschließend an die 65°C- Inkubation wird die Suspension mit 0,7 ml Chloroform/Isoamyl- alkohol (24:1) vermischt, dann 5 min bei 10000 g zentrifugiert . Die obere wässrige Phase wird in ein neues Reaktionsgefäß überführt und die Chloroform/Isoamylalkohol-Extraktion wie beschrieben wiederholt . Anschließend wird die obere wässrige Phase in ein neues Reaktionsgefäß überführt, die DNA durch Zugabe von 1 ml Isopropanol und anschließende Zentrifugation für 5 min bei 10000 g pelletiert. Das DNA-Pellet wird mit 0,5 ml 75 % Ethanol gewaschen, dann getrocknet und anschließend in 0,05 ml sterilem Wasser durch 5 minütige Inkubation bei 65°C resuspendiert. Die PCR-Bedingungen zur Amplikation eines ε-Cyclase-spezifischen Fragmentes aus genomischer DNA aus Tagetes erecta sind die folgenden:
Die PCR zur Amplifikation eines ε-Cyclase-spezifischen Fragmentes erfolgt in einem 50 μl Reaktionsansatz, in dem enthalten sind:
1 μg genomische DNA aus Tagetes erecta
0,25 mM dNTPs - 0,2 μM Primer PR16 (SEQ ID NO: 48)
0,2 μM Primer PR22 (SEQ ID NO: 49)
5 μl 10X PCR-Puffer (TAKARA)
0,25 μl R Taq Polymerase (TAKARA)
- 25,8 μl steriles, destilliertes Wasser
Die PCR wurde unter folgenden Zyklusbedingungen durchgeführt : 1 Zyklus mit 94°C für 2 Minuten. 35 Zyklen mit 94°C für 1 Minute, 51°C für 2 Minuten und 72°C für 3 Minuten. Abschließend ein Zyklus mit 72°C für 10 Minuten.
Die PCR-Amplifikation mit PR16 und PR22 resultiert in einem 510 bp-Fragment (SEQ ID NO: 47), das unter stringenten Hybridi- sierungsbedingungen spezifisch mit der ε-Cyclase nicht aber mit der Lycopen ß-Cyclase aus Tagetes erecta hybridisiert. Das Ampli- fikationsprodukt wird mit dem NucleonSpin Extraet Kit (Machery & Nagel) nach Herstellerangaben aufgereinigt und für eine radio- aktive Markierungsreaktion mit dem Highprime Kit (Boehringer Mannheim) nach Herstellerangaben eingesetzt . Die Prähybridi- sierungs-, Hybridisierungs-, und Waschschritte werden wie bei Sambrook & Rüssel (2001, Molecular Cloning: A laboratory manual, 3r E-itjon, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York Kapitel 6, Protokoll 10) beschrieben durchgeführt. Der letzte Waschschritt mit 0,lx SSC / 0,1 % SDS bei 65°C bewirkt eine hohe Stringenz der Hybridisierung, die ausreicht, um mit der beschriebenen Sonde spezifisch die ε-Cyclase, nicht aber die Lycopen ß-Cyclase, zu detektieren. Die relativen ε-Cyclase Transkriptlevel können anhand der Hybridisationssignale, detek- tiert mithilfe eines Phosphoimagers , abgeschätzt werden. Wie in Fig. 1B ersichtlich liegen unter den gegebenen Versuchs- bedingungen ε-Cyclase Transkriptlevel in den Blättern unterhalb der Nachweisgrenze, während die gesamte Blütenentwicklung hindurch hohe Mengen an ε-Cyclase Transkripten nachweisbar sind. Beispiel 2 : Klonierung des ε-Cyclase Promoters
Ein 199 bp Fragment bzw. das 312 bp Fragment des Tagetes erecta ε-Cyclase Promoters kann durch zwei unabhängige Klonierungs- Strategien, Inverse PCR (iPCR; adaptiert Long et al. Proc Natl Acad Sei USA 90: 10370) und TAIL-PCR (Liu YG et al. (1995) Plant J 8: 457-463) unter Verwendung genomischer DNA (wie oben beschrieben) aus der Tagetes erecta-Linie Orangenprinz isoliert werden.
Für den iPCR-Ansatz werden 2 μg genomische DNA in einem 25 μl Reaktionsansatz mit EcoRV und Rsal verdaut, anschließend auf 300 μl verdünnt und über Nacht bei 16°C mit 3U Ligase religiert. Unter Verwendung der Primer PR50 (SEQ ID NO: 52) und PR51 (SEQ ID NO: 53) wird durch PCR Amplifikation ein Fragment hergestellt, das, jeweils in Sense-Orientierung, 354 bp der ε-Cyclase cDNA (Genbank Acc. -NO.: AF251016) , ligiert an 312 bp des ε-Cyclase Promoters sowie 70 bp des 5'terminalen Bereichs der ε-Cyclase cDNA enthält (siehe Fig.7).
Die Bedingungen der PCR-Reaktionen sind die folgenden:
Die PCR zur Amplifikation des PR50-PR51 DNA-Fragmentes, das unter anderem das 312 bp Promoterfragment der ε-Cyclase enthält, erfolgt in einem 50 μl Reaktionsansatz, in dem enthalten ist:
- 1 μl Ligationsansatz (hergestellt wie oben beschrieben)
0,25 mM dNTPs
0,2 μM Primer PR50 (SEQ ID NO: 52) - 0,2 μM Primer PR51 (SEQ ID NO: 53)
5 μl 10X PCR-Puffer (TAKARA)
0,25 μl R Taq Polymerase (TAKARA)
28,8 μl steriles, destilliertes Wasser
Die PCR-Reaktionen werden unter folgenden Zyklusbedingungen durchgeführt: 1 Zyklus mit 94°C für 2 Minuten. 35 Zyklen mit 94°C für 1 Minute, 53°C für 1 Minute und 72°C für 1 Minute. Abschließend 1 Zyklus mit 72°C für 10 Minuten.
Die PCR-Amplifikation mit Primer PR50 und PR51 resultiert in einem 734 bp-Fragment, das unter anderem das 312 bp Promoterfragment der ε-Cyclase enthält (Fig. 7) . Das Ämplifikat, wird unter Verwendung von Standardmethoden in den PCR-Klonierungs- vektor pCR2.1 (Invitrogen) kloniert. Sequenzierungen mit den Primern M13 und T7 ergeben für das Ämplifikat die Sequenz SEQ ID NO: 50. Für den TAIL-PCR Ansatz werden drei sukzessive PCR-Reaktionen mit jeweils unterschiedlichen genspezifischen Primern („nested primers" ) durchgeführt .
Die TAILl-PCR erfolgt in einem 20 μl Reaktionsansatz, in dem enthalten ist:
100 ng genomische DNA (hergestellt wie oben beschrieben)
0,2 mM jedes dNTPs - 0,2 μM Primer PR60 (SEQ ID NO: 54)
0, 2 μM Primermischung ADl
2 μl 10X PCR-Puffer (TAKARA)
0,5 U R Taq Polymerase (TAKARA) mit sterilem, destillierten Wasser auf 20 μl aufgefüllt
Die Primermischung ADl stellte dabei zunächst eine Mischung aus Primern der Sequenzen
5' - (a/c/g/t) tcga(g/c)t (a/t) t (g/c)g(a/t)gtt-3 ' dar. Der Primer mit der SEQ ID NO: 57 wurde in dem resultierenden Ämplifikat wiedergefunden.
Die PCR-Reaktion TAILl werden unter folgenden Zyklusbedingungen durchgeführt : - 1 Zyklus mit 93°C für 1 Minute und 95°C für 1 Minute,
5 Zyklen mit 94°C für 30 Sekunden, 62°C für 1 Minute und 72°C für 2,5 Minuten,
1 Zyklus mit 94°C für 30 Sekunden, 25°C für 3 Minuten, dann ein Temperaturanstieg auf 72°C innerhalb von 3 Minuten, 72°C für 2,5 Minuten
15 Zyklen mit 94°C für 10 Sekunden, 68°C für 1 Minute und 72°C für 2,5 Minuten; 94°C für 10 Sekunden, 68°C für 1 Minute und 72°C für 2,5 Minuten; 94°C für 10 Sekunden, 29°C für 1 Minute und 72°C für 2,5 Minuten; - 1 Zyklus mit 72° für 5 Minuten.
Die TAIL2-PCR erfolgt in einem 21 μl Reaktionsansatz, in dem enthalten ist:
- 1 μl einer 1:50 Verdünnung des TAILl-Reaktionsansatzes
(hergestellt wie oben beschrieben)
0 , 8 mM dNTP
0,2 μM Primer PR61 (SEQ ID NO: 55)
0,2 μM Primer ADl (SEQ ID NO: 57) - 2 ul 10X PCR-Puffer (TAKARA)
0,5 U R Taq Polymerase (TAKARA) mit sterilem, destillierten Wasser auf 21 μl aufgefüllt Die PCR-Reaktion TAIL2 wird unter folgenden Zyklusbedingungen durchgeführt :
