EP1526964A1 - Dispositif et procede pour produire un objet tridimensionnel au moyen d'un procede de fabrication generatif - Google Patents

Dispositif et procede pour produire un objet tridimensionnel au moyen d'un procede de fabrication generatif

Info

Publication number
EP1526964A1
EP1526964A1 EP03784136A EP03784136A EP1526964A1 EP 1526964 A1 EP1526964 A1 EP 1526964A1 EP 03784136 A EP03784136 A EP 03784136A EP 03784136 A EP03784136 A EP 03784136A EP 1526964 A1 EP1526964 A1 EP 1526964A1
Authority
EP
European Patent Office
Prior art keywords
applied layer
carrier
material application
previously applied
application device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03784136A
Other languages
German (de)
English (en)
Inventor
Thomas Mattes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EOS GmbH
Original Assignee
EOS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EOS GmbH filed Critical EOS GmbH
Publication of EP1526964A1 publication Critical patent/EP1526964A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • B22F12/37Rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/55Two or more means for feeding material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to an apparatus and a method for producing a three-dimensional object by means of a generative production method.
  • the three-dimensional object is produced in layers by applying layers of a construction material and connecting them at the points corresponding to the cross section of the object.
  • a device for the layer-by-layer production of a three-dimensional object by selective laser sintering is known for example from EP 0 734 842.
  • a first layer of a powdery material is applied to a lowerable carrier and irradiated at the locations corresponding to the object, so that the material sinters there.
  • the carrier is then lowered and a second layer is applied to this first layer and in turn selectively sintered, which is bonded to the first layer. This creates the object in layers.
  • the application of layers of a building material does not mean an independent flow of the material into the space between the container bottom and the carrier, as is described, for example, in DE 199 57 370.
  • the object of the present invention is to increase the production speed of a device for the layer-by-layer production of three-dimensional objects and the productivity of an associated method. This object is achieved by the device characterized in claim 1 and the method characterized in claim 17.
  • Fig. 1 is a side view of a device according to a first embodiment of the present invention.
  • FIG. 2 shows a top view of a device according to a second embodiment of the present invention
  • FIG. 3 shows a perspective illustration of a device according to a second embodiment of the invention
  • FIG. 4 shows a top view of a device according to a third embodiment of the present invention.
  • FIG. 5 shows a perspective illustration of a device according to a third embodiment of the invention.
  • FIG. 1 shows a cross-sectional view of a device for the layer-by-layer production of three-dimensional objects according to a first embodiment of the invention.
  • the device does not necessarily have a construction area 2 shaped cross section. This is occupied by a construction container 4 which is open at the top and has an outer boundary surface 17 and an inner boundary surface 16.
  • a construction platform 6 serves as the lower limit of the construction container 4 and is designed in such a way that it completely fills the area between the inner boundary surface 16 and the outer boundary surface 17.
  • the construction platform 6 has on its inner edge a seal 19 for sealing the gap between the inner boundary surface 16 and the construction platform 6.
  • the construction platform 6 has on its outer edge a seal 18 for sealing the gap between the outer boundary surface 17 and the construction platform 6.
  • the provision of an inner boundary surface 16 is not absolutely necessary. If there is only an outer boundary surface 17, the building container 4 has no recess in its center and the building platform 6 has no hole in the middle.
  • the construction platform 6 is connected to a vertical drive 15, which enables the construction platform 6 to move up and down in the vertical direction.
  • the entire building container 4 is connected to a drive 20 which sets the building container 4 in motion about an axis of rotation 3 coinciding with the axis of symmetry of the building container 4.
  • the connection between the construction container 4 and the drive 20 is designed so that it can be released immediately below the construction container 4, so that the construction container 4 can be removed from the construction area 2.
  • a material application device 7 for applying the material to be applied to the building platform. arranged terials. This extends in the radial direction over the maximum radial extent of the building container.
  • a solidification device in the form of a laser 21 and a deflection unit 22 is arranged above the material application device 7.
  • the deflection unit is suitable for directing the laser beam to any location within a consolidation area 11.
  • the deflection unit is preferably an xy scanner.
  • the consolidation area 11 is a partial area that is stationary relative to the position of the material application devices within the construction area 2 and is located at the level of the layer deposited by the material application devices.
  • the laser 21, the deflection unit 22, the vertical drive 15 and the drive 20 are connected to a controller 23. 1 shows a formed object 24, which is surrounded by non-solidified material 25.
  • the building platform 6 is first positioned so that its top surface is flush with the upper edge of the building container 4. Thereafter, the controller 23 starts the movement of the building container 4 about the axis of rotation 3 at a uniform speed by the drive 20, the material application device 7 applying material to be solidified to the building platform 6. Then the exposure process is started by the laser. This solidifies the material at selective locations within a fixed solidification area 11, under which the building container 4 moves. The material is applied by the material application device 7 in such a way that the applied layer when it enters the laser radiation covered hardening area 11 has a predetermined thickness d and can take place automatically without the involvement of the controller.
  • controller 23 controls the vertical drive 15 in such a way that the building platform is lowered by the amount of the layer thickness d during a full revolution of the building container. During each revolution of the building container 4, the material applied at points outside the solidification area 11 is now solidified in the solidification area 11.
  • the advantage of this embodiment is that during the solidification of the applied material in one surface area of the object (s) to be manufactured, new material is applied in other surface areas of the object (s) to be manufactured.
  • the parallelization of material application and consolidation increases productivity when manufacturing objects. There are no idle times during which the material is dosed, stored and tempered and no solidification can take place.
  • the relative movement of the application device 7 to the building container 4 is always only in one direction. Among other things, this results in a higher temperature constancy, which leads to a number of advantages, e.g. a higher process reliability and a higher precision as well as the distortion and tension free of the components.
  • the size and the number of objects to be manufactured are not limited by the area covered by the deflection unit. The device is therefore suitable for the series production of large numbers of components with the same properties
  • Second embodiment A second embodiment differs from the first embodiment in that a plurality of consolidation devices 1 and a plurality of material application devices 7 are present. Each consolidation device is assigned to a material application device 7 and a consolidation area within the construction area 2. 2 shows an example of a plan view of a device with four solidification areas 11, 12, 13, 14, which are each present between the material application devices 7 and 8 or 8 and 9 or 9 and 10 or 10 and 7.
  • the operation of a device according to the second embodiment of the invention differs from the operation of a device according to the first embodiment in that the applied layer of material is solidified in all areas of consolidation at the same time.
  • the material applied by the material application device 7 is solidified in the consolidation area 11
  • the material applied by the material application device 8 is solidified in the consolidation area 12
  • the material applied by the material application device 9 is solidified in the consolidation area 13
  • the material applied by the material application device 10 is solidified in the solidification area 14.
  • Each of the material application devices deposits the material with a layer thickness d.
  • n denotes the number of consolidation areas present
  • FIG. 3 shows only one of the consolidation devices 1.
  • a first modification of the device according to the first or second embodiment has a drive 20 which is able to change the circulating speed in stages or continuously during the circulation of the building container.
  • the rotational speed of the building container about the axis of rotation 3 is increased if material of an applied layer that is not to be solidified passes through the hardening area 11.
  • the production speed can thereby be increased since the time period during which no building material is solidified is shortened.
  • the circulating speed of the building container is preferably varied as a function of the expansion of the partial areas of the applied layer to be solidified. The result of this is that the current rotational speed is determined by the expansion of the largest partial area of the applied layer to be selectively solidified within one of the hardening areas. If this maximum possible circulation speed is always set as the circulation speed of the building container, this leads to an increase in the production speed. Modification 2 of the first and second embodiments
