EP1528171B1 - Système de construction composite bois-béton comportant des éléments de construction en bois, des couches intermédiaires et éléments de construction en béton - Google Patents

Système de construction composite bois-béton comportant des éléments de construction en bois, des couches intermédiaires et éléments de construction en béton Download PDF

Info

Publication number
EP1528171B1
EP1528171B1 EP04024931.0A EP04024931A EP1528171B1 EP 1528171 B1 EP1528171 B1 EP 1528171B1 EP 04024931 A EP04024931 A EP 04024931A EP 1528171 B1 EP1528171 B1 EP 1528171B1
Authority
EP
European Patent Office
Prior art keywords
concrete
wood
components
fact
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04024931.0A
Other languages
German (de)
English (en)
Other versions
EP1528171A3 (fr
EP1528171A2 (fr
Inventor
Tobias Bathon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE20316376U external-priority patent/DE20316376U1/de
Application filed by Individual filed Critical Individual
Publication of EP1528171A2 publication Critical patent/EP1528171A2/fr
Publication of EP1528171A3 publication Critical patent/EP1528171A3/fr
Application granted granted Critical
Publication of EP1528171B1 publication Critical patent/EP1528171B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/04Load-carrying floor structures formed substantially of prefabricated units with beams or slabs of concrete or other stone-like material, e.g. asbestos cement
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/12Load-carrying floor structures formed substantially of prefabricated units with wooden beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B5/36Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
    • E04B5/38Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/48Special adaptations of floors for incorporating ducts, e.g. for heating or ventilating
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/296Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and non-metallic or unspecified sheet-material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/44Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
    • E04C2/52Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/17Floor structures partly formed in situ
    • E04B5/23Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated
    • E04B2005/232Floor structures partly formed in situ with stiffening ribs or other beam-like formations wholly or partly prefabricated with special provisions for connecting wooden stiffening ribs or other wooden beam-like formations to the concrete slab
    • E04B2005/237Separate connecting elements