12 Zyklen mit 94°C für 10 Sekunden, 64°C für 1 Minute,
72°C für 2,5 Minuten; 94°C für 10 Sekunden, 64°C für 1 Minute, 72°C für 2,5 Minuten; 94°C für 10 Sekunden, 29°C für 1 Minute,
72°C für 2.5 Minuten;
1 Zyklus mit 72°C für 5 Minuten.
Die TAIL3-PCR erfolgt in einem 100 μl Reaktionsansatz, in dem enthalten ist :
1 μl einer 1:10 Verdünnung des TAIL2-Reaktionsansatzes
(hergestellt wie oben beschrieben) 0,8 mM dNTP - 0,2 μM Primer PR63 (SEQ ID NO: 56) 0,2 μM Primer ADl (SEQ ID NO: 57) 10 μl 10X PCR-Puffer (TAKARA) 0,5 U R Taq Polymerase (TAKARA) mit sterilem, destillierten Wasser auf 100 μl aufgefüllt
Die PCR-Reaktion TAIL3 wird unter folgenden Zyklusbedingungen durchgeführt :
20 Zyklen mit 94°C für 15 Sekunden, 29°C für 30 Sekunden, 72°C für 2 Minuten;
1 Zyklus mit 72°C für 5 Minuten.
Die PCR-Amplifikation mit Primer PR63 und ADl resultiert in einem 280 Bp-Fragment, das unter anderem das 199 bp Promoterfragment der ε-Cyclase enthält (Fig. 8) .
Das Ämplifikat, wurde unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR2.1 (Invitrogen) kloniert. Sequenzierungen mit den Primern M13 und T7 ergeben die Sequenz SEQ ID NO: 51. Diese Sequenz ist im Überlappungsbereich identisch mit der Sequenz SEQ ID NO: 50, die mit der iPCR Strategie isoliert wird, und repräsentiert somit die Nukleotidsequenz in der verwendeten Tagetes erecta Linie Orangenprinz .
Der pCR2.1-Klon, der das 734 bp-Fragment (SEQ ID NO: 58), das durch die iPCR-Strategie isoliert wird, enthält, heißt pTA-ecycP und wird für die Herstellung der Expressionskonstrukte verwendet. Beispiel 3 : Herstellung von transgenen ε-Cyclase-Expressions- kassetten und Expressionsvektoren
Das ε-Cyclase-Regulationselement ecycPl, enthaltend ein Promoter- fragment und die 5 'nicht-translatierte Region der ε-Cyclase aus Tagetes erecta, wird verwendet, um die ß-Glucuronidase (Jefferson et al. (1987) EMBO J 6:3901-3907) in Tomatenblüten (Lycopersicon esculentum) zu exprimieren. Weiterhin wird das ε-Cyclase-Regu- lationselement ecycP2, enthaltend ein Promoterfragment, die 5 '-nichttranslatierte Region sowie das mutmaßliche Transitpeptid der ε-Cyclase aus Tagetes erecta, verwendet, zur Expression entweder der ß-Glucuronidase oder der Haematococcus pluvialis Ketolase in Piastiden von Tomatenblüten.
Die Herstellung der transgenen Expressionsvektoren pEcycPl:GUS, pEcycP2:GUS, pEcycP2:KET0 für die Agrobakterium vermittelte Transformation in Lycopersicon esculentum erfolgte unter Verwendung des binären Vektors pS0301 (WO 02/00900) . Zur Herstellung der Transformationsplasmide werden die Fragmente ecycPl und ecycP2 mittels PCR unter Verwendung des Klones pTA-ecycP sowie der Primer OL1 (SEQ ID NO: 59) und OL2 (SEQ ID NO: 60) (für ecycPl) bzw. der Primer OLl (SEQ ID NO: 59) und OL3 (SEQ ID NO: 61) (für ecycP2) hergestellt.
Die PCR zur Amplifikation eines ε-Cyclase-spezifischen Fragmentes erfolgt in einem 50 μl Reaktionsansatz, in dem enthalten ist:
50 ng pTA-ecycP Plasmid
0,25 mM dNTPs - 0,2 μM Primer OLl (SEQ ID NO 59)
0,2 μM Primer OL2 (SEQ ID NO 60) für ecycPl 'bzw. Primer OL3 (SEQ ID NO 61) für ecycP2
5 μl 10X PCR-Puffer (TAKARA)
0,25 μl R Taq Polymerase (TAKARA) - 25,8 μl steriles, destilliertes Wasser
Die PCR wird unter folgenden Zyklusbedingungen durchgeführt : 1 Zyklus mit 94°C für 2 Minuten, 35 Zyklen mit 94°C für 1 Minute, 50°C für 2 Minuten und 72°C für 3 Minuten, abschließend 1 Zyklus mit 72°C für 10 Minuten.
Die PCR-Amplifikation mit OLl und OL2 resultiert in einem 456 bp-Fragment (ecycPl, SEQ ID NO: 5) , die PCR-Amplifikation mit OLl und OL3 resultiert in einem 543 bp-Fragment (ecycP2, SEQ ID NO:_6) . Die Amplifikate ecycPl bzw. ecycP2 werden unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR2.1 (Invitrogen) kloniert und die Klone pTA-ecycPl bzw. pTA-ecycP2 erhalten. Sequenzierungen der beiden Klone bestätigen Sequenzen, die im jeweiligen Überlappungsbereich zu SEQ ID NO: 47 bzw. SEQ ID NO: 58 identisch sind. Diese Klone werden daher für die Ligation in den Transformationsvektor pS0301 (WO 02/00900) verwendet .
Zur Herstellung des Transformationsplasmids pEcycPl:GUS wird das 454 bp Xhol-Ncol ecycPl Fragment aus pTA-ecycPl isoliert und in den Xhol-Ncol geschnittenen Vektor pS0301 ligiert. Der Klon, der das ecycPl-Fragment in der korrekten Orientierung enthält, heißt pEcycPl:GUS (Fig.2, Konstruktkarte) .
Zur Herstellung des Transformationsplasmids pEcycP2:GUS wird das 541 bp Xhol-Ncol ecycPl Fragment aus pTA-ecycP2 isoliert und in den Xhol-Ncol geschnittenen Vektor pS0301 ligiert. Der Klon, der das ecycP2-Fragment in der korrekten Orientierung enthält, heißt pEcycP2 :GUS (Fig.3 , Konstruktkarte) .
Zur Herstellung des Transformationsplasmids pEcycP2:KETO wird die Region "GUSI/intron/GUSII/35ST" begrenzt durch eine Ncol- und eine Hindlll-Restriktionsschnittstelle in pEcycP2:GUS gegen eine „Ketolase/35S-Terminator"-Region ausgetauscht. Hierzu wird das Plasmid pEcycP2:GUS nach Standardmethoden mit Hindlll lineari- siert, die dabei entstehenden 5 -Überhänge mit Klenow-Fragment aufgefüllt und abschließend die "GUSI/intron/GUSII/35ST"-Region durch Restriktionsverdau mit Ncol entfernt.
Die „Ketolase/35STerminator"-Region wird hergestellt durch
1. Klonierung einer Ketolase-cDNA, hergestellt mit aus Haematococcus pluvialis (Flotow em. Wille) isolierter- RH- , =-gefolgt von
2. Herstellung einer transkriptioneilen Ketolase/Terminator- Fusion durch Ligation der Ketolase-Sequenz in den Vektor pJIT117, was dann als Vorlage für
3. die PCR Amplifikation der Ketolase/35S-Terminator Region, dient .
Die cDNA, die für die Ketolase aus Haematococcus pluvialis codiert, wird mittels PCR aus Haematococcus pluvialis (Stamm 192.80 der "Sammlung von Algenkulturen der Universität Göttingen") Suspensionskultur amplifiziert .
Für die Präparation von Total-RNA aus einer Suspensionskultur von Haematococcus pluvialis (Stamm 192.80), die 2 Wochen mit indirektem Tageslicht bei Raumtemperatur in Haematococcus-Medium (1,2 g/1 Natriumacetat, 2 g/1 Hefeextrakt, 0,2 g/1 MgCl x 6 H20, 0,02 CaCl x 2 H20; pH 6,8; nach Autoklavieren Zugabe von 400 mg/1 L-Asparagin, 10 mg/1 FeSθ x H0) angezogen wird, werden die Zellen geerntet, in flüssigem Stickstoff eingefroren und im Mörser pulverisiert. Anschließend werden 100 mg der gefrorenen, pulverisierten Algenzellen in ein Reaktionsgefäß überführt und in 0,8 ml Trizol®-Puffer (LifeTechnologies) aufgenommen. Die Suspension wird mit 0,2 ml Chloroform extrahiert. Nach 15 minütiger Zentrifugation bei 12000 g wird der wässrige Überstand abgenommen und in ein neues Reaktionsgefäß überführt und mit einem Volumen Ethanol extrahiert . Die RNA wird mit einem Volumen Isopropanol gefällt, mit 75 % Ethanol gewaschen und das Pellet in DEPC Wasser (über Nacht Inkubation von Wasser mit 1/1000 Volumen Diethylpyro- carbonat bei Raumtemperatur, anschließend autoklaviert) gelöst. Die RNA-Konzentration wird photometrisch bestimmt.
