EP1895094A1 - Drallgekühlte Rotor-Schweissnaht - Google Patents

Drallgekühlte Rotor-Schweissnaht Download PDF

Info

Publication number
EP1895094A1
EP1895094A1 EP06017817A EP06017817A EP1895094A1 EP 1895094 A1 EP1895094 A1 EP 1895094A1 EP 06017817 A EP06017817 A EP 06017817A EP 06017817 A EP06017817 A EP 06017817A EP 1895094 A1 EP1895094 A1 EP 1895094A1
Authority
EP
European Patent Office
Prior art keywords
turbomachine
rotor
swirl
shroud
welding area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06017817A
Other languages
English (en)
French (fr)
Other versions
EP1895094B1 (de
Inventor
Jan Walkenhorst
Armin De Lazzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT06017817T priority Critical patent/ATE483096T1/de
Priority to DE502006007968T priority patent/DE502006007968D1/de
Priority to EP06017817A priority patent/EP1895094B1/de
Publication of EP1895094A1 publication Critical patent/EP1895094A1/de
Application granted granted Critical
Publication of EP1895094B1 publication Critical patent/EP1895094B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/063Welded rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • F01D5/084Cooling fluid being directed on the side of the rotor disc or at the roots of the blades the fluid circulating at the periphery of a multistage rotor, e.g. of drum type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer

Definitions

  • the invention relates to a turbomachine comprising a housing and a rotatably mounted within the housing rotor, wherein the rotor is formed of two part rotors and the two part rotors are welded together, whereby a welding area is formed.
  • a steam turbine is understood to mean any turbine or sub-turbine through which a working medium in the form of steam flows.
  • gas turbines are traversed with gas and / or air as a working medium, but that is subject to completely different temperature and pressure conditions than the steam in a steam turbine.
  • Steam turbines for example, the working medium having the highest temperature, which flows to a partial turbine, at the same time has the highest pressure.
  • An open cooling system, as in gas turbines, is therefore not feasible without external supply.
  • a steam turbine typically includes a vaned rotatably mounted rotor disposed within a casing shell.
  • the rotor When flowing through the flow space formed by the housing jacket with heated and pressurized steam, the rotor is set in rotation by the steam via the blades.
  • the rotor-mounted blades are also referred to as blades.
  • usually stationary guide vanes are mounted on the housing jacket, which engage in the intermediate spaces of the moving blades.
  • a vane is typically held at a first location along an interior of the steam turbine casing. In this case, it is usually part of a vane ring, which comprises a number of vanes, which are arranged along an inner circumference on the inside of the steam turbine housing. Each vane has its blade radially inward.
  • a vane ring at a location along the axial extent is also referred to as a vane row.
  • a plurality of vane rows are arranged one behind the other.
  • the rotatably mounted in the steam turbine steam turbine rotors are subjected to thermal stress during operation.
  • the development and production of a steam turbine rotor is both expensive and time consuming.
  • the steam turbine rotors are considered to be the most highly stressed and expensive components of a steam turbine.
  • a feature of the steam turbine rotor is that they have no significant heat sink. Therefore, the cooling of the blades arranged on the steam turbine rotor is difficult.
  • Piston area is to be understood as the area of a thrust balance piston.
  • the thrust balance piston acts in a steam turbine such that a force caused by the working medium force is formed on the rotor in one direction counter-force in the opposite direction.
  • the invention begins, whose task is to specify a turbomachine, which can be manufactured inexpensively.
  • a turbomachine comprising a housing and a rotatably mounted within the housing rotor, wherein the rotor is formed of two part rotors and the two part rotors are welded together, whereby a welding area is formed, wherein cooling means are provided for cooling the welding area ,
  • the invention therefore provides for a turbomachine with a rotor, which is formed from two part rotors.
  • the two sub-rotors experience different thermal stresses.
  • One of the two sub-rotors can be used in a particularly thermally loaded area, whereas the second sub-rotor is to be used in a comparatively less thermally stressed area.
  • the welding must be done at a suitable place. Care must be taken to ensure that the thermal load on the welding area during operation is not too great. Therefore, efforts are made to move the welding area as possible to a point that is relatively less thermally stressed.
  • it is proposed to arrange the welding area entirely in a region of higher thermal stress.
  • coolant for cooling the weld area is provided according to the invention.
  • the welding area can be arranged in an area on the rotor, which is exposed to higher thermal loads. Due to the cooling according to the invention, the weld can nevertheless be arranged in this thermally loaded area. As a result, the heat-resistant material to be used in the thermally stressed area can be saved, since the weld is arranged as far as possible in the thermally stressed area. In the less thermally loaded area can be a cheaper, less heat-resistant material can be used. Due to the material savings of expensive high-temperature resistant material finally the production of such a turbomachine is cheaper.
  • the invention has an effect if the sub-rotor, the high thermal loads of about 700 ° C is exposed, made of a nickel-based alloy.
  • the material price of these alloys is a factor of three to four higher than that of material X12 (i.e., a 9% chromium steel) used for the part rotor exposed to low thermal stresses.
  • the allowable dimensions of the forgings are limited.
  • the maximum billet weight of a nickel-based alloy forging is currently 6 t, whereas the maximum billet weight of a forged billet of X12 is> 12 t.
  • any reduction of the partial rotor of the nickel-based alloy already by a few centimeters leads to significant cost savings and, moreover, such a part rotor can be procured easily. According to first estimates, such a rotor designed according to the invention could save up to 20% or up to 50 cm of the length of this partial rotor not designed according to the invention.
  • the turbomachine comprises at least one row of guide vanes, which has guide vanes formed with shrouds, wherein the shroud is embodied with swirl bores for guiding a flow medium flowing through the flow machine during operation onto the welding area.
  • a shroud with swirl holes for guiding a flowing during operation by the flow machine flow medium is carried out on the welding area.
  • the flow medium flows through the swirl bores. Due to the accelerating effect in the swirl bore, the temperature of the flow medium in the swirl hole is reduced. This means that after exiting the swirl hole, the flow medium acts as a cooling medium. With the thus cooled flow medium finally the welding area of the rotor is cooled.
