EP1541810A1 - Verwendung einer Wärmedämmschicht für ein Bauteil einer Dampfturbine und eine Dampfturbine - Google Patents

Verwendung einer Wärmedämmschicht für ein Bauteil einer Dampfturbine und eine Dampfturbine Download PDF

Info

Publication number
EP1541810A1
EP1541810A1 EP03028575A EP03028575A EP1541810A1 EP 1541810 A1 EP1541810 A1 EP 1541810A1 EP 03028575 A EP03028575 A EP 03028575A EP 03028575 A EP03028575 A EP 03028575A EP 1541810 A1 EP1541810 A1 EP 1541810A1
Authority
EP
European Patent Office
Prior art keywords
thermal barrier
barrier coating
coating according
component
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03028575A
Other languages
German (de)
English (en)
French (fr)
Inventor
Friedhelm Schmitz
Kai Dr. Wieghardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP03028575A priority Critical patent/EP1541810A1/de
Priority to US10/582,598 priority patent/US7614849B2/en
Priority to BRPI0417561-1A priority patent/BRPI0417561A/pt
Priority to CA2548973A priority patent/CA2548973C/en
Priority to PCT/EP2004/013651 priority patent/WO2005056985A1/de
Priority to JP2006543433A priority patent/JP4563399B2/ja
Priority to EP04801187A priority patent/EP1692372A1/de
Priority to RU2006124740/06A priority patent/RU2362889C2/ru
Priority to CN2004800363052A priority patent/CN1890457B/zh
Publication of EP1541810A1 publication Critical patent/EP1541810A1/de
Priority to KR1020067013953A priority patent/KR101260922B1/ko
Priority to US12/403,730 priority patent/US8215903B2/en
Priority to US12/403,648 priority patent/US8226362B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/007Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/16Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means
    • F01D11/18Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing by self-adjusting means using stator or rotor components with predetermined thermal response, e.g. selective insulation, thermal inertia, differential expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • F01D25/145Thermally insulated casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/047Nozzle boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment

Definitions

  • the invention relates to the use of a thermal barrier coating according to claim 1 and a steam turbine according to claim 37.
  • Thermal barrier coatings applied to components are known in the field of gas turbines, as e.g. in EP 1 029 115 or WO 00/25005 are described.
  • thermal barrier coating in a steam turbine to be able to use materials with poorer mechanical properties, but which are less expensive, for the substrate to which the thermal barrier coating is applied.
  • the thermal barrier coating is applied in the colder area of a steam inflow area.
  • Thermal barrier coatings allow components at higher temperatures than the base material alone permits, or to extend the duration of use.
  • Known base materials enable operating temperatures of maximum 1000 ° C - 1100 ° C, whereas a coating with a thermal insulation layer operating temperatures of up to 1350 ° C. in gas turbines.
  • the object of the invention is to overcome the problems mentioned.
  • the object is achieved by the use of a thermal barrier coating for a component, in particular for a steam turbine according to claim 1.
  • a steam turbine according to Claim 37 which has a thermal barrier layer with locally different Parameters (materials, porosity, thickness). Local means locally separated areas the surfaces of one or more components a turbine.
  • the controlled influence of the affects Deformation behavior at a radial gap between turbine rotor and turbine stator off. Turbine blade and one Housing on by this radial gap is minimized. A Minimizing the radial gap leads to an increase in efficiency the turbine.
  • an integral Temperature of the housing by the application of the thermal barrier coating less than the temperature of the shaft, so that the radial gap between rotor and stator, i. between Blade tip and housing or between the vane tip and shaft, in operation (higher temperatures than room temperature) smaller than during installation (room temperature).
  • a reduction in transient thermal deformation of housings and their adaptation to the deformation behavior the mostly thermally inert turbine shaft causes also a reduction of the radial games to be provided.
  • thermal barrier coating is also a reduces viscous creep, and the component can last longer be used.
  • the thermal barrier coating may advantageously be used in newly manufactured, used (that is, no repair is necessary) and remanufactured components.
  • FIG. 1 shows a first exemplary embodiment of a component 1 designed according to the invention.
  • the component 1 is a component, in particular an inflow region 333 of a turbine (gas, steam), in particular a steam turbine 300, 303 (FIG. 8) and consists of a substrate 4 (eg support structure, housing part) and a thermal barrier coating 7 applied thereto.
  • a turbine gas, steam
  • FIG. 8 shows a first exemplary embodiment of a component 1 designed according to the invention.
  • the component 1 is a component, in particular an inflow region 333 of a turbine (gas, steam), in particular a steam turbine 300, 303 (FIG. 8) and consists of a substrate 4 (eg support structure, housing part) and a thermal barrier coating 7 applied thereto.
  • a substrate 4 eg support structure, housing part
  • the thermal barrier coating 7 is in particular a ceramic layer, which consists for example of zirconium oxide (partially stabilized, fully stabilized by yttrium oxide and / or magnesium oxide) and / or titanium oxide, and is for example thicker than 0.1 mm.
  • thermal barrier coatings 7 consisting of 100% of either zirconia or titanium oxide can be used.
  • the ceramic layer may be applied by known coating techniques such as atmospheric plasma spraying (APS), vacuum plasma spraying (VPS), low pressure plasma spraying (LPPS), as well as by chemical or physical coating methods (CVD, PVD).
  • FIG. 2 shows a further embodiment of the component 1 designed according to the invention.
  • the intermediate protective layer 10 serves to protect against corrosion and / or oxidation of the substrate 4 and / or for better bonding of the thermal barrier coating to the substrate 4. This is the case in particular if the thermal barrier coating made of ceramic and the substrate 4 consists of a metal.
  • the intermediate protective layer 10 for protecting a substrate 4 against corrosion and oxidation at a high temperature has, for example, essentially the following elements (indication of the percentages by weight): 11.5 to 20.0 wt% chromium, 0.3 to 1.5 wt% silicon, 0.0 to 1.0 wt% aluminum, 0.0 to 0.7 wt% yttrium and / or at least one equivalent metal from the group comprising scandium and the elements of the rare earths, remainder iron, cobalt and / or nickel, as well as positional impurities;
  • the metallic intermediate protective layer 10 is made 12.5 to 14.0 wt% Chrome, 0.5 to 1.0 wt% Silicon, 0.1 to 0.5 wt% Aluminum, 0.0 to 0.7 wt% Yttrium and / or at least one equivalent metal from the group comprising scandium and the elements of the rare earths, remainder iron and / or cobalt and / or nickel, and also production-related impurities. It is preferred if the remainder is only iron
  • the composition of the iron-based intermediate protective layer 7 exhibits particularly good properties, so that the protective layer 7 is outstandingly suitable for application to ferritic substrates 4.
  • the thermal expansion coefficients of substrate 4 and intermediate protective layer 10 can be very well matched or even equal, so that there is no thermally induced stress build-up between substrate 4 and intermediate protective layer 10 (thermal mismatch), which could cause the intermediate protective layer 10 to flake off.
  • thermal mismatch thermally induced stress build-up between substrate 4 and intermediate protective layer 10 (thermal mismatch)
  • This is particularly important because in ferritic materials often no heat treatment for diffusion bonding is performed, but the protective layer 7 largely or only by adhesion to the substrate 4 adheres.
  • the substrate 4 is then a ferritic base alloy, a steel or a nickel or cobalt-based Superalloy, in particular a 1% CrMoV steel or a 10 up to 12% chrome steel.
  • FIG. 3 shows a further exemplary embodiment of the component 1 designed according to the invention.
  • an erosion protection layer 13 forms the outer surface. It consists in particular of a metal or a metal alloy and protects the component against erosion and / or wear, as is the case in particular in steam turbines 300, 303 (FIG. 8), which have a scaling in the superheated steam region, where average flow velocities of approximately 50m / s (ie 20 - 100m / s), and pressures of up to 400 bar occur.
  • the thermal barrier coating has a certain open and / or closed Porosity on.
  • the wear / erosion protective layer 13 a higher density and consists of alloys on the Base of iron, chromium, nickel and / or cobalt or MCrAlX or for example NiCr 80/20 or with admixtures of boron (B) and silicon (Si) NiCrSiB or NiAl (for example Ni: 95%, Al 5%).
  • a metallic erosion protection layer 13 used in steam turbines 300, 303 since the operating temperatures in steam turbines at Dampfeinström Scheme 33 maximum at 800 ° C or 850 ° C. For such temperature ranges there are enough metallic layers that are sufficient large necessary erosion protection over the duration of use of the component 1 have.
  • Metallic erosion protection layers 13 in gas turbines a ceramic thermal barrier coating 7 are not everywhere possible because metallic erosion protection layers 13 as outer Layer the maximum single temperatures of up to 1350 ° C can not stand.
  • Ceramic erosion protection layers 13 are also conceivable.
  • Further materials for the erosion protection layer 13 are, for example, chromium carbide (Cr 3 C 2 ), a mixture of tungsten carbide, chromium carbide and nickel (WC-CrC-Ni), for example with the proportions by weight 73 wt% for tungsten carbide, 20 wt% for chromium carbide and 7 wt% for nickel, also chromium carbide with the admixture of nickel (Cr 3 C 2 -Ni), for example, with a share of 83 wt% chromium carbide and 17 wt% nickel and a mixture of chromium carbide and nickel chromium (Cr 3 C 2 -NiCr), for example with a Proportion of 75 wt% chromium carbide and 25 wt% nickel chromium and yttrium-stabilized zirconium oxide, for example, with a weight fraction of 80 wt% zirconium oxide and 20 wt% ytt
