EP0852538B1 - Wellenlose rotationsdruckmaschine - Google Patents
Wellenlose rotationsdruckmaschine Download PDFInfo
- Publication number
- EP0852538B1 EP0852538B1 EP96932540A EP96932540A EP0852538B1 EP 0852538 B1 EP0852538 B1 EP 0852538B1 EP 96932540 A EP96932540 A EP 96932540A EP 96932540 A EP96932540 A EP 96932540A EP 0852538 B1 EP0852538 B1 EP 0852538B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bus
- synchronization
- drives
- dsn
- drive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007639 printing Methods 0.000 title claims abstract description 83
- 238000003745 diagnosis Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims 1
- 230000003287 optical effect Effects 0.000 claims 1
- 230000001360 synchronised effect Effects 0.000 abstract description 19
- 238000004519 manufacturing process Methods 0.000 abstract description 17
- 239000008186 active pharmaceutical agent Substances 0.000 description 14
- 230000008878 coupling Effects 0.000 description 9
- 238000010168 coupling process Methods 0.000 description 9
- 238000005859 coupling reaction Methods 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 6
- 238000000926 separation method Methods 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41F—PRINTING MACHINES OR PRESSES
- B41F13/00—Common details of rotary presses or machines
- B41F13/004—Electric or hydraulic features of drives
- B41F13/0045—Electric driving devices
Definitions
- the invention relates to a shaftless rotary printing press according to the preamble of claim 1.
- a newspaper offset press, in the further rotary printing press usually consists of several producing units - called rotation - that work simultaneously and can work independently (maximum 10).
- Each manufacturing unit consists among other things of roller carriers for paper rolls, pull rollers for pulling in and out the paper web at the printing towers, printing points, summarized as U- (two pressure points), Y- (three pressure points) or H printing units (four printing points) in one or more Pressure towers work, auxiliary drives at the pressure points (e.g. for changing plates) and the folder.
- One rotation is usually controlled via several PLC systems, in turn, from higher-level control centers be performed.
- PLC systems are usually controlled via several PLC systems, in turn, from higher-level control centers be performed.
- serial bus systems networked.
- a pressure point essentially consists of a rubber cylinder, a plate cylinder and an inking and dampening unit. One color can be printed on one page with each printing point become. All printing points on a folder work, i.e., their printed paper webs on a folder are part of a rotation.
- the pressure points in a machine are housed in printing towers; A maximum of eight pressure points in a tower (eight-high tower) - in the future also max. ten pressure points in one tower (Tens tower) aimed -. In a rotation can be a maximum work on up to twelve four-high towers on one folder.
- FIG. 1 shows a conventional rotary printing machine with waves shown.
- gear 4 e.g. bevel gear
- gear 4 e.g. bevel gear
- the longitudinal shaft 2 runs through the entire Machine and will usually - for reasons of torque distribution and flexibility - from several main motors driven.
- the coupling or decoupling of the vertical shafts 6 or the printing units 20 takes place via mechanical couplings 22.
- a rotary printing press is known from EP 0 567 741 A1, where the cylinders and at least one folder be driven directly.
- Several cylinder drives each and their drive controllers are to pressure point groups summarized, which can be assigned to a paper web.
- the pressure point groups are one below the other with the folder and with an operating and data processing unit connected via a data bus. Within the pressure point group are the individual drives of the cylinders and their drive controllers connected via a fast bus system. The Pressure point groups get their position difference directly from the folder.
- the superordinate control system is only for the specification of setpoints, setpoint deviations and the Processing of actual values responsible.
- the parent The control system is by means of the data bus, by means of a drive system and with a fast bus system connected to a pressure point group. In the drive system the positioning of the individual drives in relation to the folder and regulated relative to each other. In addition, in Drive system the adaptation of the superordinate control system coming data and commands to those for the drive controller required form made.
- the global regulation on the Data bus is limited to the specification of setpoints, Setpoint deviations and actual values as well as setpoint control.
- the calculation of the parameters for the fine adjustment of the individual drives is in each pressure point group separately in the drive system performed.
- This rotary printing press can be split of the entire control system in a higher-level control system and autonomous pressure point groups only the pressure point groups as a whole from one folder or from another Folder can be performed.
- autonomous pressure point groups only the pressure point groups as a whole from one folder or from another Folder can be performed.
- the invention is based on the object of a drive concept to specify for a shaftless rotary printing press, that is so flexible that their pressure points from production to Production synchronized on any folder can be.
