EP1540663B1 - Bleifreies strahlenschutzmaterial mit zwei schichten unterschiedlicher abschirmeigenschaft - Google Patents

Bleifreies strahlenschutzmaterial mit zwei schichten unterschiedlicher abschirmeigenschaft Download PDF

Info

Publication number
EP1540663B1
EP1540663B1 EP04764811A EP04764811A EP1540663B1 EP 1540663 B1 EP1540663 B1 EP 1540663B1 EP 04764811 A EP04764811 A EP 04764811A EP 04764811 A EP04764811 A EP 04764811A EP 1540663 B1 EP1540663 B1 EP 1540663B1
Authority
EP
European Patent Office
Prior art keywords
lead
radiation protection
material according
protection material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04764811A
Other languages
English (en)
French (fr)
Other versions
EP1540663A1 (de
Inventor
Heinrich Eder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mavig GmbH
Original Assignee
Mavig GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004001328A external-priority patent/DE102004001328A1/de
Application filed by Mavig GmbH filed Critical Mavig GmbH
Publication of EP1540663A1 publication Critical patent/EP1540663A1/de
Application granted granted Critical
Publication of EP1540663B1 publication Critical patent/EP1540663B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/12Laminated shielding materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F3/00Shielding characterised by its physical form, e.g. granules, or shape of the material
    • G21F3/02Clothing
    • G21F3/03Aprons