  • an intermediate protective layer 10 may be present (Fig. 4).
  • FIG. 5 shows a thermal barrier coating 7 with a gradient of porosity.
  • pores 16 are present.
  • the density ⁇ of the thermal barrier coating 7 increases (direction arrow).
  • the substrate 4 or an optional intermediate protective layer 10 towards preferably a greater porosity as in the area of an outer surface or the contact surface to the erosion control layer 13.
  • FIGS. 7 a, b show the influence of the thermal barrier coating 7 on the thermally induced deformation behavior of the component 1.
  • FIG. 7a shows a component without a thermal barrier coating.
  • a higher temperature T max and a lower temperature T min which gives a temperature difference dT (4).
  • the substrate 4 as indicated by dashed lines, expands significantly more in the region of the higher temperature T max due to the thermal expansion than in the region of the lower temperature T min . This differential expansion causes an undesirable deformation of a housing.
  • a thermal barrier coating 7 is present on the substrate 4, wherein the substrate 4 and the thermal barrier coating 7 together are for example just as thick as the substrate 4 in FIG. 7a.
  • the thermal barrier coating 7 reduces the maximum temperature at the surface of the substrate 4 disproportionately to a temperature T ' max , although the external temperature T max is the same as in FIG. 7 a. This results not only from the distance of the surface of the substrate 4 to the outer surface of the thermal barrier coating 7 with the higher temperature, but in particular by the lower thermal conductivity of the thermal barrier coating 7.
  • the substrate 4 in Figure 7b may also be as thick as that in Figure 7a.
  • FIG. 8 shows an example of a steam turbine 300, 303 one extending along a rotation axis 306 Turbine shaft 309 shown.
  • the steam turbine has a high pressure turbine part 300 and a medium-pressure turbine section 303, each with an inner housing 312 and a surrounding this outer housing 315.
  • the high pressure turbine part 300 is, for example, in Topfbauart executed.
  • the medium-pressure turbine section 303 is double-flow executed. It is also possible that the medium pressure turbine part 303 is executed in einflutig.
  • Along the Rotation axis 306 is between the high pressure turbine part 300 and the medium-pressure turbine section 303 a bearing 318 arranged, wherein the turbine shaft 309 in the bearing 318 a storage area 321 has.
  • the turbine shaft 309 is on a further bearing 324 adjacent to the high pressure turbine section 300. In the area of this bearing 324, the high-pressure turbine part 300, a shaft seal 345 on.
  • the turbine shaft 309 is opposite the outer casing 315 of the medium-pressure turbine section 303 sealed by two further shaft seals 345. Between a high pressure steam inflow region 348 and a steam exit region 351 has the turbine shaft 309 in the high pressure turbine section 300, the high pressure runner blading 354, 357 on. This high pressure blading 354, 357 with the associated, not shown Blades a first blading area 360 is.
  • the medium-pressure turbine section 303 has a central steam inflow area 333 on.
  • the turbine shaft 309 Associated with the steam inflow region 333 the turbine shaft 309 has a radially symmetric Shaft shield 363, a cover plate, on the one hand for division the steam flow in the two floods of the medium-pressure turbine section 303 and to prevent direct contact of the hot steam with the turbine shaft 309.
  • the Turbine shaft 309 points in the medium-pressure turbine section 303 a second blading area 366, 367 with the medium pressure blades 354, 342 on. The through the second blading area 366 flowing hot steam flows out of the Medium-pressure turbine section 303 from a discharge port 369 to a fluidic downstream, not shown Low-pressure turbine.
  • the turbine shaft 309 is composed of two turbine shafts 309a and 309b which are fixed in the area of the bearing 318 connected to each other.
  • the Dampfeinström Siemens 333 any Steam turbine type a thermal barrier coating 7 and / or an erosion control layer 13 on.
  • a thermal barrier coating Due to the controlled deformation behavior by applying a thermal barrier coating, in particular the efficiency of a steam turbine 300, 303 can be increased. This is done, for example, by minimizing the radial gap (radially, ie perpendicular to the axis 306) between the rotor and stator parts (FIGS. 16, 17).
  • an axial gap 378 (parallel to axis 306) through the controlled deformation behavior of blading of the rotor and housing are minimized.
  • thermal barrier coating 7 only refer to components 1 of an example Steam turbine 300, 303.
  • Figure 9 shows the effect of locally different temperatures on the expansion behavior of a component.
  • FIG. 9a shows a component 1 which expands by a temperature increase (dT) (d1).
  • the thermal expansion dl is indicated by dashed lines.
  • a holder, storage or a fixation of the component 1 allows for this expansion.
  • FIG. 9b likewise shows a component 1 which expands due to an increase in temperature.
  • the temperatures in different areas of the component 1 are different.
  • the temperature T 333 is greater than the temperature T 366 of the adjoining blading region 366 and larger than in a further adjoining housing part 367 (T 367 ).
  • T 367 the temperature T 366 of the adjoining blading region 366 and larger than in a further adjoining housing part 367
  • Is indicated by the dashed lines by the reference numeral 333 is equal to the thermal expansion of the inflow region 333, if all the areas 333, 366, 367 would experience a uniform rise in temperature.
  • the inflow region 333 expands more than indicated by the dashed lines 333 '. Since the inflow region 333 is arranged between the blading region 366 and a further region 367, the inflow region 333 can not expand freely, resulting in an uneven deformation behavior. By applying the thermal barrier coating 7, the deformation behavior should be controlled and / or evened out.
  • FIG. 10 shows an enlarged view of a region 333, 366 of the steam turbine 300, 303.
  • the steam turbine 300, 303 is in the vicinity of the inflow 333 of an outer housing 334, abut the temperatures, for example, between 250 ° to 350 ° C and an inner housing 335, at the temperatures, for example, from 450 ° to 620 ° C, but also up 800 ° C prevail, so that, for example, temperature differences greater than 200 ° C are present.
  • the thermal barrier coating 7 is applied on the inner housing 335 on the inside 336.
  • the outside 337 for example, no thermal barrier coating 7 is applied.
  • the thermal barrier coating 7 By applying a thermal barrier coating 7, the heat input into the inner housing 335 is reduced, so that the thermal expansion behavior of the inflow region 333 and the entire deformation behavior of the regions 333, 366, 367 is influenced. Thereby, the entire deformation behavior of the inner housing 334 or the outer housing 335 can be controlled adjusted and made uniform.
  • the adjustment of the deformation behavior of a component or of components with one another can be effected by a variation of the thickness of the thermal insulation layer 7 (FIG. 12) and / or the application of different materials at different locations on the surface of the inner housing 335 (FIG. 13).
  • the porosity at different locations of the inner housing 335 may be different (FIG. 14).
  • the thermal barrier coating 7 may be locally limited, for example, be applied only in the inner housing 335 in the region of the inflow 333.
  • thermal barrier coating 7 only in the blading area 366 may be applied locally (FIG. 11).
  • FIG. 12 shows a further exemplary embodiment of a use of a thermal barrier coating 7.