- each drive in a rotation on one Folder works by means of a control / parameterization bus Signals for control, diagnosis and parameterization and by means of the synchronization bus only information, the synchronous angular synchronism of the drives in one To ensure rotation are transferred, the Drive of each printing point all information, which for the Operation of the pressure point are necessary. So every drive can as the smallest complete unit of a shaftless rotary printing press be considered that dependent of a product to be printed at any rotation can be put together.
- two separate basic buses remain the basic concept obtained a rotary machine according to Figure 1, one of the two buses, namely the fast bus, the mechanical one Waves replaced by the realization of an electrical wave.
- Information management for controlling the drives of such a rotary printing machine according to FIG. 1 remains receive.
- control / parameterization functionality controls via a Control / parameterization bus can access the drive.
- control / parameterization tasks control via a Control / parameterization bus can access the drive.
- the electric wave Device for generating a setpoint and a synchronization signal, via a synchronization bus, the Timing and the setpoints for synchronous angular synchronism which specifies drives.
- the electric wave thus replaces one on one the function of the synchronization of pressure points about the mechanics.
- Figure 2 shows a shaftless rotary printing press, consisting of from two folders 16 and 18 and three printing towers 8, 10 and 12. These three printing towers 8, 10 and 12 each have two H printing units 20, each of four printing points 14 exist.
- Each printing point 14 is essentially from a rubber cylinder 28, a plate cylinder 30 and an inking and dampening system. With each pressure point 14 can one color to be printed on one page. All pressure points 14, which work on a folder 16 or 18, i.e., their printed paper webs 32 and 34 or 36, 38 and 40 the folder 16 and 18 are part of a Rotation.
- a rotation can have a maximum of twelve Print towers 8, 10 and 12 with a maximum of eight pressure points each 14 work on a folder 16 or 18.
- Each printing point 14 in the rotary printing press is through a drive unit consisting of a three-phase motor with corresponding converter, directly driven.
- a drive unit consisting of a three-phase motor with corresponding converter, directly driven.
- folders 16 and 18 can the mechanical coupling between three-phase motor and Rubber cylinder 28 a direct or a coupling via a Toothed belt or a gear.
- a decision about that mechanical coupling essentially depends on the required Dynamics of the drive.
- the angular synchronism control of the Pressure points 14 to one another or to the folder 16 or 18th takes place in every converter. Here is a speed and torque control subordinate.
- the read sine / cosine signals are in a detection circuit in the converter to approx. 4 million increments used per revolution and the angular synchronism control as high-resolution actual value provided.
- a second, integrated in the motor, is used for speed and torque control Encoder used.
- the gear 4 and of the vertical shafts 6 of the rotary printing press according to FIG. 1 is in the shaftless rotary printing machine according to Figure 2 a control / parameterization bus 42 and a synchronization bus 44 provided, of which only the synchronization bus in this illustration 44 is shown. Every drive of a pressure point 14 is linked to the synchronization bus 44. From the drive a printing point is only because of the clarity Electric motor M shown.
- control / parameterization functions and the function of the electric shaft can be any drive any with any other drive of the drive concept the rotary printing press by means of the synchronization bus 44 can be combined into any rotation, who works on a folder 16 or 18, each these drives are parameterized by means of the control / parameterization bus 42, is controlled and monitored.
- the drive concept according to the invention is simplified in FIG shown.
- Two drives are shown in more detail for this purpose, which on the one hand to the control / parameterization bus 42 and on the other hand, are connected to the synchronization bus 44.
- the drive comprises two bus interfaces 46 and 48 (FIG. 4) for the synchronization bus 44, a bus interface for the Parameterization / control bus, a converter device with integrated Technology function, e.g. for angular synchronism, and the electric motor M, for example an asynchronous motor or a Can be servo motor.
- the synchronization bus 44 is a ring bus executed and with a device 50 for generating a Setpoint and a synchronization signal connected.
- the Control / parameterization bus 42 is connected to a controller 52. This control controls, parameterizes and diagnoses the drive in synchronous operation as well as in island operation.
- the device superordinate to the drive units 50, as well as the controller 52 are via another serial Bus system, which is often redundant, in the integrated information
- the synchronization of the individual drive units on the Pressure points 14 on top of each other or to the drive unit in the folder 16 or 18 takes place via the serial synchronization bus 44.
- the synchronization bus 44 functionally replaces the mechanical one Longitudinal and vertical shafts 2 and 6 of the machine. over the synchronization bus 44 is used by the device 50 from each Drive its individual position setpoint.