  • the shroud is arranged above the welding area. It has a favorable effect if the shroud is arranged in the immediate vicinity above the welding area.
  • the flowing out of the swirl holes flow medium acts as a cooling medium and should therefore be placed as close to the welding area.
  • the flow conditions of the flow medium in the turbomachine are such that it is favorable that the swirl bore is arranged before the flow medium enters the guide vane row. Thus, it is possible to divert a high volume flow of the flow medium into the swirl bores.
  • the swirl bore is inclined at an angle ⁇ to the flow direction.
  • the angle ⁇ has values between 30 ° and 90 °. This makes it possible, due to the flow conditions in the flow channel, to divert a high yield of volume flow from the flow medium in the flow channel into the swirl bore.
  • the swirl bore is inclined at an angle ⁇ to the tangents of the Leitschaufeldeckbandober Design.
  • the angle ⁇ has values between 0 ° and 60 °.
  • tangentials of the Leitschaufeldeckbandober Design is essentially a straight line to understand that leads perpendicular to a connecting line from the rotor center to the swirl hole and branches off from the swirl hole. This makes it possible to achieve the so-called swirl cooling, which is reinforced by the inventive inclination of the swirl bore.
  • the swirl cooling is caused by the interplay between a moving reference system (rotating rotor) and a stationary reference system (Leitschaufelsch).
  • a rotor seal is arranged in the front region of the shroud.
  • turbomachine 1 shows a cross-sectional view of a turbomachine 1 is shown.
  • a turbomachine 1 is z. B. a gas turbine or a steam turbine.
  • the turbomachine comprises a housing 2.
  • the housing 2 may be formed as an inner housing or as an outer housing.
  • the turbomachine 1 has a rotatably mounted within the housing 2 rotor 3.
  • the rotor is rotatably mounted about a not shown in FIG 1 rotation axis 24.
  • the rotor 3 has a first part rotor 3a and a second part rotor 3b. The rotor 3 is welded together in a welding area.
  • the turbomachine 1 comprises at least one row of guide vanes 5, the row of vanes 5 having vanes 7 formed with shrouds 6.
  • the turbomachine shown in FIG 1 has a plurality of vane rows 5 ', 5' ', 5' '' on. Between the guide blade rows 5, 5 ', 5' ', 5' '' blade rows 8 are arranged, which are formed from individual blade 9. In operation, a flow medium flows through the turbomachine 1 in a flow direction 10. The flow medium flows through a flow channel 11.
  • the flow medium may be, for example, a live steam having temperatures of up to 700 ° C and a pressure of 350 bar.
  • the turbomachine 1 can be designed as a high-pressure steam turbine.
  • the shroud 6 is formed with swirl bores 12 for guiding a flow medium flowing through the turbomachine 1 during operation onto the welding region 4. This creates the so-called swirl cooling in the area of the welding area 4 and cools it effectively.
  • the shroud 6 is arranged above the welding area 4.
  • the guide blade 7 comprises a guide blade profile 13.
  • the guide blade profile 13 can only be seen as a projection onto a plane parallel to the flow direction 10.
  • the vane profile 13 is projected at the character level, so to speak.
  • the shroud 6 has a length 14 which is longer than the projection 15 of the guide blade profile 13 on a plane parallel to the flow direction 10.
  • the swirl bore 12 is arranged in a region 16 of the shroud 6, which is seen in the flow direction 10 in front of the guide blade leading edge 17.
  • the swirl bore 12 is inclined at an angle ⁇ to the flow direction 10. Starting from the flow direction 10, the swirl bore 12 is rotated in the mathematically negative sense by the angle ⁇ .
  • the angle ⁇ here takes on values between 30 ° and 90 °.
  • the angle ⁇ may be 90 °.
  • the airfoil causes no restriction.
  • the shroud 6 has a projection 18 which faces towards the rotor surface 19.
  • a seal 20 is arranged in the front region of the shroud 6.
  • the seal 20 may be formed as a labyrinth seal 21 or as a brush seal 22.
  • the rotor 3 rotates in a direction of rotation 23.
  • the direction of rotation 23 points in a clockwise direction.
  • the rotation takes place about a rotation axis 24.
  • the swirl bore 12 is inclined at an angle ⁇ to a tangential 25 of the Leitschaufeldeckbandober Structure 26.
  • the angle ⁇ can have values between 10 ° and 60 °.
  • the swirl hole 12 is designed as a bore. However, other embodiments of the swirl bore 12 can be considered.
  • the swirl hole 12 may also have a curved course.
  • the first part rotor 3a is formed of a high heat resistant 1% chromium material.
  • the second partial rotor 3b may be formed of a less thermally loaded and cheaper material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Articles (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft eine Strömungsmaschine (1) mit einem Gehäuse (2) und einem innerhalb des Gehäuses (2) drehbar gelagerten Rotor (3). Der Rotor (3) weist zwei Teilrotoren (3a, 3b) auf, wobei das Material eines der Teilrotoren (3a) teurer im Vergleich zu dem Material des zweiten Teilrotors (3b) ist. Die beiden Teilrotoren (3a, 3b) sind miteinander verschweißt, wobei im Schweißbereich (4) ein Deckband (6) einer Leitschaufelreihe (5) angeordnet ist. Erfindungsgemäß weist das Deckband (6) Drallbohrungen (12) zum Führen eines im Betrieb durch die Strömungsmaschine (1) strömenden Strömungsmediums auf den Schweißbereich (4) auf. Dadurch wird der Schweißbereich (4) durch die so genannte Drallkühlung gekühlt.

