EP1525289B9 - Verfahren und rippenrohr zum thermischen spalten von kohlenwasserstoffen - Google Patents

Verfahren und rippenrohr zum thermischen spalten von kohlenwasserstoffen Download PDF

Info

Publication number
EP1525289B9
EP1525289B9 EP03725176A EP03725176A EP1525289B9 EP 1525289 B9 EP1525289 B9 EP 1525289B9 EP 03725176 A EP03725176 A EP 03725176A EP 03725176 A EP03725176 A EP 03725176A EP 1525289 B9 EP1525289 B9 EP 1525289B9
Authority
EP
European Patent Office
Prior art keywords
finned tube
tube according
profile
fin
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03725176A
Other languages
English (en)
French (fr)
Other versions
EP1525289B1 (de
EP1525289A1 (de
Inventor
Peter WÖLPERT
Benno Ganser
Dietlinde Jakobi
Rolf Kirchheiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schmidt and Clemens GmbH and Co KG
Original Assignee
Schmidt and Clemens GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schmidt and Clemens GmbH and Co KG filed Critical Schmidt and Clemens GmbH and Co KG
Priority to EP10012045A priority Critical patent/EP2298850A1/de
Publication of EP1525289A1 publication Critical patent/EP1525289A1/de
Application granted granted Critical
Publication of EP1525289B1 publication Critical patent/EP1525289B1/de
Publication of EP1525289B9 publication Critical patent/EP1525289B9/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/24Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by heating with electrical means
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water
    • C10G2300/807Steam

