EP1515880A1 - Gestion de la stabilite dynamique par un reseau de regulateurs de vehicule - Google Patents

Gestion de la stabilite dynamique par un reseau de regulateurs de vehicule

Info

Publication number
EP1515880A1
EP1515880A1 EP03720195A EP03720195A EP1515880A1 EP 1515880 A1 EP1515880 A1 EP 1515880A1 EP 03720195 A EP03720195 A EP 03720195A EP 03720195 A EP03720195 A EP 03720195A EP 1515880 A1 EP1515880 A1 EP 1515880A1
Authority
EP
European Patent Office
Prior art keywords
control
driving behavior
systems
deviation
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03720195A
Other languages
German (de)
English (en)
Inventor
Sylvia Futterer
Armin-Maria Verhagen
Karlheinz Frese
Manfred Gerdes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1515880A1 publication Critical patent/EP1515880A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17555Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve specially adapted for enhancing driver or passenger comfort, e.g. soft intervention or pre-actuation strategies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0195Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/003Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/16Running
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • B60G2800/704Estimating or calculating vehicle parameters or state variables predicting unorthodox driving conditions for safe or optimal driving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/85System Prioritisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/92ABS - Brake Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/96ASC - Assisted or power Steering control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/02Active Steering, Steer-by-Wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/06Active Suspension System
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/08Coordination of integrated systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • B60T2260/09Complex systems; Conjoint control of two or more vehicle active control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/14Yaw