Definitions

  • the invention relates to wood-concrete composite systems, which consist of wooden components, intermediate layers and concrete components according to the features of the preamble of claim 1.
  • the known connecting element is formed as a flat flat body in the form of a steel sheet which is glued into a slot introduced in the wood so that it protrudes over a part of its surface from the wood.
  • the protruding part of the connecting element is used for connection to another material.
  • the known connecting element is formed as a flat flat body in the form of a steel sheet which is glued into a slot introduced in the wood so that it protrudes over a part of its surface from the wood.
  • the protruding part of the connecting element has anchor tongues which anchor in the cast-on concrete.
  • a wood-concrete composite element which consists of a plurality of assembled boards, which in turn comprise composite webs and an overlying concrete component.
  • the bond between the concrete component and the boards or composite webs is created by - inserted in the wood recesses - embarked transverse force anchors.
  • the transverse force anchors are arranged transversely to the longitudinal direction of the composite boards and thus have a geometric toothing between wood and concrete. See also DE 202 10 714 U1 ,
  • a major disadvantage of the aforementioned writings is the lack of final coupling of the materials wood and concrete and the resulting limitations in the application. So it is known that a direct contact between Wood and concrete can lead to condensation and thus mold in the wood. Furthermore, in a direct contact between wood and concrete creates a sound bridge, which prevents the usability of a wood-concrete composite ceiling without further construction. Furthermore, it is known that the stiffness of a cross-section increases with increasing lever arm and thus leads to a pronounced interlayer formation to stiffer systems.
  • the object of the invention is to provide wood-concrete composite systems with intermediate layers, which are equipped with high bonding forces, different cross-sectional variants, different system properties and different physical properties.
  • the task of the intermediate layer is to create a decoupling of the significantly different materials wood and concrete, without reducing the stiff or rigid connection - a prerequisite for an effective composite effect - of the two materials.
  • the present invention describes a wood-concrete composite system consisting of wooden components, intermediate layers and concrete components.
  • the wooden components are connected to the concrete component quasi rigidly by continuously arranged connection means.
  • the connecting means are formed as a flat body with corresponding openings or roughening, as a grid and / or as networks of metals and / or plastics. At least one end of the connecting means is positively connected by gluing with the wooden components. It has surprisingly been found that the bonding of two ends of the connecting means with the wood components not only produces an increase in intrinsic stability, but also provides an increase in the composite stiffness. It may be expedient to form the fasteners inhomogeneous and anisotropic, so that from this different properties (of the connecting element) in the different materials (wood component, intermediate layer, concrete component) result.
  • the shape of the fasteners is in addition to the straight shape in all other odd shapes, such as curved, wavy, kinked, angled and / or just conceivable and will depend only on the application requirements.
  • the arrangements of the connecting elements in the composite system according to the invention can, for example, run side by side, one behind the other, diagonally, offset, offset, undulating and / or chaotic and are only dependent on the application requirements.
  • the connecting means are anchored in the wooden components by gluing at least one end in prepared slots or depressions and in the concrete component by mechanical gearing in the set cement glue.
  • Another embodiment lies e.g. to glue therein the connecting means on the wooden components or partly in and partly on the wooden components, thereby producing a permanent and non-positive connection.
  • the connecting means penetrate the intermediate layers as required, partially or without a frictional connection with the intermediate layers.
  • the intermediate layers at least partially decouple the wooden components from the concrete components, thereby allowing a durable composite solution.
  • the wood components have at least in some applications reinforcements, which bridge the structural and manufacturing weaknesses of the wood and / or wood-based materials and wood composites. It is also conceivable in some applications to increase the capacity of the timber components by reinforcement or reinforcements, thereby generating an increase in the total capacity.
  • the concrete components have, on the one hand, deposits which bridge the structural weak points of the concrete and / or, on the other, deposits which change the structural-physical conditions of the wood-concrete composite system.
  • the intermediate layers are at least partially given as geometrical, mechanical, structural-physical and / or structural separation or end coupling between the timber components and concrete components.
  • the intermediate layers of the wood-concrete composite system can be formed as single-layer or multi-layer layers.
  • the intermediate layers can be consumed and / or incorporated in liquid, solid and / or gaseous form, for example by laying, pouring, brushing and / or foaming.
  • a single-layer intermediate layer consists for example of a plastic film, impregnated paper, bitumen, Kunststoffdämm Mrs, mineral insulation layer, organic insulation, renewable insulation material and cast-on or painted materials that set or harden at a later date, such as tar, adhesives, plastic mixtures.
  • Other forms of single-layer intermediate layers represent all mineral or mineral-bonded materials (eg mineral-bonded lightweight board, mineral-bound and insulated leveling screed) and metallic materials (eg trapezoidal sheets, sandwich components).
  • the multilayer levels are a combination of the previously described single-layer intermediate layers in any Shape and / or arrangement. The choice of the single-layer or multi-layer intermediate layers is therefore only dependent on the requirements of the wood-concrete composite systems.
  • An advantage of the invention is the decoupling of the facing surfaces of the wooden components and the concrete components by the embedded intermediate layer or intermediate layers.
  • building components in the concrete components can be kept away from the timber components. Wetting of the wooden components would permanently cause rot and thus destruction of the entire wood-concrete composite systems. This is especially given in bridge construction.
  • intermediate layers at least in some applications, have cavities, such as e.g. Cables, pipes, hoses, ducts and conduits, e.g. Power, gas, water, air conditioning, electrical installation lines, which are used for coupling to central systems.
  • cavities such as e.g. Cables, pipes, hoses, ducts and conduits, e.g. Power, gas, water, air conditioning, electrical installation lines, which are used for coupling to central systems.
  • corresponding supply lines can be embedded in the "stress-neutral" intermediate layers.
  • Another advantage lies in the thermal decoupling of the facing surfaces of the wooden components and the concrete components by the embedded intermediate layers.
  • This process can be prevented by the arrangement of intermediate layers such as mineral insulation in conjunction with overlying foil.
  • intermediate layers such as mineral insulation in conjunction with overlying foil.
  • wood-concrete composite systems according to the invention provide an advantageous solution.
  • Another advantage lies in the physical decoupling of the facing surfaces of the timber components and the concrete components by the embedded intermediate layers.
  • additional "floating screed” arranged for impact sound insulation on the composite ceiling.
  • an intermediate layer in the form of impact sound insulation it is possible to improve the sound insulation of the wood-concrete composite system according to the invention and thus to produce a surface decoupling between the concrete components and the timber components.
  • this can be dispensed with in many applications on a "floating screed".
  • Another advantage lies in the increase of the "inner lever arm" of the wood-concrete composite system according to the invention by increasing the distance between the bending pressure and bending tension zone.
  • a solution according to the invention in the form of a box cross-section in conjunction with an intermediate layer produces an incomparable rigidity of the wood-concrete composite system.
  • wide-span supporting systems for example roofs, ceilings, bridges
  • Another advantage lies in the bonding of two or more ends of the connecting means with the wooden components. As a result, not only the inherent rigidity of the connecting means but also the composite stiffness between the timber components and concrete components is increased. Only then can be used according to the invention connecting means in an economical manner.