Definitions

  • the invention relates to a lead-free radiation protection material in the energy range of an x-ray tube with a voltage of 60 to 125 kV.
  • Conventional radiation protection clothing in X-ray diagnostics usually contains lead or lead oxide as protective material.
  • the DE 199 55 192 A1 describes a method for producing a radiation protection material from a polymer as matrix material and the powder of a metal of high atomic number.
  • the DE 201 00 267 U1 describes a highly elastic, lightweight, flexible, rubbery radiation protection material wherein additions of chemical elements and their oxides having an atomic number greater than or equal to 50 are added to a specific polymer.
  • the DE 102 34 159 A1 describes a lead replacement material for radiation protection purposes in the energy range of an x-ray tube with a voltage of 60 to 125 kV.
  • the degree of attenuation or the lead equivalent (International Standard IEC 61331-1, Protective devices against diagnostic medical X-radiation) of the respective material shows a partially very pronounced dependence on the beam energy, which is a function of the voltage of the X-ray tube.
  • Lead-free materials have lead behavior that differs greatly from that of lead, depending on the X-ray energy. Therefore, for simulating the absorption behavior of lead while maximizing weight savings, an advantageous combination of different elements is required.
  • Total lead equivalent in a protective-layer-shaped construction of a lead substitute material is understood to be the lead equivalent of the sum of all protective layers.
  • the total nominal equivalent value is understood to mean the lead equivalent value specified by the manufacturer of personal protective equipment according to DIN EN 61331-3.
  • the dose build-up in the lead-free material should remain as low as possible.
  • a secondary radiation is excited in the material, which has a reducing effect on the shielding effect of the material in the case of large radiation fields.
  • the excited fluorescence radiation is responsible for the dose structure.
  • the dose structure is expressed numerically by the so-called build-up factor according to IEC 61331-1.
  • the object of the present invention is to provide a lead-free radiation protection material which has low or only negligible amounts of secondary radiation over the energy range of an x-ray tube with a voltage of 60 to 125 kV and thus ensures an optimal shielding effect.
  • the object of the present invention is achieved with a lead-free radiation protection material according to claim 1.
  • the present invention relates to a lead-free radiation protection material in the energy range of X-ray tube with a voltage of 60 to 125 kV with a layer structure of two layers of different screening properties.
  • the invention further relates to a radiation protection clothing made of the lead-free radiation protection material according to the invention.
  • the lead-free radiation protection material has two layers with different shielding properties.
  • the composition of the protective material materials in a layer is such that one layer does not reach all the desired properties with respect to the shielding effect, in particular over a larger energy range of 60 to 125 kV. Only both layers together give optimum shielding properties.
  • the layer structure of two layers of different shielding properties of the lead-free radiation protection material according to the invention is composed of a secondary radiation layer and a barrier layer.
  • the secondary beam layer converts a large portion of the incident X-rays into secondary radiation, i. Fluorescence radiation to.
  • the barrier layer blocks the fluorescence radiation generated in the secondary radiation layer and develops only low secondary radiation.
  • the secondary radiation layer and the barrier layer as a layer structure have very good shielding properties when the lead-free radiation protection material according to the invention is processed into protective clothing.
  • the secondary radiation layer is then provided as a body-removed layer of the protective clothing Barrier layer, which is arranged as a body-close layer in the protective clothing, effectively blocks the fluorescence radiation which arises in the secondary radiation layer in the direction of the body. This ensures optimal shielding against X-rays.
  • the Fig. 1 shows build-up factors of different materials.
  • the Fig. 2 shows a sandwich structure of the lead-free radiation protection material according to the invention.
  • the lead-free radiation protection material is particularly suitable for the energy range of an x-ray tube with a voltage of 60 to 125 kV, preferably, 60 to 100 kV, in particular 60 to 80 kV.
  • the secondary radiation layer contains tin or compounds thereof in an amount of 50 to 100% by weight.
  • the secondary radiation layer contains tin in an amount of 50 to 90% by weight and at least one further element selected from iodine, cesium, barium, lanthanum, cerium, praseodymium, neodymium and compounds thereof in an amount of 10 to 50% by weight.
  • the barrier layer of the lead-free radiation protection material according to the invention comprises at least one element of bismuth, tungsten and compounds thereof.
  • bismuth is preferred. It has proved to be advantageous if the barrier layer contains tungsten in an amount of 0 to 30% by weight and / or bismuth in an amount of at least 30% by weight.
  • the barrier layer has an even better secondary radiation secondary radiation barrier effect if it further comprises at least one element of atomic numbers 61 to 71 or compounds thereof.
  • the element is selected from the group consisting of erbium, holmium, dysprosium, terbium, gadolinium, europium, samarium, lutetium, ytterbium, thulium and compounds thereof. Particularly preferred is the gadolinium or a compound thereof.
  • the barrier layer additionally contains at least one element of the group tantalum, hafnium, thorium, uranium and compounds thereof.
  • the proportion by weight of the further elements contained in the barrier layer and / or their compounds may be up to 80% by weight.
  • the amount of the further element (s) and / or their compounds is preferably in a range from 20 to 70% by weight.
  • the two layers of the lead-free material according to the invention contain a matrix material in an amount of 0-12 wt .-%, preferably 2-10 wt .-%, in particular 4-8 wt .-%.
  • the matrix material virtually forms a carrier layer for the protective materials in which they are dispersed in powder form.
  • a matrix material are rubber, latex, synthetic flexible or solid polymers, and silicone materials.
  • YM means the curve of the lead-free material according to the invention and the curves A and B are based on commercially available lead-free materials which constitute a powder mixture without a layer structure. It is readily apparent that the YM curve comes very close to the Pb curve, which means that the lead-free radiation protection material according to the invention has similarly good shielding properties as the lead material.
  • the secondary radiation layer and / or the barrier layer of the lead-free radiation protection material according to the invention may preferably comprise at least one material-pure layer.
  • pure-material layer is meant a layer which, in addition to matrix material, in each case only one of the aforementioned elements and compounds thereof, i. a protective substance. In a preferred embodiment, these material-pure layers have less than 5 wt .-% matrix material.
  • a protective substance or a combination of protective substances which is provided in separate material-pure layers, a much better protective effect, i. E. Shielding effect, has as a material in which all materials, eg. B. as a powder, are mixed.
  • the material-pure layers provide a particularly good shielding effect when they are highly compressed, ie when between the particles of Ablematerials As small as possible spaces are present, so that a layer with the highest possible mass density is present.
  • the compaction of the layer takes place z. B. on a suitable particle size distribution and / or mechanical compression according to known methods.
  • the material-pure layers should be compressed to more than 75 vol .-%. A compression of the material-pure layers to more than 90% by volume is particularly preferred.
  • the secondary radiation layer and / or the barrier layer comprise at least one material-pure layer.
  • the secondary radiation layer is designed to contain elements of atomic numbers 39 to 60 or their compounds. It is also possible to provide a plurality of material-pure layers of these elements and / or their connections.
  • the barrier layer comprises one or more material-pure layers of the elements of atomic numbers greater than 71 and / or compounds thereof.
  • the barrier layer may additionally comprise one or more pure-material layers of the elements of atomic numbers 61 to 71 or compounds thereof.
  • the elements with atomic numbers 61 to 71 and / or their compounds can also be present in a separate layer as a so-called intermediate layer, which is arranged between the secondary radiation layer and the barrier layer.
  • the metal foils usually have a thickness of 0.005 to 0.25 mm.
  • the films are usually one above the other without connection. However, if for practical or technical reasons, a connection between the films are made, they can be prepared by conventional methods.
  • the lead-free radiation protection material according to the invention has very good results with regard to the shielding effect, in particular at 60 kV, in comparison to previously known lead-free radiation protection materials.
  • the basis weight was 4.7 kg / m 2 in all cases.
  • the layered, lead-free radiation protection material according to the invention exhibits a better shielding effect than the powder mixture of material 1.
  • a very good shielding effect is exhibited at 60 kV.
  • the stratification of the material-pure layers in the radiation protection material takes place in such a way that the layers are arranged with increasing secondary radiation.
  • the layer with the highest secondary beam yield is provided remotely from the body while the layer with the least secondary radiation is located close to the body.
  • the at least one material-pure layer of the secondary radiation layer and the barrier layer of the lead-free radiation protection material according to the invention may be present in a so-called sandwich structure.
  • a sandwich structure is to be understood as a structure, wherein further layers are provided between the material-pure layers.
  • the at least one material-pure layer has a carrier layer on each side.
  • the at least one material-pure layer can each have a carrier layer on both sides.
  • the carrier layers are formed from a polymer.
  • the polymer may be one which also acts as a matrix material is used.
  • the polymer is a latex or elastomeric polymer.
  • the one or more carrier layers in the layer structure of the lead-free radiation protection material according to the invention have a thickness of 0.01 to 0.4 mm.
  • the carrier layer or the carrier layers can still contain small amounts of protective substances, as described above. In general, however, they are free of protective substances.
  • the carrier layers on one side or on both sides of the material-pure layers contribute to the mechanical stability being increased in the "inner", highly compressed material layer, be it the secondary radiation layer or the barrier layer, while the radiation-shielding effect of the individual protective layers is improved becomes.
  • FIG. 2 shows a sandwich structure of the lead-free radiation protection material according to the invention.
  • the highly compressed protective material layer 2 is surrounded on both sides by a carrier layer 1, which increases the mechanical stability of the structure.
  • An alternative sandwich construction can also be designed in such a way that each layer with high secondary radiation has a layer with lower secondary radiation on both sides.
  • the barrier action of the low secondary radiation barrier layers can contribute to directing high secondary radiation layers, i. on both sides, experienced a blocking effect.
  • the radiation protection materials in the individual layers are metal powders with particle sizes of 2 up to 75 ⁇ m before. It is essential that there is as little matrix material as possible in the interstices.
  • the mass coverage (basis weight) is 1: 1.
  • a basis weight of 2.6 kg / m 2 per layer results for two layers, which in turn can be subdivided into two layers.
  • the division of the basis weights in a layer structure of three layers is 1: 1: 1.
  • This division is particularly advantageous in the case of a layer structure of secondary radiation layer:
  • Intermediate layer barrier layer.
  • the intermediate layer predominantly comprises at least one element of atomic numbers 61 to 71 or their compounds.
  • the lead-free radiation protection material according to the invention is suitable for the production of radiation protection clothing such as, for example, a radiation protection apron.
  • the material according to the invention can advantageously be used advantageously for example in protective gloves, patient covers, gonadal protection, ovarian protection, dental protection shields, fixed lower-body protection, table attachments, stationary or movable radiation protection walls or radiation protection curtains.
  • a lead-free radiation protection material according to the invention is produced with a layer (A) which corresponds to the secondary radiation layer and a layer (B) which corresponds to the barrier layer.
  • Layer (A) contains 54% by weight of tin, 36% by weight of cerium and 10% by weight of matrix material.
  • Layer (B) contains 36% by weight of gadolinium, 36% by weight of bismuth, 18% by weight of tungsten and 10% matrix.
  • Layer (A) contains 90 wt% tin and 10 wt% matrix while Layer (B) contains 54 wt% gadolinium, 36 wt% bismuth and 10 wt% matrix material.
  • a radiation protection material according to the invention is produced which contains a layer (A) as in Example 1 and a layer (B) as in Example 2.
  • a radiation protection material according to the invention is produced, with a layer (A) as in Example 2 and a layer (B) as in Example 1.
  • the measurement results for the lead equivalent values (PB-GW) of the radiation protection materials for tube voltages of 60, 80, 100 and 120 kV prepared in Examples 1 to 4 are shown in Table 2 below.
  • the weight per unit area of the protective substances is 4.7 kg / m 2 in each case.
  • Table 2 Tube voltage (kV) Example 1 mm Pb-GW Example 2 mm Pb-GW Example 3 mm Pb-GW Example 4 mm Pb-GW 60 0.51 0.57 0.58 0.55 80 0.62 0.68 0.71 0.66 100 0.60 0.65 0.66 0.63 125 0.49 0.51 0.53 0.50

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Laminated Bodies (AREA)
  • Materials For Medical Uses (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)

