EP1536102A2 - Rotor für eine Dampfturbine - Google Patents

Rotor für eine Dampfturbine Download PDF

Info

Publication number
EP1536102A2
EP1536102A2 EP04105832A EP04105832A EP1536102A2 EP 1536102 A2 EP1536102 A2 EP 1536102A2 EP 04105832 A EP04105832 A EP 04105832A EP 04105832 A EP04105832 A EP 04105832A EP 1536102 A2 EP1536102 A2 EP 1536102A2
Authority
EP
European Patent Office
Prior art keywords
rotor
cooling
channel
cavity
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04105832A
Other languages
English (en)
French (fr)
Other versions
EP1536102A3 (de
EP1536102B1 (de
Inventor
Michael Dr. Hiegemann
Martin Reigl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1536102A2 publication Critical patent/EP1536102A2/de
Publication of EP1536102A3 publication Critical patent/EP1536102A3/de
Application granted granted Critical
Publication of EP1536102B1 publication Critical patent/EP1536102B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/063Welded rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/087Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in the radial passages of the rotor disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/085Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor
    • F01D5/088Heating, heat-insulating or cooling means cooling fluid circulating inside the rotor in a closed cavity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/205Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam

Definitions

  • the present invention relates to a rotor for a steam turbine for Working steam, having the features of the preamble of claim 1.
  • Such a rotor for a steam turbine is known for example from EP 0 991 850 B1 known and extends along a rotation axis and consists of at least two adjoining rotor parts in the axial direction. There are the two rotor parts on mutually facing axial end faces by means of an in Circumferentially closed circumferential, annular weld zone welded together.
  • a cooling channel system is formed at least one inflow channel, at least one outflow channel and a Cooling channel has.
  • the cooling duct carries cooling steam from at least one Inflow channel to at least one outflow channel.
  • the at least one Inflow channel removes the cooling steam at a position on the rotor surface the working steam and this leads to the cooling channel.
  • the cooling steam In contrast to takes the at least one outflow channel the cooling steam the cooling channel and leads this to or through a cooling zone of the rotor.
  • a suitable Positioning of the at least one inflow channel and the at least one Outflow channel can be between and inlet and outlet of the cooling channel system be formed a pressure difference sufficient, the cooling steam without additional measures from the at least one steam extraction point to the to promote at least one cooling zone.
  • the cooling channel extends concentrically to Axis of rotation.
  • the inflow channels are in the region of a diffuser arranged high-pressure turbine, while the outflow channels in the Center of a double-flow medium-pressure turbine are positioned.
  • the cooling channel extends within the for the high-pressure turbine and the Medium-pressure turbine provided common rotor.
  • This rotor is axial stored between high-pressure turbine and medium-pressure turbine. Accordingly The cooling line extends centrally through this camp. As a consequence of this this bearing is exposed to an increased temperature load, so that additional measures are required to protect this warehouse.
  • the known rotor is realized according to a so-called "drum construction", that is, the rotor is composed of a plurality of "drums".
  • a Drum is a cylindrical or frustoconical Massive body, which basically cavities, such as channels and chambers, one Can contain cooling system.
  • a rotor with drum construction characterizes itself usually by a small number of drums, preferably are designed differently. Each drum is several Assigned to turbine stages. Adjacent drums are usually frontally over the entire surface to each other.
  • a one-piece rotor which in a twin-flow steam turbine is arranged and also a cooling duct system contains.
  • this rotor is in the center of the hot steam supply to the jacket Cavity formed, which is closed by means of a lid, wherein the lid simultaneously fulfills a flow guiding function. From this cavity goes on two axially opposite sides in each case an axial cooling channel.
  • the one cooling channel communicates with an inflow channel, which separates the cooling steam a pressure stage that takes a flood.
  • a rotor for a gas turbine on which a Compressor, a central part and a turbine part are formed and the consists mainly of individual, welded together rotational bodies, their geometric shape to form axially symmetric cavities leads between the respective adjacent bodies of revolution.
  • this rotor are one extending around the central axis of the rotor, from the downstream End of the rotor up to the upstream last cavity reaching further, cylindrical cavity and at least two tubes provided, the have different diameters and lengths and at least partly telescopically overlap and in the cylindrical cavity are arranged.
  • the tubes are firmly anchored to a fixed point, wherein the fixed points of the tubes are at axially different locations.
  • the pipes are each provided with at least two through holes in the jacket, wherein at least one opening in the turbine part and at least one opening in the Compressor or middle part is arranged.
  • the openings of the different Tubes overlap in the operating state in the turbine section and in the cold state in the compressor and middle section. In this way, when starting up the turbine The rotor can be warmed up faster while in the operating state Cooling is provided. For preheating or for cooling is doing taken at a suitable compressor stage compressed air and axially one of Pipes supplied.
  • This known rotor is realized with the so-called “disk construction", that is, the rotor is assembled from a plurality of “slices".
  • the disks correspond disc-shaped bodies, the radially outward axial have protruding edge region, which may be configured in the manner of a sleeve can.
  • the adjacent disks are relatively along the edge regions small annular surfaces to each other. These discs are thus around the aforementioned rotating body.
  • Each disc is different from one Drum only a few, especially in each case only a single turbine stage assigned.
  • a rotor of disk construction consists of a comparatively large number of disks, which also preferably are designed identical.
  • the in a rotor with disk construction realized cavities serve primarily to reduce the inertial forces, However, they can also be used for a cooling system.
  • the present invention as characterized in the claims deals with the problem for a rotor of a steam turbine the mentioned type an improved embodiment, the in particular with reduced production costs sufficient cooling the respective cooling zone of the rotor, in particular the rotor interior, allows.
  • the invention is based on the general idea, in a rotor whose Rotor parts for producing the welded joint frontally one each Well, which together in the welded state one of the Sweat zone enclosed cavity, this in the manufacture of the rotor to integrate any existing cavity in the cooling channel system.
  • Additional recesses, on the one hand lead to a material weakening and on the other hand closed again must be dispensable.
  • the effort to realize the internal rotor cooling channel system can be reduced. simultaneously the cavity receives a meaningful double function, which in total the Expenses relative to the formation of the welded joint or the rotor relativized.
  • the cooling effect of a cooling steam flow through bore system is particularly large if instead of a large bore many small holes are used as cooling channels, because then the of Cooling steam applied cooling duct wall considerably larger.
  • the Cross-sectional area of a cooling channel to be small, thus a large Speed of cooling steam reached and thus the heat transfer, so the Cooling effect, is improved.
  • the many cooling channels do not run in the Rotor center, as a piercing of the rotor center, the strength of the Rotor significantly weakens there.
  • For rotor sections with large Outer diameter is the mechanical stress in the rotor center due to the rotor centrifugal force of particular importance. She often hires one Border of the buildable dar.
  • the inventive solution is due to the cooling effect increases the strength of the rotor center and the Baulessgrenzen be in the direction of higher temperatures of the Working steam and larger rotor diameter shifted.
  • a rotor consisting of at least three Rotor parts is manufactured and accordingly two welding zones and two Includes cavities.
  • the two cavities can then pass through at least one Cooling channel to be interconnected, while the at least one Inflow channel at the one cavity ends and the at least one outflow channel at the other cavity begins.
  • the cavities form quasi Nodes that control the communication between the at least one Cooling channel and the at least one inflow channel on the one hand and the on the other hand make at least one outflow channel.
  • the at least one inflow channel and the at least one outflow channel each to one of the cavities, it is also possible, the at least one Cooling channel only in the middle rotor part of the three rotor parts form what the Reduced effort to realize the cooling duct system.
  • a steam turbine 1 comprises a rotor 2, which is connected to its Axial ends 3 and 4 is mounted rotatably about a central axis of rotation 5.
  • the Rotor 2 is arranged centrally in a housing 6, which has a plurality of guide vanes 7 carries.
  • the rotor 2 carries a plurality of blades 8, wherein the blades 8 and the vanes 7 in pairs the turbine stages 9 of Form steam turbine 1.
  • a steam turbine 1 operates with steam as a working medium, also called working steam.
  • the housing 6 contains a Inflow space 10, the tensioned steam is supplied and of which the Steam to the first turbine stage 9 of the steam turbine 1 is performed.
  • the Relaxed steam is discharged at an outlet 11 of the housing 6.
  • Arrows 12 symbolize the main flow of the steam through the steam turbine 1.
  • the rotor 2 is designed in several parts and has in the embodiments of Fig. 1 to 5 each have two rotor parts 2a and 2b, the one another in the axial direction limits.
  • the rotor 2 is here designed as a "drum rotor" 2, that is, the rotor 2 is realized according to the drum construction.
  • the individual rotor parts 2a, 2b form while the "drums" of the drum rotor 2. They are characterized by their massive Construction with large material thickness in the radial and axial directions.
  • the two rotor parts 2a, 2b are welded together.
  • a welding zone 15 is formed, which extends in the circumferential direction and thereby closed circulates. In this way, the welding zone 15 receives a annular shape.
  • this weld zone 15 To form this weld zone 15, the two rotor parts 2a, 2b at their End faces 13, 14 each with a recess 16 or 17 of any shape Mistake. When assembled, the two complement each other Recesses 16, 17 to a cavity 18. This cavity 18 is thus of the Welding zone 15 circumferentially enclosed.
  • the rotor 2 is also equipped with an internal cooling channel system 19, which allows partially relaxed and thus partially cooled steam can be seen at a position on the rotor surface 20 and this as Cooling steam at least one thermally loaded component of the rotor 2, such as z. B. a thrust balance piston 21 supply. Accordingly, it is the cooling steam around the same medium as the working steam.