  • the thickness of the thermal barrier coating 7 in the inflow region 333 is, for example, at least 50% thicker than in the blading region 366 of the steam turbine 300, 303. Due to the thickness of the thermal barrier coating 7, the heat input and thus the thermal expansion and thus the deformation behavior of the inner housing 334, consisting of the inflow region 333 and the blading region 366, are adjusted in a controlled manner and made uniform (over the axial length).
  • FIG. 13 shows various materials of the thermal barrier coating 7 in different regions 333, 366 of the component 1.
  • a thermal barrier coating 7 is applied.
  • the thermal barrier coating 8 in the region of the inflow region 333 consists of a first thermal barrier coating material
  • the material of the thermal barrier coating 9 in the blaze region 366 consists of a second thermal barrier coating material. Due to the different material for the thermal barrier coatings 8, 9 a different thermal insulation is achieved, whereby the deformation behavior of the regions 333 and 366 is adjusted, in particular equalized. Higher thermal insulation is set there (333) where higher temperatures prevail.
  • the thickness and / or the porosity of the thermal barrier coatings 8, 9 may be the same.
  • an erosion protection layer 13 can be arranged on the thermal barrier coatings 8, 9.
  • FIG. 14 shows a component 1, 300, 303 in which different porosities of 20 to 30% are present in different regions 333, 366.
  • the inflow region 333 with the heat-insulating layer 8 has a higher porosity than the thermal barrier layer 9 of the blading region 366, thereby achieving a higher thermal insulation in the inflow region 333 than by the thermal barrier coating 9 in the blading region 366.
  • the thickness and the material of the thermal barrier layers 8, 9 can also be different.
  • the heat insulation of a thermal barrier coating 7 is adjusted by the porosity, whereby the deformation behavior of different areas 333, 366 of a component 1 can be adjusted.
  • an erosion protection layer 13 may be present on the thermal barrier coatings 8, 9.
  • FIG. 15 shows a further application example for the use of a thermal barrier coating 7.
  • the component 1, in particular a housing part is here a valve housing 31, into which a hot steam flows through an inlet channel 46.
  • the inflow passage 46 causes a mechanical weakening of the valve housing.
  • the valve housing 31 consists for example of a cup-shaped housing part 34 and a lid 37th
  • a valve consisting of a valve plug 40 and a spindle 43 is present.
  • a non-uniform axial deformation behavior of the housing 31 and the cover 37 occurs.
  • the valve housing 31 would expand axially more in the region of the channel 46, so that tilting of the cover with the spindle 43 comes.
  • the valve cone 34 no longer sits properly, so that the tightness of the valve is reduced.
  • thermal barrier coating is used to Control deformation behavior and thus the tightness to ensure the valve.
  • FIG. 16 shows a stator 58, for example a housing 335, 366 of a turbine 300, 303 and a rotating component 61 (rotor), in particular a turbine blade 120, 130, 342, 354th
  • a stator 58 for example a housing 335, 366 of a turbine 300, 303 and a rotating component 61 (rotor), in particular a turbine blade 120, 130, 342, 354th
  • the temperature-time diagram T (t) for the stator 58 and the Rotor 61 for example, during the shutdown of turbine 300, 303 that the temperature T of the stator 58 decreases faster as the temperature of the rotor 61.
  • the housing shrinks 58 stronger than the rotor 61, so that the housing 58th approaching the rotor. Therefore, an appropriate distance must be d between stator 58 and rotor 61 in the cold state be in order in this phase of operation stripping the rotor 61st to prevent the housing 58.
  • stator (non-rotating member) 58 is the stator applied a thermal barrier coating 7.
  • the heat-insulating layer 7 causes a greater thermal inertia of the stator 58 or the component (335), which heats up more or faster.
  • the time course of the temperatures T of the stator 58 and the rotor 61 is shown. Due to the thermal barrier coating 7 on the stator 58, the temperature of the stator 58 does not rise so quickly and the difference between the two curves is less. This allows a smaller radial gap d7 even at room temperatures between rotor 61 and stator 58, so that the efficiency of the turbine 300, 303 is increased accordingly due to a smaller gap in operation.
  • the distance-time diagram shows that a smaller distance d7 (d7 ⁇ di ⁇ ds) is present at room temperature RT, the does not lead to streaking of stator 58 and rotor 61.
  • the temperature differences and associated gap changes are due to unsteady states (start, Load change, shutdown) of the steam turbine 300, 303, whereas in stationary operation no problems with changes radial Distances exist.
  • FIG. 18 shows the influence of the application of a thermal barrier coating on a remanufactured component.
  • Refurbishment means that components that have been used may be repaired, ie that they are freed of corrosion and oxidation products, and cracks may be detected and repaired, for example, by filling with solder.
  • Each component 1 has a certain life, until it is 100% damaged. If the component 1, for example a turbine blade or an inner housing 334, is inspected at a time t s and, if necessary, worked up again, a certain percentage of the damage is achieved. The time course of the damage of the component 1 is indicated by the reference numeral 22. After the service time t s , the damage curve would continue without reprocessing using the dashed line 25. The remaining operating time would be relatively short.
  • the service life of the component 1 is considerably extended.
  • the thermal barrier coating 7 the heat input and the damage of components is reduced, so that the life course of the curve 28 continues.
  • This course of the curve is significantly flattened compared to the curve 25, so that such a coated component 1 can be used at least once as long.
  • the thermal barrier coating 7 can advantageously be applied to non-repairable components 1 or housing parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Laminated Bodies (AREA)
  • Thermal Insulation (AREA)
  • Control Of Turbines (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
EP03028575A 2003-12-11 2003-12-11 Verwendung einer Wärmedämmschicht für ein Bauteil einer Dampfturbine und eine Dampfturbine Withdrawn EP1541810A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP03028575A EP1541810A1 (de) 2003-12-11 2003-12-11 Verwendung einer Wärmedämmschicht für ein Bauteil einer Dampfturbine und eine Dampfturbine
JP2006543433A JP4563399B2 (ja) 2003-12-11 2004-12-01 蒸気タービンのケーシングに使用する断熱層及び蒸気タービン
BRPI0417561-1A BRPI0417561A (pt) 2003-12-11 2004-12-01 emprego de uma camada termicamente isolante para uma caixa de uma turbina de vapor e uma turbina de vapor
CA2548973A CA2548973C (en) 2003-12-11 2004-12-01 Use of a thermal barrier coating for a housing of a steam turbine, and a steam turbine
PCT/EP2004/013651 WO2005056985A1 (de) 2003-12-11 2004-12-01 Verwendung einer wärmedämmschicht für ein gehäuse einer dampfturbine und eine dampfturbine
US10/582,598 US7614849B2 (en) 2003-12-11 2004-12-01 Use of a thermal barrier coating for a housing of a steam turbine, and a steam turbine
EP04801187A EP1692372A1 (de) 2003-12-11 2004-12-01 Verwendung einer wärmedä mmschicht für ein gehäuse einer dampfturbine und eine dampfturbine
RU2006124740/06A RU2362889C2 (ru) 2003-12-11 2004-12-01 Применение теплоизолирующего слоя для корпуса паровой турбины и паровая турбина
CN2004800363052A CN1890457B (zh) 2003-12-11 2004-12-01 绝热层在汽轮机汽缸上的应用和汽轮机
KR1020067013953A KR101260922B1 (ko) 2003-12-11 2006-07-11 증기 터빈의 하우징 및 증기 터빈을 위한 열적 배리어코팅의 이용
US12/403,730 US8215903B2 (en) 2003-12-11 2009-03-13 Use of a thermal barrier coating for a housing of a steam turbine, and a steam turbine
US12/403,648 US8226362B2 (en) 2003-12-11 2009-03-13 Use of a thermal barrier coating for a housing of a steam turbine, and a steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03028575A EP1541810A1 (de) 2003-12-11 2003-12-11 Verwendung einer Wärmedämmschicht für ein Bauteil einer Dampfturbine und eine Dampfturbine