Description

  • Die Erfindung betrifft ein bleifreies Strahlenschutzmaterial im Energiebereich einer Röntgenröhre mit einer Spannung von 60 bis 125 kV.
  • Herkömmliche Strahlenschutzkleidung in der Röntgendiagnostik enthält meist Blei oder Bleioxid als Schutzmaterial.
  • Blei und seine. Verarbeitung führt aufgrund seiner Toxizität zu einer hohen Umweltbelastung. Da Blei ein sehr hohes Gewicht besitzt, sind Schutzkleidungen aus Blei ungewöhnlich schwer, was eine starke physische Belastung für den Anwender bedeutet. Beim Tragen von Schutzkleidung, beispielsweise bei medizinischen Operationen, ist das Gewicht für den Tragekomfort und die physische Belastung des medizinischen Personals von großer Bedeutung.
  • Blei-Ersatzmaterialien zur Anwendung im Strahlenschutz sind bereits bekannt.
  • Die DE 199 55 192 A1 beschreibt ein Verfahren zur Herstellung eines Strahlungsschutzmaterials aus einem Polymer als Matrixmaterial und dem Pulver eines Metalls hoher Ordnungszahl.
  • Die DE 201 00 267 U1 beschreibt ein hochelastisches, leichtes, flexibles, gummiartiges Strahlenschutzmaterial, wobei Zusätze von chemischen Elementen und deren Oxide mit einer Ordnungszahl größer gleich 50 zu einem speziellen Polymer gegeben werden.
  • Zur Gewichtsreduzierung gegenüber herkömmliche Bleischürzen wird in der EP 0 371 699 A1 ein Material vorgeschlagen, das ebenfalls neben einem Polymer als Matrix Elemente höherer Ordnungszahl aufweist. Dabei wird eine große Anzahl von Metallen genannt.
  • Die DE 102 34 159 A1 beschreibt ein Blei-Ersatzmaterial für Strahlenschutzzwecke im Energiebereich einer Röntgenröhre mit einer Spannung von 60 bis 125 kV.
  • Je nach eingesetzten Elementen zeigt der Schwächungsgrad bzw. der Bleigleichwert (International Standard IEC 61331-1, Protective devices against diagnostig medical X-radiation) des jeweiligen Materials eine teilweise sehr ausgeprägte Abhängigkeit von der Strahlenenergie, die eine Funktion der Spannung der Röntgenröhre ist.
  • Bleifreie Materialien haben gegenüber Blei ein zum Teil stark abweichendes Absorptionsverhalten in Abhängigkeit von der Röntgenenergie. Deshalb ist für die Nachbildung des Absorptionsverhaltens von Blei bei gleichzeitiger Maximierung der Gewichtseinsparung eine vorteilhafte Kombination unterschiedlicher Elemente erforderlich.
  • Deshalb ist der Anwendungsbereich von handelsüblicher bleifreier Strahlenschutzkleidung in der Regel eingeschränkt. Um Blei für Strahlenschutzzwecke substituieren zu können, ist ein in Bezug auf Blei möglichst gleichartiges Absorptionsverhalten über einen größeren Energiebereich erforderlich, da Strahlenschutzstoffe üblicherweise nach dem Bleigleichwert eingestuft werden und die Strahlenschutzberechnungen häufig auf Bleigleichwerten basieren.
  • Unter Gesamtbleigleichwert bei einem schutzschichtenförmigen Aufbau eines Blei-Ersatzmaterials versteht man den Bleigleichwert der Summe aller Schutzschichten. Unter Gesamt-Nennbleigleichwert wird der nach DIN EN 61331-3 vom Hersteller für persönliche Schutzausrüstung anzugebende Bleigleichwert verstanden.
  • Es ist bei Messungen der Bleigleichwerte und der Schwächungsfaktoren in Abhängigkeit der Röhrenspannung festgestellt worden, dass die Schutzwirkung von bleifreien Materialien insbesondere bei einer Röntgenröhrenspannung von 60 bis 80 kV im Vergleich zu Blei erheblich geringer ist als im Energiebereich von 80 bis 100 kV.
  • Dieses hat im Wesentlichen zwei Ursachen. Zum einen ist der Massenschwächungskoeffizient von bleifreien Materialien, wie Zinn, bei der mittleren Energie des 60 kV-Spektrums, d.h. bei rund 25 keV, geringer als von Blei. Zum anderen zeigt sich in diesem niedrigen Energiebereich ein besonders großer Dosisaufbaueffekt. Mit anderen Worten, die Schutzwirkung des Materials wird durch die Entstehung von Sekundärstrahlung auf der Strahlenaustrittsseite herabgesetzt.
  • Zur Erzielung einer hohen Schutzwirkung sollte der Dosisaufbau im bleifreien Material möglichst gering bleiben. Wie bereits ausgeführt, wird im Material eine Sekundärstrahlung angeregt, was sich bei großen Strahlenfeldern mindernd auf die Abschirmwirkung des Materials auswirkt. Meistens ist die angeregte Fluoreszenzstrahlung für den Dosisaufbau verantwortlich.
  • Der Dosisaufbau wird durch den sog. Build-up-Faktor gemäß IEC 61331-1 zahlenmäßig ausgedrückt.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, ein bleifreies Strahlenschutzmaterial zur Verfügung zu stellen, das über den Energiebereich einer Röntgenröhre mit einer Spannung von 60 bis 125 kV geringe oder nur vernachlässigbare Mengen an Sekundärstrahlung aufweist und somit eine optimale Abschirmwirkung gewährleist.
  • Die Aufgabe der vorliegenden Erfindung wird mit einem bleifreien Strahlenschutzmaterial gemäß Patentanspruch 1 gelöst.
  • Die vorliegende Erfindung betrifft ein bleifreies Strahlenschutzmaterial im Energiebereich einer röntgenröhre mit einer Spannung von 60 bis 125 kV mit einer Schichtstruktur von zwei Schichten unterschiedlicher Abschirmeigenschaften.
  • Die Erfindung betrifft weiterhin eine Strahlenschutzbekleidung aus dem erfindungsgemäßen bleifreien Strahlenschutzmaterial.
  • Es ist erfindungsgemäß wesentlich, das das bleifreie Strahlenschutzmaterial zwei Schichten mit unterschiedlichen Abschirmeigenschaften aufweist. Bei dieser Zweischichtstruktur ist die Zusammensetzung der Schutzstoffmaterialien in einer Schicht derart, dass eine Schicht allen nicht die gewünschten Eigenschaften im Hinblick auf die Abschirmwirkung, insbesondere über einen größeren Energiebereich von 60 bis 125 kV, erreicht. Erst beide Schichten zusammen ergeben optimale Abschirmeigenschaften.
  • Die Schichtstruktur aus zwei Schichten unterschiedlicher Abschirmeigenschaften des erfindungsgemäßen bleifreien Strahlenschutzmaterials ist aus einer Sekundärstrahlenschicht und einer Sperrschicht zusammengesetzt.
  • Die Sekundärstrahlenschicht wandelt einen großen Teil der auftreffenden Röntgenstrahlen in Sekundärstrahlung, d.h. Fluoreszenzstrahlung, um.
  • Die Sperrschicht blockiert die in der Sekundärstrahlenschicht entstehende Fluoreszenzstrahlung und entwickelt selbst nur geringe Sekundärstrahlung.
  • Die Sekundärstrahlenschicht und die Sperrschicht als Schichtstruktur weisen sehr gute Abschirmeigenschaften auf, wenn das erfindungsgemäße bleifreie Strahlenschutzmaterial zu einer Schutzkleidung verarbeitet wird. Die Sekundärstrahlenschicht wird dann als körperferne Schicht der Schutzkleidung vorgesehene Die Sperrschicht, die als körpernahe Schicht in der Schutzkleidung angeordnet ist, blockiert wirksam die in der Sekundärstrahlenschicht entstehende Fluoreszenzstrahlung in Richtung Körper. Dieses gewährleistet eine optimale Abschirmleistung gegenüber Röntgenstrahlung.
  • Die Figuren dienen zur weiteren Erläuterung der Erfindung.
  • Die Fig. 1 zeigt Build-up-Faktoren verschiedener Materialien.