  • the Cooling channel system 19 comprises at least one inflow channel 22 for this purpose Removal of the cooling steam from the working steam at a position on the Rotor surface 20 at a suitable turbine stage 9. In the present Case, two such inflow channels 22 are shown. It is clear that too more than two inflow channels 22 may be provided, in particular can be arranged star-shaped with respect to the axis of rotation 5.
  • At least one outflow channel 23 is provided, which contains the cooling steam by at least one cooling zone, here exemplarily the thrust balance piston 21 and / or to a cooling zone of the rotor 2 or a rotor or Turbine component leads.
  • the cooling zone here exemplarily the thrust balance piston 21 and / or to a cooling zone of the rotor 2 or a rotor or Turbine component leads.
  • two outflow channels 23 shown In the present case are also two outflow channels 23 shown.
  • the cooling channel system 19 comprises at least one cooling channel 24, the or together or in each case for at least one inflow channel 22 connect to the at least one outflow channel 23.
  • This way will the cooling steam according to the arrows 25 over the at least one Inflow channel 22 of the respective turbine stage 9 taken over the or Cooling channels 24 the at least one outflow channel 23 is supplied to the Cooling steam in turn the respective cooling zone, z. B. the Schubaus Morgans Kochben 21, supplies. Due to the selected positioning of the Inflowing the inflow channels 22 and the outflow of the Outflow channels 23 is within the cooling channel system 19, a pressure drop, the cooling steam automatically in the desired manner within the Cooling channel system 19 transported.
  • the cavity 18 is now integrated into the cooling channel system 19. at the embodiment shown in Fig. 1, this is done by the Cooling channels 24 are each connected to this cavity 18.
  • the right illustrated cooling channel 24 is the input side to the inflow channels 22nd connected and output side to the cavity 18.
  • the left Cooling channel 24 is connected to the input side of the cavity 18 and On the output side to the outflow channels 23.
  • Die Cavity 18 forms a kind of distribution node, the cooling steam over one or more channels 22 or 24 is supplied to one or more Channels 23, 24 distributed.
  • the two cooling channels 24 are each Centric to the axis of rotation 5 in the respective rotor part 2a, 2b designed.
  • the Design of these cooling channels 24 is particularly simple because the rotor parts 2a, 2b before welding in the region of their depressions 16, 17 centrally can be bored to form these cooling channels 24. A additional, alternatively attached depression in the surface of the respective Rotor part 2a, 2b is not required.
  • the inflow channels 22, which are here in the extend substantially radially, can be made in the form of holes become. The same applies to the outflow channels 23, which are here extend diagonally - centrically. In terms of flow direction inside the cooling channel system 19 ends the cooling channel 24 shown on the right Cavity 18, while the cooling channel 24 shown on the left begins at the cavity 18.
  • FIG. 2 differs from that in FIG. 1 shown embodiment in that the rotor part 2a shown on the right no central cooling channel 24, but a plurality of decentralized or with respect to the Rotation axis 5 eccentrically arranged, but parallel to the longitudinal axis extending cooling channels 24 are provided, each with one of Inflow channels 22 communicate.
  • the attachment a central cooling channel 24 are avoided, which at certain Rotor designs may be beneficial.
  • the number of right in the rotor part 2a trained cooling channels 24 then corresponds to the number of provided there Inflow channels 22.
  • the embodiment of Fig. 3 differs from the embodiment 2 in that also in the rotor part 2b shown on the left instead a central cooling channel 24 more decentralized or with respect to the Rotation axis 5 eccentrically arranged cooling channels 24 are provided. Also these cooling channels 24 preferably extend parallel to the longitudinal axis of the Rotor 2 and communicate with one of the outflow channels 23. The number the cooling channels 24 in the rotor part 2b shown on the left then corresponds to the number the outflow channels 23 mounted there, which is not necessarily have to be. Also in the left rotor part 2b can at certain Embodiments of the rotor 2, the attachment of several decentralized or eccentric cooling channels 24 with respect to a central cooling channel 24 advantageous be.
  • cooling channels 24 extend parallel to each other eccentrically, such as this is the case, for example, in the embodiments of FIGS. 2 and 3 this expedient symmetrically distributed in the respective rotor part 2a, 2b arranged, that is, the respective cooling channels 24 are concentric about the axis of rotation 5 arranged around.
  • the cavity 18 is quasi between the arranged in the axial direction of successive cooling channels 24.
  • the Inflow channels 22 and the outflow channels 23 can only via the cooling channels 24th communicate with the cavity 18.
  • the pitch of the rotor 2 to the position of Outflow channels 23 adapted, that is, the weld zone 15 is compared to the embodiments of FIGS. 1 to 3 in the direction of the respective cooling zone, ie moved here in the direction of the thrust balance piston 21.
  • the outflow 23 directly to the cavity 18 connect. Accordingly, the discharge channels 23 begin at this Embodiment on the cavity 18.
  • Cooling channel system 19 As in the embodiment of FIG. 1 designed by a central cooling channel 24 is provided which communicates with the inflow channels 22 communicated.
  • FIG. 5 differs from the Embodiment according to FIG. 4 in that in the right rotor part 2a instead the central cooling channel 24 more decentralized or eccentric to Rotary axis 5 arranged cooling channels 24 are provided, each with one of the inflow channels 22 communicate. This can be for certain Embodiments of the rotor 2 may be advantageous.
  • the outflow channels 23 are directly on the cavity 18 is connected, while the inflow channels 22 indirectly via the Cooling channels 24 are connected to the cavity 18.
  • the pitch of the rotor 2 so is chosen that the inflow channels 22 connected directly to the cavity 18 can be while the outflow channels 23 then indirectly via one or can be connected to the cavity 18 via a plurality of cooling channels 24.
  • the Welding zone 15 is then in the direction of the removal point of the cooling steam postponed.
  • the at least one cooling channel 24 be formed by the cavity 18, with the result that both the inflow channels 22 and the outflow channels 23 are connected directly to the cavity 18.
  • FIGS. 1 to 5 have in common that the at least a sampling points, here the respective turbine stage 9, at a position on the Rotor surface 20 is disposed in the region of a rotor part 2a, while the at least one cooling zone, here the thrust balance piston 21, in the area the other rotor part 2b is arranged.
  • the cooling channel system 19 extends thus within the two-piece rotor 2 through both rotor parts 2a and 2b.
  • While the rotor 2 in the embodiments of FIGS. 1 to 5 in two parts 6 is an embodiment with a three-part rotor 2, wherein the individual rotor parts from right to left denoted by 2a, 2b and 2c are.
  • This rotor 2 is designed as a drum rotor 2. Due to the Three-piece are accordingly two weld zones 15 and thus two Cavities 18 provided. Both cavities 18 are within the meaning of the invention integrated into the cooling channel system 19.
  • the division of the rotor 2 is specifically so chosen that the inflow channels 22 directly with the one cavity 18th communicate, while the outflow channels 23 directly with the other cavity 18th communicate.
  • the two cavities 18 are then over the at least one Cooling channel 24, here connected to each other via at least two cooling channels 24.
  • two or more cooling channels 24 are in the middle rotor part 2b arranged eccentrically.
  • a central cooling channel 24 extends between the two cavities 18.
  • at least one of the welding zones 15 is positioned so that the associated outer Rotor part 2a or 2c neither an inflow channel 22 nor a discharge channel 23rd contains.
  • the welding zone 15 shown on the right can be right next to the cooling steam extraction point be positioned, with the result that the Inflow channels 22 must then be formed in the central rotor part 2b.
  • This construction results in that in the right rotor part 2a then no inflow channel 22 is included.
  • FIGS. 7 to 9 show twin-flow steam turbines 1.
  • the two Floods are designated 26 and 27 respectively.
  • the rotor 2 is again in three parts and as a drum rotor. 2 formed, wherein the central rotor part 2b in both floods 26, 27th hineinerstreckt.
  • the division of the rotor 2 is done specifically so that the Welding zones 15 with their cavities 18 are each positioned so that the Inflow channels 22 directly to the one, here to the left cavity 18, and the Outflow channels 23 directly to the other, here to the right cavity 18, can be connected.
  • the two cavities 18 then communicate via the at least one cooling channel 24 with each other.
  • Cooling channel system 19 can thus cooling steam of the flood 27 shown on the left a specific turbine stage 9 are removed and the blading the other flood 26 shown on the right are supplied.
  • a suitable Positioning the at least one sampling point and the at least one Return line is created within the cooling channel 19 a sufficient Pressure gradient to drive the cooling steam without additional measures can.
  • the two cavities 18 through a centrally arranged cooling channel 24 connected to each other.
  • the two cavities 18 by two or more with respect to the rotation axis 5 eccentrically arranged cooling channels 24 connected.
  • these cooling channels 24 are around the Rotary axis 5 arranged concentrically distributed around. The number must be the cooling channels 24 neither with the number of inflow channels 22 still with the Number of outflow channels 23 match.
  • the inflow channels 22 are in the left shown rotor part 2c, the outflow channels 23 in the rotor part 2a shown on the right and the one or more cooling channels 24 formed in the central rotor part 2b.
  • the axial pitch of the rotor 2 specifically so to mount that the inflow channels 22 and / or the outflow 23rd are also arranged in the middle rotor part 2b.
  • Fig. 9 shows a preferred Embodiment in which both the inflow channels 22 and the Outflow channels 23 are arranged in the central rotor part 2b, in which also the or the cooling channels 24 are formed.
  • the invention is not limited to those described Embodiments limited. It is particularly good for the rotor use of steam turbines in which as a working medium hot steam and Cooling steam is used as the cooling medium, but it goes without saying also suitable for the rotor of an air turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Es wird ein Rotor (2) für eine Dampfturbine (1) für Arbeitsdampf vorgestellt, wobei der Rotor (2) aus wenigstens zwei Rotorteilen (2a,2b) besteht. Die zwei Rotorteile (2a,2b) sind mittels einer in Umfangsrichtung geschlossen umlaufenden, ringförmigen Schweißzone (15) miteinander verschweißt. Im Rotor (2) ist ein Kühlkanalsystem (19) ausgebildet, das wenigstens einen Zuströmkanal (22), wenigstens einen Abströmkanal (23) und wenigstens einen Kühlkanal (24) aufweist. Um die Integration des Kühlkanalsystems (19) in den Rotor (2) zu vereinfachen, umschließt die Schweißzone (15) eine Kavität (18), die einen Bestandteil des Kühlkanalsystems (19) bildet und vom Kühldampf durchströmt ist.