  • the mode of operation is changed such that the thickness d of the layer deposited by the material application devices is varied.
  • the lowering speed of the building platform 6 is adapted to the thickness d 'of the layer deposited in a partial area of the building area 2.
  • the layer thickness can thus be adapted to the local geometric requirements of the part to be built. If, for example, an increased detail resolution is required locally, one or more layers with a smaller thickness can be applied. The building process can thus be optimized.
  • the drive 20 is not connected to the building container 4 but to the consolidation devices 1 and the material application devices 7, 8, 9, 10.
  • the building container 4 therefore maintains its position, while the drive 20 allows the consolidation devices 1 and the material application devices 7, 8, 9, 10 to move with respect to the building container 4 about the axis of rotation 3. It is of course also conceivable that both the consolidation devices 1 and the material application devices 7, 8, 9, 10 and the construction container 4 execute a movement against one another.
  • Modification 4 of the first and second embodiments In the case of a fourth modification of the first and second embodiment, the building platform cannot be lowered continuously, but in stages, ie the lowering takes place, for example, after solidification has been completed. This has the advantage that the focusing of the laser beam on the layer to be solidified is simplified since the layers applied are thereby parallel to the horizontal plane.
  • Figures 4 and 5 show a third embodiment of the invention.
  • the third embodiment differs from the second embodiment in that the building container 4 is replaced by a plurality of building containers.
  • the construction area is exemplarily occupied by four construction containers 4a, 4b, 4c, 4d.
  • Each of the construction containers 4a or 4b or 4c or 4d has a construction platform 6a or 6b or 6c or 6d and has an outer boundary surface 17, an inner boundary surface 16 and lateral boundary surfaces 26.
  • a construction platform 6a or 6b or 6c or 6d serves as the lower boundary of the building container 4a or 4b or 4c or 4d and extends between the outer boundary surface 17, the inner boundary surface 16 and the lateral boundary surfaces 26.
  • the gap between the construction platform and the boundary surfaces are sealed by a seal analogous to the previous embodiments.
  • the horizontal cross-sectional areas of the individual building containers can have any shape and do not necessarily have to be identical.
  • a plurality of material application devices 7, 8, 9, 10 for applying building material to the building platforms 4a, 4b, 4c, 4d are arranged about the axis of rotation 3 above the building area 2.
  • the number of material application devices preferably corresponds to the number of building containers.
  • a plurality of deflection units 22 and / or lasers 21 are arranged above the material application devices 7, 8, 9, 10. Each of the deflection units is suitable for directing the laser beam to any location within a solidification area assigned to the deflection unit.
  • Each deflection unit is assigned to a hardening area within the construction area 2.
  • the number of building containers preferably corresponds to the number of consolidation areas.
  • 4 shows an example of a plan view of a device with four solidification areas 11, 12, 13, 14, which are each present between the material application devices 7 and 8 or 8 and 9 or 9 and 10 or 10 and 7.
  • the construction platform 6a or 6b or 6c or 6d is each connected to a vertical drive 15a or 15b or 15c or 15d, not shown in the figures, which enables the construction platform to move up and down in the vertical direction.
  • a vertical drive 15a or 15b or 15c or 15d not shown in the figures, which enables the construction platform to move up and down in the vertical direction.
  • the connection between the vertical drive and the construction container is detachable immediately below the construction container, so that each of the construction containers can be removed from the construction area 2 independently of the other construction containers.
  • a single vertical drive 15 can also be present, to which all construction platforms 6a, 6b, 6c, 6d are connected.
  • All building containers 4a, 4b, 4c, 4d are connected to a drive 20, which can set the building containers 4a, 4b, 4c, 4d in synchronism with each other in a movement around the axis of rotation 3.
  • the lasers 21, the deflection units 22, the vertical drives 15a, 15b, 15c, 15d, and the drive 20 are connected to a controller 23.
  • the controller 20 causes the drive 20 to move the building containers 4a, 4b, 4c, 4d synchronously at a constant speed around the axis of rotation 3.
  • the material application devices 7, 8, 9, 10 apply material to be solidified to the construction platforms 6a, 6b, 6c and 6d.
  • the applied material layer is solidified in all areas of consolidation at the same time.
  • the material applied by the material application device 7 is solidified in the consolidation area 11
  • the material applied by the material application device 8 is solidified in the consolidation area 12
  • the material applied by the material application device 9 is solidified in the consolidation area 13
  • the material applied by the material application device 10 is solidified in the solidification area 14.
  • Each of the material application devices deposits the material with a layer thickness d.
  • the drives 15a, 15b, 15c, 15d are controlled in such a way that each of the construction platforms 4a, 4b, 4c, 4d is lowered four times the layer thickness 4 xd during one revolution of the associated construction container.
  • n denotes the number of consolidation areas present, then the respective construction platforms must be reduced by n times the layer thickness nxd during one revolution of the associated construction container.
  • the advantage of the third embodiment results from increased flexibility.
  • the device can be used with only a subset of the building containers, even with only one building container operate.
  • the construction platforms cannot be lowered continuously, but in stages, i.e. the lowering takes place, for example, after solidification is complete in all hardening areas.
  • This has the advantage that the focusing of the laser beam on the layer to be solidified is simplified since the layers applied are thereby parallel to the horizontal plane.
  • the layer thickness of the applied layer in the different building containers can be selected differently. This goes hand in hand with a different lowering speed of the building platforms in the different Bau josern. This allows objects with different layer thicknesses to be produced in parallel.
  • the building containers do not execute a rotational movement with respect to an axis of rotation 3. Instead, a guide drive 27 guides the building containers synchronously around the axis of rotation 3 only on a closed, not necessarily circular path. If the device has n material application devices and n consolidation areas, the web preferably corresponds to the edge of an n-corner. Optionally, each building container executes an additional rotary movement on its path around the axis of rotation 3 about an axis of rotation 3 ′ passing through it and parallel to the axis of rotation 3.
  • Modification 5 of the third embodiment in a fifth modification of the third embodiment, analogously to modification 1 described above, the device has a drive 20 which is able to change the rotational speed in stages or continuously during the rotation of the building container.
  • the current rotational speed can be adapted to the extent of the largest partial area of the applied layer to be selectively solidified within one of the hardening regions. If this maximum possible rotational speed is always set as the rotational speed of the building container, this leads to an increase in the production speed.
  • the drive 20 is not with the building containers 4a, 4b, 4c, 4d, but with the deflection units 22 and the material application devices 7,
  • the laser and the deflection unit instead of the laser and the deflection unit, other radiation sources, such as a Electron beam, microwave radiation, a lamp in connection with a mask, LEDs and other exposure arrays etc. or other solidification devices such as binder and adhesive applicators can be used.
  • a Electron beam microwave radiation
  • a lamp in connection with a mask LEDs and other exposure arrays etc.
  • solidification devices such as binder and adhesive applicators
  • the device and methods described above can also be used in various additive manufacturing processes, such as. B. selective laser sintering, especially of polymers, stereolithography, the LOM process (Laminated Object Manufacturing), the FDM process (fused model deposition) or three-dimensional printing (solidifying powdery material by means of an adhesive or by means of a chemical reaction, in particular by using multicomponent systems made of binder / hardener or by melting thermoplastic), in which the three-dimensional object is produced in layers by applying layers of a construction material and connecting them at the points corresponding to the cross section of the object.
  • B. selective laser sintering especially of polymers, stereolithography, the LOM process (Laminated Object Manufacturing), the FDM process (fused model deposition) or three-dimensional printing (solidifying powdery material by means of an adhesive or by means of a chemical reaction, in particular by using multicomponent systems made of binder / hardener or by melting thermoplastic), in which the three-dimensional object is produced in layers by applying layers of a construction material and connecting