- the setpoint consists of the angle value of a leading pointer and additive from an individual offset angle for each drive.
- Farther is via the synchronization bus 44 by a synchronization signal, i.e. to everyone through a special telegram Participant (broadcast), editing the angular synchronism, Speed and torque control of each drive synchronized a common starting point. By strict time-cyclic repetition of this synchronization signal one synchronizes all drives of a rotation to each other.
- the synchronization bus works according to the master-slave principle.
- a device 50 that is superior to the drive units the master station of the synchronization bus 44 (single master).
- the drive units are the slave stations.
- Of the Synchronization bus 44 is used as a ring bus by means of optical fibers built up.
- On such a synchronization bus ring 54 or 56 a maximum of 200 participants can be connected.
- the performance is designed so that 100 participants all be supplied with individual setpoints for two milliseconds can. Every rotation in the machine, i.e. at long last a device 50 is assigned to each folder 16 or 18.
- the folder 16 or 18 is thus, as in the previous solution with mechanical shafts too, the station, be synchronized to the pressure points 14.
- Drive units, assigned to the different devices 50 are not synchronized with each other.
- the basis of the electrical wave is the generation of a central rotating master pointer.
- an individual offset angle for each drive be added to the leading pointer.
- the current one Position of this angle value (leading pointer plus offset angle) is at a certain time in the timing of the Synchronization signal of the synchronization bus 44 as a setpoint to the corresponding drive via the synchronization bus 44 transfer.
- the speed, with which the leading pointer rotates is the default Web speed of the machine and the scope of the Printing rollers determined.
- the offset angle for each drive is essentially made up of determined by the registration scheme. About the offset angle can each rubber roller in position relative to the other rubber rollers or the folder 16 or 18 individually changed become. This function enables the conventional Registration rollers or register slides are not required.
- the strictly time-equidistant synchronization signal is called a transmit special telegram to all participants (broadcast).
- the time interval between two synchronization signals can be parameterized.
- Each drive is controlled separately from the Synchronization bus 44 via a second, serial bus system 42. From the controller 52 can via the control / parameterization bus 42 one or more drives controlled, parameterized and be diagnosed.
- bus systems for this Control / parameter bus 42 can be open and standardized field buses, such as PROFIBUS-DP or company-specific bus systems, such as the USS protocol or ARCNET.
- FIG. 4 shows a redundant embodiment of the drive concept of a shaftless rotary printing press according to the invention.
- the multiple printing points 14 are numbered in order to understand this redundantly designed embodiment.
- Each printing point DS1, ..., DS n , DS n + 1 , ..., DS n + 4 has two interfaces 46 and 48 for connection to the individual synchronization bus rings 54, 56 and 58.
- the pressure points DS1, ..., DS n + 2 are integrated in the synchronization bus ring 54, but of these pressure points DS1, ..., DS n + 2 the pressure points DS n + 1 and DS n + 2 are not for this synchronization bus -Ring 54 activated.
- the activated bus interfaces 46 and 48 are marked black, ie the assigned drive accepts the setpoint specification and the synchronization signal of the device 50.
- the pressure points DS3,..., DS n + 4 are integrated in the synchronization bus ring 56, but are from these pressure points DS3, ..., DS n + 4 the pressure points DS3, DS n and DS n + 4 are not activated for this synchronization bus ring 56.
- the synchronization bus ring 56 is not shown completely.
- the synchronization bus ring 58 is not shown completely.
- the printing points DS1, ..., DS n work on the folder 16, whereas the printing points DS n + 1 , ..., DS n + 3 work on the folder 18.
- Each folder 16 and 18 is a device 50 for generation assigned a setpoint and a synchronization signal.
- the illustration of the bus switch 60 shows that its input 1E with the output 3A and the input 3E with is wired directly to output 1A.
- the other inputs and Outputs 2E, 4E and 2A, 4A are not wired together. With this number of inputs and outputs, 24 Combinations can be made.
- the bus switch 60 will exclusively for the implementation of the redundancy requirements needed for newspaper rotations.
- the bus switch 60 has essential the task of routing the synchronization bus 44 to enable a Device 50 of rotation also in a synchronization bus ring another rotation can be included.
- a Bus switch 60 is always assigned directly to a device 50.
- Figures 4 and 5 show the principle of flexible assignment of the drives as well as the interconnection of two separate synchronization bus rings 54 and 56 into a single ring with one Facility 50.
- a printing point for example the printing point DS3 in FIG. 4, is synchronized to the folder 16 during production. Without mechanical intervention, there must be the possibility of integrating this drive into an adjacent rotation for another production.