Definitions

  • the invention relates to a method and a device for coordinating the subsystems of a vehicle dynamics
  • a complex vehicle control system which, for example, combines an anti-lock braking system (ABS) with an anti-slip control (ASR) and a yaw control (GMR) in a driving stability control (FSR). Occurs at this
  • DE 41 40 270 AI describes a method in which the suspension systems are actuated during braking and / or acceleration maneuvers in such a way that the instantaneous normal force between the tire and the road, or the wheel load, is influenced in the direction of its greatest possible value on each wheel unit.
  • AI is a compound control system consisting of an active chassis control and an anti-lock braking system (ABS) and / or
  • ASR Traction control system components
  • the invention describes a method or a device for influencing the driving behavior of a vehicle.
  • the influence is aimed at increasing driving stability while maintaining driving comfort for the driver of the vehicle.
  • This goal is achieved by controlling at least two systems in the vehicle which improve driving behavior and thus driving stability.
  • the essence of the invention is that the activation of a system takes place in a predetermined sequence depending on the activation and / or the effect on the driving behavior of the above systems achieved by the activation.
  • the main focus is on stabilizing driving behavior.
  • the order is determined based on the effects of the interventions of the systems on driving behavior. Another important aspect when choosing the sequence of the controlled systems is the sensible driving comfort of the driver.
  • An intervention of a system is thus prioritized in which the driver of the vehicle at least notices the effect of the intervention on driving behavior, ie the stabilizing effect.
  • an additional steering intervention for driver stabilization which is superimposed on the driver's steering interventions and generated by the controlled steering system, is perceived more clearly than an intervention of the chassis system (eg an adjustment of the spring or damper hardness).
  • a driver feels a braking process and thus an occurring change in the longitudinal movement of the vehicle more than is the case with an additional steering intervention.
  • the advantage over known strategies for peaceful coexistence is that the overall benefit is increased without abandoning the basic idea of self-sufficient subsystems.
  • the operating state of the controlled system and / or the achievable effect on driving behavior is taken into account when controlling the systems. This allows the individual actuators of the system to be controlled depending on the situation.
  • Deviation between a specifiable target driving behavior and the current actual driving behavior is then influenced by controlling the systems as a function of the determined deviation.
  • the deviation between a predetermined target driving behavior, in particular a driving behavior based on the driver's wishes being provided, and the current actual driving behavior is determined by a stabilization variable which represents the deviation.
  • the control of the systems can take place in the following depending on the determined target yaw moment.
  • One advantage of the invention is that the control of the systems leads to the deviation between the target and actual driving behavior being minimized. An increase in driving stability can thereby be achieved. With the dependent actuation of the systems in the specified sequence, it is provided to achieve the greatest possible minimization of the deviation by actuating an above system. The minimization of the deviation achieved in previous systems is then taken into account when controlling the subsequent systems.
  • a force between the vehicle body and at least one wheel unit by controlling a chassis system.
  • a chassis system for example, a advantageous adjustment of the suspension and / or damping property of the chassis can be carried out.
  • a further influence on the driving behavior can be achieved by controlling the position of at least one steerable wheel of a steering system.
  • Chassis system and a steering system can be advantageously influenced by driving a brake system on the driving behavior.
  • the control of the braking force of at least one wheel of the motor vehicle can have a favorable effect on the driving behavior by critical
  • Fig. 1 shows a block diagram of the recording of the operating parameters of the systems within the
  • FIG. 2 shows in a flowchart the processing of the deviation between the target and actual driving behavior and the influencing of the driving behavior by the dynamic vehicle systems
  • FIG. 4 shows the algorithm for calculating the normal force intervention of a chassis system in the vehicle group. Accordingly, FIG. 5 shows the determination of the lateral force intervention of a steering system and FIG. 6 shows the determination
  • FIG. 1 shows an exemplary embodiment for influencing the driving behavior of a motor vehicle, with the focus in particular on increasing driving stability.
  • control block 100 in addition to the current actual yaw rate ⁇ l (160), one
  • Yaw rate sensor 110 reads the operating variables 170, 180, 190 of the existing systems suspension control 120, steering 130 and driving dynamics control 140.
  • the target yaw rate l ⁇ l (210) is calculated from the determined operating variables (170, 180, 190) and with the actual
  • Interventions 175, 185, 195 determined in driving stability management in control block 100 are passed on to control systems 120, 130, 140 in accordance with the predetermined prioritization. These interventions can be used with a chassis system 120, as is the case, for example, with an Electronic Active
  • Roll stabilizer EAR
  • ABSC Active Body Control
  • the roll tendency can be suppressed by stabilizing interventions 175.
  • the rolling moment distribution e.g. the over- and
  • a steering system 130 such as an Electronic Active Steering (EAS) or a Steer bye Wire (SbW), in addition to the steering movements of the driver, can be superimposed on steering interventions 185 that increase the steering
  • driving dynamics control 140 as implemented by an electronic stability program (ESP), Brake interventions 195 which stabilize the driving are also carried out.
  • ESP electronic stability program
  • FIG. 2 the mode of operation for determining the necessary ones is shown on the basis of a block diagram
  • a control deviation 230 is determined in block 220 by comparing a suitable actual value 200 with a target value 210.
  • the control deviation 230 can be formed, for example, by a difference between the actual yaw rate ⁇ M (160) and the determined target yaw rate ⁇ wll (210). However, it is also conceivable to form the control deviation by comparing the actual float angle with the desired float angle. Based on the control deviation 230 thus obtained, a So11 yaw moment M z (250) is calculated in block 240 with respect to the center of gravity of the vehicle for the necessary stabilization of the driving behavior.
  • the target yaw moment M z (250) determined in this way from the control deviation 230 is forwarded to the vehicle controller network 260 as an actuating command.
  • the chassis system 120, the steering system 130 and the brake system 140 are actuated by this vehicle controller network in the intended sequence and depending on their possible influencing of the driving behavior.
  • the flowchart in FIG. 3 shows how the control systems are activated in the specified sequence and as a function of the target yaw moment M z (250).
  • a modification to the target is made in block 300 - Yaw moment 250 performed, which is necessary due to a residual torque 360 from a previous control intervention.
  • the current target yaw moment 302 determined in this way is dependent on the current operating variables 170 des Chassis used for determining the intervention of the chassis system 120 on the torque change of the vehicle's center of gravity.
  • the calculated interventions in the chassis are converted into control commands 175 for the chassis.
  • the change in torque generated by the intervention in the chassis system 120 with respect to the center of gravity of the vehicle is then determined in block 315 and used in block 320 to modify the target yaw moment 302.
  • the residual yaw moment 322 thus generated is then in block 330, in accordance with the procedure for controlling the
  • Chassis control depending on the current operating variables of the steering system 180 for determining the intervention of the steering system 130 on the torque change of the vehicle center of gravity.
  • the calculated steering interventions are in control commands 185 for the
  • the change in torque generated by the intervention with respect to the center of gravity of the vehicle is then determined in block 335 and used in block 340 to modify the residual yaw moment 322.
  • the residual yaw torque 342 generated in this way is then used in block 350, in accordance with the procedure for controlling the previous vehicle controls, depending on the current operating variables (190) of the brake system for determining the intervention of the brake system 140 on the change in torque of the vehicle's center of gravity.
  • Brake interventions are converted into control commands 185 for the brake system.
  • the change in torque generated by the intervention in relation to the center of gravity of the vehicle is then determined in block 355 and used in block 360 to modify the residual yaw moment 342. If it is determined that a residual torque 362 still occurs after the brake intervention, this can be used via a model correction 365 to carry out an additive correction of the torque balance in block 300. With the target yaw moment 302 thus updated, the control systems can be actuated again.
  • the flowchart in FIG. 4 shows the calculation and control of the chassis interventions.
  • changes in the normal forces can be generated that act from the wheels perpendicular to the ground.
  • the change in the normal forces on the wheels of the vehicle is used to cause a change in the target yaw moment M z (302) with respect to the center of gravity.
  • a block algorithm is used in block 400 to calculate the required normal force interventions.
  • the reserve 430 of the normal forces on the actuators as well as the current operating state of the actuators of the chassis are taken into account. For example, it can be prevented that an actuator is actuated that has no grip on the ground and therefore cannot change the normal force.
  • the required target manipulated variables 405 are determined from the intervention selection made and transferred to the control unit of the vehicle system 120 via an inverse vehicle model in block 400.
  • Actual manipulated variables 415 of the actuators are queried in block 420 as feedback from the chassis system. These actual manipulated variables 415 are converted into a normal force distribution together with the general operating state variables of the components and a chassis model.
  • This distribution is used to determine the reserves of normal forces 430.
  • the vehicle geometry is used to estimate the change in torque with respect to the center of gravity of the vehicle due to the interventions in the chassis. The determined thereby Reduction of the yaw moment is subtracted from the target yaw moment 302 and results in the remaining yaw moment 322.
  • the flowchart in FIG. 5 shows the calculation and control of the steering interventions of the steering system 130.
  • the change in the residual yaw moment 322 is related the focus by changing the
  • a block algorithm is used in block 500 to calculate the required lateral force interventions.
  • the actuating reserves 530 of the lateral forces on the wheels as well as the current operating state of the wheels are taken into account to control the steering system 130. For example, it can be prevented that a wheel is driven that has no grip on the ground and therefore cannot change the lateral force.
  • the required target steering angles 505 of the wheels are calculated via an inverse vehicle model and transferred to the steering system 130.
  • the actual steering angle 515 of the wheels is queried in block 520 as feedback from the steering system. From these actual steering angles 515, reserves 530 for changing the lateral forces are determined together with a tire model.
  • the change in torque with respect to the center of gravity of the vehicle is estimated by the steering interventions using the vehicle geometry.
  • the reduction in the yaw moment determined in this way is subtracted from the residual yaw moment 322 and thus results in the new, updated residual yaw moment 342.
  • FIG. 6 shows the calculation and the control and describes the control of the brake interventions.
  • the change in residual yaw moment 342 with respect to the center of gravity is brought about by a change in the longitudinal force on the vehicle.
  • Block 600 uses a controller algorithm.
  • the reserve reserves 630 of the longitudinal forces on the wheel brakes of the vehicle as well as the current operating state of the brake system are taken into account. In this way it can be prevented, for example, that brake control by the vehicle controller network counteracts any other brake control.
  • the determined brake interventions are transferred to the control unit of the brake system 140 via an inverse vehicle model as the required target slip sizes 605 on the wheels.
  • the actual slip sizes 615 are queried in block 620 as feedback from the brake system 140.
  • These actual slip sizes 615 are converted into a longitudinal force distribution together with the general operating state variables of the brake system and a chassis model. This distribution enables the reserve reserves 630 of the longitudinal forces to be determined.
  • the vehicle geometry is used to estimate the change in torque with respect to the center of gravity due to the braking interventions. The resulting reduction in
  • Yaw moment is subtracted from the residual yaw moment 342 and results in a possibly remaining residual yaw moment 362.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