  • Another advantage of the invention lies in the quasi-continuous connection between the timber components and concrete components of the wood-concrete composite system.
  • single-field systems i.e., systems that protrude above a span.
  • continuous systems are not only more economical but also more efficient than single-field systems.
  • Another advantage is the at least partial bridging of structural vulnerabilities, such as e.g. Branches, inclusions, growth defects of the wood, which lead in the application to a limitation of the entire wood-concrete composite system.
  • Another advantage is the at least partial bridging of manufacturing vulnerability, such as Finger jointing, openings, holes, which lead in the application to a limitation of the entire wood-concrete composite system.
  • the wood-concrete composite system consists of wooden components and at least one adjacent concrete components characterized in that at least partially and at least a single-layer intermediate layer is formed between the wood components and concrete components, which at least partially generates a separation or decoupling of the materials wood and concrete.
  • the task of the intermediate layers is thus at least partially to produce a geometric, mechanical and / or structural-physical decoupling of the materials wood and concrete.
  • this decoupling must not significantly reduce the composite effect between wood and concrete, otherwise an economical solution can not be achieved.
  • connecting elements with the intermediate layer or the intermediate layers.
  • the connecting means have no bond to the intermediate layers.
  • inventive composite system wherein the connecting elements are adhesively bonded to the concrete components.
  • the connecting means can be ordered and / or chaotically arranged depending on the application.
  • the term "chaotic” is here partly taken from mathematics and means not ordered or not bound to rules. By way of example, the following are named as an arrangement: one behind the other, side by side, offset, longitudinal, transverse, diagonal, wavy, curved and / or scattered.
  • the fasteners are used as flat bodies, meshes and / or nets in straight and / or odd shape of metals and / or plastics.
  • the connecting elements may be formed at least partially straight, curved, wavy, curved, kinked, bent and / or twisted.
  • the flat bodies can be at least partially perforated, punched, drilled, roughened, stretched, pulled and / or distorted.
  • An embodiment of the wood-concrete composite systems according to the invention has, for example, the plastic part to be anchored in the wood and the metal part to be anchored in the concrete.
  • the connecting element would be referred to as hybrid material (metal and plastic).
  • an anisotropic and inhomogeneous design of the connecting elements is selected depending on the application.
  • a further embodiment consists in the bonding of two or more ends of the connecting elements according to the invention in and / or on the wooden components.
  • a further embodiment of the invention consists in providing additional toothings, elevations and / or beads at least in partial regions of the connecting elements. Surprisingly, this has shown that thereby a positioning and / or fixing of the connecting elements in the corresponding openings of the wooden components to ensure ligation of the adhesive. Furthermore, the leakage of the adhesive is prevented until setting. Thus, the fasteners can be glued in the factory and transport even before the setting of the adhesive, temporarily store and / or assemble. This is also possible for wall or overhead applications.
  • the connecting means are fixed by gluing in corresponding openings in the wooden components and / or on the wooden components. It is thus an embodiment of the invention conceivable to be glued in the fasteners in the timber components and others are glued to the wood components.
  • the bond is preferably produced by one- or two-component adhesives. Some adhesives (e.g., epoxy resins, poly-urethane adhesives) are affected by the glass transition effect under conditions of stress and climatic conditions. The glass transition effect describes a phenomenon in which the adhesive loses its strength at the same temperature and load.
  • One embodiment of the application according to the invention is an energy supply of the adhesive joint of the connecting elements and / or the adjacent components during bonding or at a later time, thereby increasing the glass transition effect to a higher temperature level and thereby increase or secure the composite effect.
  • the energy supply may be initiated locally and / or areal by way of example by a stationary or mobile heat source (for example infrared). It is also conceivable to ensure the supply of heat by cable guides, which are located in the timber components, the intermediate layers and / or the concrete components.
  • the wooden components of the wood-concrete composite system according to the invention are created by way of example from individual elements in the form of a beam, a screed, a board, a squared timber, a plate or a formwork and / or any combination of the aforementioned individual elements in the form of multi-part composite cross-sectional shapes.
  • a further bandwidth of the embodiment consists in the reinforcements of the wooden components and / or the concrete components, e.g. By reinforcement of steel and / or plastic, tempering steels, etc. It is conceivable to create these reinforcements in or on the wooden components or concrete components.
  • a further embodiment of the invention consists in the enhancement or enhancement of natural and / or manufacturing weak points of the timber components by further local measures, such. Preload, reinforcement, bridging and / or tension.
  • Another bandwidth of the embodiment consists in the production of cavities or cable guides in the timber components, the intermediate layers and / or concrete components.
  • the cavities can be produced by way of example through pipes, balls, channels and / or hoses.
  • the lines can be produced by way of example by cables, pipes, channels and / or hoses.
  • Another bandwidth of the embodiment of the invention consists in the pre-deformation (eg cant, bending, curvature and / or bias) at least of partial areas of the timber components, intermediate layers and / or concrete components before or after the composite, thereby the later occurring effects (and the resulting resulting stresses and deformations) of the assembly and the use at least partially counteract.
  • pre-deformation eg cant, bending, curvature and / or bias
  • a single-field carrier of a ceiling system has a central elevation (generated by central sputtering) before the fresh concrete is applied.
  • the elevation will compensate for the setting of the concrete at a later date at least part of the elastic or plastic deflection of the single-field carrier.
  • This method can also produce wide-stretched constructions.
  • the intermediate layers of the wood-concrete composite systems according to the invention can be single-layered, multi-layered, loose and / or composite.
  • the intermediate layers are placed, rolled, poured, painted, sprayed and / or foamed applied in solid, liquid and / or gaseous form and / or subsequently introduced.
  • a single-layer design includes i.a. Foil, impregnated paper, bitumen board, metal plates, plastic plates, plastic insulation, mineral insulation, renewable insulation materials, composite construction materials or hybrid materials (for example as individual elements, plate elements, bulk material or roll goods) or cast-on or coated materials which set or harden at a later time (For example, tar, oil, glue, plastic mixtures).
  • Multi-ply designs include any combination of the aforementioned single ply designs loosely and / or as a composite.
  • the concrete components are u.a. of normal concrete, high-strength concrete, prestressed concrete, composite concrete, screed concrete, lightweight concrete, aerated concrete and / or asphaltic concrete and, moreover, may not contain mineral aggregates, such as e.g. Plastics, polystyrene, wood.
  • the production of concrete components is possible in the factory or on the construction site. Furthermore, the concrete components can be partially manufactured in the factory and partly on site. It is also conceivable that sections of the concrete components are used as prefabricated elements in conjunction with locally concreted elements.
  • a preferred bandwidth of the embodiment consists in the reinforcements (eg reinforcement made of steel and / or plastic, prestressing steels) of the concrete components.
  • reinforcements eg reinforcement made of steel and / or plastic, prestressing steels
  • a further embodiment is the generation of cavities (eg by pipes, balls, quaters, channels and / or hoses) which can be used for weight reduction, for the subsequent introduction of lines and / or for subsequent bias or bias with subsequent composite.
  • conduits e.g., cables, pipes, channels, and / or hoses
  • conduits e.g., cables, pipes, channels, and / or hoses
  • a further embodiment of the invention is to form a plurality of layers of wood components, intermediate layers and / or concrete components one above the other and / or side by side.