Description

Technisches Gebiet
Die vorliegende Erfindung betrifft einen Rotor für eine Dampfturbine für Arbeitsdampf, mit den Merkmalen des Oberbegriffs des Anspruchs 1.
Stand der Technik
Ein derartiger Rotor für eine Dampfturbine ist beispielsweise aus der EP 0 991 850 B1 bekannt und erstreckt sich entlang einer Rotationsachse und besteht aus wenigstens zwei in Achsrichtung aneinandergrenzenden Rotorteilen. Dabei sind die beiden Rotorteile an einander zugewandten axialen Stirnseiten mittels einer in Umfangsrichtung geschlossen umlaufenden, ringförmigen Schweißzone miteinander verschweißt. Im Rotor ist ein Kühlkanalsystem ausgebildet, das zumindest einen Zuströmkanal, wenigstens einen Abströmkanal sowie einen Kühlkanal aufweist. Der Kühlkanal führt Kühldampf von wenigstens einem Zuströmkanal zum wenigstens einen Abströmkanal. Der wenigstens eine Zuströmkanal entnimmt den Kühldampf an einer Position an der Rotoroberfläche dem Arbeitsdampf und führt diesen dem Kühlkanal zu. Im Unterschied dazu entnimmt der wenigstens eine Abströmkanal den Kühldampf dem Kühlkanal und führt diesen zu einer bzw. durch eine Kühlzone des Rotors. Durch eine geeignete Positionierung des wenigstens einen Zuströmkanals und des wenigstens einen Abströmkanals kann zwischen und Einlass und Auslass des Kühlkanalsystems eine Druckdifferenz ausgebildet werden, die ausreicht, den Kühldampf ohne zusätzliche Maßnahmen von der wenigstens einen Dampfentnahmestelle zu der wenigstens einen Kühlzone zu fördern.
Beim bekannten Rotor erstreckt sich der Kühlkanal konzentrisch zur Rotationsachse. Die Zuströmkanäle sind im Bereich eines Diffusors einer einflutigen Hochdruckturbine angeordnet, während die Abströmkanäle im Zentrum einer zweiflutigen Mitteldruckturbine positioniert sind. Der Kühlkanal erstreckt sich dabei innerhalb des für die Hochdruckturbine und die Mitteldruckturbine vorgesehenen gemeinsamen Rotors. Dieser Rotor ist axial zwischen Hochdruckturbine und Mitteldruckturbine gelagert. Dementsprechend erstreckt sich die Kühlleitung zentral auch durch dieses Lager. Als Folge davon ist dieses Lager einer erhöhten Temperaturbelastung ausgesetzt, so dass zusätzliche Maßnahmen zum Schutz dieses Lagers erforderlich sind.
Der bekannte Rotor ist nach einer sogenannten "Trommelbauweise" realisiert, d.h., der Rotor ist aus mehreren "Trommeln" zusammengebaut. Bei einer solchen Trommel handelt es sich um einen zylindrischen oder kegelstumpfförmigen Massivkörper, der grundsätzlich Hohlräume, wie Kanäle und Kammern, eines Kühlsystems enthalten kann. Ein Rotor mit Trommelbauweise charakterisiert sich in der Regel durch eine kleine Anzahl von Trommeln, die vorzugsweise unterschiedlich ausgestaltet sind. Dabei ist jede Trommel mehreren Turbinenstufen zugeordnet. Benachbarte Trommeln liegen stirnseitig in der Regel vollflächig aneinander an.
Aus der DE 196 20 828 C1 ist ein einteiliger Rotor bekannt, der in einer zweiflutigen Dampfturbine angeordnet ist und ebenfalls ein Kühlkanalsystem enthält. In diesem Rotor ist im Zentrum der Heißdampfzuführung am Mantel ein Hohlraum ausgebildet, der mit Hilfe eines Deckels wieder verschlossen ist, wobei der Deckel gleichzeitig eine Strömungsleitfunktion erfüllt. Von diesem Hohlraum geht an zwei axial gegenüberliegenden Seiten jeweils ein axialer Kühlkanal ab. Der eine Kühlkanal kommuniziert mit einem Zuströmkanal, der den Kühldampf einer Druckstufe der einen Flut entnimmt. Im Unterschied dazu kommuniziert der andere Kühlkanal mit einem Abströmkanal, der den Kühldampf einer Druckstufe der anderen Flut zuführt. Der Aufwand zur Realisierung dieser internen Kühlung ist vergleichsweise groß, da zur Herstellung der Kühlkanäle zunächst der Hohlraum am Umfang des Rotors ausgebildet und anschließend wieder verschlossen werden muss. Ungünstig ist dabei außerdem, dass bei der gewählten Positionierung des Hohlraums genau an derjenigen Stelle des Rotors eine Schwächung in der Struktur erreicht wird, die im Betrieb der Dampfturbine den höchsten thermischen und hohen mechanischen Belastungen ausgesetzt ist. Des Weiteren ist ein zusätzlicher Aufwand erforderlich, um den Hohlraum wieder mittels des entsprechenden Deckels zu verschließen.
Aus der EP 0 761 929 A1 ist ein Rotor für eine Gasturbine bekannt, an dem ein Verdichterteil, ein Mittelteil und ein Turbinenteil ausgebildet sind und der vorwiegend aus einzelnen, miteinander verschweißten Rotationskörpern besteht, deren geometrische Form zur Ausbildung von axial symmetrischen Hohlräumen zwischen den jeweils benachbarten Rotationskörpern führt. Bei diesem Rotor sind ein sich um die Mittelachse des Rotors erstreckender, vom stromabwärtigen Ende des Rotors bis zum stromaufwärts letzten Hohlraum reichender weiterer, zylinderförmiger Hohlraum sowie wenigstens zwei Rohre vorgesehen, die unterschiedliche Durchmesser und Längen aufweisen und sich zumindest teilweise teleskopisch überlappen und die im zylinderförmigen Hohlraum angeordnet sind. Die Rohre sind jeweils an einem Fixpunkt fest verankert, wobei die Fixpunkte der Rohre an axial unterschiedlichen Stellen liegen. Die Rohre sind jeweils mit mindestens zwei Durchgangsöffnungen im Mantel versehen, wobei mindestens eine Öffnung im Turbinenteil und mindestens eine Öffnung im Verdichter- bzw. Mittelteil angeordnet ist. Die Öffnungen der verschiedenen Rohre überlappen sich im Betriebszustand im Turbinenteil und im kalten Zustand im Verdichter- und Mittelteil. Auf diese Weise kann beim Hochfahren der Turbine der Rotor schneller aufgewärmt werden, während im Betriebszustand eine Kühlung bereitgestellt wird. Für die Vorwärmung bzw. für die Kühlung wird dabei an einer geeigneten Verdichterstufe Druckluft entnommen und axial einem der Rohre zugeführt.
Dieser bekannte Rotor ist mit der sogenannten "Scheibenbauweise" realisiert, d.h., der Rotor ist aus mehreren "Scheiben" zusammengebaut. Die Scheiben entsprechen scheibenförmigen Körpern, die radial außen einen axial vorstehenden Randbereich aufweisen, der nach Art einer Hülse ausgestaltet sein kann. Die benachbarten Scheiben liegen an den Randbereichen entlang relativ kleiner Ringflächen aneinander an. Bei diesen Scheiben handelt es sich somit um die vorgenannten Rotationskörper. Jede Scheibe ist im Unterschied zu einer Trommel nur wenigen, insbesondere jeweils nur einer einzigen Turbinenstufe zugeordnet. Dementsprechend besteht ein Rotor in Scheibenbauweise aus einer vergleichsweise großen Anzahl an Scheiben, die außerdem vorzugsweise baugleich ausgestaltet sind. Die in einem Rotor mit Scheibenbauweise realisierten Hohlräume dienen vorwiegend zur Reduzierung der Trägheitskräfte, können jedoch zusätzlich für ein Kühlsystem genutzt werden.
Weitere Rotoren für Gasturbinen, die in dieser Scheibenbauweise realisiert sind, können beispielsweise aus der DE 854 445 B, der DE 198 52 604 A1 und der DE 196 17 539 A1 entnommen werden.
Darstellung der Erfindung
Die vorliegende Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für einen Rotor einer Dampfturbine der eingangs genannten Art eine verbesserte Ausführungsform anzugeben, die insbesondere bei reduziertem Herstellungsaufwand eine hinreichende Kühlung der jeweiligen Kühlzone des Rotors, insbesondere des Rotorinneren, ermöglicht.
Erfindungsgemäß wird dieses Problem durch den Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