Definitions

  • the invention relates to a finned tube for the thermal cracking of hydrocarbons in the presence of steam, in which the feed mixture is passed through externally heated tubes with helical inner fins.
  • tube ovens For the high-temperature pyrolysis of hydrocarbons (petroleum derivatives), tube ovens have proven in which a hydrocarbon / water vapor mixture at temperatures above 750 ° C by rows of single or meandering arranged pipes (cracking tubes) made of heat-resistant chromium-nickel steel alloys with high oxidation or Scaling resistance and high carburization resistance is performed.
  • the coils are made of vertically extending straight pipe sections, which are connected to each other via U-shaped pipe bend or arranged parallel to each other; they are usually heated with the help of sidewall and partly with the help of floor burners and therefore have a burner facing so-called sun side and the opposite by 90 ° offset, that is in the direction of the rows of tubes extending so-called shadow side.
  • the mean tube wall temperatures (TMT) are sometimes over 1000 ° C.
  • the lifetime of the cracking tubes depends very much on the creep resistance and the carburization resistance as well as on the coking rate of the pipe material.
  • Decisive for the rate of coking, that is for the growth of a layer of carbon deposits (pyrolysis) on the pipe inner wall are, in addition to the type of hydrocarbons used, the gap gas temperature in the inner wall and the so-called CrackMrfe, behind the influence of the system pressure and the residence time in the pipe system hides on the ⁇ thylenausbeute.
  • the gap sharpness is set on the basis of the mean outlet temperature of the cracked gases (eg 850 ° C).
  • the chromium-nickel steel alloys used as pipe material with 0.4% carbon over 25% chromium and over 20% nickel, for example 35% chromium, 45% nickel and optionally 1% niobium have a high carburization resistance, the carbon diffuses Defects of the oxide layer in the pipe wall and leads there to a considerable carburizing, which can go up to carbon contents of 1% to 3% in wall depths of 0.5 to 3 mm. Associated with this is a significant embrittlement of the pipe material with the Danger of cracking at, thermal cycling especially when starting and stopping the furnace.
  • centrifugally cast tubes can only be produced with a cylindrical wall, special shaping processes are required, for example an electrolytically removing machining or a shaping welding process, in order to produce internal finned tubes.
  • the object of the invention is to improve the cost-effectiveness of the thermal cracking of hydrocarbons in tubular ovens with externally heated tubes with helical internal ribs.
  • the fin tube according to the invention takes a swirl flow at the rib edges detaching vortex, so that there is no local feedback of the vortex in the manner of a self-contained circular flow in the Ripentäler.
  • the mean residence time is lower than in the smooth tube and also more homogeneous over the cross section (see. Fig. 7 ). This is confirmed by the higher total speed in the profile tube with swirl (profile 3) compared to the tube with straight ribs (profile 2). This is ensured when the ribs extend at an angle of preferably 25 ° to 32.5 ° relative to the tube axis.
  • a layer of laminar flow characteristic of turbulent flows forms with greatly reduced heat transfer. It leads to increased formation of pyrolysis coke with also poor thermal conductivity. Both layers together require a higher heat input or a higher burner power. This increases the tube wall temperature (TMT) and consequently shortens the life.
  • TMT tube wall temperature
  • the invention avoids this fact that the inner circumference of the profile by a maximum of 5%, for example 4% or 3.5%, based on the circumference of the Rippentäler touching enveloping circle.
  • the relative profile perimeter is at most 1.05 of the enveloping circle perimeter.
  • the area difference of the profile tube according to the invention ie its unwound inner surface, based on a smooth tube with the envelope circle diameter a maximum of + 5% or 1.05 times the smooth tube surface.
  • the tube profile according to the invention allows a lower specific tube weight (kg / m) compared to a finned tube, in which the inner circumference of the profile is at least 10% larger than the circumference of the enveloping circle. This shows a comparison of two pipes with the same hydraulic diameter and accordingly the same pressure loss and the same thermal performance result.
  • a further advantage of the profile circumference (relative profile circumference) according to the invention which is based on the enveloping circle circumference, consists in a more rapid heating of the feed gas at a reduced tube wall temperature.
  • the swirl flow produced according to the invention considerably reduces the laminar layer; it is also connected to a pipe center directed velocity vector, which reduces the residence time of cracking radicals or fission products on the hot tube wall and their chemical and catalytic conversion to pyrolysis coke.
  • the not inconsiderable in inner profile tubes with high ribs temperature differences between Rippentälind and ribs are compensated by the swirl flow according to the invention. This increases the time interval between two necessary decoking.
  • a not insignificant temperature difference results between the ridge crests and the bottom of the ridge valleys.
  • the residence time of the fouling-prone fission products is shorter in the case of spiral-shaped internal fins; In individual cases, this depends on the nature of the ribs.
  • the curve clearly shows that the higher peripheral speed of the profile 8 is consumed with 4.8 mm high ribs within the ridge valleys, while the peripheral speed of the inventive profile with a rib height of only 2 mm penetrates into the core of the flow. Although the peripheral speed of the profile 4 with only 3 ribs is approximately as high, but causes no spiral acceleration of the core flow.
  • the profile of the invention causes according to the curve in the diagram of Fig. 2 a spiral acceleration in the Rippentälern (upper curve branch), which covers wide area of the pipe cross-section and thus causes a homogenization of the temperature in the pipe.
  • the lower peripheral speed at the rib caps also ensures that there is no turbulence and backflow.
  • Fig. 3 three test tubes are shown with their data in cross section, including the inventive profile 3.
  • the diagrams show the temperature profile over the pipe radius (radius) on the shadow and the sun side.
  • a comparison of the diagrams shows the lower temperature difference between the pipe wall and center and the lower gas temperature at the pipe wall in the profile 3 according to the invention.
  • the swirl flow generated according to the invention ensures that the fluctuation of the inner wall temperature over the circumference of the pipe, that is between the sun and shade side is below 12 ° C, although the usually arranged in parallel rows of pipe coils of a tubular furnace with the help of rare wall burners heated only on opposite sides or with Combustion gases are acted upon and the pipes thus each have a burner facing the sun side and a 90 ° offset to the dark side.
  • the mean tube wall temperature ie the difference in the tube wall temperature between the sun and shadow sides leads to internal stresses and therefore determines the service life of the tubes. So the results from the diagram of the Fig.
  • a particularly favorable temperature distribution arises when the isotherms of the tube inner wall to the core of the flow are spiral.
  • a more uniform distribution of the temperature across the cross section results in particular if the peripheral speed builds up within 2 to 3 m and then remains constant over the entire tube length.
  • the process according to the invention should be operated with a view to a high Olefinausbeute with comparatively short tube length so that the homogeneity factor of the temperature over the cross section and related to the hydraulic diameter homogeneity factor of the temperature in relation to the homogeneity factor of a smooth tube (H G ⁇ ) is greater than 1.
  • the flow pattern of core and spin flow generated according to the invention can be achieved with a finned tube, in which the flank angle of each of the Length of a pipe section continuous ribs, that is, the outer angle between the rib edges and the radius of the tube 16 ° to 25 °, preferably 19 ° to 21 ° is such a flank angle ensured in conjunction with a rib pitch of 20 ° to 40 °, for example 22, 5 ° to 32.5 ° that results in the Rippentälern not a more or less self-contained, behind the rib flanks in the Rippentäler returning vortex flow that leads to the emergence of unwanted "twisters" in the Rippentälern, that is closed vortex pigtails.
  • the resulting in the Rippentälem vortices detach from the rib edges and are absorbed by the swirl flow.
  • the swirl energy induced by the ribs accelerates the gas particles and leads to a higher overall velocity. This leads to a reduction and homogenization of the Rohrwandtemperetur and to a homogenization of the temperature and the residence time over the pipe cross-section.
  • the ribs and the rib valleys located between the ribs are mirror-symmetrical in cross-section and form a wavy line, each with the same radii of curvature.
  • the flank angle then results between the tangents of the two radii of curvature at the point of contact and the radius of the tube.
  • the ribs are relatively flat; Rib height and flank angle are coordinated so that the hydraulic diameter of the profile of the ratio 4 x free cross section / profile circumference is equal to or greater than the inner circle of the profile. The hydraulic diameter is therefore in the inner third of the profile height.
  • the rib height and the number of ribs increase with increasing diameter so that the swirl flow is maintained in the direction and strength required for the action of the profile.
  • the ratio of the quotients of the heat transfer coefficients Q R / Q 0 to the quotient of the pressure losses ⁇ P R / ⁇ P 0 in the water test using the laws of similarity and using the mediated for a naphtha / steam mixture Reynolds numbers, preferably 1.4 to 1.5, where R denotes a finned tube and 0 denotes a smooth tube.
  • the superiority of the finned tube according to the invention (profile 3) compared to a smooth tube (profile 0) and a finned tube with paraxial ribs (profile 1), in which the radial distance between the Rippentälern and the Rippenkuppen is 4.8 mm illustrate the data of the following Table.
