EP1521940B1 - Echangeur thermique, notamment echangeur air/air destine a des vehicules - Google Patents
Echangeur thermique, notamment echangeur air/air destine a des vehicules Download PDFInfo
- Publication number
- EP1521940B1 EP1521940B1 EP03730119.9A EP03730119A EP1521940B1 EP 1521940 B1 EP1521940 B1 EP 1521940B1 EP 03730119 A EP03730119 A EP 03730119A EP 1521940 B1 EP1521940 B1 EP 1521940B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- housing
- medium
- exchanger element
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000000988 bone and bone Anatomy 0.000 claims description 9
- 230000008719 thickening Effects 0.000 claims description 4
- 239000003570 air Substances 0.000 description 80
- 238000001816 cooling Methods 0.000 description 41
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000012080 ambient air Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0043—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/008—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
- F28D2021/0082—Charged air coolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/10—Particular pattern of flow of the heat exchange media
- F28F2250/104—Particular pattern of flow of the heat exchange media with parallel flow
Definitions
- the invention relates to a heat exchanger, in particular intercooler for motor vehicles, preferably for commercial vehicles, with a first header and a second header for a first medium, wherein the two header boxes each having a first media connection for the first medium and communicating with each other via at least one heat exchanger element are and with a, the heat exchanger element receiving, inside a second medium leading housing having second media ports for the second medium.
- a heat exchanger according to the preamble of claim 1 is known from document WO 01/98723 known.
- Such heat exchangers serve in motor vehicles to provide cooled charge air.
- the charge air is cooled by means of cooling air, the cooling air used being the wind of the vehicle or ambient air conveyed by a fan.
- the two header boxes of the known heat exchanger are connected to one another, for example via charge air pipes, cooling fins being arranged between the charge air tubes for "surface enlargement.” These cooling fins are flowed through by cooling air, whereby a housing receiving the charge air tubes is provided.
- the cooling air passes transversely to the longitudinal extent of the charge air pipes in the housing with a lateral distance to a collection box, where it is deflected by 90 °, flows through the housing in the direction of the charge air ducts and leaves the housing at a distance to the other Collecting box in a direction that is perpendicular to the longitudinal extent of the charge air ducts.
- the mentioned air deflection the cooling air leads to a relatively large pressure loss. Further, the cooling air does not come in contact with the entire length of the charge air tubes, that is, the portions of the charge air tubes adjacent to the respective header are not or not sufficiently cooled by the cooling air. Overall, therefore, there is an unsatisfactory efficiency.
- the invention is based on the object to provide a heat exchanger of the type mentioned, which provides a very good heat exchange function, in particular cooling capacity without increasing the size and with only a small cooling air requirement.
- This object is achieved by a heat exchanger according to claim 1.
- This construction according to the invention makes it possible to place the second media connections in such a way that the full or nearly full length of the heat exchanger element, in particular the charge air pipes, is acted upon by the second medium and therefore a correspondingly high efficiency is achieved.
- the second media connections can be arranged, for example, in the area of the collecting boxes such that the second medium first flows along the outside of a part of the associated collecting tank or along the entire collecting tank, then encounters the heat exchanger element and carries out the heat exchange there over a correspondingly large distance. If the medium then arrives in the area of the other collecting tank, then at least part of it flows along the outside and leaves the arrangement via the second media connection.
- the housing inner wall By the at least partially present distance of the housing inner wall to at least one, preferably two headers, it is ensured that the second medium flow into the housing via the second media connection and to the Heat exchange element can get.
- the housing completely accommodates the collecting tanks.
- This arrangement offers the mentioned largest possible contact distance of the second medium with the heat exchanger element and also opens up the possibility of arranging the second media connections for the supply and the discharge of the second medium so that the lowest possible pressure loss occurs, that is, the second medium is possible not one or more so strongly deflected in his direction that sets a noticeable pressure loss.
- the two media connections are assigned to the two header tanks in such a way that the first header tank lies between the second media connection and the heat exchanger element and the second header tank is located between the other second media connection and the heat exchange element.
- the inflowing second medium first strikes the collecting box, flows past it or flows around it, and then reaches the heat exchanger element, from there to the other collecting box, flows there or flows around it and then reaches the second medium connection, the second medium dissipates.