- Any drive that has an electrical shaft with others Drives to run in angular synchronism can be of two from each other independent synchronization buses 44 are synchronized.
- each drive has two bus interfaces 46 and 48.
- This drive is integrated using the example of pressure point DS3 into the two synchronization bus rings 54 and 56.
- the drive can be synchronized either via the device 50 run on folder 16 or it can in the synchronization bus ring 56 as part of the second rotation (synchronized on folder 18) work.
- the bus switch 60 is a component of the synchronization bus 44 for dividing the routing of the fiber optic ring 54 or 56.
- FIG. 5 shows two examples of the function of the switch 60.
- the bus switch 60 is always a device 50 one Folders 16 and 18 assigned.
- the solution principle is explained using the following example:
- the rotary printing press is based on the constellation in FIG. 4 from three folders, of which the two Folders 16 and 18 for the first and second rotation are shown.
- the folder 16 falls in the first production out.
- the second production is shut down.
- the two bus switches 60 are switched to another according to FIG Line routing switched. This means that all drives, previously in the two separate sync bus rings 54 and 56 were combined in a ring 56.
- the production can now be continued as an emergency operation.
- Synchronization bus ring 54 and 56 also replace the failed one Folders 16 and 18 by a stand-by folder respectively. In this case the synchronization bus ring 54 or 56 by switching the switches 60 to one Setup of the stand-by set.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Inking, Control Or Cleaning Of Printing Machines (AREA)
- Rotary Presses (AREA)
- Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
- Folding Of Thin Sheet-Like Materials, Special Discharging Devices, And Others (AREA)
Abstract
Description
- aufwendige und teuere Mechanik (Getriebe, Kupplungen)
- geringe Flexibilität bei der Produktion
- begrenzte Genauigkeit der Druckbilder durch Getriebespiel, Torsion der Wellen, Fertigungstoleranzen der mechanischen Komponenten, z.B. bei Zeitungsrotationen ± 50µm im Druck
- Schwingungsneigung durch niedrige mechanische Eigenfrequenzen
- hoher Aufwand bei Wartung der Mechanik und bei der Inbetriebsetzung.
- höhere Flexibilität (Mischproduktion, zielgruppenorientierte Produkte)
- höhere Produktivität (kürzere Rüstzeiten, höhere Produktionsgeschwindigkeit, weniger Makulatur)
- höhere Druckqualität (Langzeitkonstanz und höhere Genauigkeit < ± 20 µm im Druck)
- bessere Wirtschaftlichkeit (geringere Betriebskosten)
- geringere Anschaffungskosten der Maschine
- Übersichtlichkeit und einfachere Handhabung des Antriebs im Synchronbetrieb (= Druckstelle ist eingekuppelt und läuft synchron) und im Inselbetrieb (= Druckstelle ist z.B. für Einrichtarbeiten aus einer laufenden Rotation ausgekuppelt). Der Antrieb kann jederzeit auch ohne Betrieb des Synchronisierbusses gesteuert, parametriert und diagnostiziert werden.
- über den Synchronisierbus werden ausschließlich die Informationen übertragen, die den synchronen Winkelgleichlauf der Antriebe in einer Rotation sicherstellen. Es werden keine Steuerungs- oder Parametrierungsdaten übertragen. Damit können mehr als 100 Antriebe in einer Rotation mindestens alle zwei Millisekunden mit individuellen Informationen versorgt werden.
- Figur 1
- zeigt eine herkömmliche, mit Wellen versehene Rotationsdruckmaschine,
- Figur 2
- ist eine wellenlose Rotationsdruckmaschine mit elektrischer Welle dargestellt, in
- Figur 3
- ist das erfindungsgemäße Antriebskonzept vereinfacht dargestellt, die
- Figur 4
- zeigt eine redundant ausgebildete Ausführungsform des erfindungsgemäßen Antriebskonzeptes, wobei in
- Figur 5
- zwei Verschaltungsbeispiele einer Busweiche dargestellt sind.
Eine Druckstelle, beispielsweise die Druckstelle DS3 in Figur 4, ist während einer Produktion auf den Falzapparat 16 synchronisiert. Ohne mechanischen Eingriff muß die Möglichkeit bestehen, diesen Antrieb für eine andere Produktion in eine benachbarte Rotation einzubinden.