Für die cDNA- ynthese werden 2,5 μg Gesamt-RNA für 10 min. bei 60°C denaturiert, für 2 min auf Eis abgekühlt und mittels eines cDNA-Kits (Ready-to-go-you-prime-beads , Pharmacia Biotech) nach Herstellerangaben unter Verwendung eines antisense spezifischen Primers (PRl SEQ ID NO: 64) in cDNA umgeschrieben.
Die Nukleinsäure kodierend eine Ketolase aus Haematococcus pluvialis (Stamm 192.80) wird mittels Polymerasekettenreaktion (PCR) aus Haematococcus pluvialis cDNA unter Verwendung eines sense spezifischen Primers (PR2; SEQ ID NO: 65) und eines antisense spezifischen Primers (PRl; SEQ ID NO: 64) amplifiziert. Die PCR- Bedingungen sind die folgenden:
Die PCR zur Amplifikation der cDNA, die für ein Ketolase Protein bestehend aus der gesamten Primärsequenz codiert, erfolgt in einem 50 μl Reaktionsansatz, in dem enthalten- i^
4 μl einer Haematococcus pluvialis cDNA
(hergestellt wie oben beschrieben) - 0,25 mM dNTPs
0,2 μM Primer PRl (SEQ ID NO: 64) 0,2 μM Primer PR2 (SEQ ID NO: 65)
5 μl 10X PCR-Puffer (TAKARA) 0,25 μl R Taq Polymerase (TAKARA) - 25,8 μl steriles, destilliertes Wasser
Die PCR wird unter folgenden Zyklusbedingungen durchgeführt: 1 Zyklus mit 94°C für 2 Minuten; 35 Zyklen mit 94°C für 1 Minute, 53°C für 2 Minuten und 72°C für 3 Minuten. Abschließend 1 Zyklus it 72°C für 10 Minuten. Die PCR-Amplifikation mit PRl und PR2 resultiert in einem 1155 bp-Fragment, das für ein Protein bestehend aus der gesamten Primärsequenz codiert. Unter Verwendung von Standardmethoden wird das Ketolase-Amplifikat in den PCR-Klonierungsvektor pGEM-Teasy (Promega) kloniert und der Klon pGKET02 erhalten.
Sequenzierung des Klons pGKET02 mit dem T7- und dem SP6-Primer bestätigt eine Sequenz, die sich lediglich in den drei Codons 73, 114 und 119 in je einer Base von der publizierten Sequenz (Gen- bank Acc.No.: X86782) unterscheidet. Diese Nukleotidaustausche werden in.einem unabhängigem Amplifikationsexperiment reproduziert und repräsentieren somit die Nukleotidsequenz im verwendeten Haematococcus pluvialis Stamm 192.80 (Fig. 9 und 10, Sequenzvergleiche) . Dieser Klon wird für die Klonierung in den Expressionsvektor pJITH7 (Guerineau et al. (1988) Nucl Acids Res 16: 11380) verwendet. Die weitere Klonierung erfolgt durch Isolierung des 1031 bp SpHI-Fragmentes aus pGKET02 und Ligierung in den SpHI geschnittenen Vektor pJIT117. Der Klon, der die Haematococcus pluvialis Ketolase in der korrekten Orientierung als N-terminale translationale Fusion mit dem rbcs Transitpeptid enthält, heißt pJKET02.
Mittels PCR unter Verwendung von pJKET02 sowie der Primer 0L4 (SEQ ID NO: 62) und OL5 (SEQ ID NO: 63) wird die 1795 bp Keto- lase/35S-Terminator-Region hergestellt. Die Bedingungen der PCR- Reaktionen sind die folgenden:
Die PCR zur Amplifikation des OL4-OL5 DNA-Fragmentes, das die kodierende Region der Ketolase gefolgt vom 35S Terminator aus caMV enthält, erfolgt in einem 50 ul Reaktionsansatz, in dem enthalten- ist:
1 μl pJKET02 (1 ng Plasmid-DNA)
0,25 mM dNTPs - 0,2 μM Primer OL4 (SEQ ID NO: 62)
0,2 μM Primer OL5 (SEQ ID NO: 63)
5 μl 10X PCR-Puffer (TAKARA)
0,25 μl R Taq Polymerase (TAKARA)
28,8 μl steriles, destilliertes Wasser
Die PCR-Reaktionen werden unter folgenden Zyklusbedingungen durchgeführt: 1 Zyklus mit 94°C für 2 Minuten. 35 Zyklen mit 94°C für 1 Minute, 53°C für 2 Minuten und 72°C für 3 Minuten. Abschließend 1 Zyklus mit 72°C für 10 Minuten. Die PCR-Amplifikation mit Primer 0L4 und 0L5 resultiert in einem 1795 bp-Fragment, das die kodierende Region der Ketolase gefolgt vom 35S-Terminator aus CaMV enthält. Dieses 1795 bp Ämplifikat wird unter Verwendung von Standardmethoden in den PCR-Klonie- rungsvektor pCR2.1 (Invitrogen) kloniert und der Klon "pTA-KETO/ Term" erhalten. Sequenzierungen des Klones bestätigt eine ■ im jeweiligen Überlappungsbereich zu SEQ ID NO: 66 bzw. pJIT117 identische Sequenz . Dieser Klon wird daher für die Ligation in den Transformationsvektor pEcycP2:GUS (s.o.) verwendet. Zur Her- Stellung des Transformationsplasmids pEcycP2:KETO wird das 1791 bp NcoI-EcoRV "KETO/Term"-Fragment aus pTA-KETO/Term isoliert und in den linearisierten Vektor pEcycP2:GUS, enthaltend ein Ncol-5 'Überhang und ein Blunt-End, ligiert. Der Klon, der das ecycP2-Fragment in der korrekten Orientierung enthält, heißt pEcycP2:KET0 (Fig. 4, Konstruktkarte).
Beispiel 4: Herstellung und Analyse transgener Tomatenpflanzen
Die Konstrukte pEecycPl:GUS, pEcycP2:GUS und pEcycP2:KETO wurden durch Agrobakterium tumefaciens vermittelte Transformation in Tomate transformiert. Als Ausgangsexplantat für die Transformation dienen Kotyledonen und Hypokotyle sieben bis zehn Tage alter Keimlinge der Linie Microtom. Für die Keimung wird das Kulturmedium nach Murashige und Skoog (Murashige & Skoog (1962) Physiol Plant 15,473-497) mit 2 % Saccharose, pH 6,1 verwendet. Die Keimung findet bei 21°C bei wenig Licht (20 bis 100 μE) statt. Nach sieben bis zehn Tagen werden die Kotyledonen quer geteilt und die Hypokotyle in ca. 5 bis 10 mm lange Abschnitte geschnitten und auf das Medium MSBN (MS, pH 6,1, 3 % Saccharose mit 1 mg/1 Benzylaminopurin (BAP) , 0,1 mg/1 Naphthalenacetat
(NAA) gelegt, das am Vortag mit suspensicirJkultivierten Tomatenzellen beschickt wurde. Die Tomatenzellen werden luftblasenfrei mit sterilem Filterpapier abgedeckt. Die Vorkultur der Explantate auf dem beschriebenen Medium erfolgt für drei bis fünf Tage. Anschließend werden die Explantate mit dem Agrobakterium tumefaciens Stamm LBA4404, der das binäre Plasmid mit dem zu transformierenden Gen trägt, wie folgt infiziert: Der Stamm, der über Nacht in YEB Medium mit dem Antibiotikum für das Binärplasmid bei 28°C kultiviert bei worden ist wird zentrifugiert . Das Bakterien- pellet wird mit flüssigem MS Medium (3 % Saccharose, pH 6,1) resuspendiert und auf eine optische Dichte von 0,3 (bei 600 nm) eingestellt. Die vorkultivierten Explantate werden in die Suspension überführt und für 30 Minuten bei Zimmertemperatur unter leichtem Schütteln inkubiert. Anschließend werden die Explantate mit sterilem Filterpapier getrocknet und für die dreitägige Co-Kultur (21°C) auf ihr Vorkulturmedium zurück gelegt. Nach der Co-kultur werden die Explantate auf MSZ2 Medium (MS pH 6,1 mit 3 % Saccharose, 2 mg/1 Zeatin, 100 mg/1 Kanamycin, 160 mg/1 Ti entin) transferiert und für die selektive Regeneration bei 21°C unter Schwachlicht Bedingungen (20 bis 5 100 μE, Licht/Dunkel-Rhythmus 16h / 8h) aufbewahrt. Alle zwei bis drei Wochen erfolgt der Transfer der Explantate bis sich Sprosse bilden. Kleine Sprosse können vom Explantat abgetrennt werden und auf MS (pH 6,1 mit 3 % Saccharose) 160 mg/1 Timentin, 30 mg/1 Kanamycin, 0,1 mg/1 IAA bewurzelt werden. Bewurzelte Pflanzen 0 werden ins Gewächshaus überführt.