Abstract

L'invention concerne un dispositif et un procédé pour la production générative par couches d'objets tridimensionnels par solidification sélective d'un matériau structurel liquide ou poudreux pouvant être solidifié. Grâce à un mouvement de rotation de la zone de réalisation (2), dans laquelle les objets doivent être produits, par rapport à un dispositif d'application de matériau (7) servant à appliquer des couches du matériau structurel et à un dispositif de solidification (1), il est possible d'utiliser le dispositif d'application de matériau (7) et le dispositif de solidification (1) simultanément à des emplacements différents de la zone de réalisation.
EP03784136A 2002-08-02 2003-07-31 Dispositif et procede pour produire un objet tridimensionnel au moyen d'un procede de fabrication generatif Withdrawn EP1526964A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10235434 2002-08-02
DE10235434A DE10235434A1 (de) 2002-08-02 2002-08-02 Vorrichtung und Verfahren zum Herstellen eins dreidimensionalen Objekts mittels eines generativen Fertigungsverfahrens
PCT/EP2003/008520 WO2004014637A1 (fr) 2002-08-02 2003-07-31 Dispositif et procede pour produire un objet tridimensionnel au moyen d'un procede de fabrication generatif

Publications (1)

Publication Number Publication Date
EP1526964A1 true EP1526964A1 (fr) 2005-05-04

Family

ID=30128673

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03784136A Withdrawn EP1526964A1 (fr) 2002-08-02 2003-07-31 Dispositif et procede pour produire un objet tridimensionnel au moyen d'un procede de fabrication generatif

Country Status (7)

Country Link
US (1) US8172562B2 (fr)
EP (1) EP1526964A1 (fr)
JP (1) JP4790264B2 (fr)
CN (1) CN1678448B (fr)
DE (1) DE10235434A1 (fr)
HK (1) HK1081489A1 (fr)
WO (1) WO2004014637A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107900333A (zh) * 2017-11-15 2018-04-13 芜湖天梦信息科技有限公司 一种3d打印机铺粉装置的喷头机构