Bei Ausfall eines Falzapparates 16 bzw. 18 muß für die Aufrechterhaltung der Produktion ein Notbetrieb in der Form gefahren werden, daß alle Druckstellen dieser ersten bzw. zweiten Rotation auf einen benachbarten Falzapparat 18 bzw. 16 oder einen "stand-by"-Falzapparat geführt werden können. Für einen solchen Notbetrieb müssen sowohl die mechanischen Vorkehrungen getroffen sein (Möglichkeit der Papierbahnführung), als auch die steuerungstechnischen Möglichkeiten bestehen. Die Realisierung eines solchen Notbetriebs stellt an das Konzept der elektrischen Welle die folgenden Forderungen: Mit Ausfall des Falzapparates 16 bzw. 18 verliert auch die Einrichtung 50 des Synchronisierbus-Ringes 54 bzw. 56 seine Funktion. Sollen alle Antriebe dieser ersten bzw. zweiten Rotation auf einen anderen Falzapparat 18 bzw. 16 gelegt werden, so muß der Synchronisierbus-Ring 54 bzw. 56 einer neuen Einrichtung 50 des neuen Falzapparates 18 bzw. 16 zugeordnet werden. Die Lösung dieser Aufgabe erfolgt mittels der Busweiche 60.
Claims (8)
- Wellenlose Rotationsdruckmaschine, umfassend eine Anzahl einzeln angetriebener Druckstellen (DS1,...,DSn), wobei die Antriebe mit stromrichtergespeisten Elektromotoren erfolgen, und mindestens einen separat angetriebenen Falzapparat (16), dadurch gekennzeichnet, daß die Antriebe, die in einer Rotation auf einen Falzapparat (16) arbeiten, mittels eines Steuer-/Parametrierbusses (42) mit einer Antriebssteuerung (52) und mittels eines parallel angeordneten Synchronisierbusses (44) mit einer Einrichtung (50) zur Generierung eines Sollwertes und eines Synchronisiersignales verbunden sind und daß die Antriebe jeweils mittels einer Busschnittstelle (46,48) mit dem als Ringbus (54,56) ausgebildeten Synchronisierbus (44) verbunden sind.
- Wellenlose Rotationsdruckmaschine nach Anspruch 1 mit weiteren angetriebenen Druckstellen (DSn+1,...,DSn+4) und einem weiteren separat angetriebenen Falzapparat (18), wobei die Antriebe dieser weiteren Druckstellen (DSn+1,...,DSn+4) auf den weiteren Falzapparat (18) arbeiten, dadurch gekennzeichnet, daß die weiteren Antriebe mittels des Steuer-/Parametrierbusses (42) mit der Antriebssteuerung (52) und mittels eines weiteren parallel angeordneten Synchronisierbusses (44) mit einer weiteren Einrichtung (50) zur Generierung eines Sollwertes und eines Synchronisiersignales verbunden sind, daß die Antriebe der Druckstellen (DS1,...,DSn+4) jeweils mit zwei Busschnittstellen (46, 48) versehen sind, daß die in einer Rotation auf einen Falzapparat (16 bzw. 18) arbeitenden Druckstellen (DS1,...,DSn bzw. DSn+1,...,DSn+3) jeweils mittels der ersten bzw. zweiten Busschnittstelle (46,48) mit dem ersten bzw. zweiten als Ringbus (54,56) ausgebildeten Synchronisierbus (44) verbunden sind, daß jeder als Ringbus (54,56) ausgebildete Synchronisierbus (44) mittels einer Busweiche (46,48) mit einer Einrichtung (50) verbunden ist und daß wenigstens ein Teil der angetriebenen Druckstellen (DS3,...,DSn+2) mit beiden als Ringbusse (54,56) ausgebildeten Synchronisierbussen (44) verknüpft ist.
- Wellenlose Rotationsdruckmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Steuer-/Parametrierbus (42) ein offener Feldbus vorgesehen ist.
- Wellenlose Rotationsdruckmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Synchronisierbus (44) ein schnelles Bussystem vorgesehen ist.
- Wellenlose Rotationsdruckmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß mittels des Synchronisierbusses (44) ausschließlich Informationen übertragen werden, die den synchronen Winkelgleichlauf der Antriebe in einer Rotation sicherstellen.
- Wellenlose Rotationsdruckmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß mittels des Steuer-/Parametrierbusses (42) Signale zur Steuerung, Diagnose und Parametrierung der Antriebe ein oder mehrerer Rotationen übermittelt werden.
- Wellenlose Rotationsdruckmaschine nach Anspruch 5, dadurch gekennzeichnet, daß als Information für jeden Antrieb einer Rotation ein Winkelwert eines Leitzeigers, ein Versatzwinkel und ein Synchronisiersignal vorgesehen ist.