  • the wood-concrete composite systems according to the invention can be designed, for example, as columns, girders, beams, slabs, walls, ceilings, roofs, and / or bridge systems and, depending on the design, for example for absorbing tension, pressure -, Biegezug-, bending pressure, torsional, and / or shear stresses suitable.
  • FIG. 1 A first figure.
  • the Fig. 1 describes in perspective an embodiment of a portion of the wood-concrete composite system 100 according to the invention , which can be performed, for example, as a ceiling, wall and / or roof structure.
  • the wood-concrete composite system 100 initially consists of wood components 110, in the form of beams 111 and a wood-based panel 112.
  • the beams 111 are here positively connected to the wood-based panel 112 by gluing.
  • the wood-based panel 112 is here exemplified in two places reinforced by internal reinforcements 120 in the form of synthetic fiber fabric.
  • the connecting elements 130 are formed as stamped and distorted flat body (also known as expanded metal) 131 made of metal, which have a kink 132 at half the height.
  • the kink 132 is formed offset in the longitudinal direction and thus forms a fork 133 in the form of a Y (fork 133 appears when viewed in the longitudinal direction).
  • the buckle 132 the height positioning of the connecting elements is given and a linear predetermined breaking point in the concrete component is avoided by the bifurcation 133 .
  • a reinforcing steel (not shown here) can be inserted self-positioning, which increases the overall capacity of the wood-concrete composite system.
  • the intermediate layers 140 consist here by way of example of a dimensionally stable mineral wool 141 which are arranged between the beams 111 and a vapor-permeable film 142 which covers the height-equalized beams 111 and mineral wool 141 and at the same time is connected in a form-fitting manner to the connecting elements 130, for example by adhesive tapes, without a frictional connection To provide connection to the connecting elements 130 .
  • the intermediate layers 140 as mineral wool 141 have cavities 144 and 145 in the transverse and longitudinal direction, which serve as supply channels of building services. Surprisingly, it has been found that the cavities 145 can also be carried out in the transverse direction through the wooden beam 111 , since the composite effect bridges the cross-sectional slot.
  • a further component of the intermediate layers is exemplified by Styroporquater 143 disposed einragend on the film 142 between the bar 111 into the concrete components 150th
  • the concrete components 150 are formed here by way of example by a constant plate 151 with rib-like extensions 152 in the region of the connecting elements 130 .
  • the concrete components 150 have reinforcements 153 in the form of welded mesh mats 154 , which rest on the connecting elements 130 .
  • the concrete components 150 furthermore have cavities 155 and lines 156 , which serve, on the one hand, for the supply of heat and, on the other hand, for the subsequent reinforcement of the concrete components 150 .
  • the cavities 155 are used to introduce appropriate prestressing steels in order to enable a positive subsequent reinforcement of the concrete components 150 .
  • the leads 156 are used for indirect heating of the kaugarklebung, thereby increasing the material-related glass transition temperature of the adhesive and thereby increase the carrying capacity of the kauselementverklebung under the influence of temperature.
  • the concrete components further include reinforcements 157 in the form of reinforcing steels, which are arranged between the connecting elements 130 by way of example.
  • the reinforcing steels 157 serve in this exemplary application to additional absorption of transverse tensile stresses that may occur in the region of the connecting elements 130 . Furthermore, surprisingly, this results in an additional toothing between the connecting elements 130 and the concrete components 150.
  • a further embodiment variant (not shown here) consists of passing the reinforcing bars 157 through the openings (eg expanded metal openings) of the connecting elements 130.
  • the wood-concrete composite systems 100 was here exemplarily made on site on the construction site as a ceiling system in which the individual wooden components 110 and intermediate layers 140 before concreting by an elevation (not shown, eg by support in the middle of the individual spans of the multi-field system increases ) have been pre-deformed to thereby a later To counteract stress on the wooden components during assembly and / or use of the system.
  • the Fig. 2 describes in perspective an embodiment of a portion of the wood-concrete composite system 200 according to the invention , which can be performed, for example, as a bridge or ceiling structure.
  • the wood-concrete composite system 200 initially consists of a wooden component 210, glued in the form of a glued laminated board 211 to the exemplary external reinforcements 212 in the form of carbon fiber reinforcements.
  • the glulam panel 211 further shows, by way of example, cavities 213 and lines 214 which serve, on the one hand, for the power supply and, on the other hand, for the supply of heat.
  • the cavities 213 are used to introduce appropriate electrical cables that can thus be invisibly guided by the wood-concrete composite systems.
  • the lines 214 are used for indirect heating of the dacarbit, thereby increasing the material-related glass transition temperature of the adhesive and thereby increase the carrying capacity of the kauselementverklebung under the influence of temperature.
  • the connecting elements 220 are here exemplified as corrugated dimensionally stable plastic mesh 221 and formed as a bent metal mesh 223 .
  • the metal meshes 223 are used by way of example in a partial area of the wood-concrete composite system in that high local stresses prevail.
  • the plastic grids 221 are anchored at about one-third of their height, with one end in the wooden member 210 by gluing.
  • the plastic grids 221 have been made such that the grid openings 222 in the wood material 210 and in the intermediate layers 230 have smaller dimensions (close-meshed) than in the concrete component 240, thereby saving on adhesive in the anchoring in the wooden component (lower adhesive volume) and on the other to increase the intrinsic stability of the plastic grids 221 in the region of the intermediate layers 230 (no frictional lateral support).
  • the undulating shape provides, on the one hand additional inherent stability and on the other hand a further mechanical interlocking between the wooden components and concrete components to be joined.
  • the plastic grids 221 have in the binding region of the wooden components 210 teeth (not shown here), which ensure a mechanical fixation of the connecting elements to the setting of the adhesive.
  • the metal grid 223 are glued here, for example, with two ends in corresponding openings (here slots or channels) of the wooden components and thereby provide in itself a geometrically rigid shape and at the same time a very rigid connection between the timber members 210 and the concrete components 240.
  • the metal mesh 223 have in the kerf between connecting element and wood, for example, a bead (not shown here), which prevents the adhesive from exiting.
  • the intermediate layers 230 consist here by way of example of a multilayer bitumen coating with embedded plastic film 231 and a PU rigid foam layer 232, which was created by way of example from individually cut and laid in association panels.
  • the concrete components 240 are formed here by way of example by a constant plate 241 .
  • the concrete components 240 have reinforcements 242 in the form of welded steel meshes 243 , which for example only rest on the connecting elements 220 .
  • the concrete slab 241 further includes a localized reinforcement 244 in the form of a reinforcing steel 245 which has been laterally connected (for example, wire-knurled, not shown) prior to concreting and applying the welded steel mat 243 to the securing member 220 .
  • the concrete components 240 furthermore have cavities 246 and lines 247 , which serve, on the one hand, for subsequent reinforcement and, on the other hand, for the climatic supply of the concrete components 240 .
  • the cavities 246 are used to introduce appropriate prestressing steels in order to enable a non-positive subsequent reinforcement of the concrete components 240 .
  • the position of the cavities 246 is dependent on the execution requirements and can be exemplified by, between and / or through the connectors 220 and / or 223 .
  • the lines 247 serve as an example - via a coupling with a corresponding climate control center - for the climatic supply of the wood-concrete composite system and its surroundings.
  • the wood-concrete composite system 200 was here prefabricated as an example in the factory as a precast and delivered as individual components Segmented to the site and mounted. Such prefabrication allows rapid construction of the structure without introducing additional moisture (eg mixing water of the reinforced concrete) in the wood-concrete composite system or buildings.
  • the individual wood-concrete composite systems can be connected to the construction site immediately during assembly or some time later with each other and / or with other construction sections non-positively and / or positively. In this way, disc effects with segmented wood-concrete composite systems can be produced.