  • the finned tubes all had 8 ribs and the same enveloping circle.
  • the finned tube according to the invention gives in the water test a higher by a factor of 2.56 heat transfer (Q R ) compared to the plain tube with only a factor of 1.76 increased pressure drop ( ⁇ P R ).
  • Fig. 7 are a tube with a smooth inner wall (smooth tube) faced three different profile tubes, including a tube according to the invention with 8 ribs with a slope of 30 °.
  • the hydraulic diameter, the axial velocity, the residence time and the pressure loss are indicated.
  • Output data were the flow rates of a 38 mm internal diameter smooth tube in use, which is identical to the hydraulic diameter. These data were converted to warm water according to the similarity laws (same Reynolds numbers) and based on the experiments (see ratio of the quotients of heat transfer and pressure loss for tests with water and the related homogeneity factor in the calculation with gases).
  • the heat from the pipe wall is introduced into the flow and thus more evenly distributed than in a normal undirected turbulent flow (smooth tube, profiles 1 and 2).
  • the spiraling flow distributes the particles more evenly across the cross section while the acceleration on the flanks reduces the average residence time.
  • the higher pressure loss of the profile 3 results from the peripheral speed.
  • the cause is the strong constriction of the flow and the loss of friction on the large inner surface of the profile.
  • the finned tube according to the invention can be produced, for example, from a centrifugally cast tube by turning the ends of a tube with axially parallel ribs against each other, or by forming the inner profile by preforming a centrifugally cast tube, for example by hot forging, hot drawing or cold forming via a profile tool, for example a flying die Mandrel or a mandrel with an inner profile of the tube corresponding outer profile is generated.
  • a profile tool for example a flying die Mandrel or a mandrel with an inner profile of the tube corresponding outer profile is generated.
  • Cutting machines for internal profiling of pipes are in different variants, for example from the German patent 195 23 280 known. These machines are also suitable for producing a finned tube according to the invention.
  • the forming temperature When hot forming, the forming temperature should be adjusted so that it comes in the region of the inner surface to a partial destruction of the grain structure and therefore later under the influence of the operating temperature to a recrystallization The result is a feinkömiges microstructure, the rapid diffusion of chromium, silicon and / or aluminum through the austenitic matrix to the inner surface of the tube and there for the rapid construction of an oxide protective layer leads.
  • the inner surface of the tube according to the invention should have the lowest possible roughness; it can therefore be smoothed, for example mechanically polished or electrolytically leveled.
  • Suitable pipe materials for use in ethylene plants are iron or nickel alloys with 0.1% to 0.5% carbon, 20 to 35% chromium, 20 to 70% nickel, up to 3% silicon, up to 1% niobium, bis 5% tungsten and additions of hafnium, titanium, rare earths, or zirconium, in each case up to 0.5% and up to 6% aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • Die Erfindung bezieht sich auf ein Rippenrohr zum thermischen Spalten von Kohlenwasserstoffen in Anwesenheit von Dampf, bei dem das Einsatzgemisch durch außenbeheizte Rohre mit wendelförmigen Innenrippen geführt wird.
  • Für die Hochtemperaturpyrolyse von Kohlenwasserstoffen (Erdölderivate) haben sich Röhrenöfen bewährt, bei denen ein Kohlenwasserstoff/Wasserdampf-Gemisch bei Temperaturen über 750° C durch Reihen aus einzelnen oder mäanderförmig angeordneten Rohren (Crackrohrschlangen) aus hitzebeständigen Chrom-Nickel-Stahllegierungen mit hoher Oxidations- beziehungsweise Zunderbeständigkeit und hoher Aufkohlungsbeständigkeit geführt wird. Die Rohrschlangen bestehen aus vertikal verlaufenden geraden Rohrabschnitten, die über U-förmige Rohrbogen miteinander verbunden oder parallel zueinander angeordnet sind; sie werden üblicherweise mit Hilfe von Seitenwand- und teilweise auch mit Hilfe von Bodenbrennern beheizt und besitzen daher eine den Brennern zugekehrte sogenannte Sonnenseite sowie eine dem gegenüber um 90° versetzte, das heißt in Richtung der Rohrreihen verlaufende sogenannte Schattenseite. Dabei liegen die mittleren Rohrwandtemperaturen (TMT) teilweise über 1000° C.
  • Die Lebensdauer der Crackrohre hängt sehr wesentlich von der Kriechbeständigkeit und der Aufkohlungsbeständigkeit sowie von der Verkokungsgeschwindigkeit des Rohrwerkstoffs ab. Maßgeblich für die Verkokungsgeschwindigkeit, das heißt für das Anwachsen einer Schicht von Kohlenstoffablagerungen (Pyrolysekoks) an der Rohrinnenwand sind neben der Art der eingesetzten Kohlenwasserstoffe die Spaltgastemperatur im Bereich der Innenwand und die sogenannte Crackschärfe, hinter der sich der Einfluß des Systemdrucks und der Verweilzeit im Rohrsystem auf die Äthylenausbeute verbirgt. Die Spaltschärfe wird anhand der mittleren Austrittstemperatur der Spaltgase (z. B. 850° C) eingestellt. Je höher die Gastemperatur in der Nähe der Rohr-Innenwand über dieser Temperatur liegt, um so stärker wächst die Schicht des Pyrolysekokses, deren isolierende Wirkung die Rohrwandtemperatur weiter steigen läßt. Obgleich die als Rohrwerkstoff zur Verwendung kommenden Chrom-Nickel-Stahllegierungen mit 0,4% Kohlenstoff über 25% Chrom und über 20% Nickel, beispielsweise 35% Chrom, 45% Nickel und gegebenenfalls 1% Niob eine hohe Aufkohlungsbeständigkeit besitzen, diffundiert der Kohlenstoff an Fehlstellen der Oxidschicht in die Rohrwandung und führt dort zu einer erheblichen Aufkohlung, die bis zu Kohlenstoffgehalten von 1% bis 3% in Wandtiefen von 0,5 bis 3 mm gehen kann. Verbunden damit ist eine erhebliche Versprödung des Rohrwerkstoffs mit der Gefahr einer Rißbildung bei, thermischer Wechselbelastung insbesondere beim An- und Abfahren des Ofens.
  • Um die Kohlenstoffablagerungen (Verkokung) an der Rohrinnenwand abzubauen, ist es erforderlich, den Crackbetrieb von Zeit zu Zeit zu unterbrechen und den Pyrolysekoks mit Hilfe eines Dampf/Luft-Gemischs zu verbrennten. Dies erfordert eine Betriebsunterbrechung von bis zu 36 Stunden und beeinträchtigt daher erheblich die Wirtschaftlichkeit des Verfahrens.
  • Bekannt ist aus der britischen Patentschrift 969 796 und der europäischen Offenlegungeschrift 1 136 541 A1 auch die Verwendung von Crackrohren mit Innenrippen. Solche Innenrippen ergeben zwar eine um viele Prozente, beispielsweise um 10% größere Innenoberfläche und demzufolge einen besseren Wärmeübergang: sie sind aber auch mit dem Nachteil eines im Vergleich zu einem Glattrohr erheblich erhöhten Druckverlustes infolge Reibung an der vergrößerten Rohr-Innenoberfläche verbunden. Der höhere Druckverlust erfordert einen höheren Systemdruck, dadurch verändert sich zwangsläufig die Verweilzeit und verschlechtert sich die Ausbeute. Hinzu kommt, daß sich die bekannten Rohrwerkstoffe mit hohen Gehalten an Kohlenstoff und Chrom nicht mehr durch Kaltverformen, beispielsweise Kaltziehen profilieren lassen. Sie besitzen den Nachteil, daß sich ihre Verformbarkeit mit zunehmender Warmfestigkeit stark verringert. Dies hat dazu geführt, daß die im Hinblick auf die Äthylenausbeute erwünschten hohen Rohrwandtemperaturen von beispielsweise bis 1050° C die Verwendung von Schleudergußrohren erfordern. Da sich Schleudergußrohre jedoch nur mit zylindrischer Wandung herstellen lassen, bedarf es besonderer Formgebungsverfahren, beispielsweise einer elektrolytisch abtragenden Bearbeitung oder eines formgebenden Schweißverfahrens, um Innen-Rippenrohre herzustellen.
  • Bekannt ist schließlich aus der US-Patentschrift 5 950 718 auch ein ganzes Spektrum von Neigungswinkeln und auch Abständen zwischen den Innenrippen, ohne daß jedoch die Beschaffenheit der Rippen in Betracht gezogen wird.
  • Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, die Wirtschaftlichkeit des thermischen Spaltens von Kohlenwasserstoffen in Röhrenöfen mit außenbeheizten Rohren mit wendelförmigen Innenrippen zu verbessern.
  • Die Lösung der Aufgabe besteht in einem Rippenrohr gemäß Anspruch 1.
  • Bei dem erfindungsgemäßen Rippenrohr nimmt eine Drallströmung an den Rippenflanken ablösenden Wirbel auf, so daß es nicht zu einer lokalen Rückführung des Wirbel nach Art einer in sich geschlossenen kreisförmigen Strömung in die Ripentäler kommt. Trotz der offensichtlich längeren Wege der Partikel durch die Spiralbahnen, ist die mittlere Verweilzeit niedriger als im Glattrohr und außerdem homogener über den Querschnitt (vgl. Fig. 7). Bestätigt wird dies durch die höhere Gesamtgeschwindigkeit im Profilrohr mit Drall (Profil 3) gegenüber dem Rohr mit geraden Rippen (Profil 2). Dies ist dann gewährleistet, wenn die Rippen in einem Winkel von vorzugsweise 25° bis 32,5° bezogen auf die Rohrachse verlaufen.
  • Bei dem erfindungsgemäßen Rippenrohr wird das über den Rohrumfang zwischen Sonnen- und Schattenseite zwangsläufig unterschiedliche Wärmeangebot in der Rohrwandung und im Rohrinnem ausgeglichen und dabei die Wärme rasch nach innen zur Kernzone abgeführt. Damit verbunden ist eine Verringerung der Gefahr einer lokalen Überhitzung des Prozeßgases an der Rohrwand und der dadurch verursachten Entstehung von Pyrolysekoks. Außerdem ist die thermische Beanspruchung des Rohrwerkstoffs infolge des Temperaturausgleichs zwischen Sonnen- und Schattenseite geringer, was zu einer Verlängerung der Lebensdauer führt. Schließlich kommt es bei dem erfindungsgemäßen Rippenrohr auch zu einer Vergleichmäßigung der Temperatur über den Rohrquerschnitt mit der Folge einer besseren Olefinausbeute. Der Grund hierfür ist, daß es ohne den erfindungsgemäßen radialen Temperaturausgleich im Rohrinnern an der heißen Rohrwand zu einem Übercracken und in der Rohrmitte zu einer Rekombination von Spaltprodukten kommen würde.
  • Des weiteren bildet sich beim Glattrohr und verstärkt bei Rippenprofilen mit durch Rippen um mehr als 5%, beispielsweise 10% vergrößertem Innenumfang eine für turbulente Strömungen charakteristische Schicht laminarer Strömung mit stark reduziertem Wärmeübergang. Sie führt zu verstärkter Bildung von Pyrolysekoks mit ebenfalls schlechter Wärmeleitfähigkeit. Beide Schichten zusammen erfordern ein höheres Wärmeeinbringen beziehungsweise eine höhere Brennerleistung. Dies erhöht die Rohrwandtemperatur (TMT) und verkürzt demzufolge die Lebensdauer.