Publications (1)

Publication Number Publication Date
EP1541810A1 true EP1541810A1 (de) 2005-06-15

Family

ID=34486193

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03028575A Withdrawn EP1541810A1 (de) 2003-12-11 2003-12-11 Verwendung einer Wärmedämmschicht für ein Bauteil einer Dampfturbine und eine Dampfturbine
EP04801187A Withdrawn EP1692372A1 (de) 2003-12-11 2004-12-01 Verwendung einer wärmedä mmschicht für ein gehäuse einer dampfturbine und eine dampfturbine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP04801187A Withdrawn EP1692372A1 (de) 2003-12-11 2004-12-01 Verwendung einer wärmedä mmschicht für ein gehäuse einer dampfturbine und eine dampfturbine

Country Status (9)

Country Link
US (3) US7614849B2 (ja)
EP (2) EP1541810A1 (ja)
JP (1) JP4563399B2 (ja)
KR (1) KR101260922B1 (ja)
CN (1) CN1890457B (ja)
BR (1) BRPI0417561A (ja)
CA (1) CA2548973C (ja)
RU (1) RU2362889C2 (ja)
WO (1) WO2005056985A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1734145A1 (de) * 2005-06-13 2006-12-20 Siemens Aktiengesellschaft Schichtsystem für ein Bauteil mit Wärmedämmschicht und metallischer Erosionsschutzschicht, Verfahren zur Herstellung und Verfahren zum Betreiben einer Dampfturbine
DE102006013215A1 (de) * 2006-03-22 2007-10-04 Siemens Ag Wärmedämmschicht-System
WO2007112783A1 (en) * 2006-04-06 2007-10-11 Siemens Aktiengesellschaft Layered thermal barrier coating with a high porosity, and a component
EP1970461A1 (de) * 2007-03-14 2008-09-17 Siemens Aktiengesellschaft Turbinenbauteil mit Wärmedämmschicht
EP1970157A1 (de) * 2007-03-14 2008-09-17 Siemens Aktiengesellschaft Verfahren zur Reparatur eines Bauteils
WO2009006871A2 (de) * 2007-07-09 2009-01-15 Mtu Aero Engines Gmbh Turbomaschinenschaufel mit verschleissschutzschicht
EP2112334A1 (de) * 2008-04-21 2009-10-28 Siemens Aktiengesellschaft Außengehäuse für eine Strömungsmaschine
EP2128306A1 (en) * 2008-05-26 2009-12-02 Siemens Aktiengesellschaft Ceramic thermal barrier coating system with two ceramic layers
EP2194236A1 (de) * 2008-12-03 2010-06-09 Siemens Aktiengesellschaft Turbinengehäuse
EP2366813A3 (en) * 2010-03-05 2011-12-21 General Electric Company Layered Article
DE102017207238A1 (de) * 2017-04-28 2018-10-31 Siemens Aktiengesellschaft Dichtungssystem für Laufschaufel und Gehäuse
DE102018212222A1 (de) * 2018-07-23 2020-01-23 Siemens Aktiengesellschaft Turbinengehäuse sowie Verfahren zum Herstellen eines Turbinengehäuses
EP1780379B2 (en) 2005-10-31 2020-03-25 Kabushiki Kaisha Toshiba Steam turbine