Description

  • Die Erfindung betrifft eine Strömungsmaschine, umfassend ein Gehäuse und einen innerhalb des Gehäuses drehbar gelagerten Rotor, wobei der Rotor aus zwei Teilrotoren gebildet ist und die beiden Teilrotoren miteinander verschweißt sind, wodurch ein Schweißbereich gebildet ist.
  • Im Dampfturbinenbau ist es erforderlich, Dampfturbinen für Dampfeintrittstemperaturen von über 600°C auszubilden. Zurzeit werden Bemühungen unternommen, Dampfturbinen für Dampfeintrittstemperaturen von bis zu 700°C und Drücken bis zu 350 bar auszubilden. Für diese Hochtemperatur-Dampfturbinen als Ausführungsform einer Strömungsmaschine werden vermehrt geschweißte Rotoren eingesetzt. Die geschweißten Rotoren zeichnen sich dadurch aus, dass sie in einem Bereich, der thermisch stark belastet ist, eine hochwarmfeste Legierung aufweist und in einem Bereich der geringeren thermischen Beanspruchungen ausgesetzt ist mit einem Rotorwerkstoff ausgebildet wird, der geringe warmfeste Eigenschaften aufweist und somit kostengünstiger ist.
  • Zur Steigerung des Wirkungsgrades einer Dampfturbine trägt die Verwendung von Dampf mit höheren Drücken und Temperaturen bei. Die Verwendung von Dampf mit einem solchen Dampfzustand stellt erhöhte Anforderungen an die entsprechende Dampfturbine.
  • Unter einer Dampfturbine im Sinne der vorliegenden Anmeldung wird jede Turbine oder Teilturbine verstanden, die von einem Arbeitsmedium in Form von Dampf durchströmt wird. Im Unterschied dazu werden Gasturbinen mit Gas und/oder Luft als Arbeitsmedium durchströmt, dass jedoch völlig anderen Temperatur- und Druckbedingungen unterliegt als der Dampf bei einer Dampfturbine. Im Gegensatz zu Gasturbinen weist bei Dampfturbinen z.B. das einer Teilturbine zuströmende Arbeitsmedium mit der höchsten Temperatur gleichzeitig den höchsten Druck auf. Ein offenes Kühlsystem, wie bei Gasturbinen, ist also nicht ohne externe Zuführung realisierbar. Eine Dampfturbine umfasst üblicherweise einen mit Schaufeln besetzten drehbar gelagerten Rotor, der innerhalb eines Gehäusemantels angeordnet ist. Bei Durchströmung des vom Gehäusemantel gebildeten Strömungsraumes mit erhitztem und unter Druck stehendem Dampf wird der Rotor über die Schaufeln durch den Dampf in Rotation versetzt. Die am Rotor angebrachten Schaufeln werden auch als Laufschaufeln bezeichnet. Am Gehäusemantel sind darüber hinaus üblicherweise stationäre Leitschaufeln angebracht, welche in die Zwischenräume der Laufschaufeln greifen. Eine Leitschaufel ist üblicherweise an einer ersten Stelle entlang einer Innenseite des Dampfturbinengehäuses gehalten. Dabei ist sie üblicherweise Teil eines Leitschaufelkranzes, welcher eine Anzahl von Leitschaufeln umfasst, die entlang eines Innenumfangs an der Innenseite des Dampfturbinengehäuses angeordnet sind. Dabei weist jede Leitschaufel mit ihrem Schaufelblatt radial nach innen. Ein Leitschaufelkranz an einer Stelle entlang der axialen Ausdehnung wird auch als Leitschaufelreihe bezeichnet. Üblicherweise sind mehrere Leitschaufelreihen hintereinander angeordnet.
  • Eine wesentliche Rolle bei der Steigerung des Wirkungsgrades spielt die Kühlung. Bei den bisher bekannten Kühlmittelmethoden zur Kühlung eines Dampfturbinengehäuses ist, zwischen einer aktiven Kühlung und einer passiven Kühlung zu unterscheiden. Bei einer aktiven Kühlung wird eine Kühlung durch ein der Dampfturbine separat, d.h. zusätzlich zum Arbeitsmedium zugeführtes Kühlmedium bewirkt. Dagegen erfolgt eine passive Kühlung lediglich durch eine geeignete Führung oder Verwendung des Arbeitsmediums. Eine bekannte Kühlung eines Dampfturbinengehäuses beschränkt sich auf eine passive Kühlung. So ist beispielsweise bekannt, ein Innengehäuse einer Dampfturbine mit kühlem, bereits expandiertem Dampf zu umströmen. Dies hat jedoch den Nachteil, dass eine Temperaturdifferenz über die Innengehäusewandung beschränkt bleiben muss, da sich sonst bei einer zu großen Temperaturdifferenz das Innengehäuse thermisch zu stark verformen würde. Bei einer Umströmung des Innengehäuses findet zwar eine Wärmeabfuhr statt, jedoch erfolgt die Wärmeabfuhr relativ weit entfernt von der Stelle der Wärmezufuhr. Eine Wärmeabfuhr in unmittelbarer Nähe der Wärmezufuhr ist bisher nicht in ausreichendem Maße verwirklicht worden. Eine weitere passive Kühlung kann mittels einer geeigneten Gestaltung der Expansion des Arbeitsmediums in einer so genannten Diagonalstufe erreicht werden. Hierüber lässt sich allerdings nur eine sehr begrenzte Kühlwirkung auf das Gehäuse erzielen.
  • Die in den Dampfturbinen drehbar gelagerten Dampfturbinenrotoren werden im Betrieb thermisch sehr beansprucht. Die Entwicklung und Herstellung eines Dampfturbinenrotors ist zugleich teuer und zeitaufwändig. Die Dampfturbinenrotoren gelten als die am höchsten beanspruchten und teuersten Komponenten einer Dampfturbine.
  • Eine Eigenschaft des Dampfturbinenrotors ist, dass diese über keine wesentliche Wärmesenke verfügen. Daher gestaltet sich die Kühlung der an dem Dampfturbinenrotor angeordneten Laufschaufeln als schwierig.
  • Besonders thermisch belastet werden bei den Dampfturbinenrotoren die Kolben- und Einströmbereiche. Mit Kolbenbereich ist der Bereich eines Schubausgleichskolbens zu verstehen. Der Schubausgleichskolben wirkt in einer Dampfturbine derart, dass eine durch das Arbeitsmedium hervorgerufene Kraft auf den Rotor in einer Richtung eine Gegenkraft in Gegenrichtung ausgebildet wird.
  • Wünschenswert wäre es, einen Rotor für eine Strömungsmaschine ausbilden zu können, der möglichst wenig Mengen einer teuren hochwarmfesten Legierung benötigt, um dadurch günstiger in der Fertigung zu werden.