  • Die Erfindung vermeidet dies dadurch, daß der Innenumfang des Profils um maximal 5%, beispielsweise 4% oder auch 3,5%, bezogen auf den Umfang des die Rippentäler berührenden Hüllkreises beträgt. Anders ausgedrückt: der relative Profil-Umfang beträgt maximal 1,05 des Hüllkreis-Umfangs. Dementsprechend beträgt die Flächendifferenz des erfindungsgemäßen Profilrohrs, d.h. dessen abgewickelte Innenfläche, bezogen auf ein Glattrohr mit dem Hüllkreisdurchmesser maximal +5% bzw. das 1,05-fache der Glattrohrfläche.
  • Das erfindungsgemäße Rohrprofil erlaubt ein geringeres spezifisches Rohrgewicht (kg/m) im Vergleich zu einem Rippenrohr, bei dem der Innenumfang des Profils mindestens 10% größer ist als der Umfang des Hüllkreises. Dies zeigt ein Vergleich zweier Rohre mit gleichem hydraulischen Durchmesser und demgemäß gleichem Druckverlust sowie gleichem wärmetechnischen Ergebnis.
  • Ein weiterer Vorteil des erfindungsgemäßen, auf den Hüllkreis-Umfang bezogenen Profil-Umfangs (relativer Profil-Umfang) besteht in einem rascheren Aufheizen des Einsatzgases bei reduzierter Rohrwandtemperatur.
  • Die erfindungsgemäß erzeugte Drallströmung verringert die Laminarschicht ganz erheblich; sie ist zudem mit einem zum Rohrzentrum gerichteten Geschwindigkeitsvektor verbunden, der die Verweilzeit von Crack-Radikalen beziehungsweise Spaltrodukten an der heißen Rohrwand sowie deren chemische und katalytische Umsetzung zu Pyrolysekoks verringert. Zusätzlich werden die bei Innenprofilrohren mit hohen Rippen nicht unerheblichen Temperaturunterschiede zwischen Rippentälern und Rippen durch die erfindungsgemäße Drallströmung ausgeglichen. Damit vergrößert sich der zeitliche Abstand zwischen zwei notwendigen Entkokungen. Ohne die erfindungsgemäße Drallströmung ergibt sich zwischen den Rippenkuppen und dem Grund der Rippentäler ein nicht unerheblicher Temperaturunterschied. Die Verweilzeit der zur Verkokung neigenden Spaltprodukte ist bei mit wendelförmigen Innenrippen versehenen Crackrohren kürzer; Dies ist im Einzelfall von der Beschaffenheit der Rippen abhängig.
  • Das Diagramm zeigt:
    obere Kurve: Profil 6: 16° Steigung
    mittlere Kurve: Profil 3: 30° Steigung
    untere Kurve: Profil 4: 3 Rippen mit 30° Steigung
  • Der Kurvenverlauf zeigt deutlich, dass die höhere Umfangsgeschwindigkeit des Profils 8 mit 4,8 mm hohen Rippen innerhalb der Rippentäler aufgezehrt wird, während die Umfangsgeschwindigkeit des erfindungsgemäßen Profils mit einer Rippenhöhe von nur 2 mm in den Kern der Strömung eindringt. Die Umfangsgeschwindigkeit des Profils 4 mit nur 3 Rippen ist zwar annähernd so hoch, bewirkt aber keine spiralförmige Beschleunigung der Kernströmung.
  • Das erfindungsgemäße Profil bewirkt nach dem Kurvenverlauf im Diagramm der Fig. 2 eine spiralförmige Beschleunigung in den Rippentälern (oberer Kurvenast), die weite Bereich des Rohrquerschnitts erfasst und damit eine Homogenisierung der Temperatur im Rohr bewirkt. Die geringere Umfangsgeschwindigkeit an den Rippenkuppen (unterer Kurvenast) gewährleistet darüber hinaus, dass es nicht zu Verwirbelungen und Rückströmungen kommt.
  • In Fig. 3 sind drei Versuchsrohre mit ihren Daten im Querschnitt dargestellt, darunter auch das erfindungsgemäße Profil 3. Die Diagramme geben jeweils den Temperaturverlauf über den Rohrhalbmesser (Radius) auf der Schatten- und der Sonnenseite wieder. Ein Vergleich der Diagramme zeigt die geringere Temperaturdifferenz zwischen Rohrwand und -zentrum sowie die geringere Gastemperatur an der Rohrwand bei dem erfindungsgemäßen Profil 3.
  • Die erfindungsgemäß erzeugte Drallströmung gewährleistet, daß die Schwankung der Innenwandtemperatur über den Rohrumfang, das heißt zwischen Sonnen- und Schattenseite unter 12° C liegt, obgleich die üblicherweise in parallelen Reihen angeordneten Rohrschlangen eines Röhrenofens mit Hilfe von Seltenwandbrennern lediglich auf einander gegenüberliegenden Seiten beheizt beziehungsweise mit Verbrennungsgasen beaufschlagt werden und die Rohre somit jeweils eine den Brennern zugekehrte Sonnenseite und eine um 90° dazu versetzte Schattenseite besitzen. Die mittlere Rohrwandtemperatur, das heißt die Differenz der Rohrwandtemperatur zwischen Sonnen- und Schattenseite führt zu inneren Spannungen und bestimmt daher die Lebensdauer der Rohre. So ergibt die aus dem Diagramm der Fig. 4 ersichtliche Verringerung der mittleren Rohrwandtemperatur eines erfindungsgemäßen Rohrs mit acht Rippen einer Steigung von 30°, einem Rohrinnendurchmesser von 38,8 mm und einem Rohraußendurchmesser von 50,8 mm, somit einer Höhendifferenz zwischen Rippentälem und Rippenkuppen von 2 mm von 11° im Vergleich zu einem durchmessergleichem Glattrohr, bezogen auf eine mittlere Lebensdauer von 5 Jahren, bei einer Betriebstemperatur von 1050 °C eine rechnerische Lebensdauererhöhung auf etwa 8 Jahre.
  • Die Temperaturverteilung zwischen Sonnen- und Schattenseite für die drei Profile der Fig.3 ergibt sich aus dem Diagramm der Fig. 5. Bemerkenswert ist dabei das niedrigere Niveau der Temperatur-Kurve für das Profil 3 im Vergleich zum Glattrohr (Profil 0) und die erheblich geringere Schwankungsbreite der Profil 3-Kurve im Vergleich zu der Profil 1-Kurve.
  • Eine besonders günstige Temperaturverteilung stellt sich ein, wenn die Isothermen von der Rohrinnenwand zum Kern der Strömung spiralförmig verlaufen.
  • Eine gleichmäßigere Verteilung der Temperatur über den Querschnitt ergibt sich insbesondere, wenn sich die Umfangsgeschwindigkeit innerhalb von 2 bis 3 m aufbaut und dann über die gesamte Rohrlänge konstant bleibt.
  • Das erfindungsgemäße Verfahren sollte im Hinblick auf eine hohe Olefinausbeute bei vergleichsweise kurzer Rohrlänge so betrieben werden, daß der Homogenitätsfaktor der Temperatur über den Querschnitt und der auf den hydraulischen Durchmesser bezogene Homogenitätsfaktor der Temperatur im Verhältnis zum Homogenitätsfaktor eines Glattrohrs (H) über 1 liegt. Dabei sind die Homogenitätsfaktoren wie folgt definiert: H G∅ - H P∅ = Δ T 0 d x / ΔT x d o
    Figure imgb0001
  • Das erfindungsgemäß erzeugte Strömungsbild aus Kern- und Drallstömung läßt sich mit einem Rippenrohr erreichen, bei dem der Flankenwinkel der jeweils über die Länge eines Rohrstücks durchgehenden Rippen, das heißt der Außenwinkel zwischen den Rippenflanken und dem Radius des Rohrs 16° bis 25°, vorzugsweise 19° bis 21° beträgt Ein derartiger Flankenwinkel gewährleistet in Verbindung mit einer Rippensteigung von 20° bis 40°, beispielsweise 22,5° bis 32,5°, daß sich in den Rippentälern nicht eine mehr oder weniger in sich geschlossene, hinter die Rippenflanken in die Rippentäler zurückkehrende Wirbelströmung ergibt, die in den Rippentälern zum Entstehen unerwünschter "Twisters", das heißt von geschlossene Wirbelzöpfen führt. Vielmehr lösen sich die sich in den Rippentälem entstehenden Wirbel von den Rippenflanken ab und werden von der Drallströmung aufgenommen. Die von den Rippen induzierte Drallenergie beschleunigt die Gaspartikel und führt zu einer höheren Gesamtgeschwindigkeit. Dies führt zu einer Verminderung und Vergleichmäßigung der Rohrwandtemperetur und zu einer Vergleichmäßigung der Temperatur und der Verweildauer über den Rohrquerschnitt.
  • Die Beschaffenheit des erfindungsgemäßen Rippenrohrs ergibt sich aus der Darstellung eines Rohrsegments in Fig. 6 und den zugehörigen charakteristischen Parametern
    • hydraulischer Durchmesser Dh in mm, RI ≤ Dh / 2
    • Flankenwinkel β
    • Rippenhöhe H
    • Hüllkreis-Radius Ra = Rl + H und Da = 2 x Ra
    • Zentrumswinkel α
    • Krümmungsradius R = Ra (sin α / 2 sin β+ sin α)
    • Hüllkreis-Umfang 2 Π Ra
    • Winkel im schiefwinkligen Dreieck γ = 180 - (α + β)
    • Innen-Radius Ri = 2R (sin γ / sin α) - R
    • Rippenhöhe H = Ra - Ri
    • Profil-Umfang Up = 2 x Rippenzahl x nR / 180 (2 β + α)
    • Rippenfläche FR
    • Fläche des Hüllkreises Fa = π Da2 / 4
    • Fläche des Innenkreises Fl = Π • DI
    • Profilfläche Innerhalb des Hüllkreises FP = FR • Rippenzahl
    • Profil-Umfang Up = maximal 1,05 • 2 π Ra
  • Die Rippen und die zwischen den Rippen befindlichen Rippentäler sind im Querschnitt spiegelsymmetrisch ausgebildet und bildet eine Wellenlinie mit jeweils gleichen Krümmungsradien. Der Flankenwinkel ergibt sich dann zwischen den Tangenten der jeweils beiden Krümmungsradien im Berührnungspunkt und dem Radius des Rohrs. Dabei sind die Rippen verhältnismäßig flach; Rippenhöhe und Flankenwinkel werden so aufeinander abgestimmt, dass der hydraulische Durchmesser des Profils aus dem Verhältnis 4 x freier Querschnitt/Profilumfang gleich oder grösser ist als der Innenkreis des Profils. Der hydraulische Durchmesser liegt daher im inneren Drittel der Profilhöhe. Damit steigen die Rippenhöhe und die Zahl der Rippen mit zunehmendem Durchmesser so, daß die Drallströmung in der für die Wirkung des Profils erforderlichen Richtung und Stärke erhalten bleibt.
  • Zwischen den Rippen bzw. in den Rippentälem ergibt sich eine größere Strömungsgeschwindigkeit (Fig. 2), die zu einem Selbstreinigungseffekt, daher zu weniger Ablagerungen von Pyrolysekoks führt.
  • Versuche haben ergeben, daß - unabhängig vom Innendurchmesser der Rohre - insgesamt 8 bis 12 Rippen ausreichend sind, um das erfindungsgemäße Strömungsbild zu erreichen.
  • Bei dem erfindungsgemäßen Rippenrohr beträgt das Verhältnis der Quotienten der Wärmeübergangskoeffizienten QR / Q0 zum Quotienten der Druckverluste ΔPR/ΔP0 im Wasserversuch unter Benutzung und Beachtung der Ähnlichkeitsgesetze und Verwendung der für ein Naphta/Wasserdampf-Gemisch vermittelten Reynoldszahlen, vorzugsweise 1,4 bis 1,5, wobei R ein Rippenrohr und 0 ein Glattrohr kennzeichnet.
  • Die Überlegenheit des erfindungsgemäßen Rippenrohr (Profil 3) im Vergleich zu einem Glattrohr (Profil 0) sowie einem Rippenrohr mit achsparallelen Rippen (Profil 1), bei denen der radiale Abstand zwischen den Rippentälern und den Rippenkuppen 4,8 mm beträgt veranschaulichen die Daten der nachfolgenden Tabelle. Die Rippenrohre besaßen sämtilch 8 Rippen sowie denselben Hüllkreis.
    PROFIL 0 1 3
    Fluidtemp. bei 9950 mm In der Mitte Tm[°C] 843,6 848,1 843,0
    Fluidemp. bei 9950 mm am Rand Tr[°C] 888,9 894 874,8
    Temperaturspanne bei 9950 mm ΔT=Tr-Tm[°C] 45,3 45,9 31,8
    Hormogenitätsfaktor zum Glattrohr Hat Ht = ΔTq / ΔTx 1 0,9869281 1,4245283
    Hydr. Durchmesser dh [m] 0,0380 0,0258 0,0344
    bezogener Homogenitätsfaktor bzgl. hydr. Ø zum Glattrohr H: H = ΔT0 · dx/ΔTx · do 1 0,8477193 1,3420558
    Rang H: 2 2 1
  • Dabei Ist der hydraulische Durchmesser wie folgt definiert: D hydr = 4 x freler Querschnitt / Innenumfang ;
    Figure imgb0002