Die Transgenizität bewurzelter Tomatenpflanzen wird mittels PCR unter Verwendung genomischer DNA bestätigt. Das Aktivitätsprofil des ε-Cyclase-Promoterfragments lässt sich im Fall des ecycP:GUS Konstruktes durch GUS-Assay nach Standardmethoden untersuchen (Jefferson et al. (1987) EMBO J 6:3901-3907). Das Aktivitätsprofil des ε-Cyclase-Promoterfragment lässt sich im Fall des Konstruktes pEcycP2:KETO durch Northernblot-Analyse nach Standardmethoden unter Verwendung einer Ketolase-spezifischen Hybridisierungssonde oder durch Ketolase-spezifische Realtime-PCR (Sambrook & Rüssel, 2001, Molecular Cloning: A laboratory manual, 3rd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York) untersuchen.
Beispiel 5 : Herstellung eines transgenen Expressionsvektors zur Herstellung von doppelsträngigen ε-Cyclase-Ribo- nukleinsäuresequenz
Die Expression von invertierten-"Repeat" Transkripten bestehend aus Fragmenten des ε-Cyclase-Promotors in Tagetes erecta erfolgt unter Kontrolle einer modif-izieι?ten- s-rsi.on (AP3P) des blütenspezifischen Promoters AP3 aus Arabidopsis thaliana (GenBank Acc. -NO.: AL132971: Nukleotidregion 9298 bis 10200; Hill et al . (1998) Development 125:1711-1721). Das invertierte-"Repeat" Transkript enthält jeweils ein Fragment in korrekter Orientierung (Sense-Fragment) und ein sequenzidentisches Fragment in entgegengesetzter Orientierung (Antisense-Fragment) , die durch ein funktionelles Intron, das PIV2 Intron des ST-LHl Genes aus Kartoffel (Vancanneyt G et al. (1990) Mol Gen Genet 220:245-50) miteinander verbunden sind.
Die cDNA, die für den AP3 Promoter (-902 bis +15) aus Arabidopsis thaliana kodiert, wird mittels PCR unter Verwendung genomischer DNA (nach Standardmethode aus Arabidopsis thaliana isoliert) und der Primer PR7 (SEQ ID NO: 67) und PR10 (SEQ ID NO: 70) hergestellt. Die PCR-Bedingungen sind die folgenden: Die PCR zur Amplifikation der DNA, die das AP3-Promoterfragment (-902 bis +15) kodiert, erfolgt in einem 50 μl Reaktionsansatz, in dem enthalten ist:
- 1 μl (entsprechend 20 ng) genomischer DNA aus
A. thaliana (1:100 verd. ; hergestellt wie oben beschrieben) 0,25 mM dNTPs
0,2 μM Primer PR7 (SEQ ID NO: 67) - 0,2 UM Primer PR10 (SEQ ID NO: 70) 5 μl 10X PCR-Puffer (Stratagene) 0,25 μl Pfu Polymerase (Stratagene) 28,8 μl steriles, destilliertes Wasser
Die PCR wird unter folgenden Zyklusbedingungen durchgeführt:
1 Zyklus mit 94°C für 2 Minuten. 35 Zyklen mit 94°C für 1 Minute, 50°C für 1 Minute und 72°C für 1 Minute. Abschließend 1 Zyklus mit 72°C für 10 Minuten.
Das 922 bp Ämplifikat wird unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR 2.1 (Invitrogen) kloniert und das Plasmid pTAP3 erhalten. Sequenzierung des Klons pTAP3 bestätigt eine Sequenz, die sich lediglich in durch eine Insertion (ein G in Position 9765 der Sequenz GenBank Acc.-No.: AL132971) und einen Basenaustausch (ein G statt ein A in Position 9726 der Sequenz GenBank Acc.-No.: AL132971) von der publizierten AP3 Sequenz (GenBank Acc.-No. : AL132971, Nukleotidregion 9298 bis 10200) unterscheidet (Position 33: T statt G, Position 55: T statt G) . Diese Nukleotidunterschiede können in einem unab- hängigen Amplifikationsexperiment reproduziert werden und repräsentieren- somit die-'Nukleot^sequenz in der verwendeten Arabidopsis thaliana Pflanze.
Die modifizierte Version AP3P wird mittels rekombinanter PCR unter Verwendung des Plasmids pTAP3 hergestellt. Die Region 10200 bis 9771 wird mit den Primern PR7 (SEQ ID NO: 67) und Primern PR9 (SEQ ID NO: 69) amplifiziert (Ämplifikat A7/9) , die Region 9526 bis 9285 wurde mit den PR8 (SEQ ID NO: 68) und PR10 (SEQ ID NO: 70) amplifiziert (Ämplifikat A8/10) . Die PCR- Bedingungen sind die folgenden: Die PCR-Reaktionen zur Amplifikation der DNA-Fragmente, die für die Regionen Region 10200 bis 9771 und 9526 bis 9285 des AP3 Promoters kodieren, erfolgt in 50 μl Reaktionsansätzen, in denen enthalten ist:
100 : ng AP3 Ämplifikat (oben beschrieben)
0 , , 25 mM dNTPs
0 , , 2 μM Primer PR7 (SEQ ID NO: 67) bzw. Primer PR8 (SEQ ID NO: 68) 10 - 0 0,, .22 μ μMM Primer PR9 (SEQ ID NO: 69) bzw.
Primer PR10 (SEQ ID NO: 70)
5 μl 10 X PCR-Puffer (Stratagene)
0 , 25 μl Pfu Taq Polymerase (Stratagene)
2E ! , 8 μl steriles, destilliertes Wasser
15
Die PCR wird unter folgenden Zyklusbedingungen durchgeführt: 1 Zyklus mit 94°C für 2 Minuten. 35 Zyklen mit 94°C für 1 Minute, 50°C für 2 Minuten und 72°C für 3 Minuten. Abschließend 1 Zyklus mit 72°C für 10 Minuten.
20
Die rekombinante PCR beinhaltet Annealing der sich über eine Sequenz von 25 Nukleotiden überlappenden Amplifikate A7/9 und A8/10, Vervollständigung zu einem Doppelstrang und anschließende Amplifizierung. Dadurch entsteht eine modifizierte Version des
25 AP3 Promoters (AP3P) in dem die Positionen 9670 bis 9526 deletiert sind. Die Denaturierung (5 min bei 95°C) und Annealing (langsame Abkühlung bei Raumtemperatur auf 40°C) beider Amplifikate A7/9 und A8/10 erfolgt in einem 17,6 μl Reaktionsansatz, in dem enthalten ist:
30
0,5 μg • A7/9- 0,25 μg A8/10
Das Auffüllen der 3 '-Enden (30 min bei 30°C) erfolgt in einem 35 20 μl Reaktionsansatz, in dem enthalten ist:
17,6 μl A7/9 und A8/10-Annealingsreaktion (hergestellt wie oben beschrieben) 50 μM dNTPs 40 - 2 μl I Klenow Puffer 2 U Klenow Enzym
Die Nukleinsäure kodierend für die modifizierte Promoterversion AP3P wird mittels PCR unter Verwendung eines sense spezifischen 45 Primers (PR7 SEQ ID NO: 67) und eines antisense spezifischen Primers (PR10 SEQ ID NO: 70) amplifiziert. Die PCR-Bedingungen sind die folgenden:
Die PCR zur Amplifikation des AP3P Fragmentes erfolgt in einem 50 μl Reaktionsansatz, in dem enthalten ist:
1 μl Annealingsreaktion (hergestellt wie oben beschrieben)
0,25 mM dNTPs - 0,2 μM Primer PR7 (SEQ ID NO: 67)
0,2 μM Primer PR10 (SEQ ID NO: 70)
- 5 μl 10 X PCR-Puffer (Stratagene)
0,25 μl Pfu Taq Polymerase (Stratagene)
28,8 μl steriles, destilliertes Wasser
Die PCR wird unter folgenden Zyklusbedingungen durchgeführt : 1 Zyklus mit 94°C für 2 Minuten. 35 Zyklen mit 94°C für 1 Minute, 50°C für 1 Minute und 72°C für 1 Minute. Abschließend 1 Zyklus mit 72°C für 10 Minuten.
