EP1544872B1 - Supraleitendes Magnetsystem mit kontinuierlich arbeitender Flusspumpe und zugehörige Betriebsverfahren - Google Patents

Supraleitendes Magnetsystem mit kontinuierlich arbeitender Flusspumpe und zugehörige Betriebsverfahren Download PDF

Info

Publication number
EP1544872B1
EP1544872B1 EP04028362A EP04028362A EP1544872B1 EP 1544872 B1 EP1544872 B1 EP 1544872B1 EP 04028362 A EP04028362 A EP 04028362A EP 04028362 A EP04028362 A EP 04028362A EP 1544872 B1 EP1544872 B1 EP 1544872B1
Authority
EP
European Patent Office
Prior art keywords
superconducting
switch
coil
current
secondary coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04028362A
Other languages
English (en)
French (fr)
Other versions
EP1544872A3 (de
EP1544872A2 (de
Inventor
Robert Dr. Schauwecker
Rolf Dr. Spreiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Biospin SAS
Original Assignee
Bruker Biospin SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker Biospin SAS filed Critical Bruker Biospin SAS
Publication of EP1544872A2 publication Critical patent/EP1544872A2/de
Publication of EP1544872A3 publication Critical patent/EP1544872A3/de
Application granted granted Critical
Publication of EP1544872B1 publication Critical patent/EP1544872B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/006Supplying energising or de-energising current; Flux pumps
    • H01F6/008Electric circuit arrangements for energising superconductive electromagnets