- the flow directions are selected such that the second medium in the region of the second media connections has the same or approximately the same direction as in the heat exchanger element, that is to say they are not supplied and removed transversely to the flow in the heat exchanger element, as in the prior art. but in the same direction. Accordingly, only a small pressure loss occurs, in particular if the flow profile of the respective header tank is designed such that the flow along or flow around the each collection box is laminar, so there is a substantially vortex-free flow of the second medium.
- the flow direction of the first medium in the collecting box transversely, in particular at right angles, to the flow direction of the first medium in the heat exchanger element.
- the first medium therefore flows into the first collection box and leaves it transversely to the flow direction in the collection box, that is deflected in the collection box, in particular deflected at right angles, flows through the heat exchanger element and impinges on the second collection box.
- a deflection takes place in the direction of the longitudinal extent of the collecting tank, in particular a rectangular deflection.
- the first medium then exits from the second collection box.
- the deflection or deflections of the first medium are less important, since it is preferably the charge air of the heat exchanger forming charge air cooler, which is pending at high pressure and therefore deflection-induced pressure losses can be accepted.
- This does not apply according to the invention for the second medium, for example for cooling air of the intercooler, since this cooling air has a lower pressure, for example, when it comes to airstream or around a fan funded ambient air.
- the second media connections point in the direction of or approximately in the direction of the flow direction of the first medium in the heat exchanger element. This has already been described above, that is, the second medium flows around the two headers when flowing or outflow of the heat exchanger element.
- the first media connections point transversely, in particular at right angles to the flow direction of the first medium in the heat exchanger element. This has already been on received; the first medium is deflected after passing through the first media connection in the first collection box, then passes through the heat exchanger element and enters the second collection box and by repeated deflection to the other first media connection, which dissipates the first medium.
- the housing - seen in cross-section - has a bone shape or its shape approximates a bone shape.
- the housing to each collection box leaves a distance so that the second medium can flow along the outside of the respective collection box in the housing interior .
- the bone shape forming thickenings of the housing is a less thick area in which the heat exchanger element is located.
- the walls of the housing closely abut the heat exchanger element. These are side walls of the housing and also floor and ceiling walls. This close concern causes the second medium to come into intense heat exchange contact with the second medium without creating a faulty medium flow that flows along the inner wall of the housing but does not receive sufficient heat exchange contact with the first medium.
- the housing forms a housing portion of a fan housing of a fan.
- the heat exchanger according to the invention is integrated in the housing of the fan, that is, the entire fan housing has the fan of the fan and also the heat exchanger on, whereby a very space-saving design is achieved.
- the fan housing may preferably be formed as a spiral housing.
- the heat exchanger is designed as a countercurrent heat exchanger, that is, in the region of the heat exchanger element, the first and the second medium flow in opposite directions to each other, so that a high degree of heat exchange at low cooling air volume flow is achieved.
- the heat exchanger is designed as a DC heat exchanger, that is, the first and the second medium flow in the same direction in the heat exchanger element.
- there may be a mixed design of the two options mentioned, that is, sections are flowed through in countercurrent and other sections in the DC. Additionally or alternatively, it is also conceivable that a cross-flow heat exchanger is formed.
- the FIG. 1 shows a heat exchanger 1, which serves as a charge air cooler of a commercial vehicle.
- the heat exchanger 1 has a first collecting tank 2 and a second collecting tank 3 spaced apart from it for a first medium 4.
- the first medium 4 is charge air 5.
- the charge air 5 is to be cooled by means of a second medium 6.
- the second medium 6 is cooling air 7, which is formed by the wind and / or air sucked by a blower, not shown.
- the two header boxes 2 and 3 are tubular, formed with an oval cross section; their longitudinal extent is perpendicular to the plane of the FIG. 1 ,
- the heat exchanger 1 has a housing 8, which in the longitudinal section of FIG. 1 seen- has a bone shape. Between two thickened areas 9 and 10 of the housing 8 is a less thick area 11, in which the housing 8 has two planar walls 12, 13. In the thickened areas 9 and 10, the respective flat wall 12 and 13 is in convexly curved walls 14, 15 and 16, 17 via.
- the housing 8 extends at its ends in areas 18, 19, which in the longitudinal section of FIG. 1 considered thinner than the region 11 and each having a front side 20 and 21 respectively.
- the convexly curved walls 14,15, 16 and 17 extend at a distance a to the respective collection box 2 and 3, respectively, so that flow paths 22 to 25 are formed in the region of the header boxes 1 and 2 such that the latter can be flowed around inside the housing 8 ,
- the thickened areas 9 and 10, which lead to the formation of the bone shape, make this possible.