Die PCR-Amplifikation mit den Primern PR7 (SEQ ID NO: 67) und PR10 (SEQ ID NO: 70) resultiert in einem 777 bp Fragment, das für die modifizierte Promoterversion AP3P kodiert (SEQ ID NO: 77) . Das Ämplifikat wird in den Klonierungsvektor pCR2.1 (Invitrogen) kloniert. Sequenzierungen mit den Primern T7 und M13 bestätigten eine zur Sequenz GenBank Acc.-No.: AL132971, Region 10200 bis 9298 identische Sequenz, wobei die interne Region 9285 bis 9526 deletiert ist . Dieser Klon wird für die Klonierung in den Expressionsvektor pJITH7 (Guerineau et al. (1988) Nucl Acids Res 16:11380) verwendet.
Die Klonierung erfolgt durch Isolierung des 775 bp Sacl-Hindlll Fragmentes aus pTAP3P und Ligierung in den Sacl-Hindlll geschnittenen Vektor pJIT117. Der Klon, der den Promoter AP3P anstelle des ursprünglichen Promoters d35S enthält, heißt pJAP3P.
Ein DNA-Fragment, das das PIV2 Intron des Gens ST-LSl enthält wird mittels PCR unter Verwendung von Plasmid-DNA p35SGUS INT (Vancanneyt G. et al.(1990) Mol Gen Genet 220 :245-250) sowie der Primer PR40 (SEQ ID NO: 71) und PR41 (SEQ ID NO: 72) hergestellt. Die PCR-Bedingungen sind die folgenden: Die PCR zur Amplifikation der Sequenz des Intron PIV2 des Gens ST-LSl, erfolgt in einem 50 μl Reaktionsansatz, in dem enthalten ist:
- 50 ng p35SGUS INT
0,25 mM dNTPs
0,2 μM Primer PR40 (SEQ ID NO: 71)
0,2 UM Primer PR41 (SEQ ID NO: 72)
5 μl 10X PCR-Puffer (TAKARA) - 0,25 μl R Taq Polymerase (TAKARA)
- 28,8 μl steriles, destilliertes Wasser
Die PCR wird unter folgenden Zyklusbedingungen durchgeführt: 1 Zyklus mit 94°C für 2 Minuten. 35 Zyklen mit 94°C für 1 Minute, 53°C für 1 Minute und 72°C für 1 Minute. Abschließend 1 Zyklus mit 72°C für 10 Minuten.
Die PCR-Amplifikation mit PR40 und PR41 resultiert in einem 212 bp-Fragment (SEQ ID NO: 78) . Unter Verwendung von Standard- methoden wird das Ämplifikat in den PCR-Klonierungsvektor pBluntll (Invitrogen) kloniert und der Klon pBluntII-40-41 erhalten. Sequenzierungen dieses Klons mit dem Primer SP6 bestätigt eine Sequenz, die identisch ist mit der entsprechenden Sequenz aus dem Vektor p35SGUS INT. Dieser Klon wird für die Klonierung in den Vektor pJAP3P (s.o.) eingesetzt. Die Klonierung erfolgt durch Isolierung des 210 bp Sall-BamHI Fragmentes aus pBluntII-40-41 und Ligierung mit dem Sall-BamHI geschnittenen Vektor pJAP3P. Der Klon, der das Intron PIV2 des Gens ST-LSl in der korrekten Orientierung anschließend an das 3 "Ende des rbcs Transitpeptides enthält, heißt pJAIl und ist geeignet, Expressionskasset-te?i-.'für die blütenspezifische Expression von Inverted-Repeat Transkripten herzustellen.
Beispiel 6: Herstellung von invertierten-"Repeat"-Expressions- kassetten für die blütenspezifische Expression von ε-Cyclase-Promotor dsRNAs in Tagetes erecta
Die Expression von invertierten-"Repeat" Transkripten bestehend aus Promoterfragmenten der ε-Cyclase in Tagetes erecta erfolgte unter Kontrolle einer modifizierten Version (AP3P) des blütenspezifischen Promoters AP3 aus Arabidopsis (siehe Beispiel 5) oder des blütenspezifischen Promoters CHRC (Genbank Acc.-No. AF099501) . Das invertierte-"Repeat" Transkript enthält jeweils ein ε-Cyclase-Promoterfragment in korrekter Orientierung (Sense- Fragment) und ein sequenzidentisches ε-Cyclase-Promoterfragment in entgegengesetzter Orientierung (Antisense-Fragment) , die durch ein funktionelles Intron (siehe Beispiel 5) mit einander verbunden sind.
Die Promoterfragmente werden mittels PCR unter Verwendung von Plasmid-DNA (Klon pTA-ecycP, siehe Beispiel 2) und der Primer PR124 (SEQ ID NO: 73) und PR126 (SEQ ID NO: 75) bzw. der Primer PR125 (SEQ ID NO: 74) und PR127 (SEQ ID NO: 76) hergestellt. Die Bedingungen der PCR-Reaktionen sind die folgenden:
Die PCR zur Amplifikation des PR124-PR126 DNA-Fragmentes, das das Promoterfragment der ε-Cyclase enthält, erfolgt in einem 50 μl Reaktionsansatz, in dem enthalten ist:
1 μl pTA-ecycP (10 ng/μl; siehe Beispiel 2) - 0,25 mM dNTPs
0,2 μM Primer PR124 (SEQ ID NO: 73)
0,2 μM Primer PR126 (SEQ ID NO: 75)
5 μl 10X PCR-Puffer (Stratagen)
0,25 μl Pfu Polymerase (Stratagen) - 28,8 μl steriles, destilliertes Wasser
Die PCR zur Amplifikation des PR125-PR127 DNA-Fragmentes , das das 312bp Promoterfragment der ε-Cyclase enthält, erfolgt in einem 50 μl Reaktionsansatz, in dem enthalten ist:
1 μl pTA-ecycP (10 ng/μl; siehe Beispiel 2) 0,25 mM dNTPs
0,2 μM Primer PR125 (SEQ ID NO: 74) 0,2 μM Primer PR127 (SEQ ID NO: 76) - 5 μl 10X PCR-Puffer (Stratagen) 0,25 -μl P^ - Polymerase (Stratagen) 28,8 μl steriles, destilliertes Wasser
Die PCR-Reaktionen werden unter folgenden Zyklusbedingungen durchgeführt: 1 Zyklus mit 94°C für 2 Minuten. 35 Zyklen mit 94°C für 1 Minute, 53°C für 1 Minute und 72°C für 1 Minute. Abschließend 1 Zyklus mit 72°C für 10 Minuten.
Die PCR-Amplifikation mit Primer PR124 und PR126 resultiert in einem 358 bp-Fragment, die PCR-Amplifikation mit Primer PR125 und PR127 resultierte in einem 361 bp-Fragment.
Die beiden Amplifikate, das PR124-PR126 (Hindlll-Sall sense) Fragment und das PR125-PR127 (EcoRI-BamHI antisense) Frag- ment, werden unter Verwendung von Standardmethoden in den PCR-Klonierungsvektor pCR-Bluntll (Invitrogen) kloniert. Sequenzierungen mit dem Primer SP6 bestätigen jeweils eine Sequenz, die abgesehen von den eingeführten Restriktionsstellen identisch ist zu SEQ ID NO: 58. Diese Klone werden daher für die Herstellung eines Inverted-Repeat Konstrukts in dem Klonierungs- vektor pJAIl (siehe Beispiel 5) verwendet.
Der erste Klonierungsschritt erfolgt durch Isolierung des 356 bp PR124-PR126 Hindlll-Sall Fragmentes aus dem Klonierungsvektor pCR-Bluntll (Invitrogen) und Ligierung mit dem Hindlll-Sall geschnittenen Vektor pJAIl. Der Klon, der das ε-Cyclase Promoter- fragment in der sense Orientierung enthält, heißt cs43. Durch die Ligation wird das Sense-Fragment des ε-Cyclase Promoters zwischen den AP3P Promoter und das Intron eingefügt. Der zweite Klonierungsschritt erfolgt durch Isolierung des 359 bp PR125-PR127 BamHI-EcoRI Fragmentes aus dem Klonierungsvektor pCR- Bluntll (Invitrogen) und Ligierung mit BamHI-EcoRI geschnittenen Vektor cs43. Der Klon, der das ε-Cyclase Promoterfragment in der antisense Orientierung enthält, heißt cs44. Durch die Ligation entsteht eine transkriptioneile Fusion zwischen dem Intron und dem Antisense-Fragment des ε-Cyclase Promoters.
