EP1531992B1 - Antriebsvorrichtung und ein verfahren zur steuerung eines aggregates einer druckmaschine - Google Patents
Antriebsvorrichtung und ein verfahren zur steuerung eines aggregates einer druckmaschine Download PDFInfo
- Publication number
- EP1531992B1 EP1531992B1 EP04721541.3A EP04721541A EP1531992B1 EP 1531992 B1 EP1531992 B1 EP 1531992B1 EP 04721541 A EP04721541 A EP 04721541A EP 1531992 B1 EP1531992 B1 EP 1531992B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- circuit
- printing press
- press according
- master shaft
- drive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 7
- 238000012545 processing Methods 0.000 claims description 27
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000001276 controlling effect Effects 0.000 claims description 3
- 230000002596 correlated effect Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 description 17
- 238000004891 communication Methods 0.000 description 16
- 230000005540 biological transmission Effects 0.000 description 8
- 230000000875 corresponding effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F13/00—Common details of rotary presses or machines
- B41F13/004—Electric or hydraulic features of drives
- B41F13/0045—Electric driving devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41P—INDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
- B41P2213/00—Arrangements for actuating or driving printing presses; Auxiliary devices or processes
- B41P2213/70—Driving devices associated with particular installations or situations
- B41P2213/73—Driving devices for multicolour presses
- B41P2213/734—Driving devices for multicolour presses each printing unit being driven by its own electric motor, i.e. electric shaft
Definitions
- the DE 42 14 394 C2 discloses a drive device for a longitudinally shaftless printing machine, wherein the folding device is data-technically connected via a bus with groups of printing groups.
- the folder delivers its position reference to the print point groups.
- a drive control common to the drives of a single group of print groups performs the fine adjustment of these drives with each other and in relation to the folder.
- a drive of a printing press line is described by a common drive motor, wherein an incremental encoder is arranged in the region of a punch. Signals from this encoder are z. B. used as a reference for the circumferential register.
- the invention has for its object to provide a drive device and a method for controlling an aggregate of a printing press. The object is achieved by the features of claim 1 and 24, respectively.
- circuit according to the invention and its connection to a virtual master axis, in particular with regard to the parameterability and the ability to output a plurality of differently parameterized signals.
- a processing machine for web-like materials for. B. a printing press, in particular a web-fed rotary printing press, has a plurality of mechanically independently driven by a respective drive motor M units 01; 02; 03; 04; 06; 07 on. These independently driven units 01; 02; 03; 04; 06, 07 can z. B. directly or indirectly with a printing press passing through the web, z. As printing substrate, work together and must therefore be aligned in their relative position to the web or each other.
- Such units 01; 02; 03; 04; 06; 07 may be printing towers 01, individual printing units 02, individual printing units 03 or individual cylinders 04, in particular individual forme cylinders 04, of printing units 03. Likewise, such a unit z. B.
- Fig. 1 shows three such mechanically independently driven by drive motors M units 01; 02, 03; 04; 06; 07.
- the two units shown on the left For example, printing towers 01, printing units 02, printing units 03 or cylinders 04 can be.
- the right unit represents z.
- a further processing unit 06, in particular the folder 06 is.
- the drive motors M each have a drive 08 with drive control, which in each case via at least one signal line 09 with each other and with a computing and data processing unit 11, z. B. a computer 11, are connected.
- the computing and data processing unit 11 may additionally comprise an operating unit 10 or with an operating unit 10, for. B. a control room 10, are in communication.
- the drives 08 (or controller 08) can in principle (not shown) in series directly in ring or bus structure or as shown in a tree structure by signal lines 12 to be connected to the signal line 09.
- the at least one signal line 09 carries signals of a Leitachsposition ⁇ , which by a computing unit 13, z. B. a higher-level drive control 13, is specified.
- the signal line 09 together with the arithmetic unit 13, the so-called virtual master axis a (electronic wave) for the units connected to it) 01; 02; 03; 04; 06; 07, at which the units 01, 02; 03; 04; 06; 07 in their position or position.
- This Leitachsposition ⁇ is passed to the drives 08 as a default (reference variable).
- Each of the controllers 08 is a specific offset ⁇ i , z. B. angular offset ⁇ i, can be predetermined, wherein a permanent but variable displacement from the Defines Leitachsposition ⁇ .