- the second collection box 3 is -senkrecht the plane of the FIG. 1 -
- the charge air 5 is supplied by means of a first, not shown media port 26.
- the charge air 5 thus rises in the second collection box 3 and is then deflected by 90 ° in the direction of the first collection box 2. It passes through a lying between the two headers 3, 2 heat exchanger element 27. This is indicated by the dashed arrow 28. After passing through the heat exchanger element 27, the charge air 5 enters the first collection box 2, is deflected there by 90 ° downwards and leaves the collection box 2 by means of a non-illustrated first media connection 29.
- the heat exchanger element 27 can run parallel to each other, the two Collecting boxes 2, 3 communicatively connecting charge air ducts to be formed (not shown).
- the charge air pipes extend at right angles to the longitudinal extent of the collecting tanks 2 and 3. Between the individual, spaced apart charge air ducts can be arranged forkernveriererung- cooling air ribs, which are opposite to the direction of the charge air 5 flows through the cooling air 7, so that an intense heat exchange in the Heat exchanger element 27 takes place, which causes the charge air 5 is cooled by the cooling air 7.
- the cooling air 7 is introduced into the interior of the housing 8 by means of a second media connection 30, which is located on the end face 20 of the area 18, such that it passes through the two flow paths 22 and 23 and thus at least partially surrounds the second collection box 3 ,
- the cooling air 7 then enters the heat exchanger element 27 and flows countercurrently through this component, that is, the flow direction of the charge air 5 runs opposite to the flow direction of the cooling air 7.
- the cooling air 7 leaves the heat exchanger element 27 in the region of the second header 3 and flows into the Flow paths 24 and 25, that is, the collection box 3 is flowed around on both sides.
- the cooling air 7 then reaches the end face 21 of the region 19, where a second media connection 31 is formed for the removal of the cooling air 7.
- the FIG. 2 shows a plan view of a disk contour of the heat exchanger element 27, that is, the heat exchanger element 27 is realized in stacked disk design.
- individual discs profiled aluminum sheets
- individual discs are stacked alternately, which are provided for the formation of the connection and for the formation of the two header boxes 2 and 3 with cups and passages.
- This is known in principle.
- When stacking put cup / thread on cup / thread and then the next pair of edge on edge, etc. and soldered.
- the heat exchanger element 27 according to FIG. 5 alternately formed a cooling air rib 32, a charge air rib 33 and then again a cooling air rib 32 and -following a charge air rib 33 and so on. From the FIG.
- the flow path for the charge air 5 in the region of the heat exchanger element 27 is created by placing two half shells 34, 35 on one another.
- the adjacent charge air rib 33 has a distance from the first-mentioned charge air rib 33, so that a cooling air rib 32 is formed between them, which can be flowed through by the cooling air 7 in countercurrent.
- a cooling air rib 32 is formed between them, which can be flowed through by the cooling air 7 in countercurrent.
- FIG. 3 shows the housing 8, which surrounds the heat exchanger element 27, wherein the housing 8 at diametrically opposite ends of the second media ports 30 and 31 has. Furthermore, the first media connections 26 and 29 can be seen leading to the collecting tanks 2, 3.
- charge air 5 is brought from the charge air ribs 33 and-corresponding to the arrows 35- is discharged from the collecting box 2.
- FIG. 7 shows a fan 37 with fan housing 38 and impeller 39.
- a heat exchanger element 27 according to the embodiments described above is integral at least partially received so that guided inside the fan housing 38 cooling air 7, the heat exchanger element 27 according to the FIG. 7 can flow through the arrows.
- the heat exchanger element 27 has integrated manifolds 2 and 3 and intermediate cooling air ribs 32 and charge air ribs 33 due to the stacked construction, so that a charge air flow guided there is cooled by the cooling air 7.