- Wellenlose Rotationsdruckmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Übertragungsleitungen des Synchronisierbusses (44) Lichtwellenleiter vorgesehen sind.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96932540A EP0852538B1 (de) | 1995-09-28 | 1996-09-16 | Wellenlose rotationsdruckmaschine |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95115330 | 1995-09-28 | ||
EP95115330 | 1995-09-28 | ||
PCT/EP1996/004059 WO1997011848A1 (de) | 1995-09-28 | 1996-09-16 | Wellenlose rotationsdruckmaschine |
EP96932540A EP0852538B1 (de) | 1995-09-28 | 1996-09-16 | Wellenlose rotationsdruckmaschine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0852538A1 EP0852538A1 (de) | 1998-07-15 |
EP0852538B1 true EP0852538B1 (de) | 1999-05-19 |
Family
ID=8219666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96932540A Expired - Lifetime EP0852538B1 (de) | 1995-09-28 | 1996-09-16 | Wellenlose rotationsdruckmaschine |
Country Status (5)
Country | Link |
---|---|
US (1) | US5947023A (de) |
EP (1) | EP0852538B1 (de) |
JP (1) | JP4059921B2 (de) |
DE (1) | DE59601958D1 (de) |
WO (1) | WO1997011848A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10121323B4 (de) * | 2001-05-02 | 2008-09-11 | Siemens Ag | Schadensverhütungsverfahren und Maschine mit einer korrespondierenden Schadensverhütung |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE20221937U1 (de) | 1991-01-23 | 2009-06-18 | Koenig & Bauer Aktiengesellschaft | Rollenrotationsdruckmaschine |
US6644184B1 (en) * | 1995-02-09 | 2003-11-11 | Man Roland Druckmaschinen Ag | Offset printing machine |
EP0871131A3 (de) * | 1997-04-10 | 2002-01-30 | Siemens Aktiengesellschaft | Vorrichtung und Verfahren zum Synchronisieren dezentraler zyklisch getakteter Baugruppen |
EP0882587B1 (de) * | 1997-06-02 | 2003-07-23 | Maschinenfabrik Wifag | Registerhaltige Abstimmung von Druckzylindern einer Rollenrotationsmaschine |
DE19727824C1 (de) * | 1997-06-30 | 1998-11-19 | Siemens Ag | Verfahren und Vorrichtung zum dezentralen Betrieb bzw. Aufbau einer autarken, winkelgenauen Gleichlaufregelung einzelner Antriebe eines vernetzten Mehrmotorenantriebssystems |
DE19834725A1 (de) * | 1998-07-31 | 2000-02-03 | Wifag Maschf | Bahnspannungsregeleinrichtung |
JP3183871B2 (ja) * | 1999-08-30 | 2001-07-09 | 株式会社東京機械製作所 | 輪転機のネットワーク型同期制御装置 |
JP3251270B2 (ja) * | 1999-11-15 | 2002-01-28 | 株式会社東京機械製作所 | 輪転機の同期制御装置 |
DE19959152A1 (de) * | 1999-12-08 | 2001-06-13 | Heidelberger Druckmasch Ag | Einrichtung zur Führung von Materialbahnen in Rotationsdruckmaschinen |
JP3212298B2 (ja) | 1999-12-21 | 2001-09-25 | 株式会社東京機械製作所 | 輪転機の同期制御装置及びその方法 |
JP3363872B2 (ja) | 2000-06-23 | 2003-01-08 | 株式会社東京機械製作所 | 切断見当及び印刷見当自動調整機能を有する同期制御装置 |
JP3431894B2 (ja) * | 2000-09-22 | 2003-07-28 | 株式会社東京機械製作所 | 印刷画像情報に基づいて制御対象を選択する輪転機の同期制御装置 |
DE10155033B4 (de) * | 2000-11-30 | 2014-09-18 | Heidelberger Druckmaschinen Ag | Vorrichtung zur Synchronisation von Übergaben bogenförmigen Materials |
JP3662852B2 (ja) * | 2001-01-11 | 2005-06-22 | 株式会社東京機械製作所 | 印刷画像情報に基づいて制御対象を選択する輪転機の同期制御装置 |
DE10121322B4 (de) | 2001-05-02 | 2017-11-23 | Siemens Aktiengesellschaft | Datenübertragungssystem mit verteiler Leitfunktionalität |
DE10125608B4 (de) * | 2001-05-25 | 2007-01-04 | Siemens Ag | Gebersignalumsetzer für Werkzeug- und Produktionsmaschinen, sowie Robotern |
DE10125609A1 (de) * | 2001-05-25 | 2002-12-05 | Siemens Ag | Regelungsverfahren zum Betrieb von einzeln angetriebenen rotierenden Maschinenelementen |
DE10128175B4 (de) * | 2001-06-11 | 2004-07-08 | Siemens Ag | Vorrichtung zur hochgenauen Verstellung und Positionierung einer Magnetstruktur |