Definitions

  • the invention relates to a magnet arrangement with a superconducting magnet coil system, which in operation has an ohmic resistance greater than or equal to zero, and with a flux pump, which comprises at least one superconducting switch and at least two superconducting secondary coils.
  • the superconducting magnet coil system comprises one or more series-connected magnetic coils which form a closed superconducting circuit.
  • the superconducting magnet coil system is typically arranged in a cryostat. It may have an ohmic resistance greater than zero in the operating state if the superconductors used are loaded to just below the critical current or if they have no sharp transition from superconducting to normal conducting.
  • the principle of a flux pump is to compensate by inductive coupling of energy resistive losses of the solenoid or to charge or discharge the coil without large currents must be performed in the cryostat.
  • the invention relates in particular to superconducting magnet coil systems with a flux pump, which comprises at least one superconducting switch and at least two superconducting secondary coils in which a voltage can be inductively established.
  • a flux pump which comprises at least one superconducting switch and at least two superconducting secondary coils in which a voltage can be inductively established.
  • the secondary coils In order for this voltage can be fed to the superconducting magnet coil system to compensate for resisitive losses or for charging or discharging, the secondary coils must be connected in series with the superconducting magnet coil system in series, which can be done for example by closing a superconducting switch.
  • a magnet arrangement with a flux pump which comprises at least two superconducting secondary coils, is known from TP Bernat et. al., Rev. Sci. Instrum., Vol. 46, No 5, May 1975 , and from LJM van de Klundert et. al., Cryogenics, May 1981 ,
  • This flux pump is based on the fact that the superconducting magnet coil system is bridged with two current paths, each comprising a switch and a superconducting secondary coil.
  • power is cyclically switched on and off again. If in the same cycle connected in series with the secondary coils superconducting switch alternately opened and closed, arises over the solenoid system over the entire cycle constant voltage, apart from voltage peaks when opening the switch.
  • the typical application of flow pumps is the charging and discharging of superconducting magnet coil systems.
  • the advantage over directly feeding the operating current into the coils is that the currents for operating the flux pump are much weaker than the typical magnetic currents.
  • the power supply lines can be made smaller and the heat input in the cryostat can be reduced.
  • the field of application of superconducting magnets also encompasses fields of application in which the magnet coils remain on the field for years after the charging process and should have the lowest possible field drift.
  • These include in particular superconducting magnet coil systems for magnetic resonance methods.
  • the use of a flux pump is less of interest for charging the magnet system, but for stabilizing the magnetic field in the operating state.
  • An efficient flow pump would bring several advantages in this regard. For example, magnets could be built with partial coils of high-temperature superconductors, which according to the current state of the art do not meet the drift specifications for magnetic resonance applications without additional measures. This would allow the construction of magnets with stronger than the usual fields today. Further, by using a flux pump for field stabilization, the superconductors in the magnet could be charged higher, which would allow the construction of more compact and less expensive magnets.
  • the known flow pumps are not suitable.
  • voltage peaks occur across the magnetic coil system when opening superconducting switches, which is not tolerable for sensitive applications such as magnetic resonance methods.
  • at least one must be in each phase of the pumping cycle Open superconducting switch so that the voltage induced in the secondary coil voltage can be fed into the magnetic coil system.
  • an amount of heat is produced which leads to large losses of cooling liquid in the cryostat.
  • the thermal stability in the cryostat is very important, that is, in sensitive applications such as magnetic resonance methods, the heat input in the cryostat must be minimized.
  • Object of the present invention is to improve a flow pump according to the prior art so that in addition to the charging and discharging of a superconducting magnet coil system and a good stabilization of the magnetic field of the magnet coil system in the operating state for a long time is possible, especially if the magnetic coil system easily is resistant and the requirements for the field stability are very high.
  • the improved flow pump arrangement permits an operating method with which a constant voltage across all the cycles of the flow pump can be applied across the magnetic coil system.
  • this object is achieved in a magnet arrangement of the type described above in that at least one superconducting current path is present, in which the superconducting magnet coil system or parts thereof is connected in series with at least two secondary coils and in which at least one secondary coil by closing a superconducting switch superconducting can be bridged, and that at least two primary coils are present, which can be fed independently with a respective current and which are each inductively coupled to at least one of the secondary coils.
  • the invention provides that there is a superconducting current path in which the superconducting magnet coil system or parts thereof are connected in series with at least two secondary coils and in which at least one secondary coil can be bridged by closing a superconducting switch.
  • the secondary coils are inductively coupled, each with its own primary coil.
  • This arrangement makes possible an operating method of the flow pump in which, in a first step, a first primary coil, which is coupled to a first, non-superconducting bridged secondary coil, is charged until a maximum final current is reached in the primary coil.
  • a voltage can be built up across the superconducting magnet coil system which, for example, exactly corresponds to the resistive voltage to be compensated in the magnet coil system.
  • the first primary coil In a second step, the first primary coil must be recharged to its initial current.
  • the superconducting switch is opened via a second, previously superconducting bridged with a closed switch secondary coil and in that primary coil, which inductively couples with this secondary coil, the current is raised, whereby in this secondary coil, a voltage is induced.
  • the current ramp in the second primary coil is selected such that the voltage induced in the second secondary coil compensates for both the voltage induced by the discharge of the first primary coil in the first secondary coil and the resistive voltage across the superconducting magnet coil system.
  • the advantage of an arrangement according to the invention is therefore that, owing to a plurality of primary coils supplied independently with power, different voltages can be induced in different secondary coils, which voltages are added to a total voltage thanks to the series connection of these secondary coils.
  • the series connection of the secondary coils with the superconducting Magnetic coil system allows the supply of this total voltage in the superconducting magnet coil system.
  • the great flexibility of the arrangement allows a desired voltage across the superconducting magnet coil system to be maintained through appropriate process steps in each phase of the flow pump cycle.
  • a superconductive switch bridges a secondary coil together with a resistor connected in series with this secondary coil, the resistor having a value, measured in ohms, between 0 and the value of the inductance of this secondary coil measured in Henry.
  • a particularly preferred embodiment of the arrangement according to the invention is characterized in that instead of the resistor used in the above embodiment, a further superconducting switch is used.
  • This embodiment thus provides that a superconducting switch, a secondary coil together with another superconducting Bridged switch, which is connected in series with said secondary coil; see also FIG. 3 .
  • the current in the secondary coil can be controlled in a controlled manner by suitable charging and discharging of the associated primary coil as well as by opening and closing of the further switch.
  • it can thus be prevented that a current flows through this switch at a certain point of the pumping cycle before opening the first switch.
  • This voltage pulses are prevented over the superconducting magnet coil system, which is essential especially for sensitive applications such as nuclear magnetic resonance method.
  • secondary coils are each inductively coupled with exactly one primary coil, or secondary coils are inductively decoupled from each other.
  • Embodiments of the arrangement according to the invention in which primary or secondary coils are inductively largely decoupled from the superconducting magnet coil system or produce substantially no field in the working volume of the superconducting magnet coil system are also particularly advantageous. Thus, disturbances of the magnetic field in the working volume are prevented during operation of the flow pump.
  • a further advantageous embodiment of the arrangement according to the invention is characterized in that at least one primary coil is superconducting.
  • a current flowing in a superconducting primary coil generates to normal conducting primary coils no heat. If the primary coils are in the cryostat, then the coolant losses can be reduced.
  • a further improvement in terms of reducing coolant losses is achieved if the leads to the coils in the cryostat or to the switches are at least partially superconducting.
  • At least one of the superconducting switches can be actuated by a heater whose supply lines are at least partially superconducting.
  • An advantageous embodiment of the arrangement according to the invention is characterized in that at least a portion of the superconducting magnet coil system is bridged superconducting or with a resistor.
  • This arrangement can be used to dampen the effect of small voltage fluctuations, such as when opening switches of the flow pump, on the overall field of the superconducting magnet system.
  • the resistance (in ohms) must not exceed the magnitude of the inductance (in Henry) of the bridged section.
  • the arrangement according to the invention is particularly advantageous if it is part of an apparatus for nuclear magnetic resonance.
  • an apparatus for active field stabilization in which the flow pump according to the invention is preferably used in this field of application, places particularly high demands with regard to stability of the stabilization voltage and minimization of the heat input in the cryostat. Exactly these criteria are better fulfilled in the above-mentioned embodiments of the flow pump according to the invention than with flow pumps according to the prior art.
  • An advantageous embodiment of the arrangement according to the invention comprises a superconducting magnet coil system, in which one or more coils are wound with high temperature superconductors.
  • the potentially higher drift when using high-temperature superconductors can be compensated with the flow pump according to the invention, while maintaining the field stability of the superconducting magnet coil system.
  • a first method is characterized by a particularly simple cycle of charging and discharging the primary coils and opening and closing of the switches.
  • the first superconductive switch bridging the second secondary coil is periodically opened and closed.
  • the current in a first primary coil which inductively couples with the first secondary coil, is driven from an initial value to an end value.
  • the current in this primary coil is largely restored to the initial value.
  • the current in a second primary coil which couples to the second secondary coil, is driven from an initial value to an end value and largely reset to the initial value when the first switch is closed.
  • An improved method using the further, second superconducting switch is characterized in that, when the first switch is closed, a second superconductive switch, which is connected in series with the second secondary coil and is bridged together with the latter by the first superconductive switch, is opened at least temporarily ,
  • the advantage of this method is that the second secondary coil does not charge uncontrollably when resetting the current in the second primary coil.
  • This process variant can be further improved by setting the current in this coil to an amount of I * L / K before reaching the final current of zero amperes in the second primary coil and that the second superconducting switch is opened at the latest after reaching this current, and that then, while resetting the current in the second primary coil to the final current of zero amperes and until the first opening of the first superconducting switch, the second superconducting switch remains superconducting closed, the current in the superconducting magnet coil system, L the self-inductance of the second secondary coil and K denoting the inductive coupling in Henry between the second secondary coil and the second primary coil.
  • This process is described in more detail in the example below. Its particular advantage is that no current flows over it before opening the first superconducting switch. Thus, voltage peaks are prevented over the superconducting magnet coil system, which is an important criterion for the use of the flow pump according to the invention for field stabilization in sensitive applications.
  • the steps of the described methods are repeated cyclically in order to either charge or discharge the superconducting magnet coil system or to stabilize the current in the magnet coil system to an operating value precisely.
  • the arrangement according to the invention also makes it possible to use a method variant which is particularly advantageous with regard to reducing the heat input in the cryostat, in which that phase of the pumping cycle during which no superconductive switch is open lasts longer than the phases with open, ie heated, superconducting switches. In contrast, must in flow pumps according to the prior art, permanent switches are heated.
  • FIG. 1 schematically an inventive arrangement is shown, which comprises a superconducting magnet coil system M and a flow pump P.
  • the magnet coil system M may have a resistance of the size R.
  • two further superconducting coils M1 and M2 are connected in series, which serve as secondary coils in the flow pump P.
  • these coils can be induced by changing the current I1 or I2 in the primary coils C1 and C2 of the flow pump P by inductive coupling a voltage.
  • One of the secondary coils, namely M2 is bridged by a superconductive switch S1 .
  • FIG. 2 schematically shows an inventive arrangement in which the secondary coil M2, which is bridged with the superconducting switch S1 , is connected in series with a resistor R2 , such that the switch S1 bridges both the coil M2 and the resistor R2 .
  • FIG. 3 shows an inventive arrangement as in FIG. 2 , with the difference that instead of the resistor R2, a second superconductive switch S2 is used.
  • FIG. 4 shows an inventive arrangement as in FIG. 1 in which in addition a portion of the superconducting magnet coil system M is bridged with a resistor r .
  • FIG. 5 shows for an operating method of the flow pump according to the invention FIG. 3 the currents I1 and I2 in the primary coils C1 and C2 of the flow pump P and the switching states of the superconducting switches S1 and S2 , the current IS1 in the switch S1 and the voltage VMagnet established by the flux pump P across the superconducting magnet coil system M.
  • time t is plotted. The method is optimized to keep the voltage VMagnet constant over any number of pump cycles and to produce no voltage spikes. In addition, the duration during which the superconductive switches are opened is minimized.
  • the two switches S1 and S2 are superconducting closed and the operating current IM of the superconducting magnet coil system M flows through the current path M-M1-M2-S2.
  • the current I2 in the second primary coil C2 is zero and the current I1 in the first primary coil C1 is treated with a continuous ramp of 0.25 A / s during 8s of - loaded 1A + 1A. As a result, a voltage of 25 ⁇ V is induced in the secondary coil M1 .
  • the voltage induced in M1 is -100 ⁇ V in this phase .
  • the switch S1 is opened and the current in the second primary coil C2 is driven from zero to 2.5A. Thereby, a voltage of 125 microvolts is induced in the second secondary coil M2.
  • the system is not yet back to its initial state because the current I2 in the second primary coil C2 is not zero.
  • I2 When resetting I2 to zero, it must also be ensured that the operating current IM at the end again flows through the secondary coil M2 and not via the closed switch S1 , that is, IS1 should be zero. If this condition is not met, the renewed opening of the switch S1 in the following cycle of the flow pump P generates an undesired voltage pulse across the superconducting magnet coil system M.
  • the goal of bringing both I2 and IS1 to zero is achieved by driving I2 to the value - IM * KM2C2 / LM2 between t2 and t3 , in example -1A.
  • the switch S2 is opened, whereby the current in M2 is kept at zero.
  • the switch S2 is closed again and then, until time t4, the current I2 in the second primary coil C2 is reduced to zero.
  • the advantages of this arrangement become clear.
  • the voltage over the entire cycle of the flow pump P can be kept constant and there are no voltage spikes when opening superconducting switches.
  • the switches are open only during a fraction of the operating cycle of the flow pump P , whereby the heat input in the cryostat through the switches is minimal.
  • the requirements for the temporal stability of the magnetic field are particularly high.
  • the The total resistivity of the magnet coil system is on the order of 0.1 * 10 -9 ohms at most , so that the field drift is acceptable.
  • the resistivity of the magnet coil system may therefore be over a thousand times greater than in an arrangement without the inventive flow pump.
  • a magnet arrangement according to the invention comprises a superconducting magnet coil system M and at least two superconducting secondary coils M1, M2, which are connected in series with the magnet coil system, and a first superconducting switch S1 , which can superconductingly bridge the second of the secondary coils M2 .
  • the magnet arrangement has a second superconducting switch S2 , which is connected in series with the second secondary coil M2 , wherein the first superconducting switch S1 can bridge the entirety of the second secondary coil M2 and the second superconducting switch S2 .
  • inductive coupling can be generated by means of at least two independent primary coils C1 , C2 a predetermined voltage in each of the secondary coils M1, M2 , regardless of the other secondary coil.
  • the system of secondary coils, primary coils and superconducting switches forms a flux pump P for the magnet coil system. This flux pump can be used well to stabilize the magnetic field of the magnetic coil system in the operating state for a long time, that is for drift compensation in the magnetic coil system.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