Families Citing this family (243)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865960B1 (fr) * 2004-02-06 2006-05-05 Nicolas Marsac Procede et machine pour realiser des objets en trois dimensions par depot de couches successives
US20050278933A1 (en) * 2004-06-22 2005-12-22 The Boeing Company Joint Design For Large SLS Details
GB0427362D0 (en) 2004-12-14 2005-01-19 Sustainable Engine Systems Ltd Heat exchanger
WO2006121797A2 (fr) * 2005-05-06 2006-11-16 The Ex One Company Appareil et procede de fabrication de solides a forme libre
DE102005030067A1 (de) * 2005-06-27 2006-12-28 FHS Hochschule für Technik, Wirtschaft und soziale Arbeit St. Gallen Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Gegenstandes durch ein generatives 3D-Verfahren
US20070013724A1 (en) * 2005-07-13 2007-01-18 Swift Lawrence W Building of scaled physical models
US7424335B2 (en) * 2005-07-13 2008-09-09 Swift Lawrence W Identification of terrestrial foliage location, type and height for scaled physical models
US20070042327A1 (en) * 2005-08-19 2007-02-22 Swift Lawrence W Determination of scaling for scaled physical architectural models
US7951412B2 (en) * 2006-06-07 2011-05-31 Medicinelodge Inc. Laser based metal deposition (LBMD) of antimicrobials to implant surfaces
US20080015947A1 (en) * 2006-07-12 2008-01-17 Swift Lawrence W Online ordering of architectural models
DE102006055056A1 (de) * 2006-11-22 2008-05-29 Eos Gmbh Electro Optical Systems Beschichter zum Auftragen einer Schicht eines pulverförmigen Aufbaumaterials in einer Vorrichtung zum schichtweisen Herstellen eines dreidimensionalen Objekts
DE102006055052A1 (de) * 2006-11-22 2008-05-29 Eos Gmbh Electro Optical Systems Vorrichtung zum schichtweisen Herstellen eines dreidimensionalen Objekts
DE102007010624B4 (de) * 2007-03-02 2009-04-30 Deltamed Gmbh Vorrichtung zur schichtweisen generativen Herstellung dreidimensionaler Formteile, Verfahren zur Herstellung dieser Formteile sowie diese Formteile
GB0712027D0 (en) * 2007-06-21 2007-08-01 Materials Solutions Rotating build plate
US10226919B2 (en) 2007-07-18 2019-03-12 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
DE102007050953A1 (de) 2007-10-23 2009-04-30 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
WO2009084991A1 (fr) 2008-01-03 2009-07-09 Arcam Ab Procédé et appareil de production d'objets en trois dimensions
JP4798185B2 (ja) 2008-08-05 2011-10-19 パナソニック電工株式会社 積層造形装置
GB0816308D0 (en) * 2008-09-05 2008-10-15 Mtt Technologies Ltd Optical module
JP5033117B2 (ja) * 2008-12-25 2012-09-26 長野日本無線株式会社 三次元造形機
CN102438777B (zh) * 2009-03-24 2016-03-09 巴斯夫欧洲公司 生产用于换热器的热磁性成型体的印刷方法
WO2011008143A1 (fr) 2009-07-15 2011-01-20 Arcam Ab Procédé et appareil de production d’objets tridimensionnels
DE102010013732A1 (de) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010014969A1 (de) 2010-04-14 2011-10-20 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010015451A1 (de) 2010-04-17 2011-10-20 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte
DE102010020416A1 (de) 2010-05-12 2011-11-17 Eos Gmbh Electro Optical Systems Bauraumveränderungseinrichtung sowie eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts mit einer Bauraumveränderungseinrichtung
DE102010041284A1 (de) 2010-09-23 2012-03-29 Siemens Aktiengesellschaft Verfahren zum selektiven Lasersintern und für dieses Verfahren geeignete Anlage zum selektiven Lasersintern
WO2012074986A1 (fr) * 2010-11-29 2012-06-07 3D Systems, Inc. Systèmes et procédés de stéréolithographie utilisant une modulation de laser interne
DE102010056346A1 (de) 2010-12-29 2012-07-05 Technische Universität München Verfahren zum schichtweisen Aufbau von Modellen
DE102011007957A1 (de) 2011-01-05 2012-07-05 Voxeljet Technology Gmbh Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper
JP5712306B2 (ja) 2011-01-28 2015-05-07 ア−カム アーベー 三次元体の製造方法
CN103608167B (zh) * 2011-06-15 2017-03-01 帝斯曼知识产权资产管理有限公司 基于基材的加成法制造工艺和装置
JP6019113B2 (ja) * 2011-06-28 2016-11-02 ガルフ・フィルトレイション・システムズ・インコーポレイテッドGulf Filtration Systems Inc. 3次元物体を線形凝固を用いて形成するための装置および方法
DE102011111498A1 (de) 2011-08-31 2013-02-28 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
WO2013098050A1 (fr) 2011-12-28 2013-07-04 Arcam Ab Procédé et appareil pour l'accroissement de la résolution dans des articles tridimensionnels de fabrication additive
WO2013098054A1 (fr) 2011-12-28 2013-07-04 Arcam Ab Procédé et appareil de détection de défauts pour une fabrication de forme libre
EP2797707B1 (fr) 2011-12-28 2021-02-24 Arcam Ab Procédé et appareil pour fabriquer des articles tridimensionnels poreux
US8915728B2 (en) 2012-01-27 2014-12-23 United Technologies Corporation Multi-dimensional component build system and process
WO2013117185A1 (fr) 2012-02-10 2013-08-15 Additech Gmbh Procédé et dispositif de fabrication d'un objet tridimensionnel
DE102012004213A1 (de) 2012-03-06 2013-09-12 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle
US9126167B2 (en) 2012-05-11 2015-09-08 Arcam Ab Powder distribution in additive manufacturing
DE102012010272A1 (de) 2012-05-25 2013-11-28 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen
DE102012012363A1 (de) 2012-06-22 2013-12-24 Voxeljet Technology Gmbh Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter
US20160193695A1 (en) * 2012-07-27 2016-07-07 Aerojet Rocketdyne Of De, Inc. Solid axisymmetric powder bed for selective laser melting
EP2695724A1 (fr) 2012-08-09 2014-02-12 Siemens Aktiengesellschaft Technique de frittage au laser pour la fabrication d'articles sur une plate-forme de frittage mobile
FR2994885B1 (fr) * 2012-08-29 2014-08-29 Carpyz Machines pour la fabrication de produits circulaires par addition couche par couche
DE102012020000A1 (de) 2012-10-12 2014-04-17 Voxeljet Ag 3D-Mehrstufenverfahren
DE102013004940A1 (de) 2012-10-15 2014-04-17 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf
US10987868B2 (en) 2012-10-31 2021-04-27 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Production line for making tangible products by layerwise manufacturing
EP2727709A1 (fr) 2012-10-31 2014-05-07 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Procédé et appareil pour fabriquer des produits tangibles par fabrication par couches
CN104781022B (zh) 2012-11-06 2017-10-17 阿卡姆股份公司 用于加成制造的粉末预处理
DE102012022859A1 (de) 2012-11-25 2014-05-28 Voxeljet Ag Aufbau eines 3D-Druckgerätes zur Herstellung von Bauteilen
FR2998496B1 (fr) * 2012-11-27 2021-01-29 Association Pour La Rech Et Le Developpement De Methodes Et Processus Industriels Armines Procede de fabrication additive d'une piece par fusion selective ou frittage selectif de lits de poudre a compacite optimisee par faisceau de haute energie
CN104853901B (zh) 2012-12-17 2018-06-05 阿卡姆股份公司 添加材料制造方法和设备
WO2014095208A1 (fr) 2012-12-17 2014-06-26 Arcam Ab Procédé et appareil d'impression 3d
US20140191439A1 (en) * 2013-01-04 2014-07-10 New York University Continuous Feed 3D Manufacturing
DE102013003303A1 (de) 2013-02-28 2014-08-28 FluidSolids AG Verfahren zum Herstellen eines Formteils mit einer wasserlöslichen Gussform sowie Materialsystem zu deren Herstellung
EP2969489B1 (fr) * 2013-03-12 2019-04-24 Orange Maker Llc Impression 3d utilisant l'accumulation en spirale
CN105163930B (zh) 2013-03-15 2017-12-12 3D系统公司 用于激光烧结系统的滑道
DE102013206458A1 (de) 2013-04-11 2014-10-16 Eos Gmbh Electro Optical Systems Rotationsbeschichter und Vorrichtung zum generativen Herstellen eines Objekts mit dem Rotationsbeschichter