    er entspricht vorzugsweise dem Innendurchmesser eines vergleichbaren Glattrohrs und ergibt dann einen Homogenitätsfaktor von 1,425.
  • Das erfindungsgemäße Rippenrohr ergibt im Wasserversuch einen um den Faktor 2,56 höheren Wärmeübergang (QR) im Vergleich zum Glattrohr bei einem nur um den Faktor 1,76 erhöhten Druckverlust (ΔPR).
  • In Fig. 7 sind einem Rohr mit glatter Innenwand (Glattrohr) drei verschiedene Profilrohre gegenübergestellt, darunter ein erfindungsgemäßes Rohr mit 8 Rippen mit einer Steigung von jeweils 30°. Zu Jedem Querschnitt sind der hydraulische Durchmesser, die Axialgeschwindigkeit, die Verweilzeit und der Druckverlust angegeben.
  • Ausgangsdaten waren die Durchsatzmengen eines in Betrieb befindlichen Glattrohres mit 38 mm Innendurchmesser, der mit dem hydraulischen Durchmesser identisch ist. Diese Daten wurden nach den Ähnlichkeitsgesetzen (gleiche Reynoldszahlen) auf warmes Wasser umgerechnet und den Versuchen zu Grunde gelegt (siehe Verhältnis der Quotienten des Wärmeüberganges und des Druckverlusts für Versuche mit Wasser sowie den bezogenen Homogenitätsfaktor bei der Rechnung mit Gasen).
  • Die unterschiedlichen Geschwindigkeitsprofile ergeben sich aus gleichen Durchsatzmengen bei unterschiedlichen hydraulischen Durchmessern (reziprokes Verhältnis).
  • Der Vergleich der Geschwindigkeiten bei den im Querschnitt gleichen Profilen 2 und 3 verdeutlicht die bessere Geschwindigkeit, Beschleunigung und Verweilzeit bei den erfindungsgemäßen Rohren (Profil 3). Bei gleichem hydraulischen Durchmesser bewirkt die durch den Drall der Rippen verursachte Geschwindigkeits-Komponente in Umfangsrichtung ein Ablösen der Strömung von der Rohrwand und eine schraubenförmig ansteigende Geschwindigkeit im gesamten Querschnitt.
  • Durch die gerichtete, spiralförmige Strömung wird die Wärme von der Rohrwand in die Strömung eingetragen und damit gleichmäßiger verteilt als in einer normalen ungerichteten turbulenten Strömung (Glattrohr, Profile 1 und 2). Gleiches gilt für die Verweilzeit der Partikel. Die spiralförmig gerichtete Strömung verteilt die Partikel gleichmäßiger über den Querschnitt während die Beschleunigung an den Profilflanken die mittleren Verweilzeit reduziert. Der höhere Druckverlust des Profils 3 resultiert aus der Umfangsgeschwindigkeit. Bei Profil 1 liegt die Ursache in der starken Einschnürung der Strömung und dem Reibungsverlust an der großen Innenfläche des Profils.
  • Die erfindungsgemäßen Rippenrohr lassen sich je nach Werkstoff beispielsweise aus einem Schleudergußrohr dadurch herstellen, daß die Enden eines Rohres mit achsparallelen Rippen gegeneinander verdreht werden, oder daß das Innenprofil durch Vorformen eines Schleudergußrohrs, beispielsweise durch Warmschmieden, Warmziehen oder Kaltverformen über ein Profilwerkzeug, beispielsweise einen fliegenden Dorn oder einer Dornstange mit einem dem Innenprofil des Rohrs entsprechenden Außenprofil erzeugt wird.
  • Schneidemaschinen zum Innenprofilieren von Rohren sind in verschiedenen Varianten beispielsweise aus der deutschen Patentschrift 195 23 280 bekannt. Diese Maschinen eignen sich auch zum Herstellen eines erfindungsgemäßen Rippenrohrs.
  • Beim Warmumformen sollte die Umformtemperatur so eingestellt werden, daß es im Bereich der Innenoberfläche zu einer partiellen Zerstörung des Gefügekorns und demzufolge später unter dem Einfluß der Betriebstemperatur zu einer Rekristallisation kommt Die Folge davon ist ein feinkömiges Gefüge, das eine rasche Diffusion von Chrom, Silizium und/ oder Aluminium durch die austentische Matrix zur Innenoberfläche des Rohrs und dort zum schnellen Aufbau einer oxidischen Schutzschicht führt.
  • Die Innenoberfläche des erfindungsgemäßen Rohrs sollte eine möglichst geringe Rauhigkeit besitzen; sie kann daher geglättet, beispielsweise mechanisch poliert oder elektrolytisch egalisiert sein.
  • Als Rohrwerkstoff eignen sich für den Einsatz in Äthylenanlagen Eisen- beziehungsweise Nickel-Legierungen mit 0,1% bis 0,5% Kohlenstoff, 20 bis 35% Chrom, 20 bis 70% Nickel, bis 3% Silizium, bis 1% Niob, bis 5% Wolfram sowie Zusätzen von Hafnium, Titan, Seltenen Erden, oder Zirkonium, von jeweils bis 0,5% und bis 6% Aluminium.