  • Die Erfindung betrifft eine Magnetanordnung mit einem supraleitenden Magnetspulensystem, welches im Betriebszustand einen Ohmschen Widerstand größer oder gleich null aufweist, und mit einer Flusspumpe, welche mindestens einen supraleitenden Schalter und mindestens zwei supraleitende Sekundärspulen umfasst.
  • Eine solche Magnetanordnung mit einem supralteitenden Magnetspulensystem beschreiben T. P. Bernart et al., Rev. Sci. Instrum., Vol. 46, No. 5, May 1975, Seiten 582- 585.
  • Das supraleitende Magnetspulensystem umfasst eine oder mehrere in Serie geschaltete Magnetspulen, die einen geschlossenen supraleitenden Stromkreis bilden. Das supraleitende Magnetspulensystem ist typischerweise in einem Kryostaten angeordnet. Es kann im Betriebszustand einen Ohmschen Widerstand größer null aufweisen, wenn die verwendeten Supraleiter bis knapp unter den kritischen Strom belastet sind oder wenn sie keinen scharfen Übergang von supraleitend zu normalleitend aufweisen. Das Prinzip einer Flusspumpe besteht darin, durch induktives Einkoppeln von Energie resistive Verluste der Magnetspule auszugleichen oder die Spule zu laden oder zu entladen, ohne dass große Ströme in den Kryostaten geführt werden müssen. Die Erfindung betrifft insbesondere supraleitende Magnetspulensysteme mit einer Flusspumpe, welche mindestens einen supraleitenden Schalter und mindestens zwei supraleitende Sekundärspulen umfasst, in welchen induktiv eine Spannung aufgebaut werden kann. Damit diese Spannung zum Ausgleich resisitiver Verluste oder zum Laden oder Entladen in das supraleitende Magnetspulensystem eingespeist werden kann, müssen die Sekundärspulen supraleitend mit dem Magnetspulensystem in Serie geschaltet sein, was beispielsweise durch Schließen eines supraleitenden Schalters erfolgen kann.
  • Eine Magnetanordnung mit einer Flusspumpe, welche mindestens zwei supraleitende Sekundärspulen umfasst, ist bekannt aus T.P. Bernat et. al., Rev. Sci. Instrum., Vol. 46, No 5, May 1975, und aus L.J.M. van de Klundert et. al., Cryogenics, May 1981. Diese Flusspumpe basiert darauf, dass das supraleitende Magnetspulensystem mit zwei Strompfaden überbrückt wird, welche je einen Schalter und eine supraleitende Sekundärspule umfassen. In einer Primärspule, deren induktive Kopplung mit den Sekundärspulen je entgegengesetzt gleich groß ist, wird zyklisch Strom ein und wieder ausgefahren. Wenn im gleichen Takt die mit den Sekundärspulen in Serie geschalteten supraleitenden Schalter alternierend geöffnet und geschlossen werden, entsteht über dem Magnetspulensystem eine über den ganzen Zyklus konstante Spannung, abgesehen von Spannungsspitzen beim Öffnen der Schalter.
  • Das typische Einsatzgebiet von Flusspumpen ist das Laden und Entladen von supraleitenden Magnetspulensystemen. Der Vorteil gegenüber dem direkten Einspeisen des Betriebsstromes in die Spulen besteht darin, dass die Ströme zum Betreiben der Flusspumpe viel schwächer sind als die typischen Magnetströme. Damit können die Stromzuleitungen kleiner dimensioniert und der Wärmeeintrag in den Kryostaten reduziert werden.
  • Das Einsatzgebiet von supraleitenden Magneten umfasst aber auch Anwendungsfelder, bei denen die Magnetspulen nach dem Ladevorgang über Jahre auf Feld bleiben und dabei eine möglichst geringe Felddrift aufweisen sollen. Dazu gehören insbesondere supraleitende Magnetspulensysteme für Magnetresonanzverfahren. Bei solchen Magnetsystemen ist der Einsatz einer Flusspumpe weniger zum Laden des Magnetsystems von Interesse, sondern zur Stabilisierung des Magnetfeldes im Betriebszustand. Eine effiziente Flusspumpe brächte in dieser Hinsicht verschiedene Vorteile. Es könnten beispielsweise Magnete mit Teilspulen aus Hochtemperatursupraleitern gebaut werden, welche nach heutigem Stand der Technik die Driftspezifikationen für Magnetresonanzanwendungen ohne zusätzliche Maßnahmen nicht erfüllen. Dies würde den Bau von Magneten mit stärkeren als den heute üblichen Feldern ermöglichen. Weiter könnten durch den Einsatz einer Flusspumpe zur Feldstabilisierung die Supraleiter im Magneten höher belastet werden, was den Bau kompakterer und kostengünstigerer Magnete erlauben würde.
  • Für den Einsatz zur präzisen Feldstabilisierung über große Zeiträume sind die bekannten Flusspumpen nicht geeignet. Zum einen treten jeweils beim Öffnen von supraleitenden Schaltern Spannungsspitzen über dem Magnetspulensystem auf, was für empfindliche Anwendungen wie Magnetresonanzverfahren nicht tolerierbar ist. Zum andern muss in jeder Phase des Pumpzyklus mindestens ein supraleitender Schalter geöffnet sein, damit die in der Sekundärspule induzierte Spannung in das Magnetspulensystem eingespeist werden kann. Bei den gebräuchlichen Schaltern fällt dabei eine Wärmemenge an, welche zu großen Verlusten an Kühlflüssigkeit im Kryostaten führt. Für die Stabilität des Feldes ist auch die thermische Stabilität im Kryostaten sehr wichtig, das heißt bei empfindlichen Anwendungen wie Magnetresonanzverfahren müssen die Wärmeeinträge in den Kryostaten minimiert werden.
  • Aufgabe der vorliegenden Erfindung ist es, eine Flusspumpe gemäß dem Stand der Technik derart zu verbessern, dass neben dem Laden und Entladen eines supraleitenden Magnetspulensystems auch eine gute Stabilisierung des Magnetfeldes des Magnetspulensystems im Betriebszustand über lange Zeit möglich ist, insbesondere dann, wenn das Magnetspulensystem leicht resisitiv ist und die Anforderungen an die Feldstabilität sehr hoch sind. Insbesondere ist es Aufgabe der vorliegenden Erfindung, dass die verbesserte Flusspumpenanordnung ein Betriebsverfahren zulässt, mit welchem eine über alle Zyklen der Flusspumpe konstante Spannung über dem Magnetspulensystem angelegt werden kann.
  • Erfindungsgemäß wird diese Aufgabe bei einer Magnetanordnung der eingangs vorgestellten Art dadurch gelöst, dass mindestens ein supraleitender Strompfad vorhanden ist, in welchem das supraleitende Magnetspulensystem oder Teile davon mit mindestens zwei Sekundärspulen zusammen in Serie geschaltet ist und in welchem mindestens eine Sekundärspule durch Schließen eines supraleitenden Schalters supraleitend überbrückt werden kann, und dass mindestens zwei Primärspulen vorhanden sind, welche unabhängig voneinander mit je einem Strom gespeist werden können und welche jeweils mit mindestens einer der Sekundärspulen induktiv gekoppelt sind.
  • Kurz gesagt sieht die Erfindung vor, dass ein supraleitender Strompfad vorhanden ist, in welchem das supraleitende Magnetspulensystem oder Teile davon mit mindestens zwei Sekundärspulen zusammen in Serie geschaltet ist und in welchem mindestens eine Sekundärspule durch Schließen eines supraleitenden Schalters überbrückt werden kann. Insbesondere kann vorgesehen sein, dass die Sekundärspulen mit je einer eigenen Primärspule induktiv gekoppelt sind.