- This offset ⁇ i ? is z. B. directly on the controller 08 and / or via computing and data processing unit 11 entered and / or stored for specific operating situations, in particular specific web guides in a memory in the computing and data processing unit 11 and retrievable.
- the signal line 09 is designed accordingly, for example as a broadband bus or broadband network, then the information about the respectively predetermined and fixed offset ⁇ i as well as the "rotating" Leitachsposition ⁇ can possibly take place via the common signal line 09.
- the signal line 09 may also be connected in each case with a control system 24 which, for example, the different of the drive motors M actuators and drives of the printing units 02 or printing units 03 or folders 06, z.
- a control system 24 which, for example, the different of the drive motors M actuators and drives of the printing units 02 or printing units 03 or folders 06, z.
- the respective offset ⁇ i ? is z. B. transferred before the start of production by the control room 10 or by the computing and data processing unit 11 to the drives 08 and stored there.
- the offset values A ⁇ i ?? for the various drives 08 can also be stored in the parent drive controller 13 in a variant.
- each drive receives 08 via the signal lines 09; 12 (or in series: only 09) as a specification of the sum of the rotating Leitachsposition ⁇ and the specific, stored offset value ⁇ i of the respective drive 08th
- drives 08 for example, the drives 08 of the first two z.
- Example as printing towers 01 units running and the drive 08 of the unit is designed as a folding apparatus 06, respectively of the rotating master axis position ⁇ of the superordinate drive controller 13, each with a fixed offset ⁇ i values relative to the absolute Position of the master axis position ⁇ .
- the drive control 13 predetermining the Leitachsposition ⁇ thus acts as a master substantially independent of the units for all drives 08 coupled to this leading axle a.
- Different units 19 and / or different manufacturers now make pulse sequences I (t) with different number of pulses per revolution n / 2 ⁇ or periods with different period lengths ⁇ and / or different amplitudes I and / or different composition of a set of pulse trains I n ( t) and / or the presence of a zero "0" required.
- the circuit 15 now has setting possibilities for one or more of the mentioned parameters n / 2 ⁇ , ⁇ , I, I n (t), "0". This can take place via an interface by means of a PC, by means of a so-called jumper box or else via the computing and data processing unit 11.
- the Circuit 15 a possibility of adaptation (or possibility for parameterization) of the incremental resolution between the rotating master axis a; b and an angular position sensor of an on the circuit 15 to be controlled unit 19 and its drive on.
- This parameterization can consist, for example, in the specification of a resolution ratio, the specification of one or both values of the leading axis or aggregate resolution.
- an angular position sensor of the unit 19 and its drive motor with, for example, 1024 increments per revolution or a different number n, such. B. 512 or 4084, is executed. Or, for example, a factor is indicated between the number of these increments and that on which the master axis is based.
- the circuit 15 has a plurality of subcircuits each having parameterizable parameters n / 2 ⁇ , ⁇ , I, I n (t), "0" and a plurality of outputs.
- pulse sequences I (t) of one or more fictitious encoders can be tailored for the drives of units 19.
- Fig. 2 In contrast to Fig. 1 takes place in Fig. 2 already in the drive control 13, or a circuit 20 implemented there, for example a card, the conversion of the Leitachsposition ⁇ in a first pulse train I 0 (t) with a fixed number of pulses or voltage per revolution n / 2 ⁇ and form, which the Input of the circuit 15 is supplied.
- the output signal I (t) or the output signals I (t) is now generated based on the present parameters or parameter sets n / 2 ⁇ , ⁇ , I, I n (t), "0" and the aggregate 19 and supplied to the respective units 19. As in Fig. 2 indicated, these can each be individually parameterized.
- the arithmetic unit 13 for the specification of the Leitachsposition ⁇ is z. B. connected via the signal line 14 to the computing and data processing unit 11, from which, for example, it again receives specifications in terms of production speed or current target speed.
- the respective current Leitachsposition ⁇ is now specified by the parent drive controller 13 and fed into the signal line 09. From there, the information about the circulating Leitachsposition ⁇ is in each case via the communication node 17, given to the signal line 12 and there fed directly to the relevant for the current production drives 08.
- a communication node 17 may, as in Fig. 2 represented, via the signal line 12, z.
- printing units 02, printing units 03 or cylinders 04 be connected.
- the subordinate units combined in the manner via a communication node 17 are referred to below as group 18 of mechanically independently driven units or aggregates.