- the housing 38 is preferably formed as a spiral housing 40.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Claims (11)
- Echangeur de chaleur (1), en particulier refroidisseur d'air de suralimentation pour des véhicules automobiles, de préférence pour des véhicules utilitaires, comprenant un premier bac collecteur (2) et un second bac collecteur (3) pour un premier milieu (4), où les deux bacs collecteurs (2, 3) présentent à chaque fois un premier raccordement de milieu (26, 29) pour le premier milieu (4) et sont reliés en communiquant l'un avec l'autre par au moins un élément d'échangeur de chaleur (27), et comprenant un carter (8) logeant l'élément d'échangeur de chaleur (27) et guidant un second milieu à l'intérieur dudit carter qui présente des deuxièmes raccordements de milieu (30, 31) pour le second milieu, où le carter (8) est conçu de manière telle, que les deux bacs collecteurs (2, 3) soient logés ensemble à l'intérieur dudit carter en ayant une distance d'espacement se présentant par rapport à la paroi intérieure du carter, où le carter (8), vu en coupe longitudinale, présente une forme d'os ou bien, dans le façonnage de sa forme, se rapproche d'une forme d'os, de manière telle que ledit carter présente deux zones épaissies (9, 10) et une zone (11) moins épaisse située entre celles-ci, où l'élément d'échangeur de chaleur (27) se trouve dans la zone (11) moins épaisse, et où les deuxièmes raccordements de milieu (30, 31) sont associés aux deux bacs collecteurs (2, 3), de manière telle que le premier bac collecteur (2) se trouve entre un deuxième raccordement de milieu (30) et l'élément d'échangeur de chaleur (27), le second bac collecteur (3) se trouvant entre l'autre deuxième raccordement de milieu (31) et l'élément d'échangeur de chaleur (27), caractérisé en ce que les épaississements présentent à chaque fois l'un des bacs collecteurs.
- Echangeur de chaleur selon la revendication 1, caractérisé en ce que la direction d'écoulement du premier milieu (4) en circulation dans les bacs collecteurs (2, 3) s'étend de façon transversale, en particulier à angle droit, par rapport à la direction d'écoulement du premier milieu (4) en circulation dans l'élément d'échangeur de chaleur (27).
- Echangeur de chaleur selon l'une des revendications précédentes, caractérisé en ce que les deuxièmes raccordements de milieu (30, 31) sont orientés en direction ou à peu près en direction du sens d'écoulement du premier milieu (4) en circulation dans l'élément d'échangeur de chaleur (27).
- Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les premiers raccordements de milieu (26, 29) sont orientés de façon transversale, en particulier à angle droit, par rapport à la direction d'écoulement du premier milieu (4) en circulation dans l'élément d'échangeur de chaleur (27).
- Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les premiers raccordements de milieu (26, 29) sont orientés en direction ou à peu près en direction de l'étendue longitudinale des bacs collecteurs (2, 3).
- Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier raccordement de milieu respectif (26, 29) est aligné sur l'étendue longitudinale du premier ou du second bac collecteur associé (2, 3).
- Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les parois (12, 13) et les parois du fond et du couvercle du carter (8) s'appliquent étroitement contre l'élément d'échangeur de chaleur (27).
- Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le carter (8) forme une partie de carter d'un carter de ventilateur (38) d'un ventilateur (37).
- Echangeur de chaleur selon la revendication 8, caractérisé en ce que le carter de ventilateur (38) est conçu comme un carter en spirale (40).
- Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est conçu comme un échangeur de chaleur de flux circulant en sens opposés.
- Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est conçu comme un échangeur de chaleur de flux circulant dans le même sens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11165855A EP2410277A1 (fr) | 2002-07-04 | 2003-05-26 | Echangeur thermique, notamment refroidisseur d'air de suralimentation pour véhicules automobiles |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10230852A DE10230852A1 (de) | 2002-07-04 | 2002-07-04 | Wärmetauscher, insbesondere Ladeluftkühler für Kraftfahrzeuge |
DE10230852 | 2002-07-04 | ||
PCT/EP2003/005516 WO2004005828A1 (fr) | 2002-07-04 | 2003-05-26 | Echangeur thermique, notamment echangeur air/air destine a des vehicules |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11165855A Division-Into EP2410277A1 (fr) | 2002-07-04 | 2003-05-26 | Echangeur thermique, notamment refroidisseur d'air de suralimentation pour véhicules automobiles |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1521940A1 EP1521940A1 (fr) | 2005-04-13 |