DE10132807C5 (de) | 2001-07-06 | 2009-01-08 | Siemens Ag | Regelungsverfahren zum Betrieb von gekoppelten Antriebsachsen mit überlagerten Bewegungskomponenten |
US20030151167A1 (en) | 2002-01-03 | 2003-08-14 | Kritchman Eliahu M. | Device, system and method for accurate printing of three dimensional objects |
DE10243454C5 (de) * | 2002-09-19 | 2009-10-08 | Koenig & Bauer Aktiengesellschaft | Antriebsvorrichtung einer Bearbeitungsmaschine |
DE10317570B3 (de) * | 2003-04-16 | 2004-09-16 | Koenig & Bauer Ag | Antriebsvorrichtung eines Aggregates einer Druckmaschine |
US7341077B2 (en) † | 2003-04-17 | 2008-03-11 | Picanol N.V. | Method for operating a loom |
DE10320826A1 (de) * | 2003-05-08 | 2004-12-02 | Siemens Ag | Verfahren zur Modernisierung einer technischen Anlage sowie dafür geeignete Antriebsvorrichtung |
DE102004004843B4 (de) * | 2004-01-30 | 2010-07-22 | Siemens Ag | Bussystem zur Steuerung einer Komponente einer Druckmaschine und entsprechendes Verfahren |
DE102004007069A1 (de) * | 2004-02-13 | 2005-08-25 | Goss International Montataire S.A. | Rotationselement einer Druckmaschine, mit einem Encoder |
DE102005048472A1 (de) * | 2005-10-07 | 2007-04-12 | Bosch Rexroth Ag | Rotationsdruckmaschine und Verfahren des Betriebs einer Rotationsdruckmaschine |
EP1772263B1 (de) * | 2005-10-07 | 2013-08-07 | Bosch Rexroth AG | Rotationsdruckmaschine und Verfahren des Betriebs einer Rotationsdruckmaschine |
JP4646816B2 (ja) * | 2006-01-30 | 2011-03-09 | 東洋電機製造株式会社 | 同期制御システム |
JP2008096923A (ja) * | 2006-10-16 | 2008-04-24 | Fuji Xerox Co Ltd | 画像形成装置及びプロセスカートリッジ |
JP5234714B2 (ja) * | 2007-02-21 | 2013-07-10 | 三菱重工印刷紙工機械株式会社 | 印刷機 |
GB2444563B (en) * | 2007-03-15 | 2009-04-22 | M & A Thomson Litho Ltd | Printing apparatus |
EP2243630B1 (de) * | 2009-04-24 | 2016-09-14 | Baumüller Anlagen-Systemtechnik GmbH & Co. KG | Rotations-druckmaschine mit synchronisation der falz-antriebsgruppe |
DE102009045654A1 (de) * | 2009-10-14 | 2011-04-21 | Manroland Ag | Druckmaschine mit einem Datennetzwerk |
EP2327647A1 (de) * | 2009-11-25 | 2011-06-01 | Baumüller Anlagen-Systemtechnik GmbH & Co. KG | Verfahren zum Betrieb wenigstens einer eine Materialbahn verarbeitenden Maschine sowie zugehörige Druckmaschine oder andere Maschine |
EP3044639B1 (de) | 2013-10-17 | 2017-11-29 | Hewlett-Packard Development Company, L.P. | Steuerungssystem zur steuerung einer anzahl von aktuatoren |
CH714081A1 (de) * | 2017-08-25 | 2019-02-28 | Rieter Ag Maschf | Verfahren zum Betreiben einer Ringspinnmaschine und Ringspinnmaschine. |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3557692A (en) * | 1968-09-09 | 1971-01-26 | Harris Intertype Corp | Plural independently operable motor drive arrangement in printing press |
DD270039A1 (de) * | 1988-03-11 | 1989-07-19 | Polygraph Leipzig | Mehrfachantrieb an druckmaschinen |
DE4137979B4 (de) * | 1991-11-19 | 2004-05-06 | Heidelberger Druckmaschinen Ag | Antrieb für eine Druckmaschine mit mindestens zwei mechanisch voneinander entkoppelten Druckwerken |
DE4214394C2 (de) * | 1992-04-30 | 1998-08-20 | Asea Brown Boveri | Antriebsvorrichtung für eine längswellenlose Rotationsdruckmaschine |
GB2281534B (en) * | 1993-09-07 | 1996-09-25 | Scm Container Mach Ltd | A drive system |
-
1996
- 1996-09-16 US US09/043,693 patent/US5947023A/en not_active Expired - Fee Related
- 1996-09-16 WO PCT/EP1996/004059 patent/WO1997011848A1/de active IP Right Grant
- 1996-09-16 EP EP96932540A patent/EP0852538B1/de not_active Expired - Lifetime
- 1996-09-16 JP JP51311597A patent/JP4059921B2/ja not_active Expired - Fee Related