Für die Herstellung einer invertierten-"Repeat" Expressionskassette unter Kontrolle des CHRC-Promoters wird ein CHRC- Promoterfragment unter Verwendung genomischer DNA aus Petunie (nach Standardmethoden hergestellt) sowie der Primer PRCHRC5 λ (SEQ ID NO 82) und PRCHRC3 λ (SEQ ID NO: 83) amplifiziert. Das Ämplifikat wird in den Klonierungsvektor pCR2.1 (Invitrogen) kloniert . Sequenzierungen des resultierenden Klons pCR2.1-CHRC mit den Primern M13 und T7 bestätigen eine zur Sequenz GenBank Acc.-No.: AF099501 identische Sequenz. Dieser Klon wird daher fürdie Klonierung in den Expressionsvektor cs44 verwendet. Die durch Isolierung des 1535 bp Sacl-Hindlll Fragments aus pCR2.1-CHRC und Ligierung in den Sacl-Hindlll geschnittenen Vektor cs44. Der Klon, der den Promoter CHRC anstelle des ursprünglichen Promoters AP3P enthält heißt cs45.
Die Herstellung der Transformationsplasmide für die Agro- bacterium-vermittelte Transformation des AP3P-kontrollierten Inverted-Repeat Transkripts in Tagetes erecta erfolgt unter der Verwendung des binären Vektors pSUN5 (WO 02/00900) .
Zur Herstellung des Transformationsplasmides pS5AI7 wird das 1683 bp Sacl-Xhol Fragment aus cs44 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (Fig. 5, Konstruktkarte). Zur Herstellung des Transformationsplasmides pS5Cl7 wird das 2448 bp Sacl-Xhol Fragment aus cs45 mit dem Sacl-Xhol geschnittenen Vektor pSUN5 ligiert (Fig.6, Konstruktkarte).
Beispiel 7 : Herstellung und Analyse transgener Tagetespflanzen
Die Transformationsplasmides pS5AI7 und pS5CI7 werden durch Agrobakterium tumefaciens vermittelte Transformation in Tagetes transformiert .
Tagetessamen werden sterilisiert und auf Keimungsmedium (MS-Medium; Murashige & Skoog (1962) Physiol Plant 15:473-497) pH 5,8, 2 % Saccharose) aufgelegt. Die Keimung erfolgt in einem Temperatur/Licht/Zeitintervall von 18 bis 28°C / 20 bis 200 μE / 3 bis 16 Wochen, bevorzugt jedoch bei 21°C, 20 bis 70 μE, für 4 bis 8 Wochen.
Alle Blätter der sich bis dahin entwickelten in vitro Pflanzen werden geerntet und quer zur Mittelrippe geschnitten. Die dadurch entstehenden Blattexplantate mit einer Größe von 10 bis 60 mm2 werden im Verlaufe der Präparation in flüssigem MS - Medium bei Raumtemperatur für maximal 2 h aufbewahrt.
Ein beliebiger Agrobakterium tumefaciens Stamm, bevorzugt aber ein supervirulenter Stamm, wie z.B. EHA105 mit einem entsprechenden Binärplasmid, das ein Selektionsmarkergen (bevorzugt bar oder pat) sowie ein oder mehrere Trait- oder Reportergene tragen kann wird, über Nacht angezogen und für die Co-Kultivierung mit dem Blattmaterial verwendet. Die Anzucht des Bakterienstammes kann wie folgt erfolgen: Eine Einzelkolonie des entsprechenden Stammes ird' ϊϊ-^ΞS (0,1 % Hefeextrakt, 0,5 % Rindfleischextrakt, 0,5 % Pepton, 0,5 % Saccharose, 0,5 % Magnesiumsulfat x 7 H20) mit 25 mg/1 Kanamycin angeimpft und bei 28°C für 16 bis 20 h angezogen. Anschließend wird die Bakteriensuspension durch Zentri- fugation bei 6000 g für 10 min geerntet und derart in flüssigem MS Medium resuspendiert, daß eine ODÖOO von ca. 0,1 bis 0,8 entstand.
Unmittelbar vor der Co-Kultivierung wird das MS-Medium, in dem die Blätter aufbewahrt worden sind, durch die Bakteriensuspension ersetzt. Die Inkubation der Blättchen in der Agrobakteriensuspension erfolgte für 30 min unter leichtem Schütteln bei Raumtemperatur. Anschließend werden die infizierten Explantate auf ein mit Agar (z.B. 0,8 % Plant Agar (Duchefa, NL) verfestigtes MS-Medium mit Wachstumsregulatoren, wie beispielsweise 3 mg/1 Benzylaminopurin (BAP) sowie 1 mg/1 Indolylessig- säure (IAA) aufgelegt. Die Orientierung der Blätter auf dem Medium ist bedeutungslos . Die Kultivierung der Explantate findet für 1 bis 8 Tage, bevorzugt aber für 6 Tage statt, dabei können folgende Bedingungen angewendet werden: Lichtintensität: 30 bis 80 μMol/m2 x sec, Temperatur: 22 bis 24°C, hell/dunkel Wechsel von 16/8 Stunden. Anschließend werden die co-kultivierten Explantate auf frisches MS-Medium, bevorzugt mit den gleichen Wachstumsregulatoren übertragen, wobei dieses zweite Medium zusätzlich ein Antibiotikum zur Unterdrückung des Bakterienwachstums enthält. Timentin in einer Konzentration von 200 bis 500 mg/1 ist für diesen Zweck sehr geeignet. Als zweite selektive Komponente wird eine für die Selektion des Transformationserfolges eingesetzt. Phosphinothricin in einer Konzentration von 1 bis 5 mg/1 selektiert sehr effizient, aber auch andere selektive Komponenten gemäß des zu verwendenden Verfahrens sind denkbar. Nach jeweils ein bis drei Wochen erfolgt der Transfer der Explantate auf frisches Medium bis sich Sprossknospen und kleine Sprosse entwickeln, die dann auf das gleiche Basalmedium einschließlich Timentin und PPT oder alternative Komponenten mit Wachstumsregulatoren, nämlich z.B. 0,5 mg/1 Indolylbuttersäure (IBA) und 0,5 mg/1 Gibberillinsäure GA3, zur Bewurzelung übertragen werden. Bewurzelte Sprosse können ins Gewächshaus überführt werden.
Zusätzlich zu der beschriebenen Methode sind folgende vorteilhafte Modifikationen möglich:
Bevor die Explantate mit den Bakterien infiziert werden, können sie für 1 bis 12 Tage, bevorzugt 3 bis 4, auf das oben beschriebene Medium für die Co-Kultur vorinkubiert werden. Anschließend erfolgt die Infektion, Co-Kultur und selektive Regeneration wie oben beschrieben.
Der pH Wert für die Regeneration (normalerweise 5,8) kann auf pH 5,2 gesenkt werden. Dadurch wird die Kontrolle des Agro- bakterienwachstums verbessert .
Die Zugabe von AgN03 (3 bis 10 mg/1) zum Regenerationsmedium verbessert den Zustand der Kultur einschließlich der Regeneration selbst.
- Komponenten, die die Phenolbildung reduzieren und dem Fachmann bekannt sind, wie z.B. Zitronensäure, Ascorbinsäure, PVP u.v.a.m., wirken sich positiv auf die Kultur aus. Für das gesamte Verfahren kann auch flüssiges Kulturmedium Verwendung finden. Die Kultur kann auch auf handelsüblichen Trägern, die auf dem flüssigen Medium positioniert werden inkubiert werden.
Die Transgenizität bewurzelter Sprosse kann anhand isolierter genomischer DNA mittels Polymerasekettenreaktion (PCR) untersucht werden. Die Verminderung der ε-Cyclase-Transkriptmengen (im Vergleich mit dem zur Transformation verwendeten Wildtyp) infolge Transformation mit dem Transformationsplasmid pS5Al7 oder PS5CI7 kann untersucht werden durch Northerngelblotanalyse nach Standardmethoden (Sambrook & Rüssel, 2001, Molecular Cloning: A laboratory manual, 3rd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York) unter Verwendung einer ε-Cyclase-spezifischen Hybridisierungssonde, beispielsweise wie in Beispiel 1 beschrieben hergestellt. Weiterhin kann die Verminderung der ε-Cyclase-Transkriptmengen (im Vergleich mit dem zur Transformation verwendeten Wildtyp) mittels ε-Cyclase-spezifischer Realtime PCR untersucht werden.