EP1521940B1 true EP1521940B1 (fr) | 2016-10-12 |
Family
ID=29761780
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11165855A Withdrawn EP2410277A1 (fr) | 2002-07-04 | 2003-05-26 | Echangeur thermique, notamment refroidisseur d'air de suralimentation pour véhicules automobiles |
EP03730119.9A Expired - Lifetime EP1521940B1 (fr) | 2002-07-04 | 2003-05-26 | Echangeur thermique, notamment echangeur air/air destine a des vehicules |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11165855A Withdrawn EP2410277A1 (fr) | 2002-07-04 | 2003-05-26 | Echangeur thermique, notamment refroidisseur d'air de suralimentation pour véhicules automobiles |
Country Status (6)
Country | Link |
---|---|
US (1) | US20050230092A1 (fr) |
EP (2) | EP2410277A1 (fr) |
JP (1) | JP4411376B2 (fr) |
AU (1) | AU2003240716A1 (fr) |
DE (1) | DE10230852A1 (fr) |
WO (1) | WO2004005828A1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004001462A1 (de) | 2004-01-08 | 2005-08-18 | Behr Gmbh & Co. Kg | Kühlsystem |
US6997248B2 (en) | 2004-05-19 | 2006-02-14 | Outokumpu Oyj | High pressure high temperature charge air cooler |
EP1941224A1 (fr) * | 2005-10-20 | 2008-07-09 | Behr GmbH & Co. KG | Echangeur thermique |
US8225852B2 (en) | 2008-04-30 | 2012-07-24 | Dana Canada Corporation | Heat exchanger using air and liquid as coolants |
US9631876B2 (en) * | 2013-03-19 | 2017-04-25 | Mahle International Gmbh | Heat exchanger |
SI3372937T1 (sl) * | 2017-03-10 | 2022-04-29 | Alfa Laval Corporate Ab | Paket plošč naprave za toplotno izmenjavo in toplotni izmenjevalnik |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1732938A (en) * | 1929-10-22 | Ventilator and temperature equalizer | ||
US3953176A (en) * | 1973-05-22 | 1976-04-27 | Texas Instruments Incorporated | Catalytic converter |
DE3444961A1 (de) * | 1984-12-10 | 1986-06-12 | Klöckner-Humboldt-Deutz AG, 5000 Köln | Waermetauscher fuer zwei medien, insbesondere ein ladeluftkuehler fuer eine brennkraftmaschine |
DE4223423A1 (de) * | 1992-07-16 | 1994-01-20 | Laengerer & Reich Gmbh & Co | Wärmeaustauscher |
DE4307504C1 (de) * | 1993-03-10 | 1994-09-22 | Mtu Friedrichshafen Gmbh | Wärmetauscher, insbesondere Ladeluftkühler einer Brennkraftmaschine |
DE4307503C2 (de) * | 1993-03-10 | 1995-01-19 | Mtu Friedrichshafen Gmbh | Wärmetauscher, insbesondere Ladeluftkühler einer Brennkraftmaschine |
DE19547928C2 (de) * | 1995-06-30 | 1999-03-11 | Mtu Friedrichshafen Gmbh | Plattenwärmetauscher |
US6659170B1 (en) * | 1996-06-17 | 2003-12-09 | Hemant D. Kale | Energy-efficient, finned-coil heat exchanger |
DE19734690C2 (de) * | 1997-08-11 | 2000-02-17 | Modine Mfg Co | Wärmetauscher, beispielsweise luftgekühlter Ladeluftkühler |
DE19830846B4 (de) * | 1998-07-10 | 2007-03-15 | Behr Gmbh & Co. Kg | Wärmetauscher |
DE19846518B4 (de) * | 1998-10-09 | 2007-09-20 | Modine Manufacturing Co., Racine | Wärmetauscher, insbesondere für Gase und Flüssigkeiten |
DE19859675B4 (de) * | 1998-12-23 | 2006-07-20 | Behr Gmbh & Co. Kg | Wärmetauscher |
DE19902504B4 (de) * | 1999-01-22 | 2005-09-22 | Behr Gmbh & Co. Kg | Wärmeübertrager, insbesondere Ladeluftkühler |
DE19927607A1 (de) * | 1999-06-17 | 2000-12-21 | Behr Gmbh & Co | Ladeluftkühler mit einem Kühlmitteleintritt sowie einem Kühlmittelaustritt |
JP2001330394A (ja) * | 2000-05-22 | 2001-11-30 | Denso Corp | 排気熱交換器 |
GB0015041D0 (en) * | 2000-06-21 | 2000-08-09 | Serck Heat Transfer Limited | Exhaust gas cooler |
EP1189008B1 (fr) * | 2000-09-15 | 2003-11-26 | Toyo Radiator Co., Ltd. | Echangeur de chaleur |
US7077190B2 (en) * | 2001-07-10 | 2006-07-18 | Denso Corporation | Exhaust gas heat exchanger |
DE102005021931A1 (de) * | 2005-05-12 | 2006-11-16 | Modine Manufacturing Co., Racine | Wärmetauscher für Kraftfahrzeuge |
-
2002
- 2002-07-04 DE DE10230852A patent/DE10230852A1/de not_active Withdrawn
-
2003
- 2003-05-26 US US10/519,709 patent/US20050230092A1/en not_active Abandoned
- 2003-05-26 WO PCT/EP2003/005516 patent/WO2004005828A1/fr active Application Filing
- 2003-05-26 JP JP2004518507A patent/JP4411376B2/ja not_active Expired - Fee Related
- 2003-05-26 AU AU2003240716A patent/AU2003240716A1/en not_active Abandoned
- 2003-05-26 EP EP11165855A patent/EP2410277A1/fr not_active Withdrawn
- 2003-05-26 EP EP03730119.9A patent/EP1521940B1/fr not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP1521940A1 (fr) | 2005-04-13 |
WO2004005828A1 (fr) | 2004-01-15 |
EP2410277A1 (fr) | 2012-01-25 |