Claims (28)

  1. Systèmes composites en bois et béton (100, 200) composés d'éléments de construction en bois (110, 111, 112, 210, 211) et d'éléments de construction en béton adjacents à ceux-ci sur un côté au moins (150, 151, 152, 240, 241) ; à cette occasion, une couche intermédiaire au moins monocouche et/ou au moins partiellement présente (140, 141, 142, 143, 230, 231, 232) est formée entre les éléments de construction en bois et les éléments de construction en béton, ladite couche créant au moins partiellement un découplage des matériaux bois et béton ; caractérisés en ce que des grilles et/ou filets en métaux et/ou matières plastiques sont formés à titre d'éléments de liaison (130, 220, 223) ; à cette occasion, les éléments de construction en bois sont reliés aux éléments de construction en béton au moins par la grille et/ou le filet dans le sens des veines du bois ; à cette occasion, aucune liaison de force statiquement significative des éléments en bois avec les couches intermédiaires n'est donnée par la grille et/ou le filet ; à cette occasion, la grille et/ou le filet sont ancrés au moins sur une extrémité par collage dans des orifices correspondants dans les éléments de construction en bois (110, 111, 112, 210, 211) et/ou sur la surface des éléments de construction en bois (II0, 111, 112, 210, 211).
  2. Systèmes composites en bois et béton d'après la revendication 1, caractérisés en ce que la forme géométrique de l'élément de liaison est constituée de manière différente dans l'élément de construction en bois, les couches intermédiaires et l'élément de construction en béton, de telle sorte que des propriétés matérielles et composites différentes sont ainsi présentes.
  3. Systèmes composites en bois et béton d'après la revendication 1 ou 2, caractérisés en ce que les éléments de construction en bois sont reliés à des éléments de construction en béton par au moins un élément de liaison ; à cette occasion, aucune liaison de force statiquement significative des éléments en bois avec les couches intermédiaires n'est donnée par l'élément de liaison.
  4. Systèmes composites en bois et béton d'après l'une des revendications 1 à 3, caractérisés en ce qu'au moins un élément de liaison est formé de manière galbée, en particulier de forme arqu avec un corps d'arc et des extrémités d'arc ; à cette occasion, les extrémités d'arc sont fixées dans et/ou sur les éléments de construction en bois et le corps d'arc est maintenu dans et/ou sur le béton.
  5. Systèmes composites en bois et béton d'après l'une des revendications 1 à 4, caractérisés en ce qu'au moins un élément de liaison doit être agencé par collage d'au moins une extrémité avec les éléments de construction en bois et par imbrication mécanique de l'élément de liaison par le biais de la prise de la pâte de ciment dans les éléments de construction en béton et/ou par un collage à transfert de force avec les éléments de construction en béton.
  6. Système composite en bois et béton (100, 200) d'après l'une des revendications 1 à 5, caractérisé en ce que l'agencement des éléments de liaison est effectué de manière ordonnée et/ou irrégulière, en particulier les uns derrière les autres et/ou les uns à côté des autres et/ou décalés et/ou de manière longitudinale et/ou en travers et/ou en diagonale.
  7. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 6, caractérisés en ce que les éléments de liaison (130, 220, 223) sont formés de manière droite et/ou non droite sous forme de corps plats, de grilles et/ou de filets et ancrés au moins avec une extrémité par collage dans des orifices correspondants dans les éléments de construction en bois (110, 111, 112, 210, 2II) et/ou sur la surface des éléments de construction en bois (110, 111, 112,210,211).
  8. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 7, caractérisés en ce que la configuration des éléments de liaison (130, 220, 223) dans la zone des éléments de construction en bois (110, 111, 112, 210, 211), couches intermédiaires (140, 141, 142, 143, 230, 231, 232) et/ou éléments de construction en béton (150, 151, 152, 240, 241) peut être formée de manière régulière (c.-à-d. isotrope ou homogène) et/ou irrégulière (c.-à-d. anisotrope ou inhomogène).
  9. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 7, caractérisés en ce que les éléments de liaison (130, 220, 223) dans la zone des éléments de construction en bois (110, 111, 112, 210, 211), couches intermédiaires (140, 141, 142, 143, 230, 231, 232) et/ou éléments de construction en béton (150, 151, 152, 240, 241) peuvent présenter des imbrications, saillies et/ou bourrelets supplémentaires.
  10. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 9, caractérisés en ce que les éléments de liaison (130, 220, 223) et/ou les collages sont traités après le collage dans les éléments de construction en bois (110, 111, 112, 210, 211) et/ou à un moment ultérieur par un apport d'énergie et/ou de chaleur afin d'augmenter ainsi la température de transition vitreuse de la colle utilisée servant à l'ancrage des éléments de liaison (130, 220, 223) dans les éléments de construction en bois (110, 111, 112, 210, 21I).
  11. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 10, caractérisés en ce que les éléments de construction en bois (110, 111, 112, 210, 211) sont composés d'au moins un élément individuel sous forme de poutre, de madrier, de planche, de bois équarri, de plaque ou de coffrage, et/ou sont composés d'une combinaison quelconque des éléments individuels susmentionnés sous forme de plusieurs sections transversales assemblées.
  12. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 11, caractérisés en ce que les éléments de construction en bois (110, 111, 112, 210, 211) sont composés de bois massif naturel, de matériaux en bois et/ou de matériaux composites à base de bois.
  13. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 12, caractérisés en ce que des renforcements (120, par ex. armature en acier et/ou en matière plastique, aciers de précontrainte), des cavités (213, 214, par ex. par le biais de tubes, canaux et/ou tuyaux flexibles), et/ou des conduites (par ex. câbles, tubes, canaux et/ou tuyaux flexibles) sont installés dans et/ou sur les éléments de construction en bois (I10, 111, 112, 210, 211).