Die Erfindung beruht auf dem allgemeinen Gedanken, bei einem Rotor, dessen Rotorteile zum Herstellen der Schweißverbindung stirnseitig jeweils eine Vertiefung aufweisen, die zusammen im verschweißten Zustand eine von der Schweißzone umschlossene Kavität bilden, diese bei der Herstellung des Rotors ohnehin vorhandene Kavität in das Kühlkanalsystem zu integrieren. Durch diese Maßnahme kann die Kavität bzw. können die genannten Vertiefungen vor dem Verschweißen der Rotorteile dazu genutzt werden, den oder die Kühlkanäle und/oder den oder die Zuströmkanäle und/oder den oder die Abströmkanäle in das jeweilige Rotorteil einzubringen. Zusätzliche Ausnehmungen, die einerseits zu einer Materialschwächung führen und andererseits wieder verschlossen werden müssen, sind dadurch entbehrlich. Der Aufwand zur Realisierung des rotorinternen Kühlkanalsystems kann dadurch reduziert werden. Gleichzeitig erhält die Kavität eine sinnvolle Doppelfunktion, wodurch sich insgesamt der Aufwand zur Ausbildung der Schweißverbindung bzw. des Rotors relativiert.
Besonders wichtig ist die Kühlung des Rotorzentrums in dem Bereich, in dem der Rotor einen großen Außendurchmesser besitzt und gleichzeitig dort außen mit heißem Arbeitsdampf beaufschlagt wird. Das ist häufig im Bereich der Dichtung am Schubausgleichskolben der Fall, durch die unmittelbar heißer Arbeitsdampf von der Turbineneinströmung strömt und wo gleichzeitig der Durchmesser besonders groß ist.
Die Kühlwirkung eines kühldampfdurchströmten Bohrungssystems (Kühlkanalsystems) ist besonders groß, wenn anstelle einer großen Bohrung viele kleine Bohrungen als Kühlkanäle verwendet werden, denn dann ist die vom Kühldampf beaufschlagte Kühlkanalwand erheblich größer. Gleichzeitig sollte die Querschnittsfläche eines Kühlkanals klein sein, damit eine große Geschwindigkeit des Kühldampf erreicht und damit der Wärmeübergang, also die Kühlwirkung, verbessert wird. Vorteilhaft verlaufen die vielen Kühlkanäle nicht im Rotorzentrum, da eine Durchbohrung des Rotorzentrums die Festigkeit des Rotors dort erheblich schwächt. Bei Rotorabschnitten mit großem Außendurchmesser ist die mechanische Beanspruchung im Rotorzentrum aufgrund der Rotorfliehkraft von besonderer Bedeutung. Sie stellt häufig eine Grenze des Baubaren dar. Durch die erfindungsgemäße Lösung wird aufgrund der Kühlwirkung die Festigkeit des Rotorzentrums erhöht und die Baubarkeitsgrenzen werden in Richtung größerer Temperaturen des Arbeitsdampfes und größerer Rotordurchmesser verschoben.
Besondere Vorteile ergeben sich auch für einen Rotor, der aus wenigstens drei Rotorteilen hergestellt ist und dementsprechend zwei Schweißzonen sowie zwei Kavitäten umfasst. Die beiden Kavitäten können dann durch wenigstens einen Kühlkanal miteinander verbunden sein, während der wenigstens eine Zuströmkanal an der einen Kavität endet und der wenigstens eine Abströmkanal an der anderen Kavität beginnt. Bei dieser Bauweise bilden die Kavitäten quasi Knotenstellen, welche die Kommunikation zwischen dem wenigstens einen Kühlkanal und dem wenigstens einen Zuströmkanal einerseits und dem wenigstens einen Abströmkanal andererseits herstellen. Durch die Anbindung des wenigstens einen Zuströmkanals sowie des wenigstens einen Abströmkanals jeweils an eine der Kavitäten, ist es außerdem möglich, den wenigstens einen Kühlkanal nur im mittleren Rotorteil der drei Rotorteile auszubilden, was den Aufwand zur Realisierung des Kühlkanalsystems reduziert.
Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
Kurze Beschreibung der Zeichnungen
Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen. Es zeigen, jeweils schematisch,
Fig. 1 bis 5
jeweils einen stark vereinfachten Längsschnitt durch eine einflutige Dampfturbine mit zweiteiligem geschweißten Trommelrotor nach der Erfindung bei unterschiedlichen Ausführungsformen,
Fig. 6
einen stark vereinfachten Längsschnitt durch eine einflutige Dampfturbine mit dreiteiligem geschweißten Trommelrotor nach der Erfindung,
Fig. 7 bis 9
jeweils einen stark vereinfachten Längsschnitt durch eine zweiflutige Dampfturbine mit dreiteiligem geschweißten Trommelrotor nach der Erfindung bei verschiedenen Ausführungsformen.
Bei allen Figuren sind nur das Innengehäuse und der Rotor dargestellt, nicht aber das Außengehäuse.
Wege zur Ausführung der Erfindung
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und der Fig. 1 bis 9 näher erläutert.
Entsprechend Fig. 1 umfasst eine Dampfturbine 1 einen Rotor 2, der an seinen Axialenden 3 und 4 um eine zentrale Rotationsachse 5 drehend gelagert ist. Der Rotor 2 ist zentrisch in einem Gehäuse 6 angeordnet, das mehrere Leitschaufeln 7 trägt. Korrespondierend dazu trägt der Rotor 2 mehrere Laufschaufeln 8, wobei die Laufschaufeln 8 und die Leitschaufeln 7 paarweise die Turbinenstufen 9 der Dampfturbine 1 bilden. Bekanntermaßen arbeitet eine Dampfturbine 1 mit Dampf als Arbeitsmedium, auch Arbeitsdampf genannt. Das Gehäuse 6 enthält einen Zuströmraum 10, dem der gespannte Dampf zugeführt wird und von dem der Dampf zur ersten Turbinenstufe 9 der Dampfturbine 1 geführt wird. Der entspannte Dampf wird an einem Austritt 11 des Gehäuses 6 abgeführt. Pfeile 12 symbolisieren dabei die Hauptströmung des Dampfes durch die Dampfturbine 1.
Der Rotor 2 ist mehrteilig ausgeführt und besitzt bei den Ausführungsformen der Fig. 1 bis 5 jeweils zwei Rotorteile 2a und 2b, die in Achsrichtung aneinander grenzen. Der Rotor 2 ist hier als "Trommelrotor" 2 ausgestaltet, d.h., der Rotor 2 ist nach der Trommelbauweise realisiert. Die einzelnen Rotorteile 2a, 2b bilden dabei die "Trommeln" des Trommelrotors 2. Sie zeichnen sich durch ihre massive Bauweise mit großer Materialstärker in radialer und axialer Richtung aus.
Die beiden Rotorteile 2a, 2b sind miteinander verschweißt. Zu diesem Zweck ist an einander zugewandten axialen Stirnseiten 13 und 14 der Rotorteile 2a, 2b eine Schweißzone 15 ausgebildet, die sich in Umfangsrichtung erstreckt und dabei geschlossen umläuft. Auf diese Weise erhält die Schweißzone 15 eine ringförmige Gestalt.
Zur Ausbildung dieser Schweißzone 15 sind die beiden Rotorteile 2a, 2b an ihren Stirnseiten 13, 14 jeweils mit einer Vertiefung 16 bzw. 17 beliebiger Gestalt versehen. Im zusammengebauten Zustand ergänzen sich die beiden Vertiefungen 16, 17 zu einer Kavität 18. Diese Kavität 18 ist somit von der Schweißzone 15 umfangsmäßig umschlossen.
Der Rotor 2 ist außerdem mit einem internen Kühlkanalsystem 19 ausgestattet, das es ermöglicht, teilweise entspannten und somit teilweise abgekühlten Dampf an einer Position an der Rotoroberfläche 20 zu entnehmen und diesen als Kühldampf zumindest einem thermisch belasteten Bestandteil des Rotors 2, wie z. B. einem Schubausgleichskolben 21 zuzuführen. Demnach handelt es sich beim Kühldampf um dasselbe Medium wie beim Arbeitsdampf. Das Kühlkanalsystem 19 umfasst hierzu zumindest einen Zuströmkanal 22 zur Entnahme des Kühldampfes aus dem Arbeitsdampf an einer Position an der Rotoroberfläche 20 an einer dazu geeigneten Turbinenstufe 9. Im vorliegenden Fall sind zwei derartigen Zuströmkanäle 22 dargestellt. Es ist klar, dass auch mehr als zwei Zuströmkanäle 22 vorgesehen sein können, die insbesondere sternförmig bezüglich der Rotationsachse 5 angeordnet sein können. Des Weiteren ist wenigstens ein Abströmkanal 23 vorgesehen, der den Kühldampf durch wenigstens eine Kühlzone, hier exemplarisch der Schubausgleichskolben 21 und/oder zu einer Kühlzone des Rotors 2 oder eines Rotor- bzw. Turbinenbauteils führt. Im vorliegenden Fall sind ebenfalls zwei Abströmkanäle 23 dargestellt. Es können jedoch auch mehr als zwei Abströmkanäle 23 vorgesehen sein, die insbesondere sternförmig bezüglich der Rotationsachse 5 angeordnet sein können.