  • Diese Anordnung ermöglicht ein Betriebsverfahren der Flusspumpe, bei welchem in einem ersten Schritt eine erste Primärspule, welche mit einer ersten, nicht supraleitend überbrückten Sekundärspule gekoppelt ist, geladen wird, bis in der Primärspule ein maximaler Endstrom erreicht ist. Dadurch kann eine Spannung über dem supraleitenden Magnetspulensystem aufgebaut werden, welche beispielsweise genau der zu kompensierenden resistiven Spannung im Magnetspulensystem entspricht. In einem zweiten Schritt muss die erste Primärspule wieder auf ihren Anfangsstrom entladen werden. Während dieser Phase wird über einer zweiten, zuvor mit einem geschlossenen Schalter supraleitend überbrückten Sekundärspule der supraleitende Schalter geöffnet und in jener Primärspule, welche mit dieser Sekundärspule induktiv koppelt, der Strom hochgefahren, wodurch in dieser Sekundärspule eine Spannung induziert wird. Die Stromrampe in der zweiten Primärspule wird so gewählt, dass durch die in der zweiten Sekundärspule induzierte Spannung sowohl die durch das Entladen der ersten Primärspule in der ersten Sekundärspule induzierte Spannung als auch die resisitve Spannung über dem supraleitenden Magnetspulensystem kompensiert wird. Nachdem die erste Primärspule auf ihrem Anfangsstrom angelangt ist, wird der Schalter über der zweiten Sekundärspule wieder geschlossen und die zweite Primärspule wird - bei geschlossenem Schalter - auf ihren Anfangsstrom zurückgefahren. Der Zyklus kann nun von vorn beginnen.
  • Der Vorteil einer erfindungsgemäßen Anordnung ist also, dass dank mehreren voneinander unabhängig mit Strom versorgten Primärspulen in verschiedenen Sekundärspulen unterschiedliche Spannungen induziert werden können, welche dank der Serieschaltung dieser Sekundärspulen zu einer Gesamtspannung addiert werden. Die Serieschaltung der Sekundärspulen mit dem supraleitenden Magnetspulensystem erlaubt die Einspeisung dieser Gesamtspannung in das supraleitende Magnetspulensystem. Die große Flexibilität der Anordnung ermöglicht, dass durch geeignete Verfahrensschritte in jeder Phase des Flusspumpen-Zyklus eine gewünschte Spannung über dem supraleitenden Magnetspulensystem aufrechterhalten werden kann.
  • Es zeigt sich, dass beim oben beschriebenen Betriebsverfahren der Flusspumpe während dem ganzen Zyklus zu keiner Zeit ein supraleitender Kurzschluss über der ersten Sekundärspule bestehen muss. Dies bedeutet, dass erfindungsgemäß von n ≥ 2 Sekundärspulen höchstens n-1 Sekundärspulen mit einem Schalter überbrückt werden müssen. Im einfachsten Falle von n = 2 wird also nur ein einziger Schalter benötigt, welcher zudem nur während der kurzen Zeit, während welcher der Strom in der ersten Primärspule zurückgesetzt wird, geöffnet sein muss. Dadurch wird die Wärmeleistung durch die Schalterheizer gegenüber einer Flusspumpe nach dem Stand der Technik deutlich reduziert. Diese Ausführungsform der Erfindung ist daher besonders vorteilhaft.
  • Bevorzugt ist außerdem eine Ausführungsform der erfindungsgemäßen Anordnung, bei welcher ein supraleitender Schalter eine Sekundärspule zusammen mit einem Widerstand überbrückt, welcher mit dieser Sekundärspule in Serie geschaltet ist, wobei der Widerstand einen Wert, gemessen in Ohm, zwischen 0 und dem Wert der Induktivität dieser Sekundärspule, gemessen in Henry, aufweist. Der Vorteil dieser Anordnung liegt darin, dass beim Laden und Entladen einer Primärspule, welche mit dieser Sekundärspule induktiv gekoppelt ist, bei geschlossenem supraleitendem Schalter keine unkontrolliert hohen Ströme in der Sekundärspule induziert werden können.
  • Eine besonders bevorzugte Ausführungsform der erfindungsgemäßen Anordnung zeichnet sich dadurch aus, dass anstatt des in obiger Ausführungsform verwendeten Widerstandes ein weiterer supraleitender Schalter verwendet wird. Diese Ausführungsform sieht somit vor, dass ein supraleitender Schalter eine Sekundärspule zusammen mit einem weiteren supraleitenden Schalter überbrückt, welcher mit der genannten Sekundärspule in Serie geschaltet ist; siehe auch Figur 3. Dadurch lässt sich durch geeignetes Laden und Entladen der zugehörigen Primärspule sowie durch Öffnen und Schließen des weiteren Schalters der Strom in der Sekundärspule gezielt steuern. Insbesondere kann so verhindert werden, dass vor dem Öffnen des ersten Schalters an einem bestimmten Punkt des Pumpzyklus ein Strom über diesen Schalter fließt. Damit werden Spannungspulse über dem supraleitenden Magnetspulensystem verhindert, was insbesondere bei empfindlichen Anwendungen wie Kernspinresonanzverfahren unumgänglich ist. Außerdem wird im ersten Schalter keine Wärme durch den Abbau von Strom erzeugt, was eine weitere Ersparnis an Kühlflüssigkeit ermöglicht. Diese Anordnung ermöglicht die Anwendung eines Betriebsverfahrens der Flusspumpe, welches eine ungestörte, kontinuierliche Pumpleistung bei einem Minimum an Wärmeeintrag in den Kryostaten garantiert.
  • In zwei weiteren vorteilhaften Ausführungsformen der erfindungsgemäßen Anordnung werden Sekundärspulen mit je genau einer Primärspule induktiv gekoppelt, oder Sekundärspulen werden voneinander induktiv entkoppelt. Dadurch können die in den Sekundärspulen beim Laden oder Entladen der Primärspulen induzierten Spannungen besser kontrolliert werden und die Verfahren zum Betrieb der Flusspumpe werden vereinfacht.
  • Besonders vorteilhaft sind auch Ausführungsformen der erfindungsgemäßen Anordnung, bei welchen Primär- oder Sekundärspulen vom supraleitenden Magnetspulensystem induktiv weitgehend entkoppelt sind oder im Arbeitsvolumen des supraleitenden Magnetspulensystems im wesentlichen kein Feld erzeugen. So werden Störungen des Magnetfeldes im Arbeitsvolumen während dem Betrieb der Flusspumpe verhindert.
  • Eine weitere vorteilhafte Ausführungsform der erfindungsgemäßen Anordnung zeichnet sich dadurch aus, dass mindestens eine Primärspule supraleitend ist. Ein in einer supraleitenden Primärspulen fließender Strom erzeugt im Gegensatz zu normalleitenden Primärspulen keine Wärme. Falls sich die Primärspulen im Kryostaten befinden, können so die Kühlmittelverluste reduziert werden.
  • Eine weitere Verbesserung hinsichtlich Reduktion der Kühlmittelverluste wird erreicht, wenn auch die Zuleitungen zu den Spulen im Kryostaten oder zu den Schaltern mindestens teilweise supraleitend ausgeführt werden.
  • Eine andere Ausführungsform sieht vor, dass mindestens einer der supraleitenden Schalter durch einen Heizer betätigbar ist, dessen Zuleitungen mindestens teilweise supraleitend sind.
  • Eine vorteilhafte Ausführungsform der erfindungsgemäßen Anordnung zeichnet sich dadurch aus, dass mindestens ein Abschnitt des supraleitenden Magnetspulensystems supraleitend oder mit einem Widerstand überbrückt ist. Diese Anordnung kann dazu verwendet werden, um die Auswirkung von kleinen Spannungsfluktuationen, etwa beim Öffnen von Schaltern der Flusspumpe, auf das Gesamtfeld des supraleitenden Magnetsystems zu dämpfen. Damit die Dämpfung wirksam ist, darf der Widerstand (in Ohm) die Größenordnung der Induktivität (in Henry) des überbrückten Abschnittes nicht übersteigen.
  • Die erfindungsgemäße Anordnung ist besonders dann vorteilhaft, wenn sie Teil einer Apparatur für die magnetische Kernspinresonanz ist. In solchen Magnetanordnungen werden an eine Vorrichtung zur aktiven Feldstabilisierung, als welche die erfindungsgemäße Flusspumpe in diesem Anwendungsgebiet bevorzugt eingesetzt wird, besonders hohe Anforderungen hinsichtlich Konstanz der Stabilisierungsspannung und Minimierung des Wärmeeintrages in den Kryostaten gestellt. Genau diese Kriterien werden in den oben aufgeführten Ausführungsformen der erfindungsgemäßen Flusspumpe besser erfüllt als mit Flusspumpen nach dem Stand der Technik.
  • Eine vorteilhafte Ausführungsform der erfindungsgemäßen Anordnung umfasst ein supraleitendes Magnetspulensystem, in welchem eine oder mehrere Spulen mit Hochtemperatursupraleitern gewickelt sind. Die potentiell höhere Drift bei Verwendung von Hochtemperatursupraleitern lässt sich mit der erfindungsgemäßen Flusspumpe kompensieren, unter Beibehaltung der Feldstabilität des supraleitenden Magnetspulensystems.