  • Die Fig. 2 zeigt eine Sandwichstruktur des erfindungsgemäßen bleifreien Strahlenschutzmaterials.
  • Das bleifreie Strahlenschutzmaterial ist insbesondere für den Energiebereich einer Röntgenröhre mit einer Spannung von 60 bis 125 kV, bevorzugt, 60 bis 100 kV, insbesondere 60 bis 80 kV, geeignet.
  • Die Sekundärstrahlenschicht enthält Zinn oder Verbindungen davon einer Menge von 50 bis 100 Gew.-%. In einer bevorzugten Ausführungsform der Erfindung enthält die Sekundärstrahlenschicht Zinn in einer Menge von 50 bis 90 Gew.-% und mindestens ein weiteres Element das aus Jod, Cäsium, Barium, Lanthan, Cer, Praseodym, Neodym und Verbindungen davon gewählt ist in einer Menge von 10 bis 50 Gew.-%.
  • Die Sperrschicht des erfindungsgemäßen bleifreien Strahlenschutzmaterials umfasst mindestens ein Element , aus Bismut, Wolfram und Verbindungen davon gewählt ist. Die Verwendung von Bismut ist bevorzugt. Es hat sich als vorteilhaft erwiesen, wenn die Sperrschicht Wolfram in einer Menge von 0 bis 30 Gew.-% und/oder Bismut in einer Menge von mindestens 30 Gew.-% enthält.
  • Es ist gezeigt worden, dass die Sperrschicht eine noch bessere Sperrwirkung gegenüber Sekundärstrahlung der Sekundärstrahlenschicht aufweist, wenn sie weiterhin mindestens ein Element der Ordnungszahlen 61 bis 71 oder Verbindungen davon umfasst. In einer bevorzugten Ausführungsform der vorliegenden Ereindung ist das Element aus der Gruppe Erbium, Holmium, Dysprosium, Terbium, Gadolinium, Europium, Samarium, Lutetium, Ytterbium, Thulium und Verbindungen davon gewählt. Insbesondere bevorzugt ist das Gadolinium bzw. eine Verbindung davon.
  • Es hat sich weiterhin als vorteilhaft erwiesen, wenn die Sperrschicht zusätzlich noch weiterhin mindestens ein Element der Gruppe Tantal, Hafnium, Thorium, Uran und Verbindungen davon enthält.
  • Der Gewichtsanteil der in der Sperrschicht enthaltenden weiteren Elemente und/oder deren Verbindungen kann bis zu 80 Gew.-% betragen. Bevorzugt liegt die Menge des (die) weiteren Element(e) und/oder deren Verbindungen in einem Bereich von 20 bis 70 Gew.-%.
  • Die zwei Schichten des erfindungsgemäßen bleifreien Materials enthalten ein Matrixmaterial in einer Menge von 0-12 Gew.-%, bevorzugt 2-10 Gew.-%, insbesondere 4-8 Gew.-%.
  • Das Matrixmaterial bildet quasi eine Trägerschicht für die Schutzmaterialien, in der diese in Pulverform dispergiert sind. Beispiele für ein Matrixmaterial sind Gummi, Latex, synthetische flexible oder feste Polymere und Siliconmaterialien.
  • Es ist also überraschender Weise festgestellt worden, dass der Dosisaufbau bzw. die Sekundärstrahlenausbeute bei dem erfindungsgemäßen bleifreien Strahlenschutzmaterial in Folge der Auftrennung in eine Schicht geringer Sekundärstrahlung und eine Schicht mit hoher Sekundärstrahlung erheblich geringer ist als bei marktüblichen bleifreien Materialien. Hierzu wird auf die Fig. 1 verwiesen. In. Fig. 1 bedeutet YM die Kurve des erfindungsgemäßen bleifreien Materials und die Kurven A und B basieren auf marktüblichen bleifreien Materialien, die ein Pulvergemisch ohne Schichtstruktur darstellen. Es ist ohne Weiteres ersichtlich, dass die YM-Kurve sehr nahe an die Pb-Kurve kommt, was bedeutet, dass das erfindungsgemäße bleifreie Strahlenschutzmaterial ähnlich gute Abschirmeigenschaften wie das Bleimaterial aufweist.
  • Die Sekundärstrahlenschicht und/oder die Sperrschicht des erfindungsgemäßen bleifreien Strahlenschutzmaterials können bevorzugt mindestens eine materialreine Schicht umfasst(en). Mit dem Ausdruck "materialreine Schicht" ist eine Schicht gemeint, die neben Matrixmaterial jeweils nur eines der zuvor genannten Elemente und Verbindungen daraus, d.h. einen Schutzstoff, enthält. In einer bevorzugten Ausführungsform besitzen diese materialreinen Schichten weniger als 5 Gew.-% Matrixmaterial.
  • Es hat sich weiterhin in überraschender Weise herausgestellt, dass ein Schutzstoff oder eine Kombination aus Schutzstoffen, das bzw. die in getrennten materialreinen Schichten vorgesehen ist, eine wesentlich bessere Schutzwirkung, d.h. Abschirmwirkung, besitzt als ein Material, in dem alle Materialien, z. B. als Pulver, vermengt sind.
  • Es hat sich in der Praxis herausgestellt, dass die materialreinen Schichten eine besonders gute Abschirmwirkung erbringen, wenn sie stark verdichtet sind, d.h. wenn zwischen den Teilchen des Abschirmmaterials möglichst geringe Zwischenräume vorliegen, so dass eine Schicht mit möglichst hoher Massendichte vorhanden ist. Die Verdichtung der Schicht erfolgt z. B. über eine geeignete Korngrößenverteilung und/oder mechanische Verdichtung nach bekannten Verfahren.
  • In einer bevorzugten Ausführungsform sollten die materialreinen Schichten zu mehr als 75 Vol.-% verdichtet sein. Eine Verdichtung der materialreinen Schichten zu mehr als 90 Vol.-% ist insbesondere bevorzugt.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen bleifreien Strahlenschutzmaterials umfassen die Sekundärstrahlenschicht und/oder die Sperrschicht mindestens eine materialreine Schicht. Die Sekundärstrahlenschicht ist derart ausgestaltet, dass sie Elemente der Ordnungszahlen 39 bis 60 oder deren Verbindungen enthält. Es können auch mehrere materialreine Schichten aus diesen Elementen und/oder ihren Verbindungen vorgesehen werden.
  • In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen bleifreien Strahlenschutzmaterials umfasst die Sperrschicht eine oder mehrere materialreine Schichten aus den Elementen der Ordnungszahlen größer als 71 und/oder Verbindungen davon. Die Sperrschicht kann auch zusätzlich eine oder mehrere materialreine Schichten aus den Elementen der Ordnungszahlen 61 bis 71 oder Verbindungen davon umfassen.
  • Die Elemente mit den Ordnungszahlen 61 bis 71 und/oder deren Verbindungen können auch in einer separaten Schicht als eine sogenannte Zwischenschicht vorliegen, die zwischen der Sekundärstrahlenschicht und der Sperrschicht angeordnet ist.
  • In einigen Fällen hat die Praxis gezeigt, dass die besten Abschirmergebnisse dann erreicht werden, wenn die stark verdichteten materialreinen Schichten in Form von Metallfolien vorliegen, wie z. B. als Folienstreifen oder Folienplättchen.
  • Die Metallfolien weisen in der Regel eine Dicke von 0,005 bis 0,25 mm auf.
  • Die Folien liegen normalerweise übereinander ohne Verbindung miteinander. Sollte allerdings aus praktischen oder technischen Gründen eine Verbindung zwischen den folien hergestellt werden, so können diese nach üblichen Verfahren hergestellt werden.
  • Im Folgenden wird gezeigt, dass das erfindungsgemäße bleifreie Strahlenschutzmaterial im Vergleich zu bereits bekannten bleifreien Strahlenschutzmaterialien sehr gute Ergebnisse im Hinblick auf die Abschirmwirkung, insbesondere bei 60 kV, aufweist.
  • Es wurden folgende Materialien aus den folgenden Bestandteilen hergestellt und untersucht:
    • Bestandteile: 40 Gew.-% Zinn, 10 Gew.-% Ceroxid, 20 Gew.-% Gadoliniumoxid, 20 Gew.-% Wismut, 10 Gew.-% Wolfram.