- the communication node 17 in this case z.
- the middle unit represents in the example of the Fig. 2 such a group 18 of several subunits, e.g. B. two printing units 02, two printing units 03 or two guide elements 07 etc., whose drives are both 08 via the communication node 17 the Leitachsposition ⁇ .
- the transmission takes place here z. B. in tree structure of the signal line 14 via a common signal line 16 per unit (or star-shaped over several separate signal lines 16 per unit) to the drives 08 out (solid lines).
- the physical design of the logical connections 16' can directly or indirectly via other connections such as bus coupler, Bridges etc., or z. B. via an in Fig. 1 or 3 represented control system 24, take place.
- the signal line (s) 16 can be omitted here.
- the specific offset ⁇ i is supplied from the communication node 17 only via the signal line 12 to the corresponding drive 08 and stored there.
- the given context is intended to clarify here and in the following only the principle.
- the specific Leitachsposition ⁇ i the scopes of the driven units etc. to be considered, so that a real context z. B. has further aggregate-specific factors.
- the computing and data processing unit 11 is thus on the one hand via the parent drive controller 13, the signal line 09 (cross-communication), the respective communication node 17 and the signal lines 12, z. Buses 12, in connection with the drives 08. Also information about the configuration (coupling of printing units 02 and / or printing units 03) or the common production speed can be exchanged in this way.
- the computing and data processing unit 11 higher-level drive controller 13 is to transmit the information to the specific offset ⁇ i as described above either via the signal line 14 and the signal lines 16 or via the signal line 14, the logical connection 16 ', the communication node 17 and the signal lines 12 with the corresponding drives 08 in conjunction.
- the drive motors M of the group 18 are connected to one another and to the subordinate control 17.
- the subordinate controllers 17 of the groups 18 or units are connected to one another via at least one signal line 09 and to the higher-level drive controller 13.
- the computing and data processing unit 11 for the transmission of the specific offset values ⁇ i via at least one signal line 14 to the drives 08 and the communication node 17 is connected.
- the signal line 09 is in an advantageous embodiment as real-time capable compound 09 with a fixed time frame for real-time data and deterministic time response, z. B. as Arcnet trained.
- the connection 09 may additionally comprise a channel in which, for example, non real-time-relevant data, such. B. the transmission of the specific offset values ⁇ i according to the embodiment according to Fig. 1 and / or information about the configuration, production speed, etc. according to the embodiment Fig. 1 be transmitted.
- the signal line 12 is in an advantageous embodiment as a real-time connection 12 with a fixed time frame for real-time data and deterministic timing, z. B. as Arcnet executed.
- the connection 12 may additionally have a channel in which, for example, non-real-time-relevant data, such. B. the transmission of the Offset ⁇ i and / or information about the configuration, production speed, etc. are transmitted.
- the signal line 14 and 16 is preferably formed as a network 14, 16 or as part of a network 14, 16.
- This network 14, 16 can again in an advantageous embodiment as network 14, 16 according to a deterministic access method, for. B. as Arcnet, work.
- the network 14, 16 can also be used as a fast network 14, 16 with stochastic access behavior, e.g. B. as Ethernet, be executed.
- data transmission should be possible at least in half-duplex mode.
- Fig. 3 shows an embodiment, wherein the virtual leading axis is specified by one of the formerly "subordinate" drive controls 17 as so-called. Master. This is, for example, the drive controls 17 of the folder 06.
- the input of the circuit 15, the Leitachsposition ⁇ are supplied, which converts them in the manner described.
- the input of the circuit 15 is already fed a converted defined pulse train I 0 (t), which was generated according to the drive control.
- the Leitachsposition ⁇ or the converted pulses can also from other points of the virtual leading axis a; b or another drive control 17 of the circuit 15 are supplied.
- Fig. 4 shows an example of the drive of a printing press with several, here three printing towers 01, each having a plurality of printing units 03, here double printing units 03, have.
- the printing units 03 of a printing tower 01 together with their drives 08 and the motors M a group 18, in particular a pressure point group 18, which is connected via the subordinate drive control 17 of this group 18 to the signal line 09.
- the drive control 13 can also subgroups 02 of printing units 03, z. B. printing units 02, or other divisions associated with Manage drives 08.
- this signal line 09 are also further, own subordinate drive control 17 having units, for. B. one or more vanes 07 and / or one or more folders 06 connected.