JP4411376B2 (ja) | 2010-02-10 |
JP2005531747A (ja) | 2005-10-20 |
DE10230852A1 (de) | 2004-01-22 |
US20050230092A1 (en) | 2005-10-20 |
AU2003240716A1 (en) | 2004-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2021717B1 (fr) | Échangeur thermique pour vehicules automobiles | |
EP2044304B1 (fr) | Échangeur de chaleur avec raccord d'accouplement, par exemple refroidisseur d'air de charge, et raccord d'accouplement pour échangeur de chaleur | |
DE102012006346B4 (de) | Wärmetauscher | |
EP1654508B1 (fr) | Echangeur de chaleur et procede de fabrication dudit echangeur | |
DE19833338A1 (de) | Wärmetauscher, insbesondere Abgaswärmetauscher | |
DE102008029958A1 (de) | Wärmetauscher für ein Kraftfahrzeug | |
DE102013218174A1 (de) | Wärmetauscher | |
DE102013002545A1 (de) | Kondensator mit einem Stapel aus Wärmetauscherplatten | |
DE102018200809A1 (de) | Stapelscheibenwärmetauscher | |
DE4305060C2 (de) | Gelöteter Wärmetauscher, insbesondere Verdampfer | |
WO2005038381A1 (fr) | Radiateur de liquide de refroidissement d'un vehicule automobile | |
EP1703242B1 (fr) | Echangeur de chaleur, en particulier radiateur de liquide de refroidissement | |
WO2014131756A1 (fr) | Échangeur de chaleur | |
DE202008013351U1 (de) | Wärmeaustauschernetz und damit ausgerüsteter Wärmeaustauscher | |
DE102004002252B4 (de) | Wärmeübertrager für Fahrzeuge | |
EP1521940B1 (fr) | Echangeur thermique, notamment echangeur air/air destine a des vehicules | |
EP2438384B1 (fr) | Tuyau collecteur pour condenseur | |
DE202017104743U1 (de) | Wärmetauscher mit Mikrokanal-Struktur oder Flügelrohr-Struktur | |
DE102004007510B4 (de) | Wärmeübertrager, insbesondere Ölkühler für Kraftfahrzeuge | |
DE102008036614A1 (de) | Wärmetauscher | |
DE102006054460A1 (de) | Wärmetauscher | |
DE4118289A1 (de) | Waermetauscher-vorrichtung fuer kaeltetrockner an druckluftanlagen | |
EP1553273B1 (fr) | Système de refroidissement | |
EP2138798B1 (fr) | Chambre de distribution, notamment d'un échangeur de chaleur pour véhicule automobile, et échangeur de chaleur, notamment condenseur pour véhicule automobile | |
DE102004028028A1 (de) | Wärmetauscher |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050204 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20100611 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAHLE BEHR GMBH & CO. KG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160512 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: EMRICH, KARSTEN Inventor name: SCHAIRER, ANDRE Inventor name: HEINE, REINHARD |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 836912 Country of ref document: AT Kind code of ref document: T Effective date: 20161015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 50315561 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20161012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170113 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161012 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170213 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161012 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161012 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161012 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 50315561 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161012 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161012 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161012 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161012 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161012 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170112 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161012 |
|
26N | No opposition filed |
Effective date: 20170713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161012 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161012 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170526 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170526 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170526 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 836912 Country of ref document: AT Kind code of ref document: T Effective date: 20170526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170531 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20030526 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20190524 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161012 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190715 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161012 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50315561 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201201 |