Claims (13)

  1. Rippenrohr zum thermischen Cracken von Kohlenwasserstoffen in Anwesenheit von Dampf, gekennzeichnet durch mit einem Neigungswinkel von 20° bis 40°, bezogen auf die Rohrachse geneigte, wendelförmig verlaufende Innenrippen und in Form einer Wellenlinie mit jeweils gleichem Krümmungsradius spiegelbildlich aneinander grenzenden Rippentälern und Rippenkuppen, bei denen der Flankenwinkel (β) der jeweiligen Tangente im Berührungspunkt der beiden Krümmungsradien (R) in Bezug auf die Senkrechte auf den Radius(Ri) des die Rippenkuppen berührenden Kreises im Gipfelpunkt jeweils eines Rippentals bzw. einer Rippenkuppe 16° bis 25° beträgt.
  2. Rippenrohr nach Anspruch 1, dadurch gekennzeichnet daß der Neigungswinkel 22,5° bis 32,5° beträgt.
  3. Rippenrohr nach Anspruch 1 oder 2 dadurch gekennzeichnet, daß der Innenumfang des Profils um maximal 5 % bezogen auf den Umfang des die Rippentäler berührenden Hüllkreises größer ist.
  4. Rippenrohr nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Flankenwinkel (β) der Rippen 19 bis 21° beträgt.
  5. Rippenrohr nach einem der Ansprüche 1 bis 4, gekennzeichnet durch insgesamt sechs bis zwölf Rippen.
  6. Rippenrohr nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der hydraulische Durchmesser des Rippenrohrs mindestens gleich dem Durchmesser des Innenkreises (Ri) ist.
  7. Rippenrohr nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet daß das Verhältnis der Wärmeübergangskoeffizienten QR/Q0 zum Quotienten der Druckverluste ΔPR/P0 im Wasserversuch 1,4 bis 1,5 beträgt, wobei R ein Rippenrohr und 0 ein Glattrohr kennzeichnet.
  8. Rippenrohr nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Krümmungsradius (R) des Rippenquerschnitts 3,5 bis 20 mm beträgt.
  9. Rippenrohr nach einem der Ansprüche 1 bis 8, gekennzeichnet durch eine Rippenhöhe (H) von 1,25 bis 3 mm.
  10. Rippenrohr nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der freie Querschnitt innerhalb des Profilumfangs (Up) 85 bis 95% der Fläche des Hüllkreises (Fa) beträgt.
  11. Rippenrohr nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Profilfläche (Fp) 40 bis 50% der Ringfläche zwischen dem Hüllkreis und dem innenkreis beträgt.
  12. Rippenrohr nach einem der Ansprüche 1 bis 11 aus Schleuderguß aus einer NickelLegierung mit 0,1 bis 0,5% Kohlenstoff, 20 bis 35% Chrom, 20 bis 70% Nickel, bis 3% Silizium, bis 1% Niob, bis 5% Wolfram sowie jeweils bis 0,5% Hafnium, Titan, Seltene Erdmetalle, Zirkonium und bis 6% Aluminium.
  13. Rippenrohr nach Anspruch 12, bei dem die Legierung einzeln oder nebeneinander mindestens 0,02% Silizium, 0,1% Niob, 0,3% Wolfram und 1,5% Aluminium enthält.
EP03725176A 2002-07-25 2003-05-08 Verfahren und rippenrohr zum thermischen spalten von kohlenwasserstoffen Expired - Lifetime EP1525289B9 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10012045A EP2298850A1 (de) 2002-07-25 2003-05-08 Rippenrohr zum thermischen Spalten von Kohlenwasserstoffen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10233961A DE10233961A1 (de) 2002-07-25 2002-07-25 Verfahren zum thermischen Spalten von Kohlenwasserstoffen
DE10233961 2002-07-25
PCT/EP2003/004827 WO2004015029A1 (de) 2002-07-25 2003-05-08 Verfahren und rippenrohr zum thermischen spalten von kohlenwasserstoffen