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541810A1 (de) * 2003-12-11 2005-06-15 Siemens Aktiengesellschaft Verwendung einer Wärmedämmschicht für ein Bauteil einer Dampfturbine und eine Dampfturbine
US7422771B2 (en) * 2005-09-01 2008-09-09 United Technologies Corporation Methods for applying a hybrid thermal barrier coating
US20090120101A1 (en) * 2007-10-31 2009-05-14 United Technologies Corp. Organic Matrix Composite Components, Systems Using Such Components, and Methods for Manufacturing Such Components
GB0807627D0 (en) * 2008-04-25 2008-06-04 Accentus Plc A thermal barrier, an article with a thermal barrier and a method of applying a thermal barrier to a surface
JP5395574B2 (ja) * 2008-11-27 2014-01-22 株式会社東芝 蒸気機器
JP5653421B2 (ja) * 2009-05-26 2015-01-14 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft MCrAlX層およびクロムリッチ層を含む層状コーティングシステムならびにその製造方法
JP5279630B2 (ja) * 2009-06-22 2013-09-04 株式会社日立製作所 蒸気タービンケーシング
JP5367497B2 (ja) * 2009-08-07 2013-12-11 株式会社東芝 蒸気タービン
FR2972449B1 (fr) * 2011-03-07 2013-03-29 Snecma Procede de realisation d'une barriere thermique dans un systeme multicouche de protection de piece metallique et piece munie d'un tel systeme de protection
RU2467178C1 (ru) * 2011-06-03 2012-11-20 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Лопатка сопловой решетки влажно-паровой турбины
CN102562187B (zh) * 2011-12-21 2014-08-06 上海发电设备成套设计研究院 一种空冷式高参数汽轮机的高中压合体缸
US9039365B2 (en) * 2012-01-06 2015-05-26 General Electric Company Rotor, a steam turbine and a method for producing a rotor
EP2623730A1 (de) * 2012-02-02 2013-08-07 Siemens Aktiengesellschaft Strömungsmaschinenkomponente mit Teilfuge und Dampfturbine mit der Strömungsmaschinenkomponente
KR101310340B1 (ko) * 2012-02-15 2013-09-23 한국수력원자력 주식회사 슬러지 저감 증기발생기 및 슬러지 저감 증기발생기 관판 제작방법
DE102013219771B4 (de) * 2013-09-30 2016-03-31 Siemens Aktiengesellschaft Dampfturbine
US9279345B2 (en) 2014-01-17 2016-03-08 General Electric Company Steam turbomachine valve having a valve member and seal assembly
US9279344B2 (en) 2014-02-24 2016-03-08 General Electric Company Valve poppet element defining balance chamber
CN103953401B (zh) * 2014-04-30 2015-04-29 国投钦州发电有限公司 火力发电厂用汽轮机高中压缸
JP2015218379A (ja) * 2014-05-20 2015-12-07 株式会社東芝 蒸気タービン用遮熱コーティング材料および発電用蒸気機器
EP3015644B1 (en) 2014-10-29 2018-12-12 General Electric Technology GmbH Steam turbine rotor
FR3028883B1 (fr) * 2014-11-25 2019-11-22 Safran Aircraft Engines Arbre de rotor de turbomachine comportant une surface d'echange thermique perfectionnee
DE102015200076A1 (de) * 2015-01-07 2016-07-07 Siemens Aktiengesellschaft Wärmedämmschichtsystem mit keramischer poröser Grundschicht
CN105114136B (zh) * 2015-09-22 2016-08-17 江苏华电仪征热电有限公司 一种用于汽缸的隔热方法和装置
JP6908973B2 (ja) * 2016-06-08 2021-07-28 三菱重工業株式会社 遮熱コーティング、タービン部材、ガスタービン、ならびに遮熱コーティングの製造方法
US11085116B2 (en) * 2017-03-22 2021-08-10 The Boeing Company Engine shaft assembly and method
JP6856426B2 (ja) * 2017-03-30 2021-04-07 三菱重工業株式会社 遮熱コーティング方法、翼セグメントの製造方法
IT201700086975A1 (it) * 2017-07-28 2019-01-28 Freni Brembo Spa Metodo per realizzare un disco freno e disco freno per freni a disco
EP3873691B1 (en) 2018-10-29 2023-07-26 Cartridge Limited Thermally enhanced exhaust port liner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE723476C (de) * 1939-09-22 1942-08-05 Bbc Brown Boveri & Cie Waermeschutzmantel fuer Gehaeuse mit waagerechter Achse, die im Inneren hoher Temperatur ausgesetzt sind, insbesondere von Heissdampf- oder Gasturbinen
GB1556274A (en) * 1977-04-19 1979-11-21 Rolls Royce Blade carrying disc for a gas turbine engine
US4405284A (en) * 1980-05-16 1983-09-20 Mtu Motoren-Und-Turbinen-Union Munchen Gmbh Casing for a thermal turbomachine having a heat-insulating liner
US5350599A (en) * 1992-10-27 1994-09-27 General Electric Company Erosion-resistant thermal barrier coating
US5645399A (en) * 1995-03-15 1997-07-08 United Technologies Corporation Gas turbine engine case coated with thermal barrier coating to control axial airfoil clearance
EP0783043A1 (en) * 1996-01-02 1997-07-09 General Electric Company Thermal barrier coating resistant to erosion and impact by particulate matter
US5740515A (en) * 1995-04-06 1998-04-14 Siemens Aktiengesellschaft Erosion/corrosion protective coating for high-temperature components
US20030152814A1 (en) * 2002-02-11 2003-08-14 Dinesh Gupta Hybrid thermal barrier coating and method of making the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR956938A (ja) * 1939-09-22 1950-02-10
DE3843663A1 (de) * 1988-12-23 1990-06-28 Gruenzweig & Hartmann Montage Waermedaemmung fuer heisse gase fuehrende gussbauteile
FR2646466B1 (fr) * 1989-04-26 1991-07-05 Alsthom Gec Stator interne hp-mp unique de turbine a vapeur avec climatisation controlee
US5127795A (en) * 1990-05-31 1992-07-07 General Electric Company Stator having selectively applied thermal conductivity coating
JPH08254530A (ja) * 1994-12-19 1996-10-01 Hitachi Ltd セラミックス部材の非破壊による寿命推定法及び寿命推定システム
DE19535227A1 (de) 1995-09-22 1997-03-27 Asea Brown Boveri Gehäuse für Strömungsmaschinen
JP2001521990A (ja) * 1997-11-03 2001-11-13 シーメンス アクチエンゲゼルシヤフト MoSi2含有層を製造するためのガスジェットPVD法
EP1029115B1 (de) 1997-11-03 2001-09-19 Siemens Aktiengesellschaft Erzeugnis, insbesondere bauteil einer gasturbine, mit keramischer wärmedämmschicht
DE19806809C1 (de) * 1998-02-18 1999-03-25 Siemens Ag Turbinengehäuse