US9550207B2 (en) 2013-04-18 2017-01-24 Arcam Ab Method and apparatus for additive manufacturing
US9676031B2 (en) 2013-04-23 2017-06-13 Arcam Ab Method and apparatus for forming a three-dimensional article
CN103222528B (zh) * 2013-05-06 2014-12-17 兰雄兵 3d打印设备及其送料系统
US9415443B2 (en) 2013-05-23 2016-08-16 Arcam Ab Method and apparatus for additive manufacturing
DE102013210242A1 (de) * 2013-06-03 2014-12-04 Siemens Aktiengesellschaft Anlage zum selektiven Laserschmelzen mit drehender Relativbewegung zwischen Pulverbett und Pulververteiler
EP3415254A1 (fr) * 2013-06-10 2018-12-19 Renishaw PLC Appareil et procédé de solidification sélective par laser
GB201310398D0 (en) 2013-06-11 2013-07-24 Renishaw Plc Additive manufacturing apparatus and method
US9468973B2 (en) 2013-06-28 2016-10-18 Arcam Ab Method and apparatus for additive manufacturing
DE102013212826A1 (de) * 2013-07-01 2015-01-08 Max Schlatterer Gmbh & Co. Kg Endloses Transportband und Verfahren zur Herstellung eines endlosen Transportbands
US9481131B2 (en) * 2013-07-18 2016-11-01 Mitsubishi Electric Research Laboratories, Inc. Method and apparatus for printing 3D objects using additive manufacturing and material extruder with translational and rotational axes
US9505057B2 (en) 2013-09-06 2016-11-29 Arcam Ab Powder distribution in additive manufacturing of three-dimensional articles
US9676032B2 (en) 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
DE102013018182A1 (de) 2013-10-30 2015-04-30 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem
EP2878409B2 (fr) 2013-11-27 2022-12-21 SLM Solutions Group AG Procédé et dispositif de commande d'un système d'irradiation
US10434572B2 (en) 2013-12-19 2019-10-08 Arcam Ab Method for additive manufacturing
DE102013018031A1 (de) 2013-12-02 2015-06-03 Voxeljet Ag Wechselbehälter mit verfahrbarer Seitenwand
DE102013020491A1 (de) 2013-12-11 2015-06-11 Voxeljet Ag 3D-Infiltrationsverfahren
US9802253B2 (en) 2013-12-16 2017-10-31 Arcam Ab Additive manufacturing of three-dimensional articles
ES2799123T3 (es) 2013-12-17 2020-12-14 Eos Gmbh Electro Optical Systems Sistema de impresión láser
US10130993B2 (en) 2013-12-18 2018-11-20 Arcam Ab Additive manufacturing of three-dimensional articles
US9789563B2 (en) 2013-12-20 2017-10-17 Arcam Ab Method for additive manufacturing
EP2886307A1 (fr) 2013-12-20 2015-06-24 Voxeljet AG Dispositif, papier spécial et procédé de fabrication de pièces moulées
CN104760424B (zh) * 2014-01-03 2017-01-18 北京理工大学 一种多功能组装式3d打印装置及方法
TWI535554B (zh) * 2014-01-06 2016-06-01 財團法人工業技術研究院 立體成型物以及立體成型物的製造設備與製造方法
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
GB201404854D0 (en) * 2014-03-18 2014-04-30 Renishaw Plc Selective solidification apparatus and method
DE102014004692A1 (de) 2014-03-31 2015-10-15 Voxeljet Ag Verfahren und Vorrichtung für den 3D-Druck mit klimatisierter Verfahrensführung
DE102014004633B4 (de) * 2014-04-01 2023-12-14 Concept Laser Gmbh Vorrichtung und Verfahren zum Herstellen von dreidimensionalen Objekten durch aufeinanderfolgendes Verfestigen von Schichten
US20150283613A1 (en) 2014-04-02 2015-10-08 Arcam Ab Method for fusing a workpiece
TWI718096B (zh) 2014-04-23 2021-02-11 荷蘭商荷蘭Tno自然科學組織公司 用以藉由分層製造技術製作有形產品之生產線及方法
TWI678274B (zh) 2014-04-30 2019-12-01 荷蘭商荷蘭Tno自然科學組織公司 用以藉由分層製造技術製作有形產品之方法及生產線
DE102014007584A1 (de) 2014-05-26 2015-11-26 Voxeljet Ag 3D-Umkehrdruckverfahren und Vorrichtung
WO2015196149A1 (fr) 2014-06-20 2015-12-23 Velo3D, Inc. Appareils, systèmes et procédés pour l'impression en 3d
KR102219905B1 (ko) 2014-07-13 2021-02-25 스트라타시스 엘티디. 회전 3d 프린팅을 위한 시스템 및 방법
KR102288589B1 (ko) 2014-08-02 2021-08-12 복셀젯 아게 특히 냉간 주조 방법에 사용되는 방법 및 주조 몰드
US9341467B2 (en) 2014-08-20 2016-05-17 Arcam Ab Energy beam position verification
US9999924B2 (en) 2014-08-22 2018-06-19 Sigma Labs, Inc. Method and system for monitoring additive manufacturing processes
US10029417B2 (en) 2014-09-09 2018-07-24 Siemens Energy, Inc. Articulating build platform for laser additive manufacturing
DE102014218639A1 (de) * 2014-09-17 2016-03-31 Mtu Aero Engines Gmbh Vorrichtung und Verfahren zum generativen Aufbauen einer Werkstückanordnung
CN106794631A (zh) 2014-10-02 2017-05-31 惠普发展公司,有限责任合伙企业 用于增材制造设备的一体化建造和材料供应系统
DE102014221885A1 (de) * 2014-10-28 2016-04-28 Koenig & Bauer Ag Vorrichtung zum schichtweisen Aufbau von mindestens einem dreidimensionalen Werkstück
TWI630124B (zh) * 2014-11-10 2018-07-21 三緯國際立體列印科技股份有限公司 立體列印裝置
US10786948B2 (en) 2014-11-18 2020-09-29 Sigma Labs, Inc. Multi-sensor quality inference and control for additive manufacturing processes
CN110757796B (zh) 2014-11-24 2022-10-11 添加剂工业有限公司 用于通过增材制造生产物品的设备和方法
WO2016096407A1 (fr) * 2014-12-15 2016-06-23 Arcam Ab Procédé et appareil de fabrication additive faisant appel à un système de coordonnées angulaire bidimensionnel
US20160167303A1 (en) * 2014-12-15 2016-06-16 Arcam Ab Slicing method
DE102015006533A1 (de) 2014-12-22 2016-06-23 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Schichtaufbautechnik
EP3245045A4 (fr) 2015-01-13 2018-10-31 Sigma Labs, Inc. Système et méthodologie de qualification de matière
US10226817B2 (en) 2015-01-13 2019-03-12 Sigma Labs, Inc. Material qualification system and methodology
US9721755B2 (en) 2015-01-21 2017-08-01 Arcam Ab Method and device for characterizing an electron beam
DE102015201686A1 (de) * 2015-01-30 2016-08-04 Siemens Aktiengesellschaft Additives Herstellungsverfahren unter Verwendung dickerer Pulverschichten und Bauteil
DE202015009081U1 (de) * 2015-03-09 2016-09-01 Otto-Von-Guericke-Universität Magdeburg Delta-3D-Druckereinrichtung
DE102015003372A1 (de) 2015-03-17 2016-09-22 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater
GB201505458D0 (en) 2015-03-30 2015-05-13 Renishaw Plc Additive manufacturing apparatus and methods
US11014161B2 (en) 2015-04-21 2021-05-25 Arcam Ab Method for additive manufacturing
DE102015006363A1 (de) 2015-05-20 2016-12-15 Voxeljet Ag Phenolharzverfahren
US10449606B2 (en) * 2015-06-19 2019-10-22 General Electric Company Additive manufacturing apparatus and method for large components
US11478983B2 (en) * 2015-06-19 2022-10-25 General Electric Company Additive manufacturing apparatus and method for large components
EP3322575B1 (fr) 2015-07-13 2021-08-25 Stratasys Ltd. Procédé de fourniture de paramètres d'étalonnage d'une buse
US10357827B2 (en) * 2015-07-29 2019-07-23 General Electric Comany Apparatus and methods for production additive manufacturing
DE102015011503A1 (de) 2015-09-09 2017-03-09 Voxeljet Ag Verfahren zum Auftragen von Fluiden
DE102015011790A1 (de) 2015-09-16 2017-03-16 Voxeljet Ag Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile
US10807187B2 (en) 2015-09-24 2020-10-20 Arcam Ab X-ray calibration standard object
US10207489B2 (en) 2015-09-30 2019-02-19 Sigma Labs, Inc. Systems and methods for additive manufacturing operations
GB2543305A (en) * 2015-10-14 2017-04-19 Rolls Royce Plc Apparatus for building a component
US11571748B2 (en) 2015-10-15 2023-02-07 Arcam Ab Method and apparatus for producing a three-dimensional article
KR102290893B1 (ko) * 2015-10-27 2021-08-19 엘지전자 주식회사 연속 레이저 조형이 가능한 레이저 신터링 장치
WO2017079091A1 (fr) 2015-11-06 2017-05-11 Velo3D, Inc. Impression en trois dimensions au moyen du système adept
US10525531B2 (en) 2015-11-17 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US10610930B2 (en) 2015-11-18 2020-04-07 Arcam Ab Additive manufacturing of three-dimensional articles