    • Die Strahlenschutzmaterialien wurden wie folgt verarbeitet:
      Material 1:
      Die obigen Bestandteile werden in Pulverform gleichmäßig in einer Polymermatrix vermengt;
      Material 2:
      Schichtung der einzelnen Bestandteile in materialreine Schichten in Pulverform;
      Material 3:
      Schichtung der einzelnen obigen Bestandteile in materialreine Folien.
  • Das Flächengewicht war in allen Fällen 4,7 kg/m2.
  • Im schmalen Strahlenbündel einer Röntgenröhre ergaben sich nach der folgenden Tabelle 1 folgende Schwächungsfaktoren: Tabelle 1
    Röhrenspannung (kV) Material 1 Material 2 Material 3
    60 348 497 746
    125 9,85 11,27 11,89
  • Wie aus den Werten für die Schwächungsfaktoren ersichtlich ist, zeigt das erfindungsgemäße, in Schichten angeordnete, bleifreie Strahlenschutzmaterial (Material 2 und Material 3) eine bessere Abschirmwirkung als das Pulvergemisch von Material 1. Insbesondere zeigt sich eine sehr gute Abschirmwirkung bei 60 kV.
  • Es ist wesentlich, dass die Schichtung der materialreinen Schichten im Strahlenschutzmaterial derart erfolgt, dass die Schichten mit steigender Sekundärstrahlung angeordnet sind. Somit wird bei der Verarbeitung zu Strahlenschutzbekleidung die Schicht mit der höchsten Sekundärstrahlenausbeute körperfern vorgesehen, während die Schicht mit der geringsten Sekundärstrahlung körpernah angeordnet wird.
  • In einer weiteren bevorzugten Ausführungsform können die mindestens eine materialreine Schicht der Sekundärstrahlenschicht und der, Sperrschicht des erfindungsgemäßen bleifreien Strahlenschutzmaterials in einem sog. Sandwichaufbau vorliegen. Unter Sandwichstruktur ist eine Struktur zu verstehen, wobei zwischen den materialreinen Schichten weitere Schichten vorgesehen sind. In einer besonderen Ausführungsform weist die mindestens eine materialreine Schicht jeweils auf einer Seite eine Trägerschicht auf. Alternativ dazu kann die mindestens eine materialreine Schicht jeweils auf beiden Seiten eine Trägerschicht aufweisen. Bevorzugt sind die Trägerschichten aus einem Polymer gebildet. Das Polymer kann ein solches sein, das auch als Matrixmaterial verwendet wird. Üblicherweise ist das Polymer ein Latex-oder Elastomerpolymer.
  • In der Praxis hat es sich als vorteilhaft erwiesen, wenn die eine bzw. die mehreren Trägerschichten in der Schichtstruktur des erfindungsgemäßen bleifreien Strahlenschutzmaterials eine Dicke von 0,01 bis 0,4 mm aufweisen.
  • Falls erforderlich, können die Trägerschicht bzw. die Trägerschichten noch geringe Anteile Schutzstoffe, wie oben beschrieben, enthalten. In der Regel sind sie allerdings frei von Schutzstoffen.
  • Die Trägerschichten auf der einen Seite bzw. auf beiden Seiten der materialreinen Schichten tragen dazu bei, dass bei der "innenliegenden", hochverdichteten Materialschicht, sei es die Sekundärstrahlenschicht oder die Sperrschicht, die mechanische Stabilität erhöht wird, während die strahlenabschirmende Wirkung der einzelnen Schutzschichten verbessert wird.
  • Die Figur 2 zeigt eine Sandwichstruktur des erfindungsgemäßen bleifreien Strahlenschutzmaterials. Die hochverdichtete Schutzstoffschicht 2 ist auf beiden Seiten von einer Trägerschicht 1 umgeben, die die mechanische Stabilität des Aufbaus erhöht.
  • Ein alternativer Sandwichaufbau kann auch in der Weise gestaltet sein, dass jede Schicht mit hoher Sekundärstrahlung auf beiden Seiten eine Schicht mit niedriger Sekundärstrahlung aufweist. Auf diese Weise kann die Sperrschichtwirkung der Sperrschichten mit niedriger Sekundärstrahlung dazu beitragen, dass Schichten hoher Sekundärstrahlung direkt, d.h. auf beiden Seiten, eine Sperrwirkung erfahren.
  • In der Regel liegen die Strahlenschutzmaterialien in den einzelnen Schichten als Metallpulver mit Korngrößen von 2 bis 75µm vor. Es ist wesentlich, dass sich in den Zwischenräumen möglichst wenig Matrixmaterial befindet.
  • Es hat sich herausgestellt, dass bei einem Schichtensystem mit gerader Schichtzahl die Massenbelegung (Flächengewicht) 1:1 beträgt. Beispielsweise ergibt sich für einen Nenn-Bleigleichwert von 0,5 mm (Pb) ein Flächengewicht von 2,6 kg/m2 pro Schicht bei zwei Schichten, die wiederum in jeweils zwei Schichten unterteilt sein können.
  • Bei einer Schichtstruktur mit ungerader Anzahl hat sich eine Aufteilung der Flächengewichte von 2:1 (Sekundärstrahlenschicht:Sperrschicht) als vorteilhaft erwiesen.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung beträgt die Aufteilung der Flächengewichte bei einer Schichtstruktur aus drei Schichten 1:1:1. Diese Aufteilung ist insbesondere vorteilhaft im Fall einer Schichtstruktur aus Sekundärstrahlenschicht:Zwischenschicht:Sperrschicht. Die Zwischenschicht umfasst überwiegend mindestens ein Element der Ordnungszahlen 61 bis 71 oder deren Verbindungen.
  • Das erfindungsgemäße bleifreie Strahlenschutzmaterial eignet sich zur Herstellung von Strahlenschutzbekleidungen wie beispielsweise einer Strahlschutzschürze.
  • Außerdem kann das erfindungsgemäße Material vorteilhaft beispielsweise bei Schutzhandschuhen, Patientenabdeckungen, Gonadenschutz, Ovarienschutz, Dentalschutzschilde, ortsfestem Unterkörperschutz, Tischaufsätzen, ortsfesten oder ortsbeweglichen Strahlenschutzwänden oder Strahlenschutzvorhängen vorteilhaft angewandt werden.
  • Im Folgenden wird die Erfindung anhand von Beispielen näher erläutert.
  • Beispiel 1
  • Es wird ein erfindungsgemäßes bleifreies Strahlenschutzmaterial hergestellt mit einer Schicht (A), die der Sekundärstrahlenschicht entspricht und einer Schicht (B), die der Sperrschicht entspricht. Schicht (A) enthält 54 Gew.-% Zinn, 36 Gew.-% Cer und 10 Gew.-% Matrixmaterial. Die Schicht (B) enthält 36 Gew.-% Gadolinium, 36 Ges.-% Bismut, 18 Ges.-% Wolfram und 10% Matrix.
  • Beispiel 2
  • Es wird ein erfindungsgemäßes bleifreies Strahlenschutzmaterial hergestellt. Die Schicht (A) enthält 90 Gew.-% Zinn und 10 Gew.-% Matrix, während die Schicht (B) 54 Gew.-% Gadolinium, 36 Gew.-% Bismut und 10 Gew.-% Matrixmaterial enthält.
  • Beispiel 3
  • Es wird ein erfindungsgemäßes Strahlenschutzmaterial hergestellt, das eine Schicht (A) wie in Beispiel 1 und eine Schicht (B) wie in Beispiel 2 enthält.
  • Beispiel 4
  • Es wird ein erfindungsgemäßes Strahlenschutzmaterial hergestellt, mit einer Schicht (A) wie in Beispiel 2 und einer Schicht (B) wie in Beispiel 1.
  • Die Messergebnisse für die Bleigleichwerte (PB-GW) der in den Beispielen 1 bis 4 hergestellten Strahlenschutzmaterialien für Röhrenspannungen von 60, 80, 100 und 120 kV sind in der folgenden Tabelle 2 gezeigt. Das Flächengewicht der Schutzstoffe beträgt jeweils 4,7 kg/m2. Tabelle 2
    Röhrenspannung (kV) Beispiel 1 mm Pb-GW Beispiel 2 mm Pb-GW Beispiel 3 mm Pb-GW Beispiel 4 mm Pb-GW
    60 0,51 0,57 0,58 0,55
    80 0,62 0,68 0,71 0,66
    100 0,60 0,65 0,66 0,63
    125 0,49 0,51 0,53 0,50