  14. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 13, caractérisés en ce que les points faibles naturels et/ou dus à la fabrication technique des éléments de construction en bois (110, 111, 112, 210, 211) sont éliminés par des mesures supplémentaires, par ex. renforcement, précontrainte, armature, tension et/ou consolidation.
  15. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 14, caractérisés en ce que les éléments de construction en bois (110, 111, 112, 210, 211), avant l'assemblage avec les couches intermédiaires adjacentes (140, 141, 142, 143, 230, 231, 232) et/ou les éléments de construction en béton (150, 151, 152, 240, 241), présentent des pré-déformations (par ex. surépaisseur, pliure, courbure et/ou précontrainte) agissant au moins partiellement contre les effets apparaissant ultérieurement (et les tensions et déformations en résultant) lors du montage et de l'utilisation.
  16. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 15, caractérisés en ce que les couches intermédiaires (140, 141, 142, 143, 230, 231, 232) peuvent être formées de manière monocouche, à plusieurs couches, lâches et/ou assemblées.
  17. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 16, caractérisés en ce que les couches intermédiaires (140, I41, 142, 143, 230, 231, 232) peuvent être mises en place de manière posée, roulée, déversée, appliquée, projetée et/ou moussée sous forme solide, liquide et/ou gazeuse et/ou mises en place ultérieurement.
  18. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 17, caractérisés en ce que les couches intermédiaires (140, 141, 142, 143, 230, 231, 232) présentent des cavités (144, 145) (par ex. par le biais de tubes, canaux et/ou tuyaux flexibles), et/ou des conduites (par ex. câbles, tubes, canaux et/ou tuyaux flexibles) pouvant être utilisées pour une réduction de poids, pour une introduction ultérieure de conduites et/ou pour un réchauffage ou un refroidissement ultérieur des éléments de liaison.
  19. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 18, caractérisés en ce que les éléments de construction en béton (150, 151, 152, 240, 241) se composent de béton normal, béton extra dur, béton précontraint, béton composite, béton à chape, béton léger, béton cellulaire et/ou béton bitumineux et, si souhaité, peuvent présenter des agrégats de forme non minérale, par ex. matière plastique, polystyrène, bois.
  20. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 19, caractérisés en ce que les éléments de construction en béton (150, 151, 152, 240, 241) sont fabriqués sur place sur le chantier ou sont produits sous forme d'éléments préfabriqués, ou sont fabriqués en partie sur place sur le chantier et en partie sous forme d'éléments préfabriqués.
  21. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 20, caractérisés en ce que des renforcements (153, 154, 157, 243, 244, 245) (par ex. armature en acier et/ou en matière plastique, aciers de précontrainte), des cavités (155, 246) (par ex. par le biais de tubes, boules, moellons, canaux et/ou tuyaux flexibles), et/ou des conduites (156, 247) (par ex. câbles, tubes, canaux et/ou tuyaux flexibles) sont intégrés dans les éléments de construction en béton (150, 151, 152, 240, 241).
  22. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 21, caractérisés en ce que les cavités (155, 246) peuvent être utilisées pour une réduction de poids, pour une introduction ultérieure de conduites et/ou pour une précontrainte ultérieure ou une précontrainte avec adhérence ultérieure.
  23. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 22, caractérisés en ce que les conduites (156, 247) sont utilisées comme conduites d'électricité, de chauffage, conduites techniques et/ou conduites d'alimentation pour un réchauffage ultérieur des systèmes composites en bois et béton, afin d'augmenter ainsi la température de transition vitreuse de la colle utilisée (pour l'ancrage des éléments de liaison (130, 220, 223) dans les éléments de construction en bois).
  24. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 23, caractérisés en ce que les systèmes composites en bois et béton (100, 200) sont fabriqués sur place sur le chantier ou sont produits sous forme d'éléments préfabriqués, ou sont fabriqués en partie sur place sur le chantier et en partie sous forme d'éléments préfabriqués.
  25. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 24, caractérisés en ce que ces systèmes composites en bois et béton (100, 200) présentent des pré-déformations (par ex. surépaisseur et/ou précontrainte) agissant au moins partiellement contre les effets apparaissant ultérieurement (et les tensions et déformations en résultant) lors du montage et de l'utilisation.
  26. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 25, caractérisés en ce qu'ils peuvent être composés de plusieurs couches d'éléments de construction en bois (110, 111, 112, 210, 211), couches intermédiaires (140, 141, 142, 143, 230, 231, 232) et/ou éléments de construction en béton (150, 151, 152, 240, 24I).
  27. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 26, caractérisés en ce qu'ils servent de systèmes porteurs, systèmes de supports, de poutres, de plaques, de murs, de plafonds, de toiture et/ou de ponts.
  28. Systèmes composites en bois et béton (100, 200) d'après l'une des revendications 1 à 27, caractérisés en ce que les éléments de construction en bois (110, 111, 112, 210, 211) et les éléments de construction en béton (150, 151, 152, 240, 241) peuvent absorber des sollicitations de traction, de pression, de traction sous pliage, de pression sous pliage, de torsion et/ou de cisaillement.
EP04024931.0A 2003-10-23 2004-10-20 Système de construction composite bois-béton comportant des éléments de construction en bois, des couches intermédiaires et éléments de construction en béton Active EP1528171B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE20316376U 2003-10-23
DE20316376U DE20316376U1 (de) 2003-10-23 2003-10-23 Holz-Beton-Verbundsysteme aus Holzbauteilen, Zwischenschichten und Betonbauteilen
DE10351989 2003-11-07
DE10351989A DE10351989A1 (de) 2003-10-23 2003-11-07 Holz-Beton-Verbundsysteme aus Holzbauteilen, Zwischenschichten und Betonbauteilen