US6977060B1 (en) * 2000-03-28 2005-12-20 Siemens Westinghouse Power Corporation Method for making a high temperature erosion resistant coating and material containing compacted hollow geometric shapes
EP1123455B1 (de) 1998-10-22 2003-09-17 Siemens Aktiengesellschaft Erzeugnis mit wärmedämmschicht sowie verfahren zur herstellung einer wärmedämmschicht
DE59909395D1 (de) * 1999-01-20 2004-06-09 Alstom Technology Ltd Baden Gehäuse für eine Dampf- oder eine Gasturbine
CN1165668C (zh) * 1999-05-14 2004-09-08 西门子公司 构件和在构件上制造保护层的方法
JP3631982B2 (ja) * 2000-06-16 2005-03-23 三菱重工業株式会社 遮熱コーティング材の製造方法
EP1247941A1 (de) * 2001-04-03 2002-10-09 Siemens Aktiengesellschaft Gasturbinenschaufel
EP1247911A3 (de) 2001-04-06 2003-07-23 Yusuf Altinisik Reinigungsvorrichtung
US6627323B2 (en) * 2002-02-19 2003-09-30 General Electric Company Thermal barrier coating resistant to deposits and coating method therefor
JP2004169562A (ja) * 2002-11-18 2004-06-17 Toshiba Corp 蒸気タービン
EP1541810A1 (de) * 2003-12-11 2005-06-15 Siemens Aktiengesellschaft Verwendung einer Wärmedämmschicht für ein Bauteil einer Dampfturbine und eine Dampfturbine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE723476C (de) * 1939-09-22 1942-08-05 Bbc Brown Boveri & Cie Waermeschutzmantel fuer Gehaeuse mit waagerechter Achse, die im Inneren hoher Temperatur ausgesetzt sind, insbesondere von Heissdampf- oder Gasturbinen
GB1556274A (en) * 1977-04-19 1979-11-21 Rolls Royce Blade carrying disc for a gas turbine engine
US4405284A (en) * 1980-05-16 1983-09-20 Mtu Motoren-Und-Turbinen-Union Munchen Gmbh Casing for a thermal turbomachine having a heat-insulating liner
US5350599A (en) * 1992-10-27 1994-09-27 General Electric Company Erosion-resistant thermal barrier coating
US5645399A (en) * 1995-03-15 1997-07-08 United Technologies Corporation Gas turbine engine case coated with thermal barrier coating to control axial airfoil clearance
US5740515A (en) * 1995-04-06 1998-04-14 Siemens Aktiengesellschaft Erosion/corrosion protective coating for high-temperature components
EP0783043A1 (en) * 1996-01-02 1997-07-09 General Electric Company Thermal barrier coating resistant to erosion and impact by particulate matter
US20030152814A1 (en) * 2002-02-11 2003-08-14 Dinesh Gupta Hybrid thermal barrier coating and method of making the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8047775B2 (en) 2005-06-13 2011-11-01 Siemens Aktiengesellschaft Layer system for a component comprising a thermal barrier coating and metallic erosion-resistant layer, production process and method for operating a steam turbine
WO2006133980A1 (de) * 2005-06-13 2006-12-21 Siemens Aktiengesellschaft Schichtsystem für ein bauteil mit wärmedämmschicht und metallischer erosionsschutzschicht, verfahren zur herstellung und verfahren zum betreiben einer dampfturbine
EP1734145A1 (de) * 2005-06-13 2006-12-20 Siemens Aktiengesellschaft Schichtsystem für ein Bauteil mit Wärmedämmschicht und metallischer Erosionsschutzschicht, Verfahren zur Herstellung und Verfahren zum Betreiben einer Dampfturbine
EP1780379B2 (en) 2005-10-31 2020-03-25 Kabushiki Kaisha Toshiba Steam turbine
DE102006013215A1 (de) * 2006-03-22 2007-10-04 Siemens Ag Wärmedämmschicht-System
WO2007112783A1 (en) * 2006-04-06 2007-10-11 Siemens Aktiengesellschaft Layered thermal barrier coating with a high porosity, and a component
WO2007115839A3 (en) * 2006-04-06 2008-03-27 Siemens Ag Layered thermal barrier coating with a high porosity, and a component
EP1970461A1 (de) * 2007-03-14 2008-09-17 Siemens Aktiengesellschaft Turbinenbauteil mit Wärmedämmschicht
EP1970157A1 (de) * 2007-03-14 2008-09-17 Siemens Aktiengesellschaft Verfahren zur Reparatur eines Bauteils
WO2008110607A1 (de) * 2007-03-14 2008-09-18 Siemens Aktiengesellschaft Turbinenbauteil mit wärmedämmschicht
WO2008110608A1 (de) * 2007-03-14 2008-09-18 Siemens Aktiengesellschaft Verfahren zur reparatur eines bauteils
WO2009006871A3 (de) * 2007-07-09 2009-03-26 Mtu Aero Engines Gmbh Turbomaschinenschaufel mit verschleissschutzschicht
WO2009006871A2 (de) * 2007-07-09 2009-01-15 Mtu Aero Engines Gmbh Turbomaschinenschaufel mit verschleissschutzschicht
EP2112334A1 (de) * 2008-04-21 2009-10-28 Siemens Aktiengesellschaft Außengehäuse für eine Strömungsmaschine
EP2128306A1 (en) * 2008-05-26 2009-12-02 Siemens Aktiengesellschaft Ceramic thermal barrier coating system with two ceramic layers
EP2385155A1 (en) * 2008-05-26 2011-11-09 Siemens Aktiengesellschaft Ceramic thermal barrier coating system with two ceramic layers
US9567664B2 (en) 2008-05-26 2017-02-14 Siemens Aktiengesellschaft Ceramic thermal barrier coating system with two ceramic layers
EP2194236A1 (de) * 2008-12-03 2010-06-09 Siemens Aktiengesellschaft Turbinengehäuse
EP2366813A3 (en) * 2010-03-05 2011-12-21 General Electric Company Layered Article
DE102017207238A1 (de) * 2017-04-28 2018-10-31 Siemens Aktiengesellschaft Dichtungssystem für Laufschaufel und Gehäuse
US11274560B2 (en) 2017-04-28 2022-03-15 Siemens Energy Global GmbH & Co. KG Sealing system for a rotor blade and housing
DE102018212222A1 (de) * 2018-07-23 2020-01-23 Siemens Aktiengesellschaft Turbinengehäuse sowie Verfahren zum Herstellen eines Turbinengehäuses
EP3599350A1 (de) * 2018-07-23 2020-01-29 Siemens Aktiengesellschaft Turbinengehäuse sowie verfahren zum herstellen eines turbinengehäuses