Des Weiteren umfasst das Kühlkanalsystem 19 zumindest einen Kühlkanal 24, der bzw. die zusammen oder jeweils für sich den wenigstens einen Zuströmkanal 22 mit dem wenigstens einen Abströmkanal 23 verbinden. Auf diese Weise wird der Kühldampf entsprechend den Pfeilen 25 über den wenigstens einen Zuströmkanal 22 der jeweiligen Turbinenstufe 9 entnommen, über den oder die Kühlkanäle 24 dem wenigstens einen Abströmkanal 23 zugeführt, der den Kühldampf seinerseits der jeweiligen Kühlzone, z. B. dem Schubausgleichskolben 21, zuführt. Durch die gewählte Positionierung der Einströmenden der Zuströmkanäle 22 und der Ausströmenden der Abströmkanäle 23 besteht innerhalb des Kühlkanalsystems 19 ein Druckgefälle, das den Kühldampf selbsttätig in der gewünschten Weise innerhalb des Kühlkanalsystems 19 transportiert.
Erfindungsgemäß ist nun die Kavität 18 in das Kühlkanalsystem 19 integriert. Bei der in Fig. 1 gezeigten Ausführungsform erfolgt dies dadurch, dass die Kühlkanäle 24 jeweils an diese Kavität 18 angeschlossen sind. Der rechts dargestellte Kühlkanal 24 ist eingangsseitig an die Zuströmkanäle 22 angeschlossen und ausgangsseitig an die Kavität 18. Der links dargestellte Kühlkanal 24 ist eingangsseitig an die Kavität 18 angeschlossen und ausgangsseitig an die Abströmkanäle 23. Auf diese Weise wird die Kavität 18 zu einem vom Kühldampf durchströmten Bestandteil des Kühlkanalsystems 19. Die Kavität 18 bildet dabei eine Art Verteilerknoten, der den Kühldampf, der über einen oder mehrere Kanäle 22 oder 24 zugeführt wird, auf einen oder mehrere Kanäle 23, 24 verteilt.
Bei der Ausführungsform gemäß Fig. 1 sind die beiden Kühlkanäle 24 jeweils zentrisch zur Rotationsachse 5 im jeweiligen Rotorteil 2a, 2b ausgestaltet. Die Ausbildung dieser Kühlkanäle 24 ist dabei besonders einfach, da die Rotorteile 2a, 2b vor dem Verschweißen im Bereich ihrer Vertiefungen 16, 17 zentral aufgebohrt werden können, um diese Kühlkanäle 24 auszubilden. Eine zusätzliche, hilfsweise angebrachte Vertiefung in der Oberfläche des jeweiligen Rotorteils 2a, 2b ist nicht erforderlich. Die Zuströmkanäle 22, die sich hier im wesentlichen radial erstrecken, können in Form von Bohrungen hergestellt werden. Entsprechendes gilt auch für die Abströmkanäle 23, die sich hier diagonal - zentrisch erstrecken. Im Hinblick auf die Strömungsrichtung innerhalb des Kühlkanalsystems 19 endet der rechts dargestellte Kühlkanal 24 an der Kavität 18, während der links dargestellte Kühlkanal 24 an der Kavität 18 beginnt.
Die in Fig. 2 gezeigte Ausführungsform unterscheidet sich von der in Fig. 1 gezeigten Ausführungsform dadurch, dass im rechts dargestellten Rotorteil 2a kein zentraler Kühlkanal 24, sondern mehrere dezentrale bzw. bezüglich der Rotationsachse 5 exzentrisch angeordnete, jedoch parallel zur Längsachse verlaufende Kühlkanäle 24 vorgesehen sind, die jeweils mit einem der Zuströmkanäle 22 kommunizieren. Bei dieser Bauweise kann die Anbringung eines zentralen Kühlkanals 24 vermieden werden, was bei bestimmten Rotorbauformen von Vorteil sein kann. Die Anzahl der im rechten Rotorteil 2a ausgebildeten Kühlkanäle 24 entspricht dann der Anzahl der dort vorgesehenen Zuströmkanäle 22.
In einer weiteren nicht dargestellten Ausführungsform können auch mehrere fächerartig angeordnete Zuströmkanäle 22 auf einen Kühlkanal 24 treffen.
Die Ausführungsform der Fig. 3 unterscheidet sich von der Ausführungsform gemäß Fig. 2 dadurch, dass außerdem im links dargestellten Rotorteil 2b anstelle eines zentralen Kühlkanals 24 mehrere dezentrale bzw. bezüglich der Rotationsachse 5 exzentrisch angeordnete Kühlkanäle 24 vorgesehen sind. Auch diese Kühlkanäle 24 erstrecken sich vorzugsweise parallel zur Längsachse des Rotors 2 und kommunizieren jeweils mit einem der Abströmkanäle 23. Die Anzahl der Kühlkanäle 24 im links dargestellten Rotorteil 2b entspricht dann der Anzahl der dort angebrachten Abströmkanäle 23, wobei dies nicht notwendigerweise sein muss. Auch beim linken Rotorteil 2b kann bei bestimmten Ausführungsformen des Rotors 2 die Anbringung mehrerer dezentraler oder exzentrischer Kühlkanäle 24 gegenüber einem zentralen Kühlkanal 24 vorteilhaft sein.
Sobald mehrere Kühlkanäle 24 parallel zueinander exzentrisch verlaufen, wie dies beispielsweise bei den Ausführungsformen der Fig. 2 und 3 der Fall ist, sind diese zweckmäßig symmetrisch verteilt im jeweiligen Rotorteil 2a, 2b angeordnet, das heißt, die jeweiligen Kühlkanäle 24 sind konzentrisch um die Rotationsachse 5 herum angeordnet.
Bei den Ausführungsformen der Fig. 1 bis 3 ist die Kavität 18 quasi zwischen den in Achsrichtung aufeinander folgenden Kühlkanälen 24 angeordnet. Die Zuströmkanäle 22 und die Abströmkanäle 23 können nur über die Kühlkanäle 24 mit der Kavität 18 kommunizieren. Im Unterschied dazu ist bei der Ausführungsform gemäß Fig. 4 die Teilung des Rotors 2 an die Position der Abströmkanäle 23 adaptiert, das heißt, die Schweißzone 15 ist im Vergleich zu den Ausführungsformen der Fig. 1 bis 3 in Richtung der jeweiligen Kühlzone, also hier in Richtung des Schubausgleichskolbens 21 verschoben. Bei dieser Bauweise ist es möglich, die Abströmkanäle 23 direkt mit der Kavität 18 zu verbinden. Dementsprechend beginnen die Abströmkanäle 23 bei dieser Ausführungsform an der Kavität 18. Dies bedeutet eine erhebliche Vereinfachung der Herstellung des Kühlkanalsystems 19, da im linken Rotorteil 2b kein Kühlkanal 24 ausgebildet werden muss. Im rechten Rotorteil 2a ist das Kühlkanalsystem 19 wie in der Ausführungsform gemäß Fig. 1 gestaltet, indem ein zentraler Kühlkanal 24 vorgesehen ist, der mit den Zuströmkanälen 22 kommuniziert.
Die in Fig. 5 gezeigte Ausführungsform unterscheidet sich von der Ausführungsform gemäß Fig. 4 dadurch, dass im rechten Rotorteil 2a anstelle des zentralen Kühlkanals 24 mehrere dezentrale bzw. exzentrisch zur Rotationsachse 5 angeordnete Kühlkanäle 24 vorgesehen sind, die jeweils mit einem der Zuströmkanäle 22 kommunizieren. Dies kann für bestimmte Ausführungsformen des Rotors 2 von Vorteil sein.
Bei den Ausführungsformen der Fig. 4 und 5 sind die Abströmkanäle 23 direkt an die Kavität 18 angeschlossen, während die Zuströmkanäle 22 indirekt über die Kühlkanäle 24 an die Kavität 18 angeschlossen sind. Grundsätzlich ist auch eine andere Ausführungsform möglich, bei welcher die Teilung des Rotors 2 so gewählt ist, dass die Zuströmkanäle 22 direkt an die Kavität 18 angeschlossen werden können, während die Abströmkanäle 23 dann indirekt über einen oder über mehrere Kühlkanäle 24 an die Kavität 18 angeschlossen sein können. Die Schweißzone 15 ist dann in Richtung der Entnahmestelle des Kühldampfes verschoben.
Bei einer anderen Ausführungsform kann der wenigstens eine Kühlkanal 24 durch die Kavität 18 gebildet sein, mit der Folge, dass sowohl die Zuströmkanäle 22 als auch die Abströmkanäle 23 direkt an die Kavität 18 angeschlossen sind.