  • Die Vorteile der erfindungsgemäßen Anordnung können nur unter Anwendung von geeigneten Verfahren zum Betrieb der Flusspumpe voll ausgeschöpft werden. Ein erstes Verfahren zeichnet sich durch einen besonders einfachen Zyklus von Laden und Entladen der Primärspulen und Öffnen und Schließen der Schalter aus. Bei diesem Verfahren zum Betrieb einer Vorrichtung mit mindestens einer ersten und einer zweiten supraleitenden Sekundärspule und einem ersten supraleitenden Schalter wird der erste supraleitende Schalter, welcher die zweite Sekundärspule überbrückt, periodisch geöffnet und geschlossen. Bei geschlossenem erstem Schalter wird der Strom in einer ersten Primärspule, welche mit der ersten Sekundärspule induktiv koppelt, von einem Anfangswert auf einen Endwert gefahren. Bei geöffnetem erstem Schalter wird der Strom in dieser Primärspule wieder weitgehend auf den Anfangswert zurückgesetzt. Gleichzeitig wird bei geöffnetem erstem Schalter der Strom in einer zweiten Primärspule, welche mit der zweiten Sekundärspule koppelt, von einem Anfangswert auf einen Endwert gefahren und bei geschlossenem erstem Schalter wieder weitgehend auf den Anfangswert zurückgesetzt.
  • Ein verbessertes Verfahren unter Verwendung des weiteren, zweiten supraleitenden Schalters zeichnet sich dadurch aus, dass bei geschlossenem erstem Schalter ein zweiter supraleitender Schalter, welcher mit der zweiten Sekundärspule in Serie geschaltet ist und zusammen mit dieser vom ersten supraleitenden Schalter überbrückt wird, mindestens zeitweise geöffnet wird. Der Vorteil dieses Verfahrens ist, dass sich die zweite Sekundärspule beim Zurücksetzen des Stromes in der zweiten Primärspule nicht unkontrolliert auflädt.
  • Besonders vorteilhaft ist es, den Strom in der zweiten Primärspule jeweils wieder auf null zurückzufahren, um weniger Wärme in den Zuleitungen und - im Falle einer normalleitenden zweiten Primärspule - in der Spule selbst zu erzeugen.
  • Diese Verfahrensvariante kann weiter verbessert werden, indem vor Erreichen des Endstromes von null Ampere in der zweiten Primärspule der Strom in dieser Spule auf einen Betrag von I * L / K gesetzt wird und dass spätestens nach Erreichen dieses Stromes der zweite supraleitende Schalter geöffnet wird, und dass dann während dem Zurücksetzen des Stromes in der zweiten Primärspule auf den Endstrom von null Ampere und bis zum neuerlichen Öffnen des ersten supraleitenden Schalters der zweite supraleitende Schalter supraleitend geschlossen bleibt, wobei /den Strom im supraleitenden Magnetspulensystem, L die Selbstinduktivität der zweiten Sekundärspule und K die induktive Kopplung in Henry zwischen der zweiten Sekundärspule und der zweiten Primärspule bezeichnet. Dieses Verfahren wird im untenstehenden Beispiel genauer beschrieben. Sein besonderer Vorteil ist, dass vor dem Öffnen des ersten supraleitenden Schalters kein Strom über diesen fließt. So werden Spannungsspitzen über dem supraleitenden Magnetspulensystem verhindert, was für den Einsatz der erfindungsgemäßen Flusspumpe zur Feldstabilisierung bei empfindlichen Anwendungen ein wichtiges Kriterium darstellt.
  • In zwei weiteren vorteilhaften Verfahrensvarianten werden die Schritte der beschriebenen Verfahren zyklisch wiederholt, um das supraleitende Magnetspulensystem entweder zu laden oder zu entladen, oder um den Strom im Magnetspulensystem auf einem Betriebswert genau zu stabilisieren.
  • Die erfindungsgemäße Anordnung erlaubt auch die Anwendung einer hinsichtlich Reduktion des Wärmeeintrages in den Kryostaten besonders vorteilhaften Verfahrensvariante, bei welcher jene Phase des Pumpzyklus, während welcher kein supraleitender Schalter geöffnet ist, länger dauert als die Phasen mit geöffneten, also geheizten, supraleitenden Schaltern. Demgegenüber müssen bei Flusspumpen nach dem Stand der Technik permanent Schalter geheizt werden.
  • Weitere Vorteile der Erfindung ergeben sich aus der Beschreibung und der Zeichnung. Ebenso können die vorstehend genannten und die noch weiter ausgeführten Merkmale erfindungsgemäß jeweils einzeln für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung.
  • Die Erfindung ist in der Zeichnung dargestellt und wird anhand eines Ausführungsbeispiels näher erläutert. Es zeigen:
  • Fig. 1
    ein Verdrahtungsschema einer erfindungsgemäßen Magnetanordnung mit einem supraleitenden Magnetspulensystem und einer Flusspumpe;
    Fig. 2
    ein Verdrahtungsschema einer erfindungsgemäßen Magnetanordnung mit einem supraleitenden Magnetspulensystem und einer Flusspumpe mit einem zusätzlichen Widerstand im Strompfad der Flusspumpe;
    Fig. 3
    ein Verdrahtungsschema einer erfindungsgemäßen Magnetanordnung mit einem supraleitenden Magnetspulensystem und einer Flusspumpe mit einem zusätzlichen supraleitenden Schalter im Strompfad der Flusspumpe;
    Fig. 4
    ein Verdrahtungsschema einer erfindungsgemäßen Magnetanordnung mit einem supraleitenden Magnetspulensystem und einer Flusspumpe und einem zusätzlichen Widerstand, welcher einen Abschnitt des supraleitenden Magnetspulensystems überbrückt;
    Fig. 5
    die Ströme und Schalterzustände der Flusspumpe sowie die über dem supraleitenden Magnetspulensystem aufgebaute Spannung während mehrerer Pumpzyklen für ein besonders vorteilhaftes Verfahren zum Betrieb einer erfindungsgemäßen Flusspumpe.
  • Anhand der Figur 1 wird schematisch eine erfindungsgemäße Anordnung gezeigt, welche ein supraleitendes Magnetspulensystem M und eine Flusspumpe P umfasst. Das Magnetspulensystem M kann einen Widerstand der Größe R aufweisen. Mit dem Magnetspulensystem M sind zwei weitere supraleitende Spulen M1 und M2 in Serie geschaltet, welche in der Flusspumpe P als Sekundärspulen dienen. In diesen Spulen kann durch Veränderung des Stromes I1 beziehungsweise I2 in den Primärspulen C1 beziehungsweise C2 der Flusspumpe P durch induktive Kopplung eine Spannung induziert werden. Eine der Sekundärspulen, nämlich M2, ist mit einem supraleitenden Schalter S1 überbrückt.
  • Figur 2 zeigt schematisch eine erfindungsgemäße Anordnung, bei welcher die Sekundärspule M2, welche mit dem supraleitenden Schalter S1 überbrückt wird, mit einem Widerstand R2 in Serie geschaltet ist, derart dass der Schalter S1 sowohl die Spule M2 als auch den Widerstand R2 überbrückt.
  • Figur 3 zeigt eine erfindungsgemäße Anordnung wie in Figur 2, mit dem Unterschied, dass anstelle des Widerstandes R2 ein zweiter supraleitender Schalter S2 verwendet wird.
  • Figur 4 zeigt eine erfindungsgemäße Anordnung wie in Figur 1, bei welcher zusätzlich ein Abschnitt des supraleitenden Magnetspulensystems M mit einem Widerstand r überbrückt wird.
  • Figur 5 zeigt für ein Betriebsverfahren der erfindungsgemäßen Flusspumpe nach Figur 3 die Ströme I1 und I2 in den Primärspulen C1 und C2 der Flusspumpe P sowie die Schaltzustände der supraleitenden Schalter S1 und S2, den Strom IS1 im Schalter S1 und die durch die Flusspumpe P über dem supraleitenden Magnetspulensystem M aufgebaute Spannung VMagnet. Nach rechts ist die Zeit t aufgetragen. Das Verfahren ist dahingehend optimiert, die Spannung VMagnet über beliebig viele Pumpzyklen konstant zu halten und keine Spannungsspitzen zu erzeugen. Außerdem wird die Dauer, während der die supraleitenden Schalter geöffnet sind, minimiert.