- the signal line 09 is advantageously designed in ring topology, in particular as a double ring, and has one or more of the above Fig. 2 mentioned properties.
- Fig. 4 is in each case a circuit 15 with a higher-level drive control 13 in connection, from which they the Leitachsposition ⁇ a; ⁇ b or already receives the pulse train I 0 (t). It is also possible to connect a circuit 15 to the common signal line 09, the circuit 15 (or its individual subordinate circuits for different outputs) then the one or the other leading axis a; b is assignable. This can then also be done via a parameterization for the individual output or the individual outputs.
- the signal line 09 is connected to a plurality of, here two, higher-level drive controllers 13, which in each case different signals of a respective Leitachsposition ⁇ a; ⁇ b a master axis a; b can feed into the signal line 09.
- This is advantageous, for example, if the printing machine or its printing towers 01 and / or printing units 02 and / or printing units 03 and the associated folding units 06 and guide elements 07 have a plurality of sections 21, 21; 22 should be assignable.
- the individual printing towers 01 can be assigned, for example, to different folders 06. Even within a printing tower 01 are subgroups, z. As printing units 03, different webs with different web guides assignable, which can be performed on a common or even on different folders 06.
- the sections 21; 22 are logically not to be understood as rigid units.
- the subordinate drive control 17 processes each of the associated for the relevant drive 08 Leitachsposition ⁇ a; ⁇ b of the leading axis a or b, depending on the affiliation of the relevant printing point to one or the other web, with the predetermined offset for this web guide ⁇ i .
- control system 24 controls and / or regulates, for example, the different of the drive motors M actuators and drives of the printing units 02 and groups of printing groups 18 and Druckwerke 03 valu.
- the control system 24 and its control unit (s) 26 is / are in an advantageous embodiment by couplers, not shown, for. B. Bus coupler, releasably connected to the signal line 14.
- the group 18 can in principle be operated by itself, with the control of the drives 08 taking place via the line of the subordinate drive control 17 with signal line 12 and the control of the further functions of the group 18 via the line of the control system 24. Setpoints as well as actual values and deviations can be switched on or off via the coupler.
- the subordinate drive control 17 assumes in this case the specification of a Leitachsposition ⁇ . For this reason and for reasons of redundancy, it is advantageous if all subordinate drive controllers 17 are designed with the possibility of generating and specifying a Leitachsposition ⁇ .
- the offset values ⁇ i become in the embodiment Fig. 4 thus supplied from the signal line 14 via the respective control system 24 of the respective subordinate drive control 17. As in the embodiment according to Fig. 2 described, the offset values ⁇ i can alternatively be given from there to the drives 08 and stored and processed there.
- the parent drive control 13 accounts if z. B. one or more groups 18 or one of its own subordinate drive control 17 having units (eg folder 06) has a subordinate drive control 17.
- the virtual Leading axis or Leitachsposition ⁇ is then z. B. of one of the drive controls 17 can be specified.
- the circuit 15 again receives its input signal (Leitachsposition ⁇ or converted pulse train I 0 (t)) either from the signal line 09 or from the respective drive controller 17th
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Inking, Control Or Cleaning Of Printing Machines (AREA)
- Rotary Presses (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10317570 | 2003-04-16 | ||
DE10317570A DE10317570B3 (de) | 2003-04-16 | 2003-04-16 | Antriebsvorrichtung eines Aggregates einer Druckmaschine |