  • An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, eine Strömungsmaschine anzugeben, die günstig hergestellt werden kann.
  • Die Aufgabe wird gelöst durch eine Strömungsmaschine, umfassend ein Gehäuse und einen innerhalb des Gehäuses drehbar gelagerten Rotor, wobei der Rotor aus zwei Teilrotoren gebildet ist und die beiden Teilrotoren miteinander verschweißt sind, wodurch ein Schweißbereich gebildet ist, wobei Kühlmittel zum Kühlen des Schweißbereichs vorgesehen sind.
  • Die Erfindung sieht demnach vor, eine Strömungsmaschine mit einem Rotor auszubilden, der aus zwei Teilrotoren gebildet ist. Im Betrieb erfahren die beiden Teilrotoren unterschiedliche thermische Beanspruchungen. Einer der beiden Teilrotoren kann in einem besonders thermisch belasteten Bereich eingesetzt werden, wohingegen der zweite Teilrotor in einem vergleichsweise weniger thermisch belasteten Bereich eingesetzt werden soll. Die Schweißung muss hierbei an einer geeigneten Stelle erfolgen. Dabei muss darauf geachtet werden, dass die thermische Belastung des Schweißbereiches im Betrieb nicht zu groß ist. Daher ist man bestrebt, den Schweißbereich möglichst an eine Stelle zu verschieben, die vergleichsweise wenig thermisch belastet ist. Erfindungsgemäß wird vorgeschlagen, den Schweißbereich durchaus in ein Gebiet höherer thermischer Belastung anzuordnen. Damit der Rotor den thermischen Belastungen standhält sind erfindungsgemäß Kühlmittel zum Kühlen des Schweißbereichs vorgesehen.
  • Somit kann der Schweißbereich in einen Bereich auf dem Rotor angeordnet werden, der höheren thermischen Belastungen ausgesetzt ist. Durch die erfindungsgemäße Kühlung kann die Schweißung dennoch in diesem thermisch belasteten Bereich angeordnet werden. Dadurch kann das einzusetzende hochwarmfeste Material im thermisch belasteten Bereich eingespart werden, da die Schweißung möglichst weit im thermisch belasteten Bereich angeordnet wird. Im weniger thermisch belasteten Bereich kann ein günstigeres, weniger warmfestes Material verwendet werden. Durch die Materialersparnis des teuren hochwarmfesten Materials ist schließlich die Herstellung solch einer Strömungsmaschine günstiger.
  • Besonders Kosten sparend wirkt sich die Erfindung aus, wenn der Teilrotor, der hohen thermischen Belastungen von ca. 700°C ausgesetzt ist, aus einer Nickel-Basislegierung hergestellt ist. Der Werkstoffpreis dieser Legierungen liegt um einen Faktor drei bis vier über dem des Materials X12 (d. h. ein 9%iger Chromstahl), der für den Teilrotor verwendet wird, der geringen thermischen Belastungen ausgesetzt ist.
  • Darüber hinaus sind die zulässigen Abmessungen der Schmiedestücke eng begrenzt. Das maximale Blockgewicht eines Schmiedestückes aus der Nickel-Basislegierung liegt derzeit bei 6 t, wohingegen das maximale Blockgewicht eines Schmiedestückes aus X12 bei > 12 t liegt.
  • Jegliche Reduktion des Teilrotors aus der Nickel-Basislegierung schon um wenige Zentimeter führt zu erheblichen Kosteneinsparungen und darüber hinaus kann solch ein Teilrotor leichter beschafft werden. Ersten Schätzungen zu Folge könnte solch ein erfindungsgemäß ausgebildeter Rotor bis zu 20% oder bis zu 50 cm der Länge dieses nicht erfindungsgemäß ausgebildeten Teilrotors einsparen.
  • Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.
  • In einer vorteilhaften Weiterbildung umfasst die Strömungsmaschine zumindest eine Leitschaufelreihe, die mit Deckbändern ausgebildete Leitschaufeln aufweist, wobei das Deckband mit Drallbohrungen zum Führen eines im Betrieb durch die Strömungsmaschine strömenden Strömungsmediums auf den Schweißbereich ausgeführt ist.
  • Es ist erfindungsgemäß vorgesehen, dass ein Deckband mit Drallbohrungen zum Führen eines im Betrieb durch die Strömungsmaschine strömenden Strömungsmediums auf den Schweißbereich ausgeführt ist. Im Betrieb strömt durch die Drallbohrungen das Strömungsmedium. Durch die beschleunigende Wirkung in der Drallbohrung verringert sich die Temperatur des Strömungsmediums in der Drallbohrung. Das bedeutet, dass nach dem Austritt aus der Drallbohrung das Strömungsmedium als Kühlmedium wirkt. Mit dem somit abgekühlten Strömungsmedium wird schließlich der Schweißbereich des Rotors gekühlt.
  • So ist es vorteilhaft, wenn das Deckband über dem Schweißbereich angeordnet ist. Es wirkt sich günstig aus, wenn das Deckband in unmittelbarer Nähe über dem Schweißbereich angeordnet ist. Das aus den Drallbohrungen ausströmende Strömungsmedium wirkt als Kühlmedium und sollte daher möglichst nah am Schweißbereich angeordnet werden.
  • Vorteilhaft im Sinne der Erfindung ist es, wenn die Drallbohrung in einem Bereich des Deckbandes, der in Strömungsrichtung gesehen vor der Leitschaufelvorderkante liegt, angeordnet ist.
  • Die Strömungsverhältnisse des Strömungsmediums in der Strömungsmaschine sind derart, dass es günstig ist, dass die Drallbohrung vor dem Eintritt des Strömungsmediums in die Leitschaufelreihe angeordnet wird. Somit ist es möglich, einen hohen Volumenstrom des Strömungsmediums in die Drallbohrungen abzuzweigen.
  • In einer vorteilhaften Weiterbildung ist die Drallbohrung unter einem Winkel α zur Strömungsrichtung geneigt ausgebildet. Der Winkel α weist hierbei Werte zwischen 30° und 90° auf. Dadurch ist es möglich, aufgrund der Strömungsverhältnisse im Strömungskanal, einen hohen Ertrag an Volumenstrom aus dem Strömungsmedium im Strömungskanal in die Drallbohrung abzuzweigen.