Publications (3)

Publication Number Publication Date
EP1528171A2 EP1528171A2 (fr) 2005-05-04
EP1528171A3 EP1528171A3 (fr) 2005-05-25
EP1528171B1 true EP1528171B1 (fr) 2016-08-31

Family

ID=34424348

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04024931.0A Active EP1528171B1 (fr) 2003-10-23 2004-10-20 Système de construction composite bois-béton comportant des éléments de construction en bois, des couches intermédiaires et éléments de construction en béton

Country Status (5)

Country Link
US (2) US20050086906A1 (fr)
EP (1) EP1528171B1 (fr)
AU (1) AU2004222807B2 (fr)
CA (1) CA2485804C (fr)
DE (1) DE10351989A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106988473A (zh) * 2017-05-22 2017-07-28 江苏君成建材科技有限公司 新型蒸汽加气混凝土建材

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10351989A1 (de) * 2003-10-23 2005-06-09 Bathon, Leander Holz-Beton-Verbundsysteme aus Holzbauteilen, Zwischenschichten und Betonbauteilen
EP1851396B1 (fr) * 2005-02-25 2016-05-04 Nova Chemicals Inc. Compositions legeres
AU2006216558B2 (en) * 2005-02-25 2010-05-13 Nova Chemicals, Inc. Composite pre-formed building panels, a building and a framing stud
CA2601642C (fr) 2005-03-22 2014-06-03 Nova Chemicals Inc. Compositions de beton legeres
CH698330B1 (de) * 2005-10-14 2009-07-15 Wey Modulbau Ag Holz-Beton-Verbundelement und Verfahren zu seiner Herstellung.
WO2007079739A2 (fr) * 2006-01-13 2007-07-19 Bathon, Leander Ouvrage constitué de parties individuelles
DE202006000593U1 (de) * 2006-01-13 2006-05-18 Bathon, Leander, Prof. Dr. Bauwerke in Holz-Beton-Verbundbauweise
US20080235858A1 (en) * 2006-08-14 2008-10-02 Schanz Richard W Elevated toilet seat
US7677009B2 (en) * 2007-02-02 2010-03-16 Nova Chemicals Inc. Roof truss system
CN101168977B (zh) * 2007-07-26 2011-12-14 吴淑环 一种复合墙体
US20090078161A1 (en) * 2007-09-20 2009-03-26 Nova Chemicals Inc. Methods of minimizing concrete cracking and shrinkage
US8048219B2 (en) * 2007-09-20 2011-11-01 Nova Chemicals Inc. Method of placing concrete
DE102007052455A1 (de) * 2007-11-02 2009-05-20 Selle, Ricky, Dipl.-Wirtsch. Ing. Verbindungssystem zur Schubkraftübertragung in der Holz-Beton-Verbundbauweise
BE1018644A3 (nl) * 2007-11-13 2011-06-07 Echo Vloerelement.
DE202007018856U1 (de) 2007-11-20 2009-07-23 Lignotrend Ag Decke für ein Bauwerk
EP2072705A1 (fr) * 2007-12-21 2009-06-24 Renggli AG Elément composite en bois et béton
DE202008007139U1 (de) * 2008-05-28 2009-10-08 Schwörer Haus KG Fertigbauteil mit Holzbalken und integrierten Heizungsrohren
ITBO20080361A1 (it) * 2008-06-09 2009-12-10 Cogefrin S P A Pannello prefabbricato per costruzioni edili e relativo metodo di messa in opera.
US8240103B2 (en) * 2009-03-12 2012-08-14 Frank Warner Riepe Wall construction method using injected urethane foam between the wall frame and autoclaved aerated concrete (AAC) blocks
EP2408977A2 (fr) * 2009-03-17 2012-01-25 Connovate ApS Panneau sandwich composite
EP2574197A1 (fr) * 2010-05-20 2013-04-03 Kalús, Daniel Panneau thermo-isolant autoporteur pour des systèmes possédant une régulation active de transition thermique
CN101942885A (zh) * 2010-09-16 2011-01-12 南京林业大学 一种frp-竹-混凝土组合梁
CN102134888B (zh) * 2011-01-24 2012-03-28 金陵科技学院 兼具保温和隔音功能的现浇钢筋混凝土空心楼盖(板)及其制备方法
US8632644B2 (en) * 2011-03-17 2014-01-21 Tj Technology Holdings, Llc Bamboo composite timbers
AT511220B1 (de) * 2011-04-08 2013-01-15 Cree Gmbh Deckenelement zur ausbildung von gebäudedecken
FR2977604A1 (fr) 2011-07-07 2013-01-11 Ali Haydadi Module pour la construction d'un batiment, assemblage de module et procede de fabrication du module
US8474205B1 (en) 2011-11-08 2013-07-02 William R. Watkins Concrete foundation footing with timber support members
CZ201248A3 (cs) * 2012-01-24 2013-10-02 Ceské vysoké ucení technické v Praze, Fakulta stavební, Katedra ocelových a drevených konstrukcí Sprazení nosníku na bázi dreva spojených pomocí ocelových desticek s oboustranne prolisovanými trny se základní deskou
CN102943434B (zh) * 2012-10-24 2014-11-19 南京林业大学 一种半装配式竹-混凝土组合桥梁
EP2787140B1 (fr) 2013-04-04 2015-10-14 MERK Timber GmbH Plafond plat en structure composite bois-béton et procédé de fabrication d'un tel plafond plat
NZ713716A (en) 2013-05-06 2018-07-27 Univ Of Canterbury Pre-stressed beams or panels
ITPD20130297A1 (it) * 2013-10-31 2015-05-01 Paolo Piazzon Parete prefabbricata per edilizia composta da gesso, calcestruzzo, polistirolo e calcestruzzo in grado di contenere gli impianti, di essere un terminale dell'impianto di riscaldamento e condizionamento e avere la ventilazione esterna.
US9745739B2 (en) * 2014-02-25 2017-08-29 Breton Systems Llc Wall construction method using injected urethane foam between the wall and autoclaved concrete (AAC) blocks
CA2947119C (fr) * 2014-04-28 2023-09-12 Jan Franck Procede de fabrication d'un plafond dans un batiment
CN104088386A (zh) * 2014-07-25 2014-10-08 陈风平 一种现浇砼填充构件
CA2960543C (fr) * 2014-09-30 2023-10-03 Universite Laval Systeme integre, son raccord et son procede de fabrication
KR101607546B1 (ko) * 2014-12-04 2016-03-31 주식회사 포스코 건축 자재
ES2612578A1 (es) * 2015-11-16 2017-05-17 Universidad Politécnica de Madrid Sistema de anclaje y refuerzo para estructuras colaborantes de madera y hormigón
CN106121114A (zh) * 2016-07-06 2016-11-16 蒋朝晖 一种智能楼板及其施工方法
AT16538U1 (de) * 2016-07-15 2019-12-15 Holzforschung Austria Oesterreichische Ges Fuer Holzforschung Holz-Beton-Verbundelement
CN106351375B (zh) * 2016-10-21 2020-08-18 王本淼 一种受力岛装配式空腔楼板
CN106368361B (zh) * 2016-10-21 2019-04-05 王海崴 一种装配式暗梁楼盖
CN106381952B (zh) * 2016-10-21 2019-03-26 王海崴 一种装配式叠合空腔楼盖
DE102016012948A1 (de) * 2016-10-28 2018-05-17 Meier Betonwerke Gmbh Vorgefertigte, multifunktionale Unterdecke
CN106677417A (zh) * 2017-01-13 2017-05-17 成都启立辰智科技有限公司 一种建筑墙用复合砖
US20180347191A1 (en) * 2017-06-01 2018-12-06 9360-4742 Quebec Inc. Prefabricated concrete slab floor and method of fabricating the same
CN107366305B (zh) * 2017-08-30 2019-03-19 江西省新绿地园林实业有限公司 海绵城市地下综合管廊抗震结构装置
JP6985867B2 (ja) * 2017-09-13 2021-12-22 大成建設株式会社 接合構造および門型架構
CN108005286A (zh) * 2017-11-23 2018-05-08 安徽同济建设集团有限责任公司 一种装配式建筑用单向叠合楼面板的施工方法
FR3084092B1 (fr) * 2018-07-17 2022-05-20 Constructions Composites Bois Plaque et dalle destinees a realiser un plancher ou une paroi et procedes de fabrication de telles plaques et dalle
EP3850167A4 (fr) * 2018-09-10 2022-05-25 HCSL Pty Ltd Panneau de construction
WO2020107129A1 (fr) * 2018-11-30 2020-06-04 Infina Technologies Inc. Dalle composite en bois-béton semi-préfabriquée
DE102019200046B3 (de) 2019-01-04 2020-06-10 Veit Dennert Kg Baustoffbetriebe Spannbeton-Holz-Verbundplatte, insbesondere zum Einsatz als Gebäude-Decken- oder Wandplatte, und Verfahren zu deren Herstellung
CN109707102A (zh) * 2019-01-07 2019-05-03 湖南大学 轻量化装配式竹木-混凝土组合梁
FI129949B (fi) * 2019-10-16 2022-11-30 Finnfoam Oy Lämmöneristelevy ja sen käyttö