Claims (29)

  1. Bleifreies Strahlenschutzmaterial im Energiebereich einer Röntgenröhre mit einer Spannung von 60 bis 125 kV mit einer Schichtstruktur von zwei Schichten unterschiedlicher Abschirmeigenschaften,
    dadurch gekennzeichnet,
    dass die Schichtstruktur aus einer Sekundärstrahlenschicht, die Zinn oder Verbindungen davon in einer Menge von 50 bis 100 Gew.-% enthält und einer Sperrschicht, die mindestens ein Element umfasst, das aus Bismut, Wolfram und Verbindungen davon gewählt ist, zusammengesetzt ist.
  2. Bleifreies Strahlenschutzmaterial nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Sekundärstrahlenschicht Zinn in einer Menge von 50 bis 90. Gew.-% und mindestens ein weiteres Element, das aus Jod, Cäsium, Barium, Lanthan, Cer, Praseodym, Neodym und Verbindungen davon gewählt ist, in einer Menge von 10 bis 50 Gew.-% enthält.
  3. Bleifreies Strahlenschutzmaterial nach Anspruch 2,
    dadurch gekennzeichnet,
    dass die Sekundärstrahlenschicht Zinn und Cer oder eine Verbindung davon enthält.
  4. Bleifreies Strahlenschutzmaterial, nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Sperrschicht weiterhin mindestens ein Element der Ordnungszahlen 61 bis 71 oder Verbindungen davon umfasst.
  5. Bleifreies Strählenschützmaterial nach Anspruch 4,
    dadurch gekennzeichnet,
    das das Element aus der Gruppe Erbium, Holmium, Dysprosium, Terbium, Gadolinium, Europium, Samarium, Lutetium, Ytterbium und thulium und Verbindungen davon gewählt ist.
  6. Bleifreies Strahlenschutzmaterial nach Anspruch 5,
    dadurch gekennzeichnet,
    dass das Element Gadolinium ist.
  7. Bleifreies Strahlenschutzmaterial nach einem der Ansprüche 4 bis 6,
    dadurch gekennzeichnet,
    dass das mindestens eine Element der Ordnungszahlen 61 bis 71 oder Verbindungen davon als Zwischenschicht vorliegt, die zwischen der Sekundärstrahlenschicht und der Sperrschicht angeordnet ist.
  8. Bleifreies Strahlenschutzmaterial nach einem der Ansprüche 1 bis 7,
    dadurch gekenntzeichnet,
    das die Sperrschicht weiterhin mindestens ein Element der Gruppe Tantal, Hafnium, Thorium, Uran und Verbindungen davon enthält.
  9. Bleifreies Strahlenschutzmaterial nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass die Sperrschicht die weiteren Elemente und/oder deren Verbindungen in einer Menge bis zu 80 Gew.-% enthält.
  10. Bleifreies Strahlenschutzmaterial nach Anspruch 9,
    dadurch gekennzeichnet,
    das die Menge in einem Bereich von 20 bis 70 Gew.-% liegt.
  11. Bleifreien Strahlenschutzmaterial nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet,
    dass die Sperrschicht Wolfram oder Verbindungen davon in einer Menge von 0 bis 30 Gew.-% und/oder Bismut oder Verbindungen davon in einer Menge von mindestens 30 Gew.-% enthält.
  12. Bleifreies Strahlenschutzmaterial nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet,
    dass die mindestens zwei Schichten ein Matrixmaterial in einer Menge von 0 bis 12 Gew.-% enthalten.
  13. Bleifreies Strahlenschutzmaterial nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet,
    dass die Sekundärstrahlenschicht und/oder die. Zwischenschicht und/oder die Sperrschicht mindestens eine materialreine Schicht umfasst(en).
  14. Bleifreies Strahlenschutzmaterial nach Anspruch 13,
    dadurch gekennzeichnet,
    dass die materialreinen Schichten stark verdichtet.sind.
  15. Bleifreies Strahlenschutzmaterial nach Anspruch 14,
    dadurch gekennzeichnet,
    dass die materialreinen Schichten zu mehr als 75 Vol.-% verdichtet sind.
  16. Bleifreies Strahlenschutzmaterial nach Anspruch 15,
    dadurch gekennzeichnet,
    dass die materialreinen Schichten zu mehr als 90 Vol.-% verdichtet sind.
  17. Bleifreies Strahlenschutzmaterial nach Anspruch 16,
    dadurch gekennzeichnet,
    dass die stark- verdichteten materialreinen Schichten in Form von Metallfolien vorliegen.
  18. Bleifreies Strahlenschutzmaterial nach Anspruch 17,
    dadurch gekennzeichnet,
    dass die Metallfolien eine Dicke von 0,005 bis 0,25 mm aufweisen.
  19. Bleifreies Strahlenschutzmaterial nach Anspruch 18,
    dadurch gekennzeichnet,
    dass die Metallfolien Folienstreifen oder Folienplättchen. sind.
  20. Bleifreies Strahlenschutzmaterial nach mindestens einem der Ansprüche 13 bis 19,
    dadurch gekennzeichnet
    dass die mindestens eine materialreine Schicht jeweils auf einer Seite eine Trägerschicht aufweist.
  21. Bleifreies Strahlenschutzmaterial nach mindestens einem der Ansprüche 13 bis 19,
    dadurch gekennzeichnet,
    dass die mindestens eine materialreine Schicht jeweils auf beiden Seiten eine Trägerschicht aufweist.
  22. Bleifreies Strahlenschutzmaterial nach Anspruch 20 oder 21,
    dadurch gekennzeichnet,
    dass die Trägerschichten aus einem Polymer gebildet sind.
  23. Bleifreies Strahlenschutzmaterial nach Anspruch 22,
    dadurch gekennzeichnet,
    dass das Polymer ein Latex- oder Elastomerpolymer ist.
  24. Bleifreies Strahlenschutzmaterial nach Anspruch 22 oder 23,
    dadurch gekennzeichnet,
    dass die Trägerschichten eine Dicke von 0,01 bis 0,4 mm aufweisen.
  25. Bleifreies Strahlenschutzmaterial nach einem der Ansprüche 20 bis 24,
    dadurch gekennzeichnet,
    dass die Trägerschichten geringe Anteile Schutzstoffe enthalten.
  26. Bleifreies Strahlenschutzmaterial nach einem der Ansprüche 13 bis 25,
    dadurch gekennzeichnet,
    dass die materialreinen Schichten der Schutzfolie so aufgebaut ist, dass die Schichten nach steigender Sekundärstrahlung angeordnet sind.
  27. Bleifreies Strahlenschutzmaterial nach einem der Anspruche 13 bis 26,
    dadurch gekennzeichnet,
    dass jede Schicht mit hoher Sekundärstrahlung auf beiden Seiten eine Schicht mit niedriger Sekundärstrahlung aufweist.
  28. Strahlenschutzbekleidung aus einem bleifreien Strahlenschutzmaterial nach einem der Ansprüche 1 bis 27.
  29. Strahlenschutzbekleidung nach Anspruch 28 in Form einer Schürze.
EP04764811A 2003-09-03 2004-09-03 Bleifreies strahlenschutzmaterial mit zwei schichten unterschiedlicher abschirmeigenschaft Active EP1540663B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10340639 2003-09-03
DE10340639 2003-09-03
DE102004001328 2004-01-08
DE102004001328A DE102004001328A1 (de) 2003-09-03 2004-01-08 Leichtes Strahlenschutzmaterial für einen großen Energieanwendungsbereich
PCT/EP2004/009859 WO2005024846A1 (de) 2003-09-03 2004-09-03 Bleifreies strahlenschutzmaterial mit zumindest zwei schichten unterschiedlicher abschirmeigenschaft