  • In einer weiteren vorteilhaften Weiterbildung ist die Drallbohrung unter einem Winkel β zur Tangentialen der Leitschaufeldeckbandoberfläche geneigt. Der Winkel β weist hierbei Werte zwischen 0° und 60° auf. Als Tangentiale der Leitschaufeldeckbandoberfläche ist im Wesentlichen eine Gerade zu verstehen, die senkrecht auf einer Verbindungslinie von der Rotormitte zur Drallbohrung führt und von der Drallbohrung aus abzweigt. Dadurch ist es möglich, die so genannte Drallkühlung zu erreichen, die durch die erfindungsgemäße Neigung der Drallbohrung verstärkt ist. Außerdem wird die Drallkühlung hervorgerufen durch das Wechselspiel zwischen einem bewegten Bezugssystem (drehender Rotor) und einem stationären Bezugssystem (Leitschaufelreihe).
  • In einer vorteilhaften Weiterbildung ist eine Rotordichtung im vorderen Bereich des Deckbandes angeordnet. Dadurch ist es möglich, dass möglichst wenig Strömungsmedium verlustbehaftet zwischen dem Deckband und der Rotoroberfläche strömt. Dies hat den Vorteil, dass zum einen der Gesamtwirkungsgrad der Strömungsmaschine erhöht wird und zweitens würde das heiße Strömungsmedium vom Schweißbereich abgehalten werden.
  • Im Folgenden wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher beschrieben. Dabei haben einander gleich wirkende Bauteile die gleichen Bezugszeichen.
  • Es zeigen
  • FIG 1
    eine Querschnittsansicht eines Teiles einer Strömungsmaschine,
    FIG 2
    eine Querschnittsansicht (in Strömungsrichtung) gesehen eines Teiles der Strömungsmaschine,
    FIG 3
    eine Draufsicht auf eine aufgewickelte Leitschaufelreihe,
    FIG 4
    eine vergrößerte Querschnittsansicht eines Teiles aus FIG 1.
  • In der FIG 1 ist eine Querschnittsansicht einer Strömungsmaschine 1 dargestellt. Eine Strömungsmaschine 1 ist z. B. eine Gasturbine oder eine Dampfturbine. Die Strömungsmaschine umfasst ein Gehäuse 2. Das Gehäuse 2 kann als Innengehäuse oder als Außengehäuse ausgebildet sein. Ferner weist die Strömungsmaschine 1 einen innerhalb des Gehäuses 2 drehbar gelagerten Rotor 3 auf. Der Rotor ist um eine in der FIG 1 nicht näher dargestellte Rotationsachse 24 drehbar gelagert. Der Rotor 3 weist einen ersten Teilrotor 3a und einen zweiten Teilrotor 3b auf. Der Rotor 3 wird in einem Schweißbereich miteinander verschweißt.
  • Die Strömungsmaschine 1 umfasst zumindest eine Leitschaufelreihe 5, wobei die Leitschaufelreihe 5 mit Deckbändern 6 ausgebildete Leitschaufeln 7 aufweist.
  • Die in FIG 1 dargestellt Strömungsmaschine weist mehrere Leitschaufelreihen 5', 5'', 5''' auf. Zwischen den Leitschaufelreihen 5, 5', 5'', 5''' sind Laufschaufelreihen 8 angeordnet, die aus einzelnen Laufschaufel 9 gebildet sind. Im Betrieb strömt ein Strömungsmedium in einer Strömungsrichtung 10 durch die Strömungsmaschine 1. Das Strömungsmedium strömt hierbei durch einen Strömungskanal 11.
  • Das Strömungsmedium kann beispielsweise ein Frischdampf sein, der Temperaturen von bis zu 700°C und einen Druck von 350 bar aufweist. Insbesondere kann die Strömungsmaschine 1 als Hochdruck-Dampfturbine ausgebildet sein.
  • Das Deckband 6 ist mit Drallbohrungen 12 zum Führen eines im Betrieb durch die Strömungsmaschine 1 strömenden Strömungsmediums auf den Schweißbereich 4 ausgebildet. Dadurch entsteht die so genannte Drallkühlung im Bereich des Schweißbereiches 4 und kühlt diesen effektiv.
  • Das Deckband 6 ist über dem Schweißbereich 4 angeordnet.
  • In der FIG 4 ist eine vergrößerte Darstellung eines Teils der aus FIG 1 dargestellten Strömungsmaschine 1. Insbesondere ist das Deckband 6 dargestellt. Die Leitschaufel 7 umfasst ein Leitschaufelprofil 13. In der FIG 3 ist das Leitschaufelprofil 13 lediglich als Projektion auf eine Ebene parallel zur Strömungsrichtung 10 zu erkennen. Das Leitschaufelprofil 13 wird sozusagen auf Zeichenebene projiziert. Das Deckband 6 hat eine Länge 14, das länger ist als die Projektion 15 des Leitschaufelprofils 13 auf eine Ebene parallel zur Strömungsrichtung 10.
  • Die Drallbohrung 12 ist in einem Bereich 16 des Deckbandes 6, der in Strömungsrichtung 10 gesehen vor der Leitschaufelvorderkante 17 ist, angeordnet.
  • Die Drallbohrung 12 ist um einen Winkel α zur Strömungsrichtung 10 geneigt. Ausgehend von der Strömungsrichtung 10 wird die Drallbohrung 12 im mathematisch negativen Sinne um den Winkel α gedreht. Der Winkel α nimmt hier Werte zwischen 30° und 90° auf.
  • Wenn der Bohrvorgang von der Deckplatten-Unterseite aus ausgeführt wird, kann der Winkel α bei 90° liegen. Das Schaufelblatt bewirkt hierbei keine Einschränkung.
  • Das Deckband 6 weist einen Vorsprung 18 auf, der zur Rotoroberfläche 19 hin zeigt. Im vorderen Bereich des Deckbandes 6 ist eine Dichtung 20 angeordnet. Die Dichtung 20 kann als Labyrinthdichtung 21 oder als Bürstendichtung 22 ausgebildet sein.
  • In der FIG 2 ist eine Querschnittsansicht (in Strömungsrichtung 10 gesehen) der Strömungsmaschine 1 dargestellt. Der Rotor 3 dreht sich in einer Drehrichtung 23. Die Drehrichtung 23 zeigt in Uhrzeigersinn. Die Drehung erfolgt um eine Rotationsachse 24. Die Drallbohrung 12 ist unter einem Winkel β zu einer Tangentialen 25 der Leitschaufeldeckbandoberfläche 26 geneigt. Der Winkel β kann hierbei Werte zwischen 10° und 60° aufweisen.
  • In der FIG 3 ist sozusagen eine aufgewickelte Leitschaufelreihe 5 dargestellt. Die Drallbohrung 12 ist als Bohrung ausgeführt. Es können aber auch andere Ausführungsformen der Drallbohrung 12 berücksichtigt werden. Die Drallbohrung 12 kann ebenso einen gekrümmten Verlauf aufweisen.
  • Der erste Teilrotor 3a ist aus einem hochwarmfesten 1%igen Chrommaterial gebildet. Der zweite Teilrotor 3b kann aus einem weniger thermisch belasteten und günstigeren Material gebildet sein.