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP10012045.0 Division-Into 2010-09-30

Publications (3)

Publication Number Publication Date
EP1525289A1 EP1525289A1 (de) 2005-04-27
EP1525289B1 EP1525289B1 (de) 2011-09-28
EP1525289B9 true EP1525289B9 (de) 2012-02-29

Family

ID=30128404

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10012045A Withdrawn EP2298850A1 (de) 2002-07-25 2003-05-08 Rippenrohr zum thermischen Spalten von Kohlenwasserstoffen
EP03725176A Expired - Lifetime EP1525289B9 (de) 2002-07-25 2003-05-08 Verfahren und rippenrohr zum thermischen spalten von kohlenwasserstoffen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10012045A Withdrawn EP2298850A1 (de) 2002-07-25 2003-05-08 Rippenrohr zum thermischen Spalten von Kohlenwasserstoffen

Country Status (22)

Country Link
EP (2) EP2298850A1 (de)
JP (2) JP4536512B2 (de)
KR (1) KR101023668B1 (de)
CN (1) CN100523133C (de)
AT (1) ATE526385T1 (de)
AU (1) AU2003227737A1 (de)
BR (1) BR0312919B1 (de)
CA (1) CA2493463C (de)
DE (1) DE10233961A1 (de)
EA (1) EA010936B1 (de)
ES (1) ES2374568T3 (de)
HR (1) HRP20050072A2 (de)
IL (1) IL166229A (de)
MA (1) MA27325A1 (de)
MX (1) MXPA05001070A (de)
NO (1) NO337398B1 (de)
NZ (1) NZ537827A (de)
PL (1) PL204769B1 (de)
PT (1) PT1525289E (de)
RS (1) RS20050060A (de)
UA (1) UA85044C2 (de)
WO (1) WO2004015029A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016012907A1 (de) 2016-10-26 2018-04-26 Schmidt + Clemens Gmbh + Co. Kg Tieflochbohrverfahren sowie Werkzeug für eine Tieflochbohrmaschine und Tieflochbohrmaschine
EP3384981A1 (de) 2017-04-07 2018-10-10 Schmidt + Clemens GmbH & Co. KG Rohr und vorrichtung zum thermischen spalten von kohlenwasserstoffen
DE102017003409A1 (de) 2017-04-07 2018-10-11 Schmidt + Clemens Gmbh + Co. Kg Rohr und Vorrichtung zum thermischen Spalten von Kohlenwasserstoffen
US11220635B2 (en) 2017-04-07 2022-01-11 Schmidt + Clemens Gmbh + Co. Kg Pipe and device for thermally cleaving hydrocarbons

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2037202B1 (de) 2006-07-05 2018-09-05 Nippon Steel & Sumitomo Metal Corporation Metallrohr für thermische krackreaktion
EP2408551A1 (de) * 2009-03-17 2012-01-25 Total Petrochemicals Research Feluy Verfahren zum abkühlen des abgases eines ofens
EP2813286A1 (de) * 2013-06-11 2014-12-17 Evonik Industries AG Reaktionsrohr und Verfahren zur Herstellung von Cyanwasserstoff
FR3033266B1 (fr) * 2015-03-05 2017-03-03 Ifp Energies Now Ensemble de collecte d'un fluide gazeux pour reacteur radial
US10611968B2 (en) 2015-07-09 2020-04-07 Sabic Global Technologies B.V. Minimizing coke formation in a hydrocarbon cracker system
JP6107905B2 (ja) * 2015-09-09 2017-04-05 株式会社富士通ゼネラル 熱交換器
WO2017178551A1 (en) * 2016-04-12 2017-10-19 Basf Antwerpen Nv Reactor for a cracking furnace
CA3062425C (en) * 2017-05-05 2022-05-31 Exxonmobil Chemical Patents Inc. Heat transfer tube for hydrocarbon processing
CA3079638A1 (en) * 2017-10-27 2019-05-02 China Petroleum & Chemical Corporation Heat transfer enhancement pipe as well as cracking furnace and atmospheric and vacuum heating furnace including the same
GB2590363B (en) * 2019-12-09 2023-06-28 Paralloy Ltd Internally profiled tubes

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB969796A (en) 1961-03-01 1964-09-16 Exxon Research Engineering Co Apparatus for heating fluids and tubes for disposal therein
JPS58132081A (ja) * 1982-01-08 1983-08-06 Idemitsu Petrochem Co Ltd 炭化水素の熱分解方法
DE3716665A1 (de) * 1987-05-19 1988-12-08 Vdm Nickel Tech Korrosionsbestaendige legierung
JP3001181B2 (ja) * 1994-07-11 2000-01-24 株式会社クボタ エチレン製造用反応管
DE4427859A1 (de) * 1994-08-05 1995-10-26 Siemens Ag Rohr mit auf seiner Innenseite ein mehrgängiges Gewinde bildenden Rippen sowie Dampferzeuger zu seiner Verwendung
DE19523280C2 (de) 1995-06-27 2002-12-05 Gfm Gmbh Steyr Schmiedemaschine zum Innenprofilieren von rohrförmigen Werkstücken
DE19629977C2 (de) * 1996-07-25 2002-09-19 Schmidt & Clemens Gmbh & Co Ed Werkstück aus einer austenitischen Nickel-Chrom-Stahllegierung
PT1136541E (pt) * 1997-06-10 2004-12-31 Exxonmobil Chem Patents Inc Fornalha de pirolise com uma serpentina radiante em forma de u com alhetas internas
JPH11199876A (ja) * 1998-01-16 1999-07-27 Kubota Corp コーキング減少性能を有するエチレン製造用熱分解管