- 1996-09-16 DE DE59601958T patent/DE59601958D1/de not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10121323B4 (de) * | 2001-05-02 | 2008-09-11 | Siemens Ag | Schadensverhütungsverfahren und Maschine mit einer korrespondierenden Schadensverhütung |
Also Published As
Publication number | Publication date |
---|---|
DE59601958D1 (de) | 1999-06-24 |
US5947023A (en) | 1999-09-07 |
JP4059921B2 (ja) | 2008-03-12 |
EP0852538A1 (de) | 1998-07-15 |
WO1997011848A1 (de) | 1997-04-03 |
JPH11511407A (ja) | 1999-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0852538B1 (de) | Wellenlose rotationsdruckmaschine | |
DE10243454B4 (de) | Antriebsvorrichtung einer Bearbeitungsmaschine | |
EP0816963B1 (de) | Verfahren zum Betrieb eines Antriebssystems und Vorrichtung zur Durchführung des Verfahrens | |
DE60127034T2 (de) | Synchrone Regelung mit automatischen Registerfunktionen für das Schneiden und Drucken | |
EP0993698B1 (de) | Verfahren und vorrichtung zum dezentralen betrieb bzw aufbau einer winkelgenauen gleichlaufregelung in einem mehrmotorenantriebssystem | |
EP0846555A1 (de) | Antrieb für eine Druckmaschine | |
EP1373992B1 (de) | Verfahren zum synchronisierten betrieb von maschinen mit durch einzelantriebe angetriebenen achsen | |
DE60035464T2 (de) | Netzwerksteuerungssystem für Rotationsdruckmaschinen | |
EP0930552A2 (de) | Elektrisches Antriebssystem mit verteilter, virtueller Leitachse | |
DE10317570B3 (de) | Antriebsvorrichtung eines Aggregates einer Druckmaschine | |
EP0965165A1 (de) | Verfahren und vorrichtung zur aufrechterhaltung eines winkelgenauen gleichlaufs einzelner vernetzter antriebe eines dezentralen antriebssystems | |
EP1372965A1 (de) | Verfahren zur registerregelung | |
EP1772263A1 (de) | Rotationsdruckmaschine und Verfahren des Betriebs einer Rotationsdruckmaschine | |
EP0692377B2 (de) | Verfahren und Vorrichtung zum synchronen Antreiben von Druckmaschinenkomponenten | |
EP1052093B2 (de) | Elektrisches Antriebssystem zur Vorstellung von einem oder mehreren dreh- und/oder verschwenkbaren Funktionsteilen in Geräten und Maschinen, Antriebsordnung mit einem Winkellagegeber und Druckmaschine | |
EP2243630B1 (de) | Rotations-druckmaschine mit synchronisation der falz-antriebsgruppe | |
EP0934826A1 (de) | Betriebsverfahren für eine Druckmaschine mit einer Mehrzahl von Funktionen sowie steuerungstechnische Anordnung | |
EP1560095A2 (de) | Bussystem zur Steuerung einer Komponente einer Druckmaschine und entsprechendes Verfahren | |
EP1260364A2 (de) | Verfahren zur Rüstzeitreduzierung bei automatisiertem Druckformwechsel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19980320 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FI FR GB IT |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19980918 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FI FR GB IT |
|
REF | Corresponds to: |
Ref document number: 59601958 Country of ref document: DE Date of ref document: 19990624 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990611 |
|
ITF | It: translation for a ep patent filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 19990923 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990924 Year of fee payment: 4 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000916 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000916 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010531 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050916 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20091120 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59601958 Country of ref document: DE Effective date: 20110401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110401 |