Publications (2)

Publication Number Publication Date
EP1540663A1 EP1540663A1 (de) 2005-06-15
EP1540663B1 true EP1540663B1 (de) 2008-11-26

Family

ID=34276535

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04764811A Active EP1540663B1 (de) 2003-09-03 2004-09-03 Bleifreies strahlenschutzmaterial mit zwei schichten unterschiedlicher abschirmeigenschaft
EP04764812A Active EP1536732B1 (de) 2003-09-03 2004-09-03 Leichtes strahlenschutzmaterial für einen grossen energieanwendungsbereich

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP04764812A Active EP1536732B1 (de) 2003-09-03 2004-09-03 Leichtes strahlenschutzmaterial für einen grossen energieanwendungsbereich

Country Status (6)

Country Link
US (3) US20060049384A1 (de)
EP (2) EP1540663B1 (de)
JP (1) JP2007504451A (de)
DE (1) DE502004004129D1 (de)
ES (1) ES2286663T3 (de)
WO (2) WO2005024846A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006028958B4 (de) 2006-06-23 2008-12-04 Mavig Gmbh Geschichtetes Bleifrei-Röntgenschutzmaterial
DE102006058234A1 (de) * 2006-12-11 2008-06-12 Siemens Ag Röntgenstrahler
US20100176318A1 (en) * 2009-01-13 2010-07-15 Smith Peter C Shape retentive flexible radiation absorber
CN101572129B (zh) * 2009-06-15 2011-08-31 北京化工大学 一种全无铅x射线屏蔽塑料复合材料
CN101570606B (zh) 2009-06-15 2011-01-05 北京化工大学 一种全无铅x射线屏蔽橡胶复合材料
DE102009037565A1 (de) 2009-08-14 2011-02-24 Mavig Gmbh Beschichtete Mikrofaserbahn und Verfahren zur Herstellung derselben
US9114121B2 (en) 2010-01-07 2015-08-25 Bloxr Solutions, Llc Radiation protection system
US20110165373A1 (en) * 2010-01-07 2011-07-07 BIoXR, LLC Radio-opaque films of laminate construction
US8754389B2 (en) 2010-01-07 2014-06-17 Bloxr Corporation Apparatuses and methods employing multiple layers for attenuating ionizing radiation
CN101826374B (zh) * 2010-05-18 2012-08-08 刘迎芝 带防辐射磁条片的防辐射服装
JP2012179353A (ja) * 2011-02-10 2012-09-20 Fujix:Kk X線ct検査方法及びx線ct検査用遮へい材
US8742383B2 (en) * 2011-10-04 2014-06-03 Surikat S.A. Radiation protection device
WO2013100875A2 (en) 2011-12-28 2013-07-04 Ertan Mevlut Elastic material for protection against ionised radiation
DE102013203812B4 (de) 2013-03-06 2017-04-13 Mavig Gmbh Fahrbare Strahlenschutzanordnung
CN103137228A (zh) * 2013-03-06 2013-06-05 魏昭荣 一种能屏蔽核辐射的柔性复合材料
USD751256S1 (en) 2013-08-22 2016-03-08 Gonaprons Llc Radiation shielding device
JP2016011913A (ja) * 2014-06-30 2016-01-21 凸版印刷株式会社 低エネルギーx線用防護材
DE102016107126B3 (de) * 2016-04-18 2017-07-20 Wipotec Wiege- Und Positioniersysteme Gmbh Strahlenschutzvorhang
WO2021053367A1 (en) * 2019-09-16 2021-03-25 Saba Valiallah High-pass radiation shield and method of radiation protection
WO2021137709A1 (en) 2019-12-30 2021-07-08 Espmen – Consultoria Unipessoal Lda Method for the production of a textile material for radiation protection
WO2023200940A1 (en) * 2022-04-13 2023-10-19 Burlington Medical, Llc Lead-free flexible radiation-protective compositions and protective articles