Also Published As

Publication number Publication date
KR20060123474A (ko) 2006-12-01
US20090232646A1 (en) 2009-09-17
BRPI0417561A (pt) 2007-03-27
CN1890457A (zh) 2007-01-03
RU2362889C2 (ru) 2009-07-27
WO2005056985A1 (de) 2005-06-23
US20090280005A1 (en) 2009-11-12
CN1890457B (zh) 2011-06-08
US8215903B2 (en) 2012-07-10
US7614849B2 (en) 2009-11-10
US8226362B2 (en) 2012-07-24
RU2006124740A (ru) 2008-01-20
CA2548973C (en) 2011-01-25
US20070140840A1 (en) 2007-06-21
JP4563399B2 (ja) 2010-10-13
JP2007514094A (ja) 2007-05-31
EP1692372A1 (de) 2006-08-23
CA2548973A1 (en) 2005-06-23
KR101260922B1 (ko) 2013-05-06

Similar Documents

Publication Publication Date Title
EP1541810A1 (de) Verwendung einer Wärmedämmschicht für ein Bauteil einer Dampfturbine und eine Dampfturbine
EP1541808A1 (de) Turbinenbauteil mit Wärmedämmschicht und Erosionsschutzschicht
EP1734145A1 (de) Schichtsystem für ein Bauteil mit Wärmedämmschicht und metallischer Erosionsschutzschicht, Verfahren zur Herstellung und Verfahren zum Betreiben einer Dampfturbine
EP1866459B1 (de) Matrix und schichtsystem
EP2458025B1 (de) Legierung, Schutzschicht und Bauteil
EP1783248A1 (de) Zweilagiges thermisches Schutzschichtsystem mit Pyrochlor-Phase
EP2122009A1 (de) Vorrichtung zum schutz von bauteilen mit brennbarer titanlegierung vor titanfeuer und verfahren zu deren herstellung
EP3572551B1 (de) Verfahren zur beschichtung eines substrates mit einer hohlraumstruktur
EP1956105A1 (de) Legierung, Schutzschicht zum Schutz eines Bauteils gegen Korrision und Oxidation bei hohen Temperaturen und Bauteil
EP1692322B1 (de) Metallische schutzschicht
DE4325346C2 (de) Turbinengehäuse eines Turboladers
EP2031183B1 (de) Dampfturbinenwelle mit Wärmedämmschicht
EP1783236A1 (de) Legierung, Schutzschicht zum Schutz eines Bauteils gegen Korrosion und/oder Oxidation bei hohen Temperaturen und Bauteil
EP1892311B1 (de) Turbinenschaufel mit einem Beschichtungssystem
EP2112334A1 (de) Außengehäuse für eine Strömungsmaschine
EP2022951A1 (de) Verfahren zur Herstellung eines Turbinengehäuses sowie Turbinengehäuse
EP3423752B1 (de) Strömungselement und verfahren zum beschichten eines strömungselements
EP1996795B1 (de) Quasikristalline verbindung und deren verwendung als wärmedämmschicht
EP3347200B1 (de) Turbinenschaufel mit einer lokalen, zweilagigen wärmedämmschicht
EP2653587A1 (de) Strömungsmaschinenkomponente mit einer Funktionsbeschichtung
EP4155431A1 (de) Verfahren zur herstellung und entsprechend hergestelltes bauteil aus einer nickelbasissuperlegierung für den heissgaskanal einer strömungsmaschine
EP2913425A1 (de) Wärmedämmschicht mit Iridium-Rhodium-Legierung
DE102007048484A1 (de) Heißgasgeführte Komponente einer Strömungsmaschine
EP1524327A1 (de) Schicht mit intrakristallinen Einlagerungen
DE10159056A1 (de) Thermisch hoch belastetes Bauteil sowie Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051216

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566