  • Im Folgenden wird die Erfindung anhand eines Beispiels erläutert. Die dem Beispiel zu Grunde gelegte Ausführungsform der erfindungsgemäßen Anordnung ist jene aus Figur 3. Das angewendete Verfahren zum Betrieb der Flusspumpe P ist jenes aus Figur 5. Das Ziel ist es, über einem supraleitenden Magnetspulensystem M eine konstante Spannung VMagnet von 25µV aufrechtzuerhalten. Die Komponenten der Flusspumpe sind folgendermaßen ausgelegt:
    • LM1 = LM2 = 10-6H (Induktivität der Sekundärspulen M1 und M2),
    • KM1C1 = KM2C2 = 10-4H (induktive Kopplung zwischen der Sekundärspule M1 und der Primärspule C1 beziehungsweise zwischen M2 und C2),
    • IM = 100A (Betriebsstrom des supraleitenden Magnetspulensystems M).
    • Alle anderen Kopplungen sind null.
  • Zu Beginn und während der ersten Phase des Zyklus der Flusspumpe P von t = 0 bis t1 = 8s (siehe Figur 5) sind die beiden Schalter S1 und S2 supraleitend geschlossen und der Betriebsstrom IM des supraleitenden Magnetspulensystems M fließt über den Strompfad M-M1-M2-S2. Der Strom I2 in der zweiten Primärspule C2 ist null und der Strom I1 in der ersten Primärspule C1 wird mit einer kontinuierlichen Rampe von 0.25A/s während 8s von -1A auf +1A geladen. Dadurch wird in der Sekundärspule M1 eine Spannung von 25µV induziert. Weil die Sekundärspule M1 supraleitend mit dem Magnetspulensystem M verbunden ist, ist somit in dieser ersten Phase die Bedingung VMagnet = 25µV bereits erfüllt. Zum Zeitpunkt t1 hat der Strom I1 in der Primärspule C1 den Maximalwert von +1A erreicht und soll bis zum Zeitpunkt t2 = 10s wieder auf den Anfangswert von -1A entladen werden. Die in M1 induzierte Spannung beträgt in dieser Phase -100µV. Um während dieser Phase die Spannung VMagnet konstant auf 25µV zu halten, wird der Schalter S1 geöffnet und der Strom in der zweiten Primärspule C2 von null auf 2.5A gefahren. Dadurch wird in der zweiten Sekundärspule M2 eine Spannung von 125µV induziert. Weil der Schalter S1 geöffnet ist, addieren sich die in M1 und M2 induzierten Spannungen im Strompfad M-M1-M2-S2 zu 25µV, womit auch während dieser Phase die Bedingung VMagnet = 25µV erfüllt wird. Zum Zeitpunkt t2 = 10s wird der Schalter S1 wieder geschlossen und der Ladezyklus der Primärspule C1 beginnt von Neuem.
  • Damit ist das System aber noch nicht wieder im Anfangszustand, weil der Strom I2 in der zweiten Primärspule C2 nicht null ist. Beim Zurücksetzen von I2 auf null muss außerdem gewährleistet werden, dass der Betriebsstrom IM am Schluss wieder durch die Sekundärspule M2 fließt und nicht über den geschlossenen Schalter S1, das heißt IS1 soll null sein. Falls diese Bedingung nicht erfüllt ist, wird beim neuerlichen Öffnen des Schalters S1 im folgenden Zyklus der Flusspumpe P ein unerwünschter Spannungspuls über dem supraleitenden Magnetspulensystem M erzeugt.
  • Das Ziel, sowohl I2 als auch IS1 auf null zu bringen, wird dadurch erreicht, dass I2 zwischen t2 und t3 auf den Wert - IM * KM2C2 / LM2 gefahren wird, im Beispiel -1A. Dabei ist der Schalter S2 geöffnet, wodurch der Strom in M2 auf null gehalten wird. Zwischen t2 und t3 fließt daher der Magnetstrom IM über den geschlossenen Schalter S1, also IS1 = IM = 100A. Zum Zeitpunkt t3 wird der Schalter S2 wieder geschlossen und anschließend wird bis zum Zeitpunkt t4 der Strom I2 in der zweiten Primärspule C2 auf null zurückgefahren. Dadurch wird in der zweiten Sekundärspule M2 ein Strom des Betrages IM in der Richtung des Betriebsstromes des supraleitenden Magnetspulensystems M induziert, so dass ab dem Zeitpunkt t4 der ganze Betriebsstrom IM wieder über den Strompfad M-M1-M2-S2 fließt. Somit ist die zweite Primärspule C2 und der Strompfad M2-S1-S2 ab dem Zeitpunkt t4 wieder im Ausgangszustand.
  • Es ist zu beachten, dass die Vorgänge während dem Rücksetzen der zweiten Primärspule C2 und des Strompfades M2-S1-S2 in den Ausgangszustand keinen Einfluss haben auf die Spannung VMagnet, welche über dem supraleitenden Magnetspulensystem M anliegt. Der Grund dafür ist, dass während dieser Phase der Schalter S1 immer supraleitend ist, so dass über den Anschlusspunkten von S1 an den Strompfad M-M1-M2-S2 keine Spannung entstehen kann. Somit ist also während dieser Phase die Spannung VMagnet über dem supraleitenden Magnetspulensystem M einzig durch die in der Sekundärspule M1 induzierte Spannung gegeben, welche durch die Stromrampe in der Primärspule C1 auf den gewünschten Wert von 25µV eingestellt ist.
  • Anhand des in diesem Beispiel gezeigten Verfahrens zum Betrieb einer erfindungsgemäßen Flusspumpe P werden die Vorteile dieser Anordnung deutlich. Erstens kann die Spannung über den gesamten Zyklus der Flusspumpe P konstant gehalten werden und es treten keine Spannungsspitzen beim Öffnen von supraleitenden Schaltern auf. Zweitens sind die Schalter nur während einem Bruchteil des Betriebszyklus der Flusspumpe P geöffnet, wodurch der Wärmeeintrag in den Kryostaten durch die Schalter minimal wird.
  • Gegenüber einer Flusspumpe nach dem Stand der Technik mit nur einer Primärspule müssen in einer erfindungsgemäßen Anordnung mindestens zwei Primärspulen C1 und C2 mit Strom versorgt werden. Dadurch wird der Wärmeeintrag in den Kryostaten durch die Stromzuleitungen der Primärspulen vergrößert. Allerdings wirkt sich dieser Nachteil im gezeigten Beispiel nur geringfügig aus, weil die zweite Primärspule C2 nur während einem Bruchteil des Betriebszyklus der Flusspumpe P Strom trägt, wodurch die Wärmeentwicklung in den Zuleitungen klein gehalten wird.
  • Falls ein supraleitendes Magnetspulensystem für die magnetische Kernspinresonanz verwendet werden soll, sind die Anforderungen an die zeitliche Stabilität des Magnetfeldes besonders hoch. Typischerweise darf die Gesamtresistivität des Magnetspulensystems höchstens in der Größenordnung von 0.1 *10-9Ohm liegen, damit die Felddrift akzeptabel ist. Mit einer erfindungsgemäßen Flusspumpe nach obigem Beispiel kann dagegen das Feld auch dann noch stabilisiert werden, wenn die Resistivität des supraleitenden Magnetspulensystems in der Größenordnung von VMagnet/IM = 25µV/ 100A = 250*10-9Ohm liegt. Die Resistivität des Magnetspulensystems darf also über tausend mal größer sein als bei einer Anordnung ohne die erfindungsgemäße Flusspumpe.
  • Eine erfindungsgemäße Magnetanordnung umfasst ein supraleitendes Magnetspulensystem M und mindestens zwei supraleitende Sekundärspulen M1, M2, die mit dem Magnetspulensystem in Serie geschaltet sind, sowie einen ersten supraleitenden Schalter S1, der die zweite der Sekundärspulen M2 supraleitend überbrücken kann. Besonders vorteilhaft weist die Magnetanordnung einen zweiten supraleitenden Schalter S2 auf, der in Serie mit der zweiten Sekundärspule M2 geschaltet ist, wobei der erste supraleitende Schalter S1 die Gesamtheit von zweiter Sekundärspule M2 und zweitem supraleitenden Schalter S2 überbrücken kann. Durch induktive Kopplung kann mittels mindestens zwei voneinander unabhängigen Primärspulen C1, C2 eine vorgebbare Spannung in jeder der Sekundärspulen M1, M2 erzeugt werden, unabhängig von der jeweils anderen Sekundärspule. Das System von Sekundärspulen, Primärspulen und supraleitenden Schaltern bildet eine Flusspumpe P für das Magnetspulensystem. Diese Flusspumpe kann gut zur Stabilisierung des Magnetfelds des Magnetspulensystems im Betriebszustand über lange Zeit, das heißt zur Driftkompensation im Magnetspulensystem, eingesetzt werden.