DE102015015353A1 (de) 2015-12-01 2017-06-01 Voxeljet Ag Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor
US10071422B2 (en) 2015-12-10 2018-09-11 Velo3D, Inc. Skillful three-dimensional printing
US11110517B2 (en) * 2015-12-11 2021-09-07 Eos Gmbh Electro Optical Systems Method and device for examining an input data set of a generative layer building device
DE102015122005A1 (de) * 2015-12-16 2017-06-22 Airbus Operations Gmbh Vorrichtung und Verfahren zum schichtweisen Aufbau einer dreidimensionalen Struktur
DE102015225757A1 (de) * 2015-12-17 2017-06-22 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur kontinuierlichen generativen Fertigung von Bauteilen
CN105499568A (zh) * 2015-12-17 2016-04-20 龙泉市金宏瓷业有限公司 一种连续增料3d打印机及其打印方法
JP6979963B2 (ja) 2016-02-18 2021-12-15 ヴェロ・スリー・ディー・インコーポレイテッド 正確な3次元印刷
DE102016203582A1 (de) 2016-03-04 2017-09-07 Airbus Operations Gmbh Additives Fertigungssystem und Verfahren zur additiven Fertigung von Bauteilen
DE102016002777A1 (de) 2016-03-09 2017-09-14 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Baufeldwerkzeugen
WO2017154148A1 (fr) * 2016-03-09 2017-09-14 技術研究組合次世代3D積層造形技術総合開発機構 Système de fabrication additive 3d, procédé de fabrication additive 3d, dispositif de commande de fabrication additive, et procédé de commande et programme de commande pour dispositif de commande de fabrication additive
US11247274B2 (en) 2016-03-11 2022-02-15 Arcam Ab Method and apparatus for forming a three-dimensional article
US9862139B2 (en) * 2016-03-15 2018-01-09 Xyzprinting, Inc. Three dimensional printing apparatus
DE102016105097A1 (de) 2016-03-18 2017-09-21 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur additiven Herstellung eines dreidimensionalen Objekts
US10239157B2 (en) 2016-04-06 2019-03-26 General Electric Company Additive machine utilizing rotational build surface
JP6925759B2 (ja) * 2016-04-27 2021-08-25 株式会社ミマキエンジニアリング 造形装置及び造形方法
ITUA20163108A1 (it) * 2016-05-03 2017-11-03 3D New Tech S R L Apparecchiatura per additive manufacturing per la costruzione di oggetti in leghe intermetalliche ad elevata temperatura di fusione
US10549348B2 (en) 2016-05-24 2020-02-04 Arcam Ab Method for additive manufacturing
US11325191B2 (en) 2016-05-24 2022-05-10 Arcam Ab Method for additive manufacturing
CN106077639A (zh) * 2016-06-01 2016-11-09 西安铂力特激光成形技术有限公司 一种激光选区熔化成形设备及其成形方法
US10525547B2 (en) 2016-06-01 2020-01-07 Arcam Ab Additive manufacturing of three-dimensional articles
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US10252336B2 (en) 2016-06-29 2019-04-09 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
DE102016214249A1 (de) * 2016-08-02 2018-02-08 Technische Universität Dresden Vorrichtung zur generativen Fertigung eines dreidimensionalen Körpers in einem Pulverbett
EP3281727B8 (fr) * 2016-08-10 2023-11-22 Nikon SLM Solutions AG Appareil de production de pièces tridimensionnelles comprenant une pluralité de dispositifs d'application de poudre
US10821511B2 (en) 2016-10-07 2020-11-03 General Electric Company Additive manufacturing apparatus and method for large components
US10792757B2 (en) 2016-10-25 2020-10-06 Arcam Ab Method and apparatus for additive manufacturing
US20180126650A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
IT201600113040A1 (it) * 2016-11-09 2018-05-09 3D4Mec Srl Stampante 3d laser
DE102016013610A1 (de) 2016-11-15 2018-05-17 Voxeljet Ag Intregierte Druckkopfwartungsstation für das pulverbettbasierte 3D-Drucken
CN108068310B (zh) * 2016-11-17 2020-02-07 三纬国际立体列印科技股份有限公司 立体打印方法
EP3554836B1 (fr) * 2016-12-13 2021-01-27 Stratasys, Inc. Système de fabrication additive avec un silo rotatif
US10987752B2 (en) 2016-12-21 2021-04-27 Arcam Ab Additive manufacturing of three-dimensional articles
DE102016226150A1 (de) * 2016-12-23 2018-06-28 Robert Bosch Gmbh Vorrichtung zum generativen Herstellen von Werkstücken
WO2018127274A1 (fr) * 2017-01-03 2018-07-12 L3F Sweden Ab Procédé d'impression d'un produit 3d et dispositif d'impression 3d
WO2018129089A1 (fr) 2017-01-05 2018-07-12 Velo3D, Inc. Optique dans l'impression en trois dimensions
CN106735218B (zh) * 2017-01-17 2019-05-14 华南理工大学 一种旋转式多缸多材料激光选区熔化成型装置与方法
US10500832B2 (en) * 2017-01-18 2019-12-10 General Electric Company Systems and methods for additive manufacturing rotating build platforms
DE102017102068A1 (de) * 2017-02-02 2018-08-02 Bundesrepublik Deutschland, Vertreten Durch Den Bundesminister Für Wirtschaft Und Energie, Dieser Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Verfahren zur additiven Fertigung mit kontinuierlichem Schichtauftrag
US20180250771A1 (en) 2017-03-02 2018-09-06 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
WO2018183396A1 (fr) 2017-03-28 2018-10-04 Velo3D, Inc. Manipulation de matériau dans une impression tridimensionnelle
WO2018194567A1 (fr) * 2017-04-18 2018-10-25 Hewlett-Packard Development Company, L.P. Appareil ayant une chambre mobile
US11007713B2 (en) * 2017-04-26 2021-05-18 GM Global Technology Operations LLC High throughput additive manufacturing system
GB201706804D0 (en) * 2017-04-28 2017-06-14 Rolls Royce Plc ALM base plate, system and method
US11059123B2 (en) 2017-04-28 2021-07-13 Arcam Ab Additive manufacturing of three-dimensional articles
DE102017207764A1 (de) * 2017-05-09 2018-11-15 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Herstellung einer dreidimensionalen Verbundstruktur nach einem Druckverfahren
CN110678282B (zh) 2017-05-26 2022-02-22 株式会社Ihi 三维层叠造形物制造装置、三维层叠造形物制造方法以及探伤器
US11292062B2 (en) 2017-05-30 2022-04-05 Arcam Ab Method and device for producing three-dimensional objects
US20180345371A1 (en) * 2017-05-31 2018-12-06 General Electric Company Apparatus and method for angular and rotational additive manufacturing
US20200122231A1 (en) * 2017-06-06 2020-04-23 Aurora Labs Limited Powder canister and method for manufacturing same
DE102017006860A1 (de) 2017-07-21 2019-01-24 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Spektrumswandler
DE102017213087A1 (de) * 2017-07-28 2019-01-31 Siemens Aktiengesellschaft Anlage zum pulverbettbasierten additiven Herstellen eines Werkstücks mit mehreren Dosiervorrichtungen für verschiedene Pulverarten und Verfahren zu deren Betreiben
US11890807B1 (en) 2017-08-31 2024-02-06 Blue Origin, Llc Systems and methods for controlling additive manufacturing processes
US10710159B2 (en) * 2017-09-06 2020-07-14 General Electric Company Apparatus and method for additive manufacturing with real-time and in-situ adjustment of growth parameters
US11185926B2 (en) 2017-09-29 2021-11-30 Arcam Ab Method and apparatus for additive manufacturing
WO2019070257A1 (fr) * 2017-10-05 2019-04-11 Hewlett-Packard Development Company, L.P. Partie de guidage pour récipient de matériau d'impression
US20210291448A1 (en) * 2017-10-05 2021-09-23 Hewlett-Packard Development Company, L.P. Valve mechanism for coupling to a build material container
US10698386B2 (en) 2017-10-18 2020-06-30 General Electric Company Scan path generation for a rotary additive manufacturing machine
EP3473410A1 (fr) * 2017-10-20 2019-04-24 CL Schutzrechtsverwaltungs GmbH Dispositif d'application de matériau de construction
DE102017219386A1 (de) * 2017-10-27 2019-05-02 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum generativen Herstellen eines dreidimensionalen Objekts
US10529070B2 (en) 2017-11-10 2020-01-07 Arcam Ab Method and apparatus for detecting electron beam source filament wear