Claims

Patentansprüche
1. Verfahren zur transgenen Expression von Nukleinsäuresequenzen in der pflanzlichen Blüte, wobei nachfolgende Schritte umfasst sind
I. Einbringen einer transgenen Expressionskassette in pflanzliche Zellen, wobei die transgene Expressions- kassette mindestens nachfolgende Elemente enthält
a) mindestens eine Promotorsequenz eines Gens kodierend für eine ε-Cyclase, und
b) mindestens eine weitere Nukleinsäuresequenz, und
c) gegebenenfalls weitere genetische Kontrollelemente,
wobei mindestens eine der besagten Promotorsequenzen und eine weitere Nukleinsäuresequenz funktionell miteinander verknüpft sind und die weitere Nukleinsäuresequenz in Bezug auf die Promotorsequenz oder die pflanzliche Zelle heterolog ist, und
II. Auswahl von transgenen Zellen, die besagte Expressionskassette stabil in das Genom integriert enthalten, und
III. Regeneration von vollständigen Pflanzen aus besagten transgenen Zellen, wobei mindestens eine der weiteren Nukleinsäuresequenz in der Blüte exprimiert wird.
2. Verfahren nach Anspruch 1, wobei die Promotorsequenz eines Gens kodierend für eine ε-Cyclase eine Sequenz ausgewählt ist aus der Gruppe von Sequenzen bestehend aus
i) der Promotorsequenz der ε-Cyclase aus Tagetes erecta gemäß SEQ ID NO: 1, der ε-Cyclase aus Arabidopsis thaliana gemäß SEQ ID NO : 7 , der ε-Cyclase aus Oryza sativa gemäß SEQ ID NO: 8, und
ii) funktionellen Äquivalenten der Promotorsequenzen gemäß SEQ ID NO: 1, 7 oder 8 mit im wesentlichen der gleichen Promotoraktivität wie der Promotor der ε-Cyclasen gemäß SEQ ID NO: 1, 7 oder 8 und iii) funktionell äquivalenten Fragmenten der Sequenzen unter i) oder ii) mit im wesentlichen der gleichen Promotoraktivität wie der Promotor der ε-Cyclasen gemäß SEQ ID NO: 1, 7 oder 8.
3. Verfahren zur Identifikation und/oder Isolation von
Promotoren von Genen, die für eine ε-Cyclase kodieren, wobei bei der Identifikation und/oder Isolation mindestens eine Nukleinsäuresequenz oder ein Teil derselben zum Einsatz kommt, wobei besagte Nukleinsäuresequenz für eine Aminosäuresequenzen kodiert, die mindestens eine Sequenz gemäß SEQ ID NO: 17, 18, 19, 20, 21 oder 22 oder eine Variation dieser Sequenzen umfasst.
4. Verfahren nach Anspruch 3 , wobei besagte Nukleinsäuresequenz eine Sequenz gemäß SEQ ID NO: 23, 25, 27, 29, 29, 31, 33, 35, 37, 39, 41, 43 oder 45 umfasst.
5. Verfahren nach einem der Ansprüche 3 oder 4 , wobei das Ver- fahren unter Einsatz der Polymerasekettenreaktion durchgeführt wird und die besagte Nukleinsäuresequenz oder ein Teil derselben als Primer eingesetzt wird.
6. Verfahren zur Herstellung einer transgenen Expressionskas- sette mit Spezifität für die pflanzliche Blüte, umfassend nachfolgende Schritte:
I. Isolation einer Promotorsequenz, wobei bei der Isolation mindestens eine Nukleinsäuresequenz oder ein Teils der- selben zum Einsatz kommt, wobei besagte Nukleinsäuresequenz für eine Aminosäuresequenzen kodiert, die -mndestens eine Sequenz gemäß SEQ ID NO: 17, 18, 19, 20, 21 oder 22 oder eine Variation dieser Sequenzen umfasst.
II . Funktionelle Verknüpfung besagter Promotorsequenz mit einer weiteren Nukleinsäuresequenz, wobei besagte Nukleinsäuresequenz in Bezug auf den Promotor heterolog ist.
7. Verfahren nach Anspruch 6, wobei besagte Nukleinsäuresequenz eine Sequenz gemäß SEQ ID NO: 23, 25, 27, 29, 29, 31, 33, 35, 37, 39, 41, 43 oder 45 umfasst.
8. Verfahren nach einem der Ansprüche 6 oder 7, wobei das Verfahren unter Einsatz der Polymerasekettenreaktion durchgeführt wird und die besagte Nukleinsäuresequenz oder ein Teil derselben als Primer eingesetzt wird.
9. Transgene Expressionskassette zur gezielten, transgenen Expression von Nukleinsäuresequenzen in der pflanzlichen Blüte, umfassend
a) mindestens eine Promotorsequenz eines Gens kodierend für eine ε-Cyclase,' und
b) mindestens eine weitere Nukleinsäuresequenz, und
c) gegebenenfalls weitere genetische Kontrollelemente,
wobei mindestens eine Promotorsequenz und eine weitere Nukleinsäuresequenz funktionell miteinander verknüpft sind und die weitere Nukleinsäuresequenz in Bezug auf die Promotorsequenz heterolog ist.
10. Transgene Expressionskassette nach Anspruch 9, wobei die Promotorsequenz eines Gens kodierend für eine ε-Cyclase eine Sequenz ist ausgewählt aus der Gruppe von Sequenzen bestehend aus
i) der Promotorsequenz der ε-Cyclase aus Tagetes erecta gemäß SEQ ID NO: 1, der ε-Cyclase aus Arabidopsis thaliana gemäß SEQ ID NO: 7, der ε-Cyclase aus Oryza sativa gemäß SEQ ID NO: 7, und
ii) funktionellen Äquivalenten der Promotorsequenzen gemäß SEQ ID NO: 1, 7 oder 8 mit im wesentlichen der gleichen Promotoraktivität wie der Promotor der ε-Cyclasen gemäß SEQ ID NO: 1, 7 oder 8 und
iii) funktionell äquivalenten Fragmenten der Sequenzen unter i) oder ii) mit im wesentlichen der gleichen Promotoraktivität wie der Promotor der ε-Cyclasen gemäß SEQ ID NO: 1, 7 oder 8.
11. Transgene Expressionskassette nach Anspruch 9 oder 10, wobei die transgen zu exprimierende Nukleinsäuresequenz
a) die Expression eines von besagter Nukleinsäuresequenz kodierten Proteins, oder
b) die Expression eines von besagter Nukleinsäuresequenz kodierter sense-RNA, anti-sense-RNA oder doppelsträngigen RNA
10 ermöglicht.
12. Isolierte Nukleinsäuresequenz umfassend
15 a) den Promotor der ε-Cyclase aus Tagetes erecta gemäß SEQ ID NO: 1 oder
b) ein funktionell äquivalentes Fragment von a) mit im wesentlichen der gleiche Promotoraktivität wie a) . 20
13. Isolierte Nukleinsäuresequenz gemäß Anspruch 12, umfassend in 3 ' -Orientierung zu dem Promotor der ε-Cyclase aus Tagetes erecta gemäß SEQ ID NO: 1 oder einem funktionell äquivalenten Fragment der vorgenannten, eine Sequenz kodierend für eine
25 5 ' -untranslatierte Region und/oder ein Transidpeptid.
14. Isolierte Nukleinsäuresequenz nach Anspruch 12 oder 13 umfassend eine Sequenz beschrieben durch SEQ ID NO: 2 oder 3.
30 15. Doppelsträngiges RNA-Molekül umfassend
a) einen "sense"-RNA-Strang umfassend mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu mindestens einem Teil einer Nukleinsäuresequenz kodierend
35 für den Promotorbereich einer ε-Cyclase, und
b) einen "antisense"-RNA-Strang, der zu dem
RNA-"sense"-Strang unter a) im wesentlichen komplementären ist.
40
16. Doppelsträngiges RNA-Molekül nach Anspruch 15, wobei der
Promotorbereich der ε-Cyclase. eine Sequenz umfasst ausgewählt aus den Sequenzen gemäß SEQ ID NO: 1, 7 oder 8.
5
17. Ribonukleinsäuremolekül umfassend
a) mindestens eine Ribonukleotidsequenz, die im wesentlichen identisch ist zu mindestens einem Teil einer Nuklein-
5 säuresequenz kodierend für den Promotorbereich einer ε-Cyclase, und
b) mindestens eine weitere Ribonukleotidsequenz, die zu mindestens einem Teil der Ribonukleotidsequenz unter a)
10 im wesentlichen komplementären ist,
wobei a) und b) kovalent miteinander verbunden sind und zwischen a) und b) gegebenenfalls weitere Funktionselernente lokalisiert sein können. 15
18. Ribonukleinsäuremolekül nach Anspruch 17, wobei der Promotorbereich der ε-Cyclase eine Sequenz umfasst ausgewählt aus den Sequenzen gemäß SEQ ID NO: 1, 7 oder 8.
20 19. Transgene Expressionskassette, umfassend
a) mindestens einen in Pflanzen funktionellen Promotor, und
b) mindestens eine Nukleinsäuresequenz kodierend für ein
25 doppelsträngiges RNA-Molekül gemäß einem der Ansprüche 15 oder 16 oder kodierend für ein Ribonukleinsäuremolekül gemäß einem der Ansprüche 17 oder 18,
wobei mindestens einer der besagten Promotor und mindestens 30 eine der besagten Nukleinsäuresequenzen funktionell miteinander verknüpft sind und der Promotor -in. ϊlozug auf die Nukleinsäuresequenz heterolog ist.
20. Transgene Expressionskassette nach Anspruch 19, wobei der 35 Promotor ein Promotor mit Spezifität für die pflanzliche
Blüte ist .
21. Transgener Expressionvektor enthaltend eine Nukleinsäuresequenz gemäß einem der Ansprüche 12 bis 14 oder eine trans- 0 gene Expressionskassette gemäß einem der Ansprüche 9, 10, 11, 19 oder 20.
22. Transgener Organismus enthaltend eine Nukleinsäuresequenz gemäß einem der Ansprüche 12 bis 14, eine doppelsträngige RNA 5 gemäß Anspruch 15 oder 16, eine Ribonukleotidsequenz gemäß
Anspruch 17 oder 18, eine transgene Expressionskassette gemäß einem der Ansprüche 9, 10, 11, 19 oder 20 oder einen transgenen Expressionsvektor gemäß Anspruch 21.
23. Transgener Organismus nach Anspruch 22 ausgewählt aus der Gruppe bestehend aus Bakterien, Hefen, Pilzen, tierischen und pflanzlichen Organismen.
24. Transgener Organismus nach Anspruch 22 ausgewählt aus der Gruppe bestehend aus Bakterien, Hefen, Pilzen, nicht-mensch- liehen tierischen und pflanzlichen Organismen oder von diesen abgeleitete Zellen, Zellkulturen, Teile, Gewebe,. Organe oder Vermehrungsgut .
25. Transgener Organismus nach Anspruch 23 oder 24 ausgewählt aus der Gruppe der landwirtschaftlichen Nutzpflanzen.
26. Verwendung einer isolierten Nukleinsäuresequenz gemäß einem der Ansprüche 12 bis 14, einer doppelsträngige RNA gemäß Anspruch 15 oder 16, einer Ribonukleotidsequenz gemäß Anspruch 17 oder 18, einer transgene Expressionskassette gemäß einem der Ansprüche 9, 10, 11, 19 oder 20, eines transgenen Expressionsvektor gemäß Anspruch 21 oder eines transgenen Organismus gemäß einem der Ansprüche 23 bis 25 oder von diesem abgeleiteter Zellkulturen, Teile, Organe, Gewebe oder transgenes Vermehrungsgut in Verfahren zur transgenen Expression von Nukleinsäuren oder Proteinen.
27. Verwendung einer isolierten Nukleinsäuresequenz gemäß einem der Ansprüche 12 bis 14, einer doppelsträngige RNA gemäß Anspruch 15 oder 16, einer Ribonukleotidsequenz gemäß
Anspruch 17 oder 18, einer- transgene -Ξxpressionskassette gemäß einem der Ansprüche 9, 10, 11, 19 oder 20, eines transgenen Expressionsvektor gemäß Anspruch 21 oder eines transgenen Organismus gemäß einem der Ansprüche 23 bis 25 oder von diesem abgeleiteter Zellkulturen, Teile, Organe, Gewebe oder transgenes Vermehrungsgut zur Herstellung von Nahrungs-, Futtermitteln, Saatgut, Pharmazeutika oder Feinchemikalien.
28. Verfahren zur Herstellung von Nahrungs-, Futtermitteln, Saat- gut, Pharmazeutika oder Feinchemikalien, wobei ein transgener
Organismen nach einem der Ansprüche 23 bis 25 gezüchtet wird und das gewünschte Nahrungs-, Futtermitteln, Saatgut, Pharma- zeutikum oder Feinchemikalie unter Verwendung des besagten Organismus hergestellt und/oder isoliert wird.
9. Verfahren zur Herstellung von Ketocarotinoiden, wobei die mRNA-Menge und/oder Aktivität mindestens einer ε-Cyclase vermindert wird durch Einbringen mindestens einer doppelsträngige RNA gemäß Anspruch 15 oder 16, einer Ribonukleotidsequenz gemäß Anspruch 17 oder 18 oder einer transgene Expressionskassette gemäß einem der Ansprüche 19 oder 20.
EP03793448A 2002-10-11 2003-07-30 Transgene expressionskassetten zur expression von nukleinsäuren in der pflanzlichen blüte Withdrawn EP1554388A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10247599 2002-10-11
DE10257599 2002-10-11
DE10247599 2002-10-11
DE10257599 2002-10-11
PCT/EP2003/008394 WO2004027069A1 (de) 2002-08-20 2003-07-30 Transgene expressionskassetten zur expression von nukleinsäuren in der pflanzlichen blüte