Claims (11)

  1. Magnetanordnung mit einem supraleitenden Magnetspulensystem (M), welches im Betriebszustand einen Ohmschen Widerstand (R) größer oder gleich null aufweist, und mit einer Flusspumpe (P), welche mindestens einen supraleitenden Schalter (S1) und mindestens zwei supraleitende Sekundärspulen (M1, M2) umfasst,
    dadurch gekennzeichnet,
    dass mindestens ein supraleitender Strompfad vorhanden ist, in welchem das supraleitende Magnetspulensystem (M) oder Teile davon mit mindestens zwei Sekundärspulen (M1, M2) zusammen in Serie geschaltet ist und in welchem mindestens eine Sekundärspule (M2) durch Schließen eines supraleitenden Schalters (S1) supraleitend überbrückt werden kann,
    und dass mindestens zwei Primärspulen (C1, C2) vorhanden sind, welche unabhängig voneinander mit je einem Strom (I1, I2) gespeist werden können und welche jeweils mit mindestens einer der Sekundärspulen (M1, M2) induktiv gekoppelt sind.
  2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass mindestens ein supraleitender Strompfad vorhanden ist, in welchem das supraleitende Magnetspulensystem (M) oder Teile davon mit n ≥ 2 Sekundärspulen (M1, M2) zusammen in Serie geschaltet ist, und in welchem mindestens eine, aber höchstens n-1 Sekundärspule(n) (M2) durch Schließen eines oder mehrerer supraleitender Schalter (S1) supraleitend überbrückt werden können.
  3. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein supraleitender Schalter (S1) eine Sekundärspule (M2) zusammen mit einem Widerstand (R2) überbrückt, welcher mit der genannten Sekundärspule (M2) in Serie geschaltet ist, wobei dieser Widerstand (R2) einen Wert, gemessen in Ohm, zwischen 0 und dem Wert der Induktivität der genannten Sekundärspule (M2), gemessen in Henry, aufweist.
  4. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein supraleitender Schalter (S1) eine Sekundärspule (M2) zusammen mit einem weiteren supraleitenden Schalter (S2) überbrückt, welcher mit der genannten Sekundärspule (M2) in Serie geschaltet ist.
  5. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine der Sekundärspulen (M1) mit genau einer der Primärspulen (C1) induktiv gekoppelt ist, und dass mindestens eine weitere Sekundärspule (M2) mit genau einer weiteren Primärspule (C2) induktiv gekoppelt ist.
  6. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mindestens zwei der Sekundärspulen (M1, M2) induktiv voneinander weitgehend entkoppelt sind.
  7. Anordnung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mindestens ein Abschnitt des supraleitenden Magnetspulensystems (M) mit einem Widerstand (r) überbrückt ist, wobei dieser Widerstand einen Wert, gemessen in Ohm, zwischen 0 und dem Wert der Induktivität des überbrückten Abschnitts, gemessen in Henry, aufweist.
  8. Verfahren zum Betrieb einer Vorrichtung nach einem der vorangehenden Ansprüche mit mindestens einer ersten (M1) und einer zweiten (M2) supraleitenden Sekundärspule und einem ersten supraleitenden Schalter (S1),
    dadurch gekennzeichnet,
    dass der erste supraleitende Schalter (S1), welcher die zweite Sekundärspule (M2) überbrückt, periodisch geöffnet und geschlossen wird, wobei bei geschlossenem erstem Schalter (S1) der Strom (I1) in einer ersten Primärspule (C1) von einem Anfangswert auf einen Endwert gefahren wird und bei geöffnetem erstem Schalter (S1) wieder weitgehend auf den Anfangswert zurückgesetzt wird,
    und dass bei geöffnetem erstem Schalter (S1) der Strom (I2) in einer zweiten Primärspule (C2) von einem Anfangswert auf einen Endwert gefahren wird und bei geschlossenem erstem Schalter (S1) wieder weitgehend auf den Anfangswert zurückgesetzt wird.
  9. Verfahren zum Betrieb einer Vorrichtung nach Anspruch 4 mit mindestens einer ersten (M1) und einer zweiten (M2) supraleitenden Sekundärspule und einem ersten (S1) und einem zweiten (S2) supraleitenden Schalter,
    dadurch gekennzeichnet,
    dass der erste supraleitende Schalter (S1), welcher die zweite Sekundärspule (M2) überbrückt, periodisch geöffnet und geschlossen wird, wobei bei geschlossenem erstem Schalter (S1) der Strom (I1) in einer ersten Primärspule (C1) von einem Anfangswert auf einen Endwert gefahren wird und bei geöffnetem erstem Schalter (S1) wieder weitgehend auf den Anfangswert zurückgesetzt wird,
    dass bei geöffnetem erstem Schalter (S1) der Strom (I2) in einer zweiten Primärspule (C2) von einem Anfangswert auf einen Endwert gefahren wird und bei geschlossenem erstem Schalter (S1) wieder weitgehend auf den Anfangswert zurückgesetzt wird, und dass bei geschlossenem erstem Schalter (S1) ein zweiter supraleitender Schalter (S2), welcher mit der zweiten Sekundärspule (M2) in Serie geschaltet ist und zusammen mit dieser vom ersten supraleitenden Schalter (S1) überbrückt wird, mindestens zeitweise geöffnet wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Endwert des Stromes in der zweiten Primärspule (C2) im wesentlichen 0 Ampere beträgt.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass vor Erreichen des Endstromes von 0 Ampere in der zweiten Primärspule (C2) der Strom in dieser Spule auf einen Betrag von I * L / K gesetzt wird und dass spätestens nach Erreichen dieses Stromes der·zweite supraleitende Schalter (S2) geöffnet wird, und dass dann während dem Zurücksetzen des Stromes (I2) in der zweiten Primärspule (C2) auf den Endstrom von 0 Ampere und bis zum neuerlichen Öffnen des ersten supraleitenden Schalters (S1) der zweite supraleitende Schalter (S2) supraleitend geschlossen bleibt, wobei I den Strom im supraleitenden Magnetspulensystem (M), L die Selbstinduktivität der zweiten Sekundärspule (M2) und K die induktive Kopplung in Henry zwischen der zweiten Sekundärspule (M2) und der zweiten Primärspule (C2) bezeichnet.
EP04028362A 2003-12-15 2004-11-30 Supraleitendes Magnetsystem mit kontinuierlich arbeitender Flusspumpe und zugehörige Betriebsverfahren Active EP1544872B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10358549A DE10358549B4 (de) 2003-12-15 2003-12-15 Supraleitendes Magnetsystem mit kontinuierlich arbeitender Flusspumpe und zugehörige Betriebsverfahren
DE10358549 2003-12-15