PCT/EP2004/050323 WO2004091912A1 (de) | 2003-04-16 | 2004-03-18 | Antriebsvorrichtung und ein verfahren zur steuerung eines aggregates einer druckmaschine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1531992A1 EP1531992A1 (de) | 2005-05-25 |
EP1531992B1 true EP1531992B1 (de) | 2018-05-16 |
Family
ID=32864486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04721541.3A Expired - Lifetime EP1531992B1 (de) | 2003-04-16 | 2004-03-18 | Antriebsvorrichtung und ein verfahren zur steuerung eines aggregates einer druckmaschine |
Country Status (5)
Country | Link |
---|---|
US (1) | US20060207450A1 (ja) |
EP (1) | EP1531992B1 (ja) |
JP (1) | JP4833833B2 (ja) |
DE (1) | DE10317570B3 (ja) |
WO (1) | WO2004091912A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1829356A1 (de) | 2004-12-20 | 2007-09-05 | Koenig & Bauer AG | Kommunikationssysteme mit einem netzwerk zur ]bertragung von bilddaten an mindestens eine bebilderungsvorrichtung und kommunikationssystem mit einem netzwerk zur steuerung und/oder ]berwachung einer mehrere sektionen aufweisenden druckmaschine |
DE102005063307B4 (de) * | 2004-12-20 | 2009-12-10 | Koenig & Bauer Aktiengesellschaft | Druckmaschine mit einem Netzwerk |
DE102005033574A1 (de) * | 2005-07-19 | 2007-01-25 | Man Roland Druckmaschinen Ag | Anordnung und Verfahren zur Synchronisierung von Druckmaschinen und Zusatzkomponenten |
DE102005049345B4 (de) * | 2005-10-12 | 2010-07-15 | Koenig & Bauer Aktiengesellschaft | Vorrichtungen zum Einstellen einer Lage eines ersten Rotationskörpers relativ zu einem benachbarten zweiten Rotationskörper |
DE102006011201B4 (de) | 2006-03-10 | 2011-12-01 | Koenig & Bauer Aktiengesellschaft | Druckmaschine mit mehreren Antriebseinheiten |
DE102007062333B3 (de) * | 2007-12-21 | 2009-04-30 | Robert Bosch Gmbh | Verfahren zur Übertragung von Multiturn-Modulo-Leitachsdaten |
ATE525210T1 (de) | 2008-12-22 | 2011-10-15 | Wifag Maschf Ag | Steuerung für eine druckmaschine und verfahren zum steuern einer druckmaschine |
EP2243630B1 (de) * | 2009-04-24 | 2016-09-14 | Baumüller Anlagen-Systemtechnik GmbH & Co. KG | Rotations-druckmaschine mit synchronisation der falz-antriebsgruppe |
DE102011082005B4 (de) * | 2011-09-01 | 2015-01-29 | Koenig & Bauer Aktiengesellschaft | Verfahren zum Steuern eines Transports von Druckerzeugnissen von einer Auslage eines Falzapparates einer Druckmaschine nach einer dem Falzapparat nachgeordneten Fördereinrichtung eines Systems zur Weiterverarbeitung der Druckerzeugnisse |
JP5427302B2 (ja) * | 2013-01-23 | 2014-02-26 | 株式会社小森コーポレーション | シート状物処理機の駆動制御方法および装置 |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3851742A (en) * | 1972-09-22 | 1974-12-03 | Sommer Co | Control system for variable speed drive |
AU531674B2 (en) * | 1978-08-31 | 1983-09-01 | Consolidated Electronic Industries Pty. Ltd. | Constant speed electric motor |
AT364419B (de) * | 1979-10-02 | 1981-10-27 | Naimer H L | Rechnergesteuertes schaltgeraet |
US4495582A (en) * | 1982-06-04 | 1985-01-22 | Harris Graphics Corporation | Control system for pre-setting and operation of a printing press and collator |
JPS5987157A (ja) * | 1982-11-10 | 1984-05-19 | Akira Seisakusho:Kk | フオ−ム輪転印刷機 |
GB8602510D0 (en) * | 1986-02-01 | 1986-03-05 | Waddingtons Ltd | Coating of web materials |
DE3730625A1 (de) * | 1987-09-11 | 1989-03-23 | Wifag Maschf | Positioniersystem der qualitaetsfuehrungsfunktionen in rotationsdruckmaschinen |
US5040088A (en) * | 1987-10-05 | 1991-08-13 | Chloride Group Public Limited Company | Electric motor controllers |
JP2720584B2 (ja) * | 1990-07-20 | 1998-03-04 | 株式会社安川電機 | サーボシステムの同調位相制御装置 |
US5089759A (en) * | 1990-12-21 | 1992-02-18 | V.T.M. Industries, Inc., D/B/A Profiled Motion Division | Electrical motor position controller |
US5200648A (en) * | 1991-08-13 | 1993-04-06 | National Semiconductor Corporation | Emulator circuit and method for generating CMOS level clock input |
DE4214394C2 (de) * | 1992-04-30 | 1998-08-20 | Asea Brown Boveri | Antriebsvorrichtung für eine längswellenlose Rotationsdruckmaschine |
US5278489A (en) * | 1992-05-29 | 1994-01-11 | Scitex Digital Printing, Inc. | Multi-phase switching power supply |