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2514607A (en) * 1946-02-07 1950-07-11 Dravo Corp Truss construction
US3514607A (en) * 1967-12-06 1970-05-26 Massachusetts Gen Hospital Composite shields against low energy x-rays
US3883749A (en) * 1972-08-15 1975-05-13 Arco Nuclear Co Radio opaque gloves
JPS6071996A (ja) * 1983-09-29 1985-04-23 チッソ株式会社 放射線防禦材用重金属系組成物
HU195335B (en) * 1984-11-05 1988-04-28 Peter Teleki Method and modifying body for influencing effect on a target sensitive to radiation exerted by x-ray or gamma radiation
US4795654A (en) * 1984-11-05 1989-01-03 Innofinance Altalanos Innovacios Penzintezet Structure for shielding X-ray and gamma radiation
US5001354A (en) * 1987-08-14 1991-03-19 Arnold S. Gould Surgical glove and process for making the same
BE1001528A5 (fr) * 1988-03-24 1989-11-21 Baxter Int Barriere de protection contre les rayonnements ionisants du type y et/ou rayons x.
GB8827531D0 (en) * 1988-11-25 1988-12-29 Du Pont Canada Highly filled compositions
GB8827529D0 (en) 1988-11-25 1988-12-29 Du Pont Canada Radiation protection material
EP0400121A1 (de) * 1988-11-28 1990-12-05 Péter Teleki Abschirmungsstruktur für radioaktive strahlungen
US5190990A (en) * 1990-04-27 1993-03-02 American Dental Association Health Foundation Device and method for shielding healthy tissue during radiation therapy
GB9021363D0 (en) * 1990-10-02 1990-11-14 Du Pont Canada Article for protection of gonadal region
AU666861B2 (en) * 1991-07-16 1996-02-29 Smith & Nephew Plc Radiation protective glove
US5245195A (en) * 1991-12-05 1993-09-14 Polygenex International, Inc. Radiation resistant film
US5321272A (en) * 1992-12-18 1994-06-14 General Electric Company X-ray beam stop
FR2741472A1 (fr) * 1995-11-16 1997-05-23 Stmi Soc Tech Milieu Ionisant Protection biologique a partir d'alliages metalliques
US6828578B2 (en) * 1998-12-07 2004-12-07 Meridian Research And Development Lightweight radiation protective articles and methods for making them
JP2001083288A (ja) * 1999-09-14 2001-03-30 Hanshin Gijutsu Kenkyusho:Kk 医療用x線遮蔽材料
DE19955192C2 (de) * 1999-11-16 2003-04-17 Arntz Beteiligungs Gmbh & Co Verfahren zur Herstellung eines Strahlenschutzmaterials
DE20100267U1 (de) 2001-01-08 2001-06-28 Thiess Axel Bleifreies Röntgenschutzmaterial
US6674087B2 (en) * 2001-01-31 2004-01-06 Worldwide Innovations & Technologies, Inc. Radiation attenuation system
JP2004523759A (ja) * 2001-03-12 2004-08-05 ノースロップ・グルマン・ニューポート・ニューズ 放射線シールディング
FR2824950B1 (fr) * 2001-05-21 2004-02-20 Lemer Pax Nouveau materiau radio-attenuateur
JP3914720B2 (ja) * 2001-06-05 2007-05-16 プロト株式会社 放射線遮蔽体、該遮蔽体の製造方法、及び難燃性放射線遮蔽体
JP2003227896A (ja) * 2002-02-01 2003-08-15 Mitsubishi Heavy Ind Ltd 放射線遮蔽体
DE10234159C1 (de) 2002-07-26 2003-11-06 Heinrich Eder Blei-Ersatzmaterial für Strahlenschutzzwecke
US20040262546A1 (en) * 2003-06-25 2004-12-30 Axel Thiess Radiation protection material, especially for use as radiation protection gloves

Also Published As

Publication number Publication date
EP1536732B1 (de) 2007-06-20
EP1536732A1 (de) 2005-06-08
ES2286663T3 (es) 2007-12-01
WO2005023116A1 (de) 2005-03-17
US20060151750A1 (en) 2006-07-13
DE502004004129D1 (de) 2007-08-02
EP1540663A1 (de) 2005-06-15
US20090230334A1 (en) 2009-09-17
WO2005024846A1 (de) 2005-03-17
US20060049384A1 (en) 2006-03-09
US7449705B2 (en) 2008-11-11
JP2007504451A (ja) 2007-03-01

Similar Documents

Publication Publication Date Title
EP1540663B1 (de) Bleifreies strahlenschutzmaterial mit zwei schichten unterschiedlicher abschirmeigenschaft
DE102004001328A1 (de) Leichtes Strahlenschutzmaterial für einen großen Energieanwendungsbereich
DE1558645C3 (de) Flexibles Strahlenschutzmatenal und Verfahren zu seiner Herstellung
DE102006028958B4 (de) Geschichtetes Bleifrei-Röntgenschutzmaterial
DE10052903A1 (de) Abbildungssystem mit Strahlungsfilter zur Röntgenabbildung
DE3629180C2 (de)
DE10234159C1 (de) Blei-Ersatzmaterial für Strahlenschutzzwecke
EP1460641A1 (de) Strahlungsabschirmungsanordnung
EP0021441B1 (de) Elektronenbeschleuniger zur Röntgenstrahlentherapie
EP1549220B1 (de) Strahlenschutzmaterial auf silikonbasis
DE112017006731T5 (de) Verfahren zur herstellung eines elektrodenmaterials und elektrodenmaterial
DE2507246A1 (de) Neutronentherapiegeraet
DE3518855A1 (de) Abschmelzelektrode zur herstellung von niob-titan legierungen
DE1471080A1 (de) Feuerfester Koerper und Verfahren zu seiner Herstellung
DE2354518A1 (de) Target aus einer molybdaenlegierung fuer roentgenroehren zur mammographischen verwendung
WO2004081101A2 (de) Material zur schwächung der strahlen einer röntgenröhre, insbesondere für eine folie für strahlenschutzbekleidungen
DE2311533A1 (de) Neutronenstrahlkollimator
DE202004006711U1 (de) Strahlenschutzmaterial auf Silikonbasis
DE668092C (de) Roentgenschirme
DE2653368A1 (de) Stossdaempfer
WO2005068544A2 (de) Strahlenschutzmaterial, enthaltend als strahlenabsorbierende materialen eine kombination von zumindest antimon und bismuth
DE19812320C1 (de) Verfahren zur Herstellung von Kernbrennstoff-Sinterkörpern und entsprechende Sinterkörper
DE3024634A1 (de) Verfahren zur herstellung von u(pfeil abwaerts)3(pfeil abwaerts)o(pfeil abwaerts)8(pfeil abwaerts)-sinterkoerpern
DE696564C (de) Anwendung eines mit zinnenartigem Profil der Leuchtmasseschicht versehenen Leuchtschirmes bei der Roentgendiagnostik
DE3408240A1 (de) Verfahren zur herstellung von plattenfoermigen brennelementen fuer forschungsreaktoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17Q First examination report despatched

Effective date: 20050621

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1072830

Country of ref document: HK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES GB IT SE

17Q First examination report despatched

Effective date: 20050621

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004008521

Country of ref document: DE

Date of ref document: 20090108

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2317027

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090827

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1072830

Country of ref document: HK

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230908

Year of fee payment: 20

Ref country code: GB

Payment date: 20230927

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230915

Year of fee payment: 20

Ref country code: DE

Payment date: 20230929

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231005

Year of fee payment: 20