Claims (15)

  1. Strömungsmaschine (1),
    umfassend ein Gehäuse (2) und einen innerhalb des Gehäuses (2) drehbar gelagerten Rotor (3),
    wobei der Rotor (3) aus zwei Teilrotoren (3a, 3b) gebildet ist und
    die beiden Teilrotoren (3a, 3b) miteinander verschweißt sind,
    wodurch ein Schweißbereich (4) gebildet ist,
    dadurch gekennzeichnet, dass
    Kühlmittel (6, 12) zum Kühlen des Schweißbereichs (4) vorgesehen sind.
  2. Strömungsmaschine (1) nach Anspruch 1,
    wobei die Strömungsmaschine (1) zumindest eine Leitschaufelreihe (5) umfasst und die Leitschaufelreihe (5) mit Deckbändern (6) ausgebildete Leitschaufeln (7) aufweist und das Deckband (6) mit Drallbohrungen (12) zum Führen eines im Betrieb durch die Strömungsmaschine (1) strömenden Strömungsmediums auf den Schweißbereich (4) ausgeführt ist.
  3. Strömungsmaschine (1) nach Anspruch 2,
    wobei das Deckband (6) über dem Schweißbereich (4) angeordnet ist.
  4. Strömungsmaschine (1) nach Anspruch 2 oder 3,
    wobei die Länge (14) des Deckbandes (6),
    in Strömungsrichtung (10) gesehen,
    länger ist als die Länge der Projektion (15) des Leitschaufelprofils (13) auf eine Ebene parallel zur Strömungsrichtung (10).
  5. Strömungsmaschine (1) nach Anspruch 4,
    wobei die Drallbohrung (12) in einem Bereich des Deckbandes (6),
    der in Strömungsrichtung (10) gesehen vor der Leitschaufelvorderkante (17) liegt,
    angeordnet ist.
  6. Strömungsmaschine (1) nach einem der Ansprüche 4 oder 5,
    wobei die Drallbohrung (12) unter einem Winkel α zur Strömungsrichtung (10) geneigt ist.
  7. Strömungsmaschine (1) nach Anspruch 6,
    wobei der Winkel α einen Wert zwischen 30° und 90° aufweist.
  8. Strömungsmaschine (1) nach einem der Ansprüche 2 bis 7,
    wobei die Drallbohrung (12) unter einem Winkel β zu einer Tangentialen (25) der Leitschaufeloberfläche geneigt ist.
  9. Strömungsmaschine (1) nach Anspruch 8,
    wobei der Winkel β einen Wert zwischen 10° und 60° aufweist.
  10. Strömungsmaschine (1) nach einem der Ansprüche 2 bis 9,
    wobei das Deckband (6) an dem,
    in Strömungsrichtung (10) gesehen,
    vorderen Bereich (16) einen Vorsprung (18) aufweist, der zur Rotoroberfläche (19) hin zeigt.
  11. Strömungsmaschine (1) nach Anspruch 10,
    wobei der vordere Bereich (16) eine Rotordichtung (20) umfasst.
  12. Strömungsmaschine (1) nach Anspruch 11,
    wobei die Rotordichtung (20) als Labyrinth- (21) oder als Bürstendichtung (22) ausgebildet ist.
  13. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche,
    wobei der erste Teilrotor (3a) aus einem warmfesten 1%igen Chrommaterial gebildet ist.
  14. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche,
    ausgebildet als Dampfturbine.
  15. Strömungsmaschine (1) nach einem der vorhergehenden Ansprüche,
    wobei die Strömungsmaschine (1) als Hochdruck-Dampfturbine ausgebildet ist.
EP06017817A 2006-08-25 2006-08-25 Drallgekühlte Rotor-Schweissnaht Not-in-force EP1895094B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT06017817T ATE483096T1 (de) 2006-08-25 2006-08-25 Drallgekühlte rotor-schweissnaht
DE502006007968T DE502006007968D1 (de) 2006-08-25 2006-08-25 Drallgekühlte Rotor-Schweissnaht
EP06017817A EP1895094B1 (de) 2006-08-25 2006-08-25 Drallgekühlte Rotor-Schweissnaht

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06017817A EP1895094B1 (de) 2006-08-25 2006-08-25 Drallgekühlte Rotor-Schweissnaht

Publications (2)

Publication Number Publication Date
EP1895094A1 true EP1895094A1 (de) 2008-03-05
EP1895094B1 EP1895094B1 (de) 2010-09-29

Family

ID=37633615

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06017817A Not-in-force EP1895094B1 (de) 2006-08-25 2006-08-25 Drallgekühlte Rotor-Schweissnaht

Country Status (3)