Bei den Ausführungsformen der Fig. 1 bis 5 ist gemeinsam, dass die wenigstens eine Entnahmestellen, hier die jeweilige Turbinenstufe 9, an einer Position an der Rotoroberfläche 20 im Bereich des einen Rotorteils 2a angeordnet ist, während die wenigstens eine Kühlzone, hier der Schubausgleichskolben 21, im Bereich des anderen Rotorteils 2b angeordnet ist. Dies hat zur Folge, dass bei diesen Ausführungsformen der wenigstens eine Zuströmkanal 22 zwangsläufig in dem einen Rotorteil 2a angeordnet ist, während der wenigstens eine Abströmkanal 23 in dem anderen Rotorteil 2b angeordnet ist. Das Kühlkanalsystem 19 erstreckt sich somit innerhalb des zweiteiligen Rotors 2 durch beide Rotorteile 2a und 2b.
Während der Rotor 2 bei den Ausführungsformen der Fig. 1 bis 5 zweiteilig ausgestaltet ist, zeigt Fig. 6 eine Ausführungsform mit einem dreiteiligen Rotor 2, wobei die einzelnen Rotorteile von rechts nach links mit 2a, 2b und 2c bezeichnet sind. Auch dieser Rotor 2 ist als Trommelrotor 2 ausgestaltet. Aufgrund der Dreiteiligkeit sind dementsprechend zwei Schweißzonen 15 und somit auch zwei Kavitäten 18 vorgesehen. Dabei sind im Sinne der Erfindung beide Kavitäten 18 in das Kühlkanalsystem 19 integriert. Die Teilung des Rotors 2 ist dabei gezielt so gewählt, dass die Zuströmkanäle 22 direkt mit der einen Kavität 18 kommunizieren, während die Abströmkanäle 23 direkt mit der anderen Kavität 18 kommunizieren. Die beiden Kavitäten 18 sind dann über den wenigstens einen Kühlkanal 24, hier über wenigstens zwei Kühlkanäle 24 miteinander verbunden. Diese gezielte Teilung des Rotors 2 vereinfacht die Integration des Kühlkanalsystems 19 in den Rotor 2. Denn sowohl für die Ausbildung der Zuströmkanäle 22 als auch für die Ausbildung der Abströmkanäle 23 können einfache Bohrungen vorgesehen werden, die von der jeweiligen Entnahmestelle beziehungsweise von der jeweiligen Kühlzone zur jeweiligen Kavität 18 führen. Des Weiteren können auch der oder die Kühlkanäle 24 durch einfache Bohrungen hergestellt werden. Bei der in Fig. 6 gezeigten Ausführungsform sind demnach im rechts dargestellten Rotorteil 2a ausschließlich die Zuströmkanäle 22 und im links dargestellten Rotorteil 2c ausschließlich die Abströmkanäle 23 ausgebildet, während das mittlere Rotorteil 2b ausschließlich den oder die Kühlkanäle 24 enthält.
Beim Rotor 2 sind im mittleren Rotorteil 2b zwei oder mehr Kühlkanäle 24 exzentrisch angeordnet. Ebenso ist eine Ausführungsform möglich, bei der sich ein zentraler Kühlkanal 24 zwischen den beiden Kavitäten 18 erstreckt. Des weiteren ist grundsätzlich auch eine Ausführungsform möglich, bei der zumindest eine der Schweißzonen 15 so positioniert ist, dass das zugehörige äußere Rotorteil 2a oder 2c weder einen Zuströmkanal 22 noch einen Abströmkanal 23 enthält. Beispielsweise kann die rechts gezeigte Schweißzone 15 rechts neben der Kühldampfentnahmestelle positioniert sein, mit der Folge, dass die Zuströmkanäle 22 dann im mittleren Rotorteil 2b ausgebildet werden müssen. Diese Bauweise führt dazu, dass im rechten Rotorteil 2a dann kein Zuströmkanal 22 enthalten ist. Dies hat den Vorteil, dass das rechte Rotorteil 2a überhaupt nicht bearbeitet werden muss, um das rotorinterne Kühlkanalsystem 19 auszubilden. Entsprechendes gilbt dann auch für die links gezeigte Schweißzone 15 im Hinblick auf die Abströmkanäle 23.
Während bei den Ausführungsformen der Fig. 1 bis 6 die Dampfturbine 1 einflutig ausgestaltet ist, zeigen die Fig. 7 bis 9 zweiflutige Dampfturbinen 1. Die beiden Fluten sind dabei mit 26 bzw. 27 bezeichnet. Bei dieser zweiflutigen Dampfturbine 1 ist der Rotor 2 wieder dreiteilig und als Trommelrotor 2 ausgebildet, wobei sich das mittlere Rotorteil 2b in beide Fluten 26, 27 hineinerstreckt. Die Teilung des Rotors 2 erfolgt gezielt so, dass die Schweißzonen 15 mit ihren Kavitäten 18 jeweils so positioniert sind, dass die Zuströmkanäle 22 direkt an die eine, hier an die linke Kavität 18, und die Abströmkanäle 23 direkt an die andere, hier an die rechte Kavität 18, angeschlossen werden können. Die beiden Kavitäten 18 kommunizieren dann über den wenigstens einen Kühlkanal 24 miteinander. Mit Hilfe des Kühlkanalsystems 19 kann somit Kühldampf der links dargestellten Flut 27 an einer bestimmten Turbinenstufe 9 entnommen werden und der Beschaufelung der rechts dargestellten anderen Flut 26 zugeführt werden. Durch eine geeignete Positionierung der wenigstens einen Entnahmestelle sowie der wenigstens einen Rückleitungsstelle entsteht innerhalb des Kühlkanalsystems 19 ein hinreichendes Druckgefälle, um den Kühldampf ohne zusätzliche Maßnahmen antreiben zu können.
Auch bei dieser Ausführungsform wird deutlich, dass durch die Integration der Kavitäten 18 in das Kühlkanalsystem 19 der Aufwand zur Realisierung des Kühlkanalsystems 19 relativ gering ist, da die Vertiefungen 16, 17 in den Stirnseiten 13, 14 der Rotorteile 2a, 2b, 2c das Einbringen der Zuströmkanäle 22 und der Abströmkanäle 23 sowie der Kühlkanäle 24 erheblich vereinfachen.
Bei der Ausführungsform gemäß Fig. 7 sind die beiden Kavitäten 18 durch einen zentral angeordneten Kühlkanal 24 miteinander verbunden. Im Unterschied dazu sind bei der Ausführungsform gemäß Fig. 8 die beiden Kavitäten 18 durch zwei oder mehr bezüglich der Rotationsachse 5 exzentrisch angeordnete Kühlkanäle 24 miteinander verbunden. Zweckmäßig sind diese Kühlkanäle 24 um die Rotationsachse 5 herum konzentrisch verteilt angeordnet. Dabei muss die Anzahl der Kühlkanäle 24 weder mit der Anzahl der Zuströmkanäle 22 noch mit der Anzahl der Abströmkanäle 23 übereinstimmen.
Bei den Ausführungsformen der Fig. 7 und 8 sind die Zuströmkanäle 22 im links dargestellten Rotorteil 2c, die Abströmkanäle 23 im rechts gezeigten Rotorteil 2a und der oder die Kühlkanäle 24 im mittleren Rotorteil 2b ausgebildet. Grundsätzlich ist es möglich, die axiale Teilung des Rotors 2 gezielt so anzubringen, dass die Zuströmkanäle 22 und/oder die Abströmkanäle 23 ebenfalls im mittleren Rotorteil 2b angeordnet sind. Fig. 9 zeigt eine bevorzugte Ausführungsform, bei der sowohl die Zuströmkanäle 22 als auch die Abströmkanäle 23 im mittleren Rotorteil 2b angeordnet sind, in dem auch der oder die Kühlkanäle 24 ausgebildet sind. Bei dieser Bauweise muss somit nur das mittlere Rotorteil 2b bearbeitet werden, um das Kühlkanalsystem 19 im gesamten Rotor 2 auszubilden. Der Aufwand zur Realisierung des Kühlkanalsystems 19 wird dadurch reduziert.
Selbstverständlich ist die Erfindung nicht auf die beschriebenen Ausführungsbeispiele begrenzt. Sie lässt sich zwar besonders gut für den Rotor von Dampfturbinen einsetzen, bei denen als Arbeitsmedium heißer Dampf und als Kühlmedium Kühldampf verwendet wird, aber sie ist selbstverständlich ebenfalls einsetzbar für den Rotor einer Luftturbine.
Bezugszeichenliste
1
Dampfturbine
2
Rotor
2a
Rotorteil
2b
Rotorteil
2c
Rotorteil
3
Axialende von 2
4
Axialende von 2
5
Rotationsachse
6
Gehäuse
7
Leitschaufel
8
Laufschaufel
9
Turbinenstufe
10
Zuströmraum
11
Austritt
12
Hauptströmung
13
Stirnseite
14
Stirnseite
15
Schweißzone
16
Vertiefung
17
Vertiefung
18
Kavität
19
Kühlkanalsystem
20
Rotoroberfläche
21
Schubausgleichskolben
22
Zuströmkanal
23
Abströmkanal
24
Kühlkanal
25
Kühldampfströmung
26
Flut
27
Flut