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016012907A1 (de) 2016-10-26 2018-04-26 Schmidt + Clemens Gmbh + Co. Kg Tieflochbohrverfahren sowie Werkzeug für eine Tieflochbohrmaschine und Tieflochbohrmaschine
WO2018078030A1 (de) 2016-10-26 2018-05-03 Schmidt + Clemens Gmbh + Co. Kg Tieflochbohrverfahren, werkzeug für eine tieflochbohrmaschine, tieflochbohrmaschine, und schleudergussrohr
US11440106B2 (en) 2016-10-26 2022-09-13 Schmidt + Clemens Gmbh + Co. Kg Deep hole drilling method as well as tool for a deep hole drilling machine and deep hole drilling machine
EP3384981A1 (de) 2017-04-07 2018-10-10 Schmidt + Clemens GmbH & Co. KG Rohr und vorrichtung zum thermischen spalten von kohlenwasserstoffen
DE102017003409A1 (de) 2017-04-07 2018-10-11 Schmidt + Clemens Gmbh + Co. Kg Rohr und Vorrichtung zum thermischen Spalten von Kohlenwasserstoffen
US11220635B2 (en) 2017-04-07 2022-01-11 Schmidt + Clemens Gmbh + Co. Kg Pipe and device for thermally cleaving hydrocarbons
DE102017003409B4 (de) 2017-04-07 2023-08-10 Schmidt + Clemens Gmbh + Co. Kg Rohr und Vorrichtung zum thermischen Spalten von Kohlenwasserstoffen

Also Published As

Publication number Publication date
MXPA05001070A (es) 2005-10-05
JP2010150553A (ja) 2010-07-08
NO337398B1 (no) 2016-04-04
BR0312919A (pt) 2005-07-05
KR20050052457A (ko) 2005-06-02
UA85044C2 (ru) 2008-12-25
NO20050493L (no) 2005-03-17
PL204769B1 (pl) 2010-02-26
MA27325A1 (fr) 2005-05-02
IL166229A (en) 2008-11-26
ATE526385T1 (de) 2011-10-15
KR101023668B1 (ko) 2011-03-25
EP1525289B1 (de) 2011-09-28
CA2493463C (en) 2013-01-15
EP2298850A1 (de) 2011-03-23
DE10233961A1 (de) 2004-02-12
CN1671824A (zh) 2005-09-21
JP2005533917A (ja) 2005-11-10
EA200500258A1 (ru) 2005-08-25
RS20050060A (en) 2007-09-21
WO2004015029A1 (de) 2004-02-19
NZ537827A (en) 2007-04-27
EA010936B1 (ru) 2008-12-30
AU2003227737A1 (en) 2004-02-25
IL166229A0 (en) 2006-01-15
EP1525289A1 (de) 2005-04-27
BR0312919B1 (pt) 2014-06-24
CN100523133C (zh) 2009-08-05
HRP20050072A2 (en) 2005-08-31
PT1525289E (pt) 2012-01-04
JP4536512B2 (ja) 2010-09-01
ES2374568T3 (es) 2012-02-17
CA2493463A1 (en) 2004-02-19
PL373967A1 (en) 2005-09-19

Similar Documents

Publication Publication Date Title
EP1525289B9 (de) Verfahren und rippenrohr zum thermischen spalten von kohlenwasserstoffen
DE69825494T2 (de) U-förmige innerlich gerippte strahlende Spule
EP0417428B1 (de) Rohrbündel-Wärmetauscher
EP2151652B1 (de) Verbindungsstück zwischen einem Spaltrohr und einem Kühlrohr sowie ein Verfahren zum Verbinden eines Spaltrohres mit einem Kühlrohr
WO2006018251A2 (de) Verbundrohr, herstellungsverfahren für ein verbundrohr und verwendung für ein verbundrohr
DE1643074A1 (de) Verfahren zum Umwandeln von Kohlenwasserstoffen
DE60211810T2 (de) Pyrolyserohr und dieses verwendendes pyrolyseverfahren
DE2923596A1 (de) Prozessofen zur thermischen umwandlung von gasgemischen, insbesondere kohlenwasserstoffen
DE2203420A1 (de) Verfahren und Einrichtung zum Erhitzen eines stroemenden Mediums
DE1667280A1 (de) Rohrreaktor fuer chemische Umsetzungen
DE2920860C2 (de)
EP1314947B1 (de) Wärmetauscher, insbesondere für Heizungsanlagen
CH665020A5 (de) Waermeuebertrager.
DE102017003409B4 (de) Rohr und Vorrichtung zum thermischen Spalten von Kohlenwasserstoffen
DE10244150A1 (de) Rohrabschnitt für eine Rohrschlange
EP3356290B1 (de) Neuwertige brennvorrichtung zur erzeugung von gasgemischen
EP3384981B1 (de) Rohr und vorrichtung zum thermischen spalten von kohlenwasserstoffen
DE2259943A1 (de) Heizrohr
WO2018185167A1 (de) Rohr und vorrichtung zum thermischen spalten von kohlenwasserstoffen
EP1348914B1 (de) Wärmetauscher, Verbrennungsvorrichtung, einen Wärmetauscher umfassend, Absperrelement zur Verwendung in einem solchen Wärmetauscher, und Verfahren zur Herstellung eines Wärmetauschers
DE102008053847A1 (de) Spaltrohre im Spaltofen einer Olefinanlage
DE2145232A1 (de) Heizrohr für einen von außen erhitzbaren Ofen
DE1901758C3 (de) Röhrenelement für einen Röhrenofen zum katalytischer! Umsetzen von Kohlenwasserstoffen mit Wasserdampf
EP0813037A1 (de) Wärmeübertrager, insbesondere für einen Heizkessel
EP1306613A1 (de) Flammrohre für Grosswasserraumkessel sowie Verfahren zur Fertigung von Flammrohren für Grosswasserraumkessel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041008

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20050518

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50313973

Country of ref document: DE

Effective date: 20111124

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20111214

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2374568

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120217

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110928

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111229

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110928

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 11121

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110928

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110928

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120629

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50313973

Country of ref document: DE

Effective date: 20120629

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E013975

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120508

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220518

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20220502

Year of fee payment: 20

Ref country code: SE

Payment date: 20220523

Year of fee payment: 20

Ref country code: RO

Payment date: 20220503

Year of fee payment: 20

Ref country code: PT

Payment date: 20220428

Year of fee payment: 20

Ref country code: IT

Payment date: 20220531

Year of fee payment: 20

Ref country code: HU

Payment date: 20220502

Year of fee payment: 20

Ref country code: GB

Payment date: 20220523

Year of fee payment: 20

Ref country code: FR

Payment date: 20220523

Year of fee payment: 20

Ref country code: ES

Payment date: 20220617

Year of fee payment: 20

Ref country code: DE

Payment date: 20220621

Year of fee payment: 20

Ref country code: CZ

Payment date: 20220503

Year of fee payment: 20

Ref country code: BG

Payment date: 20220517

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220505

Year of fee payment: 20

Ref country code: FI

Payment date: 20220517

Year of fee payment: 20

Ref country code: BE

Payment date: 20220518

Year of fee payment: 20

Ref country code: AT

Payment date: 20220517

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50313973

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20230507

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20230508

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230526

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230507

Ref country code: SK

Ref legal event code: MK4A

Ref document number: E 11121

Country of ref document: SK

Expiry date: 20230508

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 526385

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230508

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230517

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230509

Ref country code: CZ

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230507