Country Link
EP (1) EP1895094B1 (de)
AT (1) ATE483096T1 (de)
DE (1) DE502006007968D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2180149A4 (de) * 2008-08-11 2015-08-26 Mitsubishi Hitachi Power Sys Dampfturbinengerät

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH353218A (de) * 1957-09-18 1961-03-31 Escher Wyss Ag Aus Scheiben zusammengesetzter Läufer einer Axialturbine
US3291447A (en) * 1965-02-15 1966-12-13 Gen Electric Steam turbine rotor cooling
US4571153A (en) * 1982-03-16 1986-02-18 Kraftwerk Union Aktiengesellschaft Axial-admission steam turbine, especially of double-flow construction
DE19839592A1 (de) * 1998-08-31 2000-03-02 Asea Brown Boveri Strömungsmaschine mit gekühlter Rotorwelle
EP1013879A1 (de) * 1998-12-24 2000-06-28 Asea Brown Boveri AG Flüssigkeitsgekühlte Turbomaschinenwelle
US20030084568A1 (en) * 1998-12-10 2003-05-08 Wilhelm Endres Method for the manufacture of a welded rotor of a fluid-flow machine
EP1536102A2 (de) * 2003-11-28 2005-06-01 ALSTOM Technology Ltd Rotor für eine Dampfturbine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH353218A (de) * 1957-09-18 1961-03-31 Escher Wyss Ag Aus Scheiben zusammengesetzter Läufer einer Axialturbine
US3291447A (en) * 1965-02-15 1966-12-13 Gen Electric Steam turbine rotor cooling
US4571153A (en) * 1982-03-16 1986-02-18 Kraftwerk Union Aktiengesellschaft Axial-admission steam turbine, especially of double-flow construction
DE19839592A1 (de) * 1998-08-31 2000-03-02 Asea Brown Boveri Strömungsmaschine mit gekühlter Rotorwelle
US20030084568A1 (en) * 1998-12-10 2003-05-08 Wilhelm Endres Method for the manufacture of a welded rotor of a fluid-flow machine
EP1013879A1 (de) * 1998-12-24 2000-06-28 Asea Brown Boveri AG Flüssigkeitsgekühlte Turbomaschinenwelle
EP1536102A2 (de) * 2003-11-28 2005-06-01 ALSTOM Technology Ltd Rotor für eine Dampfturbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2180149A4 (de) * 2008-08-11 2015-08-26 Mitsubishi Hitachi Power Sys Dampfturbinengerät

Also Published As

Publication number Publication date
DE502006007968D1 (de) 2010-11-11
EP1895094B1 (de) 2010-09-29
ATE483096T1 (de) 2010-10-15

Similar Documents

Publication Publication Date Title
EP1945911B1 (de) Dampfturbine
EP1774140B1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
EP2522831B1 (de) Fluggasturbinentriebwerk mit Ölkühler in der Triebwerksverkleidung
EP0991850B1 (de) Turbinenwelle einer dampfturbine mit interner kühlung sowie verfahren zur kühlung einer turbinenwelle
EP2342427B1 (de) Axial segmentierter leitschaufelträger für eine gasturbine
EP1735525B1 (de) Dampfturbine
DE60035247T2 (de) Gasturbinenschaufel
EP2596213B1 (de) Dampfturbine mit einer internen kühlung
EP2078137B1 (de) Rotor für eine strömungsmaschine
EP2211023A1 (de) Leitschaufelsystem für eine Strömungsmaschine mit segmentiertem Leitschaufelträger
EP3130748A1 (de) Rotorkühlung für eine dampfturbine
EP2718545B1 (de) Dampfturbine umfassend einen schubausgleichskolben
EP3008292A1 (de) Abgasturbolader mit einem radial-axial-turbinenrad
WO1997025521A1 (de) Turbinenwelle einer dampfturbine mit interner kühlung
EP3155226B1 (de) Dampfturbine und verfahren zum betrieb einer dampfturbine
EP2347101B1 (de) Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage
EP2347100B1 (de) Gasturbine mit kühleinsatz
EP1895094B1 (de) Drallgekühlte Rotor-Schweissnaht
EP2598724B1 (de) Dampfturbine sowie verfahren zum kühlen einer solchen
EP1892376B1 (de) Gekühlter Dampfturbinenrotor mit Innenrohr
EP3587748B1 (de) Gehäusestruktur für eine strömungsmaschine, strömungsmaschine und verfahren zum kühlen eines gehäuseabschnitts einer gehäusestruktur einer strömungsmaschine
EP1788191B1 (de) Dampfturbine sowie Verfahren zur Kühlung einer Dampfturbine
DE102006010863B4 (de) Turbomaschine, insbesondere Verdichter
EP2211017A1 (de) Rotor mit Hohlraum für eine Strömungsmaschine
EP1785586A1 (de) Rotor einer Strömungsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080411

17Q First examination report despatched

Effective date: 20080602

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006007968

Country of ref document: DE

Date of ref document: 20101111

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100929

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101230

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110129

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110131

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110109

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006007968

Country of ref document: DE

Effective date: 20110630

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 483096

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110825

Ref country code: CY

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101229

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100929

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160811

Year of fee payment: 11

Ref country code: IT

Payment date: 20160830

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160823

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161020

Year of fee payment: 11

Ref country code: CH

Payment date: 20161109

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006007968

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170825

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831