US20190143406A1 (en) * 2017-11-13 2019-05-16 General Electric Company Additive manufacturing apparatus and method for large components
US10821721B2 (en) 2017-11-27 2020-11-03 Arcam Ab Method for analysing a build layer
US11072117B2 (en) 2017-11-27 2021-07-27 Arcam Ab Platform device
US10983505B2 (en) 2017-11-28 2021-04-20 General Electric Company Scan path correction for movements associated with an additive manufacturing machine
FR3074446B1 (fr) * 2017-12-05 2019-10-25 Addup Machine de fabrication additive comprenant une surface de reception de poudre mobile autour de la zone de fabrication
CL2017003215A1 (es) * 2017-12-14 2019-10-04 Univ Pontificia Catolica Chile Equipo sgm y método para la fabricación de piezas u objetos de revolución axi-simétricos.
US11517975B2 (en) 2017-12-22 2022-12-06 Arcam Ab Enhanced electron beam generation
CN107876774A (zh) * 2017-12-27 2018-04-06 科大天工智能装备技术(天津)有限公司 一种线激光螺旋升降式增材制造设备
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
CN108177339A (zh) * 2017-12-27 2018-06-19 科大天工智能装备技术(天津)有限公司 一种多区域连续成型增材制造激光成型设备
CN111655453A (zh) * 2017-12-28 2020-09-11 株式会社尼康 用于三维列印装置的旋转式能量射束
EP4344805A2 (fr) * 2018-01-12 2024-04-03 Concept Laser GmbH Procédé de fonctionnement d'un appareil de fabrication additive d'objets tridimensionnels
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10814395B2 (en) 2018-01-24 2020-10-27 General Electric Company Heated gas circulation system for an additive manufacturing machine
US10814388B2 (en) 2018-01-24 2020-10-27 General Electric Company Heated gas circulation system for an additive manufacturing machine
EP3755522A4 (fr) * 2018-02-23 2021-11-10 Xjet Ltd. Impression 3d de matériau inorganique dans une configuration d'impression à jet d'encre en rond
US11267051B2 (en) 2018-02-27 2022-03-08 Arcam Ab Build tank for an additive manufacturing apparatus
US10800101B2 (en) 2018-02-27 2020-10-13 Arcam Ab Compact build tank for an additive manufacturing apparatus
US10695867B2 (en) 2018-03-08 2020-06-30 General Electric Company Controlling microstructure of selected range of layers of object during additive manufacture
US11400519B2 (en) 2018-03-29 2022-08-02 Arcam Ab Method and device for distributing powder material
US11273601B2 (en) * 2018-04-16 2022-03-15 Panam 3D Llc System and method for rotational 3D printing
US20220219394A1 (en) * 2018-04-16 2022-07-14 Panam 3D, Llc System and method for 3d printing
US11273496B2 (en) * 2018-04-16 2022-03-15 Panam 3D Llc System and method for rotational 3D printing
IT201800005478A1 (it) * 2018-05-17 2019-11-17 Metodo per formare un primo e un secondo oggetto tridimensionale da un primo e un secondo materiale solidificabile il quale è in grado di solidificarsi sotto l’effetto su di esso di irraggiamento elettromagnetico
EP3575090A1 (fr) * 2018-05-29 2019-12-04 Siemens Aktiengesellschaft Appareil permettant d'éliminer un matériau en excès et son procédé de fonctionnement
WO2020004507A1 (fr) 2018-06-26 2020-01-02 株式会社Ihi Dispositif de modélisation en trois dimensions
US11225017B2 (en) 2018-07-24 2022-01-18 Ricoh Company, Ltd. Three-dimensional object shaping apparatus and method
DE102018006473A1 (de) 2018-08-16 2020-02-20 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen durch Schichtaufbautechnik mittels Verschlussvorrichtung
CN109332697B (zh) * 2018-11-16 2021-07-06 汕头大学 一种选区激光熔化增材制造设备
DE102018129027A1 (de) * 2018-11-19 2020-05-20 AMCM GmbH Verfahren zur additiven Fertigung und System
CN109261966A (zh) * 2018-11-29 2019-01-25 汕头大学 一种大尺寸移动吹吸烟选区激光熔化智能装备
CN109483880A (zh) * 2018-12-28 2019-03-19 源秩科技(上海)有限公司 铺料系统及方法
CN109483881A (zh) * 2018-12-28 2019-03-19 源秩科技(上海)有限公司 一种打印装置和打印方法
CN113448212A (zh) * 2018-12-28 2021-09-28 源秩科技(上海)有限公司 选择性铺料装置和铺料方法
DE102019000796A1 (de) 2019-02-05 2020-08-06 Voxeljet Ag Wechselbare Prozesseinheit
US11819943B1 (en) 2019-03-28 2023-11-21 Blue Origin Llc Laser material fusion under vacuum, and associated systems and methods
EP3950181A4 (fr) * 2019-04-02 2022-12-14 IHI Corporation Appareil de fabrication tridimensionnelle
GB201904816D0 (en) * 2019-04-05 2019-05-22 Additive Manufacturing Tech Ltd Additive manufacturing
WO2021001878A1 (fr) * 2019-07-01 2021-01-07 株式会社ニコン Dispositif de moulage
CN110538995A (zh) * 2019-09-06 2019-12-06 华中科技大学 大尺寸环形/框形金属件的激光选区熔化成形装置及方法
DE102019007595A1 (de) 2019-11-01 2021-05-06 Voxeljet Ag 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat
US20210178473A1 (en) * 2019-12-12 2021-06-17 Arcam Ab Additive manufacturing apparatuses with separable process chamber housing portions and methods of use
DE102020201896A1 (de) 2020-02-17 2021-08-19 Volkswagen Aktiengesellschaft Fertigungssystem für die Verwendung in einem additiven und pulverbettbasierten Fertigungsverfahren zur Herstellung von dreidimensionalen Objekten, Verfahren zur Durchführung von simultanen Beschichtungs- und Verfestigungsvorgängen
JP7402105B2 (ja) 2020-03-31 2023-12-20 本田技研工業株式会社 3次元造形装置及び造形方法
CN111390107B (zh) * 2020-04-16 2021-10-29 杭州喜马拉雅信息科技有限公司 一种旋转式异孔径喷嘴的砂模打印方法
JP7276259B2 (ja) 2020-06-18 2023-05-18 トヨタ自動車株式会社 積層造形方法、及び積層造形装置
CN112355325B (zh) * 2020-09-28 2022-12-16 西安增材制造国家研究院有限公司 一种基于随动粉缸的ebsm设备
DE102021103739A1 (de) * 2021-02-17 2022-08-18 Te Connectivity Germany Gmbh Additives Fertigungssystem mit einer Mehrzahl von Fertigungsstationen und Verfahren zur additiven Fertigung einer Mehrzahl von Werkstücken
US20220288689A1 (en) * 2021-03-09 2022-09-15 Divergent Technologies, Inc. Rotational additive manufacturing systems and methods
DE102021108175A1 (de) 2021-03-31 2022-10-06 RUHR-UNIVERSITäT BOCHUM Verfahren und Vorrichtung zur schichtweisen additiven Herstellung von wenigstens einem Bauteil
US11938539B2 (en) 2021-04-16 2024-03-26 General Electric Company Additive manufacturing build units with process gas inertization systems
US11759861B2 (en) 2021-04-16 2023-09-19 General Electric Company Additive manufacturing build units with process gas inertization systems
CN117123802B (zh) * 2023-09-01 2024-04-09 江苏大学 一种可变光路的多成形缸不间断打印激光选区熔化设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2166526A5 (en) * 1971-12-28 1973-08-17 Boudet Jean Concentrated beam particle melting - at focal point of several beams
US4323756A (en) * 1979-10-29 1982-04-06 United Technologies Corporation Method for fabricating articles by sequential layer deposition
US5637175A (en) * 1988-10-05 1997-06-10 Helisys Corporation Apparatus for forming an integral object from laminations
US5134569A (en) * 1989-06-26 1992-07-28 Masters William E System and method for computer automated manufacturing using fluent material
DE19511772C2 (de) * 1995-03-30 1997-09-04 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
DE29907262U1 (de) 1999-04-23 1999-07-15 Eos Electro Optical Syst Vorrichtung zum Herstellen eines dreidimensionalen Objektes mittels Rapid Prototyping
DE19952998B4 (de) 1999-11-04 2004-04-15 Exner, Horst, Prof. Dr.-Ing. Vorrichtung zur direkten Herstellung von Körpern im Schichtaufbau aus pulverförmigen Stoffen
JP3557970B2 (ja) * 1999-11-25 2004-08-25 松下電工株式会社 三次元形状造形物の製造方法
DE19957370C2 (de) * 1999-11-29 2002-03-07 Carl Johannes Fruth Verfahren und Vorrichtung zum Beschichten eines Substrates
JP2001334581A (ja) 2000-05-24 2001-12-04 Minolta Co Ltd 三次元造形装置
JP2001347572A (ja) * 2000-06-06 2001-12-18 Sanyo Electric Co Ltd 光造形装置
DE10219984C1 (de) * 2002-05-03 2003-08-14 Bego Medical Ag Vorrichtung und Verfahren zum Herstellen frei geformter Produkte