Publications (1)

Publication Number Publication Date
EP1554388A1 true EP1554388A1 (de) 2005-07-20

Family

ID=34621255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03793448A Withdrawn EP1554388A1 (de) 2002-10-11 2003-07-30 Transgene expressionskassetten zur expression von nukleinsäuren in der pflanzlichen blüte

Country Status (1)

Country Link
EP (1) EP1554388A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032788A2 (en) * 1998-11-30 2000-06-08 Chr. Hansen A/S Method for regulating carotenoid biosynthesis in marigolds
WO2004018385A2 (de) * 2002-08-20 2004-03-04 Sungene Gmbh & Co. Kgaa Verfahren zur herstellung von zeaxanthin und/oder dessen biosynthetischen zwischen- und/oder folgeprodukten
WO2004018688A1 (de) * 2002-08-20 2004-03-04 Sungene Gmbh & Co. Kgaa VERFAHREN ZUR HERSTELLUNG VON β-CAROTINOIDEN

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000032788A2 (en) * 1998-11-30 2000-06-08 Chr. Hansen A/S Method for regulating carotenoid biosynthesis in marigolds
WO2004018385A2 (de) * 2002-08-20 2004-03-04 Sungene Gmbh & Co. Kgaa Verfahren zur herstellung von zeaxanthin und/oder dessen biosynthetischen zwischen- und/oder folgeprodukten
WO2004018693A2 (de) * 2002-08-20 2004-03-04 Sungene Gmbh & Co.Kgaa Verfahren zur herstellung von ketocarotinoiden in blütenblättern von pflanzen
WO2004018688A1 (de) * 2002-08-20 2004-03-04 Sungene Gmbh & Co. Kgaa VERFAHREN ZUR HERSTELLUNG VON β-CAROTINOIDEN
WO2004017749A2 (de) * 2002-08-20 2004-03-04 Sungene Gmbh & Co. Kgaa Verwendung von astaxanthinhaltigen pflanzen oder pflanzenteilen der gattung tagetes als futtermittel

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CUNNINGHAM F X ET AL: "One ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 98, no. 5, 27 February 2001 (2001-02-27), pages 2905 - 2910, XP002220813, ISSN: 0027-8424 *
DATABASE EM_PL [online] 12 July 2000 (2000-07-12), GUILIANO G. ET AL.: "Arabidopsis thaliana lycopene epsilon cyclase gene, complete cds.", XP002262012, Database accession no. AF117257 *
DATABASE EM_PL [online] 5 March 1999 (1999-03-05), NAKAMURA Y.: "Arabidopsis thaliana genomic DNA, chromosome 5, P1 clone:MHM17", XP002262011, Database accession no. AB024035 *
RONEN ET AL: "Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant", PLANT JOURNAL, vol. 17, no. 4, February 1999 (1999-02-01), pages 341 - 351, XP002123127, ISSN: 0960-7412 *
SANDMANN GERHARD: "Molecular evolution of carotenoid biosynthesis from bacteria to plants.", PHYSIOLOGIA PLANTARUM, vol. 116, no. 4, December 2002 (2002-12-01), pages 431 - 440, XP002262010, ISSN: 0031-9317 (ISSN print) *
See also references of WO2004027069A1 *

Similar Documents

Publication Publication Date Title
EP1532264A2 (de) Verfahren zur herstellung von ketocarotinoiden in blütenblättern von pflanzen
WO2004065537A2 (de) Expressionskassette mit promotoren der stärkesynthase 3 zur expression von nukleinsäuren in stärkehaltigen geweben von pflanzen
EP1537218B1 (de) Transgene expressionskassetten zur expression von nukleinsäuren in nicht-reproduktiven blütengeweben von pflanzen
DE10238980A1 (de) Verfahren zur Herstellung von Ketocarotinoiden in Blütenblättern von Pflanzen
WO2004027069A1 (de) Transgene expressionskassetten zur expression von nukleinsäuren in der pflanzlichen blüte
EP1711612B1 (de) Expressionskassetten zur bidirektionalen transgenen expression von nukleinsäuren in pflanzen
WO2006117381A2 (de) Transgene expressionskassetten zur expression von nukleinsäuren in blütengeweben von pflanzen
EP1554388A1 (de) Transgene expressionskassetten zur expression von nukleinsäuren in der pflanzlichen blüte
DE10133407A1 (de) Expressionskassetten zur transgenen Expression von Nukleinsäuren
WO2004018688A1 (de) VERFAHREN ZUR HERSTELLUNG VON β-CAROTINOIDEN
DE102004007624A1 (de) Neue Ketolasen und Verfahren zur Herstellung von Ketocarotinoiden
EP1539967B1 (de) Expressionskassetten zur expression von nukleinsäuren in kohlenhydrat-speichernden sink-geweben von pflanzen
DE10253112A1 (de) Verfahren zur Herstellung von Ketocarotinoiden in genetisch veränderten Organismen
DE10053519A1 (de) Expressionskassetten zur transgenen Expression von Nukleinsäuren in der pflanzlichen embryonalen Epidermis und der Blüte
DE10238979A1 (de) Verfahren zur Herstellung von Zeaxanthin und/oder dessen biosynthetischen Zwischen- und/oder Folgeprodukten
DE10127882A1 (de) Expressionskonstrukte zur transgenen Expression von Nukleinsäuren
DE10231587A1 (de) Transgene Expressionskonstrukte und Verfahren zum Erhöhen des Vitamin E-Gehaltes in pflanzlichen Organismen
DE10232483A1 (de) Transgene Expressionskonstrukte und Verfahren zum Erhöhen des Vitamin E-Gehaltes in pflanzlichen Organismen
DE10131789A1 (de) Promotor für die spezifische Expression in Transferzellen pflanzlicher Embryonen
DE10225593A1 (de) Transgene Expressionskonstrukte und Verfahren zum Erhöhen des Vitamin E-Gehaltes in pflanzlichen Organismen
DE10159455A1 (de) Expressionskassetten zur transgenen Expression von Nukleinsäuren
DE10207582A1 (de) Expressionskassetten zur transgenen Expression von Nukleinsäuren
DE10231588A1 (de) Transgene Expressionskonstrukte und Verfahren zum Erhöhen des Vitamin E-Gehaltes in pflanzlichen Organismen
DE19930570A1 (de) Pflanzen mit veränderter Genexpression

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
R17P Request for examination filed (corrected)

Effective date: 20050320

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080319