Publications (3)

Publication Number Publication Date
EP1544872A2 EP1544872A2 (de) 2005-06-22
EP1544872A3 EP1544872A3 (de) 2008-06-11
EP1544872B1 true EP1544872B1 (de) 2010-04-28

Family

ID=34485376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04028362A Active EP1544872B1 (de) 2003-12-15 2004-11-30 Supraleitendes Magnetsystem mit kontinuierlich arbeitender Flusspumpe und zugehörige Betriebsverfahren

Country Status (4)

Country Link
US (1) US6946936B2 (de)
EP (1) EP1544872B1 (de)
JP (1) JP4713880B2 (de)
DE (2) DE10358549B4 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064550B2 (en) * 2004-11-16 2006-06-20 General Electric Company Method and apparatus for field drift compensation of a superconducting magnet
US7533068B2 (en) 2004-12-23 2009-05-12 D-Wave Systems, Inc. Analog processor comprising quantum devices
DE102005020690B4 (de) * 2005-05-03 2007-08-30 Bruker Biospin Ag Magnetanordnung mit Vorrichtung zum Dämpfen von Spannungsspitzen einer Speisung
DE102007006324B4 (de) * 2007-02-08 2011-04-28 Bruker Biospin Ag Magnetspulensystem mit aktiver Driftkompensation für zwei unabhängige Strompfade
EP2145294A4 (de) 2007-04-05 2010-12-22 Dwave Sys Inc Physische realisierungen eines universellen adiabatischen quantencomputers
US8107211B2 (en) * 2007-08-29 2012-01-31 Advanced Magnet Lab, Inc. High temperature superconducting electromechanical system with frequency controlled commutation for rotor excitation
WO2011074092A1 (ja) * 2009-12-17 2011-06-23 株式会社日立製作所 超電導磁石装置、および超電導磁石の電流注入方法
US8738105B2 (en) * 2010-01-15 2014-05-27 D-Wave Systems Inc. Systems and methods for superconducting integrated circuts
US9810755B2 (en) 2013-12-16 2017-11-07 General Electric Company System and method for energizing a superconducting magnet
US10002107B2 (en) 2014-03-12 2018-06-19 D-Wave Systems Inc. Systems and methods for removing unwanted interactions in quantum devices
CN111788588A (zh) 2017-12-20 2020-10-16 D-波系统公司 量子处理器中耦合量子位的系统和方法
CN113628828B (zh) * 2021-08-23 2022-07-22 上海交通大学 高温超导磁通泵及其铁芯绕组电流波形控制方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3244943A (en) * 1961-11-29 1966-04-05 California Inst Res Found Continuous magnetic-flux pump
US3277322A (en) * 1963-04-01 1966-10-04 North American Aviation Inc Method and apparatus for magnetic flux accumulation and current generation
GB1068372A (en) * 1963-05-29 1967-05-10 Gen Electric Electric current pumping arrangement
FR1522300A (fr) * 1967-02-23 1968-04-26 Commissariat Energie Atomique Procédé pour l'introduction d'un courant dans un circuit supraconducteur et dispositif pour la mise en oeuvre de ce procédé
US3568002A (en) * 1968-11-18 1971-03-02 Atomic Energy Commission Multiaction flux pump
US3848162A (en) * 1972-07-11 1974-11-12 President Of The Agency Of Ind Method and apparatus for charging a superconductive coil
JPS5146589B2 (de) * 1972-07-11 1976-12-09
JPS50154092A (de) * 1974-05-31 1975-12-11
US4096403A (en) * 1976-06-28 1978-06-20 Electric Power Research Institute, Inc. Superconducting hybrid magnetic flux pump
JPS5345998A (en) * 1976-10-07 1978-04-25 Japan National Railway Flux pump for exiting superconductive magnet
NL8501762A (nl) * 1985-06-19 1987-01-16 Holec Syst & Componenten Supergeleidende gelijkrichter voor het omzetten van een relatief lage wisselstroom in een relatief hoge gelijkstroom.
FR2592736B1 (fr) * 1986-01-06 1988-03-04 Alsthom Chargeur de bobine supraconductrice
US5965959A (en) * 1996-07-02 1999-10-12 American Superconductor Corporation Superconducting magnets and power supplies for superconducting devices
DE19920443A1 (de) * 1999-05-04 2000-11-09 Abb Research Ltd Anordnung zur Strombegrenzung mit einem supraleitenden Transformator
DE10065420C2 (de) * 2000-12-27 2003-08-07 Siemens Ag Flusspumpe mit Hochtemperatursupraleiter und damit zu betreibender supraleitender Elektromagnet

Also Published As

Publication number Publication date
JP2005183971A (ja) 2005-07-07
EP1544872A3 (de) 2008-06-11
US20050127915A1 (en) 2005-06-16
JP4713880B2 (ja) 2011-06-29
DE10358549B4 (de) 2005-11-24
DE502004011096D1 (de) 2010-06-10
DE10358549A1 (de) 2005-07-14
US6946936B2 (en) 2005-09-20
EP1544872A2 (de) 2005-06-22

Similar Documents

Publication Publication Date Title
DE69533962T2 (de) Gleichstromwandler und denselben verwendende steuereinrichtung für induktive last
EP0704097B1 (de) Vorrichtung und ein verfahren zur ansteuerung eines elektromagnetischen verbrauchers
DE3612937C2 (de)
DE3316722C2 (de) Netzgerät zum Treiben von Spulen
EP1544872B1 (de) Supraleitendes Magnetsystem mit kontinuierlich arbeitender Flusspumpe und zugehörige Betriebsverfahren
WO1987005075A1 (en) Method and circuit for driving electromagnetic consumers
DE10027575A1 (de) ARCP Mehrpunktstromrichter mit potentialvariablen Zwischenkapazitäten
EP1638196A2 (de) Anordnung zur Versorgung von veränderlichen Lasten
DE3538494A1 (de) Aus einer gleichspannungsquelle gespeiste elektrische schaltungsanordnung zur versorgung eines verbraucherzweipols mit eingepraegtem, jedoch unterbrechbarem gleichstrom oder eingepraegtem, jedoch unterbrechbarem, blockfoermigem wechselstrom mit einstellbarer begrenzung der spannungen am verbraucherzweipol und an den verwendeten elektronischen einwegschaltern
DE2138272C3 (de) Schaltungsanordnung zur elektronischen Kommutierung
DE3415041C2 (de) Stromversorgungsschaltung für eine Spule
EP1720179B1 (de) Magnetanordnung mit Vorrichtung zum Dämpfen von Spannungsspitzen einer Speisung und Verfahren zum Betrieb derselben
DE3204800A1 (de) Leistungswechselrichter
DE60120900T2 (de) Schaltkreis und verfahren zur hocheffizienten ansteuerung von piezoelektrischen lasten
DE19704089A1 (de) Verfahren zur Steuerung eines Zerhacker(Chopper)-Treibers und Schaltungsanordnung zur Durchführung des Verfahrens
EP1463189A1 (de) Hilfsspannungsquelle für einen spannungsseitigen NMOS-Transistor
DE4019008C2 (de) Supraleitende Magnetvorrichtung
DE3701985A1 (de) Vorschaltelektronik fuer ein gleichspannungserregbares geraet
DE10359272A1 (de) Elektromagnetisches Lastantriebsgerät
DE4021524A1 (de) Supraleitende spulenanordnung und verfahren zum betreiben derselben
EP3667351B1 (de) Verfahren zum laden einer hts-shim-vorrichtung
DE2644715A1 (de) Einrichtung zur befreiung elektrischer oder elektronischer einwegschalter von hoher verlustleistungsbeanspruchung waehrend des einschaltens und ueberhoehter sperrspannungsbeanspruchung beim ausschalten
DE19734045C2 (de) Leistungsverstärker und Kernspintomograph
DE102005029153B4 (de) Vefahren zum Test eines Supraleiters unter erhöhter Stromauslastung in einem aktiv abgeschirmten supraleitenden NMR-Serienmagneten
EP3167298B1 (de) Verfahren zum prüfen eines hochleistungs-halbleiterelements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

17P Request for examination filed

Effective date: 20080628

AKX Designation fees paid

Designated state(s): CH DE FR GB LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004011096

Country of ref document: DE

Date of ref document: 20100610

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110131

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004011096

Country of ref document: DE

Representative=s name: KOHLER SCHMID MOEBUS PATENTANWAELTE PARTNERSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011096

Country of ref document: DE

Owner name: BRUKER SWITZERLAND AG, CH

Free format text: FORMER OWNER: BRUKER BIOSPIN AG, FAELLANDEN, CH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BRUKER SWITZERLAND AG, CH

Free format text: FORMER OWNER: BRUKER BIOSPIN AG, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 20

Ref country code: DE

Payment date: 20231120

Year of fee payment: 20

Ref country code: CH

Payment date: 20231202

Year of fee payment: 20