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004014637A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107900333A (zh) * 2017-11-15 2018-04-13 芜湖天梦信息科技有限公司 一种3d打印机铺粉装置的喷头机构

Also Published As

Publication number Publication date
CN1678448B (zh) 2010-05-12
JP2005534543A (ja) 2005-11-17
JP4790264B2 (ja) 2011-10-12
US8172562B2 (en) 2012-05-08
US20060108712A1 (en) 2006-05-25
DE10235434A1 (de) 2004-02-12
CN1678448A (zh) 2005-10-05
HK1081489A1 (en) 2006-05-19
WO2004014637A1 (fr) 2004-02-19

Similar Documents

Publication Publication Date Title
WO2004014637A1 (fr) Dispositif et procede pour produire un objet tridimensionnel au moyen d'un procede de fabrication generatif
EP2864108B1 (fr) Dispositif et procédé de fabrication par couches d'un objet tridimensionnel
EP2275247B1 (fr) Appareil et méthode de production d'objets tri-dimensionels au moyen d'un procédé de fabrication génératif
EP2301743B1 (fr) Methode et dispositif pour la fabrication par couches successives d'un objet
EP3362259B1 (fr) Dispositif et procédé de fabrication d'un objet en trois dimensions
EP3165349B1 (fr) Dispositif de fabrication d'objets tridimensionnels
EP2750865B1 (fr) Dispositif et procédé permettant de fabriquer des modèles couche par couche
WO1994021446A1 (fr) Procede de production d'objets tridimensionnels
EP3710182A1 (fr) Éclairage sélectif par couche dans la zone en surplomb lors de la fabrication additive
WO2017080660A1 (fr) Unité de revêtement, dispositif et procédé pour la fabrication d'un objet tridimensionnel
DE102007040755A1 (de) Lasersintervorrichtung sowie Verfahren zum Herstellen von dreidimensionalen Objekten durch selektives Lasersintern
DE102010020416A1 (de) Bauraumveränderungseinrichtung sowie eine Vorrichtung zum Herstellen eines dreidimensionalen Objekts mit einer Bauraumveränderungseinrichtung
WO2016169783A1 (fr) Procédé et dispositif de fabrication d'un objet tridimensionnel
DE60031317T2 (de) Stereolithografische Verfahren und Vorrichtung zur Herstellung dreidimensionaler Gegenstände, wobei Abglättungsparameter für Schichtengruppen gelten
EP3297813B1 (fr) Procédé et dispositif de fabrication d'un objet tridimensionnel
EP3342583B1 (fr) Procédé et dispositif de fabrication additive d'un objet tridimensionnel
EP3085519A1 (fr) Procede et dispositif destines a fabriquer un objet tridimensionnel
WO2018172079A1 (fr) Optimisation de chevauchement
EP0681521B1 (fr) Procede et dispositif de production d'objets tridimensionnels
EP3668704B1 (fr) Ensemble et procédé pour produire une structure 3d
DE102019007480A1 (de) Anordnung und Verfahren zum Erzeugen einer Schicht eines partikelförmigen Baumaterials in einem 3D-Drucker
DE102017210345A1 (de) Herstellungsvorrichtung und Verfahren zum generativen Herstellen eines Bauteils
DE102015118161A1 (de) Vorrichtung zum Herstellen dreidimensionaler Objekte
WO2016206781A1 (fr) Dispositif et procédé de fabrication d'un objet en trois dimensions
EP4238741A1 (fr) Procédé de fabrication additive d'un composant à l'aide d'au moins une chambre volumique à remplir de matériau de remplissage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20050630

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20160509