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1183594A (en) * 1908-07-29 1916-05-16 Roy H Robinson Method of forming composite floor construction.
US1084276A (en) * 1912-11-16 1914-01-13 August Jaminet Reinforced wood panel.
US1235636A (en) * 1914-10-22 1917-08-07 Arthur G Bagnall Floor construction.
US2239177A (en) * 1937-05-12 1941-04-22 Formeta Beton As Concrete story partition construction
US2268311A (en) * 1939-07-07 1941-12-30 Walter F Sheehan Concrete floor construction
US2435998A (en) * 1943-03-31 1948-02-17 Porete Mfg Company Composite prestressed concrete beam and slab structure
US3286418A (en) * 1962-08-14 1966-11-22 Kissam Builders Supply Company Prestressed composite load-bearing slab
US3446692A (en) * 1964-06-01 1969-05-27 Pullman Inc Insulated panel and method of making same
US3389521A (en) * 1966-06-02 1968-06-25 Werner K.H. Gregori Concrete form structure for floors
US3442058A (en) * 1968-05-31 1969-05-06 Eng Collaborative Ltd The Concrete floor construction with duct-forming voids
US3605366A (en) * 1969-11-28 1971-09-20 Gerald Zakim Composite laminate panel construction
GB1360821A (en) * 1970-07-02 1974-07-24 Takenaka Komuten Co Method for making underground concrete structures
SE351883B (fr) * 1971-10-05 1972-12-11 Straengbetong Ab
CA1012376A (en) * 1974-12-30 1977-06-21 Westeel-Rosco Limited Composite structural assembly
FR2611778B1 (fr) * 1987-02-26 1992-04-24 Paris Ouest Entreprise Plancher a collaboration bois-beton
ATE141986T1 (de) * 1989-11-16 1996-09-15 Sfs Handels Holding Ag Verbundkonstruktion aus einem holzbalken bzw. - träger aufweisenden tragwerk und einer ortbetonplatte
CH687397A5 (fr) * 1992-11-14 1996-11-29 Bettex Fabienne Plancher mixte bois-beton.
FR2702236B1 (fr) * 1993-03-03 1995-08-04 Gauthier Daniel Element de construction composite bois-beton.
CH687213A5 (de) * 1993-04-21 1996-10-15 Silvatech Ag Plattenartiges Bauelement sowie Verfahren und Vorrichtung zu seiner Herstellung.
DE9319497U1 (de) 1993-12-18 1994-03-03 Bathon Leander Dr Eine Verbindung von Holzwerkstoffen und Werkstoffen jeder Art mit Hilfe von Klebern
US5497595A (en) * 1994-08-18 1996-03-12 Kalinin; Daniel Method of reinforcing wood beams and wood beams made therefrom
DE19605142C1 (de) * 1996-02-13 1999-10-14 Schlueter Systems Gmbh Fußbodenverbundkörper
DE29616375U1 (de) * 1996-09-20 1998-01-22 Holzbau Becker & Sohn Gmbh Brettstapelelement
US5809722A (en) * 1997-02-06 1998-09-22 Keith M. Wright Girder supported reinforced concrete slab building structures with shearing connectors, and methods of constructing the building structures and connectors
US6119422A (en) * 1997-11-07 2000-09-19 Fin-Pan, Inc. Impact resistant building panels
DE19805088A1 (de) * 1998-02-09 1999-08-19 Hescheler Wand- und Deckenelement
DE19808208A1 (de) 1998-02-27 1999-09-02 Fischer Artur Werke Gmbh Verbindungselement zum Verbinden von Holz und Beton
DE19818525B4 (de) * 1998-04-24 2004-11-25 Bauer, Werner, Dipl.-Ing. Holz-Beton-Verbundelement
JP2976023B1 (ja) * 1998-05-14 1999-11-10 博 稲葉 複合建材及びその製造方法
US6105321A (en) * 1998-10-19 2000-08-22 Karisallen; Kenneth James Prestressed wood composite laminate
AT5773U1 (de) * 2001-09-06 2002-11-25 Pirnbacher Georg Ing Holzbetonverbundbauteil
DE20119279U1 (de) * 2001-11-28 2002-04-11 Bauer Werner Verankerungsstelle zur Befestigung von flachen Verbindungsbauteilen in aushärtenden Baustoffen
DE20210714U1 (de) * 2002-07-10 2002-11-21 Bauer Werner Holz-Beton-Verbundelement mit integriertem Klimaelement
US6955014B2 (en) * 2002-11-07 2005-10-18 Fabcon, Inc. Insulated concrete cast panels with voids in billits
US20040118063A1 (en) * 2002-12-19 2004-06-24 Shidler Edward C. Composite board for insulated concrete walls
DE10351989A1 (de) * 2003-10-23 2005-06-09 Bathon, Leander Holz-Beton-Verbundsysteme aus Holzbauteilen, Zwischenschichten und Betonbauteilen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106988473A (zh) * 2017-05-22 2017-07-28 江苏君成建材科技有限公司 新型蒸汽加气混凝土建材

Also Published As

Publication number Publication date
AU2004222807A1 (en) 2005-05-12
EP1528171A3 (fr) 2005-05-25
US20080016803A1 (en) 2008-01-24
US8245470B2 (en) 2012-08-21
CA2485804A1 (fr) 2005-04-23
DE10351989A1 (de) 2005-06-09
AU2004222807B2 (en) 2010-05-06
US20050086906A1 (en) 2005-04-28
CA2485804C (fr) 2012-06-19
EP1528171A2 (fr) 2005-05-04

Similar Documents

Publication Publication Date Title
EP1528171B1 (fr) Système de construction composite bois-béton comportant des éléments de construction en bois, des couches intermédiaires et éléments de construction en béton
EP1808538B1 (fr) Construction faite de pièces individuelles
AT411372B (de) Bauelement und verfahren zu seiner herstellung
AT394073B (de) Waermedaemmsystem fuer ein steildach mit auf den dachsparren verlegter daemmlage
DE19818525B4 (de) Holz-Beton-Verbundelement
DE20316376U1 (de) Holz-Beton-Verbundsysteme aus Holzbauteilen, Zwischenschichten und Betonbauteilen
DE10254043B4 (de) Verbundkonstruktion hoher Tragfähigkeit
DE60004462T2 (de) Isolationselement aus mineralwolle und dachkonstruktion die dieses aufweist
EP1669505B1 (fr) Poutre composite en acier-béton avec support ignifuge pour éléments de plafond
WO1999032738A1 (fr) Armature pour surfaces d'elements constitutifs ou de batiments
AT505266B1 (de) Trägerelement, stegträgeranordnung und verfahren zu deren herstellung
EP2024580A1 (fr) CONSTRUCTION PORTEUSE ENbÉTON PLANE ET PROCÉdÉ DE rÉALISATION DE CELLE-Ci
DE60011415T2 (de) Konstruktionselement für gebäude und versteifungsplatte für ein solches element
EP3789553B1 (fr) Élément préfabriqué et système préfabriqué
EP1889982A2 (fr) Structure de charpente en bois, une installation ainsi utilisable pour le renforcement longitudinal tout comme un procédé destiné à édifier une telle structure de charpente
WO2007079739A2 (fr) Ouvrage constitué de parties individuelles
EP1972734A1 (fr) Corps de fixation pour un panneau isolant
WO1988003587A1 (fr) Element de plafond et/ou de mur, notamment pour maisons prefabriquees
EP0811731A1 (fr) Structure et élément de plafond
AT503693B1 (de) Flächige beton-tragkonstruktion sowie verfahren zur herstellung derselben
EP1826328B1 (fr) Agencement de fixation
AT411371B (de) Bauelement
DE20215502U1 (de) Stahl-Verbund-Konstruktion für Geschossdecken
DE2836456A1 (de) Grossformatige fuellkoerper fuer rippen- und balkendecken
EP1074670A2 (fr) Construction de bâtiments

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

AKX Designation fees paid
17P Request for examination filed

Effective date: 20060206

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151209

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004015296

Country of ref document: DE

Representative=s name: NITZ, ASTRID, DR., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015296

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 825115

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015296

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161020

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161020

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20041020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 20

Ref country code: DE

Payment date: 20230929

Year of fee payment: 20

Ref country code: CH

Payment date: 20231102

Year of fee payment: 20

Ref country code: AT

Payment date: 20231020

Year of fee payment: 20