Claims (13)

  1. Rotor für eine Dampfturbine (1) für Arbeitsdampf,
    wobei sich der Rotor (2) entlang einer Rotationsachse (5) erstreckt und aus wenigstens zwei in Achsrichtung aneinandergrenzenden Rotorteilen (2a, 2b, 2c) besteht,
    wobei je zwei Rotorteile (2a, 2b, 2c) an einander zugewandten axialen Stirnseiten (13, 14) mittels einer in Umfangsrichtung geschlossen umlaufenden, ringförmigen Schweißzone (15) miteinander verschweißt sind,
    wobei im Rotor (2) ein Kühlkanalsystem (19) ausgebildet ist, das wenigstens einen Zuströmkanal (22), wenigstens einen Abströmkanal (23) und wenigstens einen Kühlkanal (24) aufweist,
    wobei der wenigstens eine Kühlkanal (24) Kühldampf direkt oder indirekt vom wenigstens einen Zuströmkanal (22) direkt oder indirekt zum wenigstens einen Abströmkanal (23) führt,
    wobei der wenigstens eine Zuströmkanal (22) den Kühldampf an einer Position an der Rotoroberfläche (20) dem Arbeitsdampf entnimmt,
    wobei der wenigstens eine Abströmkanal (23) den Kühldampf durch wenigstens eine und/oder zu wenigstens einer Kühlzone führt,
    dadurch gekennzeichnet,
    dass zumindest bei zwei Rotorteilen (2a, 2b, 2c) die Schweißzone (15) eine Kavität (18) umfangsmäßig umschließt, die aus zwei Vertiefungen (16, 17) gebildet ist, die jeweils im zugehörigen Rotorteil (2a, 2b, 2c) stirnseitig eingebracht sind,
    dass die wenigstens eine Kavität (18) einen Bestandteil des Kühlkanalsystems (19) bildet und vom Kühldampf durchströmt ist.
  2. Rotor nach Anspruch 1,
    dadurch gekennzeichnet,
    dass zumindest ein mit wenigstens einem Zuströmkanal (22) kommunizierender Kühlkanal (24) an der wenigstens einen Kavität (18) endet,
    dass zumindest ein mit wenigstens einem Abströmkanal (23) kommunizierender Kühlkanal (24) an der wenigstens einen Kavität (18) beginnt.
  3. Rotor nach Anspruch 1,
    dadurch gekennzeichnet,
    dass zumindest ein mit wenigstens einem Zuströmkanal (22) kommunizierender Kühlkanal (24) an der wenigstens einen Kavität (18) endet,
    dass der wenigstens eine Abströmkanal (23) an dieser Kavität (18) beginnt.
  4. Rotor nach Anspruch 1,
    dadurch gekennzeichnet,
    dass zumindest ein mit wenigstens einem Abströmkanal (23) kommunizierender Kühlkanal (24) an der Kavität (18) beginnt,
    dass der wenigstens eine Zuströmkanal (22) an dieser Kavität (18) endet.
  5. Rotor nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der wenigstens eine Kühlkanal (24) durch die Kavität (18) gebildet ist,
    dass der wenigstens eine Zuströmkanal (22) an der Kavität (18) endet,
    dass der wenigstens eine Abströmkanal (23) an der Kavität (18) beginnt.
  6. Rotor nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass sich der wenigstens eine Zuströmkanal (22) in dem einen Rotorteil (2a) erstreckt, während sich der wenigstens eine Abströmkanal (23) im anderen Rotorteil (2b) erstreckt.
  7. Rotor nach Anspruch 1,
    dadurch gekennzeichnet,
    dass bei einem Rotor (1) mit wenigstens drei Rotorteilen (2a, 2b, 2c) zwei Schweißzonen (15) und zwei Kavitäten (18) vorgesehen sind,
    dass die beiden Kavitäten (18) durch den wenigstens einen Kühlkanal (24) miteinander verbunden sind,
    dass der wenigstens eine Zuströmkanal (22) an der einen Kavität (18) endet,
    dass der wenigstens eine Abströmkanal (23) an der anderen Kavität (18) beginnt.
  8. Rotor nach Anspruch 7,
    dadurch gekennzeichnet,
    dass sich der wenigstens eine Zuströmkanal (22) in dem einen äußeren Rotorteil (2c) oder im mittleren Rotorteil (2b) der drei Rotorteile (2a, 2b, 2c) erstreckt,
    dass sich der wenigstens eine Abströmkanal (23) in dem anderen äußeren Rotorteil (2a) oder im mittleren Rotorteil (2b) der zwei Rotorteile (2a, 2b, 2c) erstreckt.
  9. Rotor nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass die Dampfturbine (1) einflutig ausgebildet ist,
    dass die wenigstens eine Kühlzone einen Schubausgleichskolben (21) des Rotors (2) umfasst.
  10. Rotor nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass die Dampfturbine (1) zweiflutig ausgebildet ist,
    dass der Kühldampf einer Turbinenstufe (9) der einen Flut (27) entnommen wird,
    dass die wenigstens eine Kühlzone wenigstens eine Turbinenstufe (9) der anderen Flut (26) umfasst.
  11. Rotor nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet,
    dass sich der wenigstens eine Kühlkanal (24) konzentrisch zur Rotationsachse (5) erstreckt, oder
    dass sich der wenigstens eine Kühlkanal (24) exzentrisch zur Rotationsachse (5) und im wesentlichen parallel dazu erstreckt.
  12. Rotor nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet,
    dass sich der wenigstens eine Zuströmkanal (22) bezüglich der Rotationsachse (5) im wesentlichen radial oder diagonal-zentrisch oder diagonal-unzentrisch derart erstreckt, dass er den Kühlkanal (24) trifft, und/oder
    dass sich der wenigstens eine Abströmkanal (23) bezüglich der Rotationsachse (5) im wesentlichen radial oder diagonal-zentrisch oder diagonal-unzentrisch derart erstreckt, dass er den Kühlkanal (24) trifft.
  13. Rotor nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet, dass der Rotor (2) nach der Trommelbauweise als Trommelrotor (2) aus mehreren, durch die Rotorteile (2a, 2b, 2c) gebildeten Trommeln aufgebaut ist.
EP04105832.2A 2003-11-28 2004-11-17 Rotor für eine dampfturbine Not-in-force EP1536102B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10355738A DE10355738A1 (de) 2003-11-28 2003-11-28 Rotor für eine Turbine
DE10355738 2003-11-28

Publications (3)

Publication Number Publication Date
EP1536102A2 true EP1536102A2 (de) 2005-06-01
EP1536102A3 EP1536102A3 (de) 2012-08-22
EP1536102B1 EP1536102B1 (de) 2019-03-20

Family

ID=34442341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04105832.2A Not-in-force EP1536102B1 (de) 2003-11-28 2004-11-17 Rotor für eine dampfturbine

Country Status (3)

Country Link
US (1) US7267525B2 (de)
EP (1) EP1536102B1 (de)
DE (1) DE10355738A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1895094A1 (de) * 2006-08-25 2008-03-05 Siemens Aktiengesellschaft Drallgekühlte Rotor-Schweissnaht
EP1911933A1 (de) * 2006-10-09 2008-04-16 Siemens Aktiengesellschaft Rotor für eine Strömungsmaschine
EP1936115A2 (de) 2006-12-15 2008-06-25 Kabushiki Kaisha Toshiba Turbinenrotor und Dampfturbine
EP1849959A3 (de) * 2006-04-26 2009-12-23 Kabushiki Kaisha Toshiba Dampfturbine und Turbinenrotor
EP2211017A1 (de) * 2009-01-27 2010-07-28 Siemens Aktiengesellschaft Rotor mit Hohlraum für eine Strömungsmaschine
EP2565419A1 (de) * 2011-08-30 2013-03-06 Siemens Aktiengesellschaft Kühlung für eine Strömungsmaschine
US8454297B2 (en) 2007-11-02 2013-06-04 Alstom Technology Ltd Method for determining the remaining service life of a rotor of a thermally loaded turboengine
EP2264281A3 (de) * 2009-05-27 2014-02-19 Pratt & Whitney Canada Corp. Antiwirbelvorrichtung für einen Gasturbinenmotorverdichter
EP2998506A1 (de) * 2014-09-19 2016-03-23 Siemens Aktiengesellschaft System zur Verringerung der Anfahrzeit einer Dampfturbine