US5300096A (en) * | 1992-06-03 | 1994-04-05 | Hall H Eugene | Electromyographic treatment device |
JP3160121B2 (ja) * | 1992-07-15 | 2001-04-23 | ハイデルベルガー ドルツクマシーネン アクチエンゲゼルシヤフト | 印刷機を通して枚葉紙を搬送する場合における、枚葉紙反転の実行・停止のため及びフォーマット調節のための方法及び装置 |
US5792483A (en) * | 1993-04-05 | 1998-08-11 | Vickers, Inc. | Injection molding machine with an electric drive |
US5455764A (en) * | 1993-09-09 | 1995-10-03 | Sequa Corporation | Register control system, particularly for off-line web finishing |
US5678030A (en) * | 1995-02-28 | 1997-10-14 | Harris Corporation | Modification of timing in an emulator circuit and method |
DE19527199C2 (de) * | 1995-07-26 | 2002-10-31 | Baumueller Nuernberg Gmbh | Flexodruckmaschine und deren Verwendung |
US5615609A (en) * | 1995-08-21 | 1997-04-01 | The Lawrence Paper Company | System and method for controlling AC motor driven multi-unit printing press |
US5947023A (en) * | 1995-09-28 | 1999-09-07 | Siemens Aktiengesellschaft | Shaftless rotary printing press |
DE19537587C2 (de) * | 1995-10-09 | 1998-02-26 | Koenig & Bauer Albert Ag | Antriebsregeleinrichtung für einen Mehrmotorenantrieb einer Druckmaschine |
DE19623223C2 (de) * | 1996-06-11 | 2001-05-17 | Roland Man Druckmasch | Antrieb für eine Druckmaschine |
US6185427B1 (en) * | 1996-09-06 | 2001-02-06 | Snaptrack, Inc. | Distributed satellite position system processing and application network |
JP3580050B2 (ja) * | 1996-10-14 | 2004-10-20 | 株式会社明電舎 | 同期制御装置 |
US5740211A (en) * | 1996-11-12 | 1998-04-14 | Lucent Technologies Inc. | Method and apparatus for a hitless switch-over between redundant signals |
US5743184A (en) * | 1997-05-27 | 1998-04-28 | Joe Irace | Gearless printing press |
DE19742461C2 (de) * | 1997-09-26 | 2001-05-10 | Heidelberger Druckmasch Ag | Vorrichtung zum Antrieb einer Bogendruckmaschine mit Mehrmotorenantrieb |
JP3254187B2 (ja) * | 1997-12-08 | 2002-02-04 | 株式会社ソディック | プリプラ式射出成形機の漏出樹脂の排出方法及びその制御装置 |
US6061551A (en) * | 1998-10-21 | 2000-05-09 | Parkervision, Inc. | Method and system for down-converting electromagnetic signals |
US6229616B1 (en) * | 1999-04-01 | 2001-05-08 | Trw Inc. | Heterodyne wavefront sensor |
US6320434B1 (en) * | 1999-06-22 | 2001-11-20 | Texas Instruments Incorporated | Circuit and method for generating a synchronous clock signal |
JP3183871B2 (ja) * | 1999-08-30 | 2001-07-09 | 株式会社東京機械製作所 | 輪転機のネットワーク型同期制御装置 |
JP3212298B2 (ja) * | 1999-12-21 | 2001-09-25 | 株式会社東京機械製作所 | 輪転機の同期制御装置及びその方法 |
JP2001256717A (ja) * | 2000-03-14 | 2001-09-21 | Matsushita Electric Ind Co Ltd | ディスク装置 |
US6724840B1 (en) * | 2000-04-15 | 2004-04-20 | The Aerospace Corporation | Adaptive interference cancellation method |
JP3400773B2 (ja) * | 2000-04-28 | 2003-04-28 | 株式会社東京機械製作所 | 輪転機の同期制御装置 |
US6778603B1 (en) * | 2000-11-08 | 2004-08-17 | Time Domain Corporation | Method and apparatus for generating a pulse train with specifiable spectral response characteristics |
DE10113261C2 (de) * | 2001-03-16 | 2003-07-10 | Siemens Ag | Synchrones, getaktetes Kommunikationssystem mit dezentralen Ein-/Ausgabe-Baugruppen und Verfahren zur Einbindung dezentraler Ein-/Ausgabe-Baugruppen in ein solches System |
DE10125608B4 (de) * | 2001-05-25 | 2007-01-04 | Siemens Ag | Gebersignalumsetzer für Werkzeug- und Produktionsmaschinen, sowie Robotern |
DE10312379B4 (de) * | 2002-04-04 | 2018-06-28 | Heidelberger Druckmaschinen Ag | Verfahren und Vorrichtung zur Synchronisation von Antriebskombinationen |
DE10320759B4 (de) * | 2002-06-10 | 2013-03-14 | Heidelberger Druckmaschinen Ag | Transportsystem mit Gebern zur Lageerfassung in einer bedruckstoffverarbeitenden Maschine |
US7099367B2 (en) * | 2002-06-14 | 2006-08-29 | Time Domain Corporation | Method and apparatus for converting RF signals to baseband |
US20060290210A1 (en) * | 2004-05-24 | 2006-12-28 | Foard Geysen, Inc. | Configurable power control system |
-
2003
- 2003-04-16 DE DE10317570A patent/DE10317570B3/de not_active Withdrawn - After Issue
-
2004
- 2004-03-18 JP JP2006505474A patent/JP4833833B2/ja not_active Expired - Fee Related
- 2004-03-18 WO PCT/EP2004/050323 patent/WO2004091912A1/de active Application Filing
- 2004-03-18 US US10/553,299 patent/US20060207450A1/en not_active Abandoned
- 2004-03-18 EP EP04721541.3A patent/EP1531992B1/de not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
JP2006525886A (ja) | 2006-11-16 |
JP4833833B2 (ja) | 2011-12-07 |
WO2004091912A1 (de) | 2004-10-28 |
DE10317570B3 (de) | 2004-09-16 |
EP1531992A1 (de) | 2005-05-25 |
US20060207450A1 (en) | 2006-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10243454C5 (de) | Antriebsvorrichtung einer Bearbeitungsmaschine | |
EP0852538B1 (de) | Wellenlose rotationsdruckmaschine | |
DE4214394C2 (de) | Antriebsvorrichtung für eine längswellenlose Rotationsdruckmaschine | |
EP0693374B2 (de) | Elektrisches Antriebssystem insbesondere für Druckmaschinen | |
EP0812682B1 (de) | Antrieb für eine Druckmaschine | |
DE60127034T2 (de) | Synchrone Regelung mit automatischen Registerfunktionen für das Schneiden und Drucken | |
EP1531992B1 (de) | Antriebsvorrichtung und ein verfahren zur steuerung eines aggregates einer druckmaschine | |
EP1373992B1 (de) | Verfahren zum synchronisierten betrieb von maschinen mit durch einzelantriebe angetriebenen achsen | |
EP0917954B2 (de) | Vorrichtung und Verfahren zum Erstellen eines Einzelpositionbezugwertes in einem Druckprozess | |
EP1541350A1 (de) | Modulare Bogenrotationsdruckmaschine | |
DE60035464T2 (de) | Netzwerksteuerungssystem für Rotationsdruckmaschinen | |
EP1372965B1 (de) | Verfahren zur registerregelung | |
EP0692377B1 (de) | Verfahren und Vorrichtung zum synchronen Antreiben von Druckmaschinenkomponenten | |
EP2243630B1 (de) | Rotations-druckmaschine mit synchronisation der falz-antriebsgruppe | |
EP0934826B1 (de) | Betriebsverfahren für eine Druckmaschine mit einer Mehrzahl von Funktionen sowie steuerungstechnische Anordnung | |
EP2171554B1 (de) | Verfahren und vorrichtung zum einstecken, sammeln oder zusammentragen einer vielzahl von flexiblen, flächigen produkten | |
DE10128834B4 (de) | Verfahren und Vorrichtung zum Antrieb einer Druckmaschine | |
DE102008001214A1 (de) | Maschineneinheit einer Druckanlage mit mindestens einem von einer Steuereinheit gesteuerten Aktor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040921 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BOSCH REXROTH AG |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20091015 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180125 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004015685 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 999172 Country of ref document: AT Kind code of ref document: T Effective date: 20180615 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180816 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180516 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180516 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180817 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180516 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180516 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180516 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180516 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180516 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180516 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004015685 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180516 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180516 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190318 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190318 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190318 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180516 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 999172 Country of ref document: AT Kind code of ref document: T Effective date: 20190318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20040318 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220525 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004015685 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231003 |