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043621A1 (en) * 1997-03-31 1998-10-08 The Children's Medical Center Corporation Nitrosylation to inactivate apoptotic enzymes
EP1780376A1 (de) * 2005-10-31 2007-05-02 Siemens Aktiengesellschaft Dampfturbine
EP1793091A1 (de) * 2005-12-01 2007-06-06 Siemens Aktiengesellschaft Dampfturbine mit Lagerstreben
GB0616832D0 (en) * 2006-08-25 2006-10-04 Alstom Technology Ltd Turbomachine
JP4908137B2 (ja) * 2006-10-04 2012-04-04 株式会社東芝 タービンロータおよび蒸気タービン
US8105032B2 (en) * 2008-02-04 2012-01-31 General Electric Company Systems and methods for internally cooling a wheel of a steam turbine
US8484975B2 (en) * 2008-02-05 2013-07-16 General Electric Company Apparatus and method for start-up of a power plant
US8251643B2 (en) * 2009-09-23 2012-08-28 General Electric Company Steam turbine having rotor with cavities
EP2573317A1 (de) * 2011-09-21 2013-03-27 Siemens Aktiengesellschaft Rotor für eine Dampfturbine
US8926273B2 (en) 2012-01-31 2015-01-06 General Electric Company Steam turbine with single shell casing, drum rotor, and individual nozzle rings
WO2014138035A1 (en) 2013-03-04 2014-09-12 Echogen Power Systems, L.L.C. Heat engine systems with high net power supercritical carbon dioxide circuits
WO2014197343A1 (en) * 2013-06-06 2014-12-11 Dresser-Rand Company Compressor having hollow shaft
US10570777B2 (en) 2014-11-03 2020-02-25 Echogen Power Systems, Llc Active thrust management of a turbopump within a supercritical working fluid circuit in a heat engine system
US11187112B2 (en) 2018-06-27 2021-11-30 Echogen Power Systems Llc Systems and methods for generating electricity via a pumped thermal energy storage system
JP7242597B2 (ja) * 2020-03-12 2023-03-20 東芝エネルギーシステムズ株式会社 タービンロータ
US11435120B2 (en) 2020-05-05 2022-09-06 Echogen Power Systems (Delaware), Inc. Split expansion heat pump cycle
MA61232A1 (fr) 2020-12-09 2024-05-31 Supercritical Storage Company Inc Système de stockage d'énergie thermique électrique à trois réservoirs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE854445C (de) * 1948-11-27 1952-11-04 Brown Ag Fluessigkeitsgekuehlter Gasturbinenlaeufer
CH353218A (de) * 1957-09-18 1961-03-31 Escher Wyss Ag Aus Scheiben zusammengesetzter Läufer einer Axialturbine
DE4411616A1 (de) * 1994-04-02 1995-10-05 Abb Management Ag Verfahren zum Betreiben einer Strömungsmaschine
US6048169A (en) * 1996-06-21 2000-04-11 Siemens Aktiengesellschaft Turbine shaft and method for cooling a turbine shaft
EP1013879A1 (de) * 1998-12-24 2000-06-28 Asea Brown Boveri AG Flüssigkeitsgekühlte Turbomaschinenwelle
US20030133786A1 (en) * 2002-01-11 2003-07-17 Mitsubishi Heavy Industries Ltd. Gas turbine and turbine rotor for a gas turbine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19531290A1 (de) * 1995-08-25 1997-02-27 Abb Management Ag Rotor für thermische Turbomaschinen
DE19617539B4 (de) * 1996-05-02 2006-02-09 Alstom Rotor für eine thermische Turbomaschine
DE19620828C1 (de) * 1996-05-23 1997-09-04 Siemens Ag Turbinenwelle sowie Verfahren zur Kühlung einer Turbinenwelle
DE19648185A1 (de) * 1996-11-21 1998-05-28 Asea Brown Boveri Geschweisster Rotor einer Strömungsmaschine
ES2172905T3 (es) * 1997-06-27 2002-10-01 Siemens Ag Arbol de una turbina de vapor con refrigeracion interna, asi como procedimiento para la refrigeracion de un arbol de turbina.
DE19757945B4 (de) * 1997-12-27 2006-11-30 Alstom Rotor für thermische Turbomaschine
DE19852604A1 (de) * 1998-11-14 2000-05-18 Abb Research Ltd Rotor für eine Gasturbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE854445C (de) * 1948-11-27 1952-11-04 Brown Ag Fluessigkeitsgekuehlter Gasturbinenlaeufer
CH353218A (de) * 1957-09-18 1961-03-31 Escher Wyss Ag Aus Scheiben zusammengesetzter Läufer einer Axialturbine
DE4411616A1 (de) * 1994-04-02 1995-10-05 Abb Management Ag Verfahren zum Betreiben einer Strömungsmaschine
US6048169A (en) * 1996-06-21 2000-04-11 Siemens Aktiengesellschaft Turbine shaft and method for cooling a turbine shaft
EP1013879A1 (de) * 1998-12-24 2000-06-28 Asea Brown Boveri AG Flüssigkeitsgekühlte Turbomaschinenwelle
US20030133786A1 (en) * 2002-01-11 2003-07-17 Mitsubishi Heavy Industries Ltd. Gas turbine and turbine rotor for a gas turbine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1849959A3 (de) * 2006-04-26 2009-12-23 Kabushiki Kaisha Toshiba Dampfturbine und Turbinenrotor
US7850423B2 (en) 2006-04-26 2010-12-14 Kabushiki Kaisha Toshiba Steam turbine and turbine rotor
EP1895094A1 (de) * 2006-08-25 2008-03-05 Siemens Aktiengesellschaft Drallgekühlte Rotor-Schweissnaht
EP1911933A1 (de) * 2006-10-09 2008-04-16 Siemens Aktiengesellschaft Rotor für eine Strömungsmaschine
WO2008043663A1 (de) * 2006-10-09 2008-04-17 Siemens Aktiengesellschaft Rotor für eine strömungsmaschine
EP1936115A2 (de) 2006-12-15 2008-06-25 Kabushiki Kaisha Toshiba Turbinenrotor und Dampfturbine
EP1936115A3 (de) * 2006-12-15 2009-12-02 Kabushiki Kaisha Toshiba Turbinenrotor und Dampfturbine
US8277173B2 (en) 2006-12-15 2012-10-02 Kabushiki Kaisha Toshiba Turbine rotor and steam turbine
US8454297B2 (en) 2007-11-02 2013-06-04 Alstom Technology Ltd Method for determining the remaining service life of a rotor of a thermally loaded turboengine
EP2211017A1 (de) * 2009-01-27 2010-07-28 Siemens Aktiengesellschaft Rotor mit Hohlraum für eine Strömungsmaschine
EP2264281A3 (de) * 2009-05-27 2014-02-19 Pratt & Whitney Canada Corp. Antiwirbelvorrichtung für einen Gasturbinenmotorverdichter
WO2013029911A1 (de) * 2011-08-30 2013-03-07 Siemens Aktiengesellschaft Kühlung für eine strömungsmaschine
EP2565419A1 (de) * 2011-08-30 2013-03-06 Siemens Aktiengesellschaft Kühlung für eine Strömungsmaschine
EP2998506A1 (de) * 2014-09-19 2016-03-23 Siemens Aktiengesellschaft System zur Verringerung der Anfahrzeit einer Dampfturbine

Also Published As

Publication number Publication date
DE10355738A1 (de) 2005-06-16
US7267525B2 (en) 2007-09-11
EP1536102A3 (de) 2012-08-22
US20050118025A1 (en) 2005-06-02
EP1536102B1 (de) 2019-03-20

Similar Documents

Publication Publication Date Title
EP1536102B1 (de) Rotor für eine dampfturbine
EP1945911B1 (de) Dampfturbine
DE859089C (de) Beschaufelte, von einem Arbeitsmittel durchstroemte Kreiselmaschine
EP2140114B1 (de) Axiallager insbesondere für einen turbolader
EP2796668B1 (de) Gehäuseabschnitt einer Turbomaschinenverdichter- oder Turbomaschinenturbinenstufe
DE69018338T2 (de) Gasturbine.
EP1201879B1 (de) Gekühltes Bauteil, Gusskern für die Herstellung eines solchen Bauteils, sowie Verfahren zum Herstellen eines solchen Bauteils
DE2553193A1 (de) Bohrungsschaufeleinrichtung fuer turbinenschaufeln mit bohrungseintrittskuehlung
EP1389690A1 (de) Innenkühlbare Schraube
EP2543865A2 (de) Turbofan-Triebwerk mit Wärmetauscher im Kerntriebwerksgehäuse
EP1180578A1 (de) Anordnung von Turbinenschaufeln
CH694257A5 (de) Dampfturbine.
EP2173972B1 (de) Rotor für eine axial durchströmbare strömungsmaschine
EP2078137B1 (de) Rotor für eine strömungsmaschine
EP1705339B1 (de) Rotorwelle, insbesondere für eine Gasturbine
DE1601563B2 (de) Luftgekühlte Laufschaufel
EP2886807B1 (de) Gekühlte flanschverbindung eines gasturbinentriebwerks
DE10355230A1 (de) Rotor für eine Turbomaschine
CH701151B1 (de) Turbomaschine mit einem Verdichterradelement.
EP3321589B1 (de) Treibstoffdüse einer gasturbine mit drallerzeuger
DE68909199T2 (de) Radiale Strömungsmaschine.
WO2010023123A1 (de) Turbinenleitschaufelträger für eine gasturbine und verfahren zum betrieb einer gasturbine
EP1892376B1 (de) Gekühlter Dampfturbinenrotor mit Innenrohr
DE865773C (de) Luftkuehlung fuer die Schaufeltraeger mehrstufiger Verdichter
DE2313047A1 (de) Gekuehlte turbinenlaufschaufeln mit hoher festigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: F02C 7/16 20060101ALI20120716BHEP

Ipc: F01D 5/08 20060101AFI20120716BHEP

17P Request for examination filed

Effective date: 20130219

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181002

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REIGL, MARTIN

Inventor name: HIEGEMANN, MICHAEL, DR.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 5/08 20060101AFI20120716BHEP

Ipc: F02C 7/16 20060101ALI20120716BHEP

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015778

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1110726

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190620

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015778

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191021

Year of fee payment: 16

26N No opposition filed

Effective date: 20200102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191022

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191022

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191117

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1110726

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004015778

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20041117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201117