L'invention concerne un procédé ainsi qu'un dispositif pour influer sur le comportement dynamique d'un véhicule afin d'augmenter la stabilité dynamique de ce véhicule et ainsi le confort de conduite du chauffeur de ce dernier. Cet objectif est atteint par le déclenchement d'au moins deux systèmes montés dans le véhicule, lesquels améliorent le comportement dynamique et ainsi la stabilité dynamique. L'essence de l'invention réside dans le fait que le déclenchement d'un système dans un ordre prédéterminé se fait en fonction du déclenchement et/ou de l'effet produit par le déclenchement sur le comportement dynamique des systèmes susmentionnés. Lesdits systèmes sont déclenchés dans l'ordre suivant : en premier un système de châssis, en second un système de direction et en troisième un système de frein.
EP03720195A 2002-06-15 2003-03-18 Gestion de la stabilite dynamique par un reseau de regulateurs de vehicule Withdrawn EP1515880A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10226683A DE10226683A1 (de) 2002-06-15 2002-06-15 Fahrstabilitätsmanagement durch einen Fahrzeugreglerverbund
DE10226683 2002-06-15
PCT/DE2003/000870 WO2003106235A1 (fr) 2002-06-15 2003-03-18 Gestion de la stabilite dynamique par un reseau de regulateurs de vehicule

Publications (1)

Publication Number Publication Date
EP1515880A1 true EP1515880A1 (fr) 2005-03-23

Family

ID=29594541

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03720195A Withdrawn EP1515880A1 (fr) 2002-06-15 2003-03-18 Gestion de la stabilite dynamique par un reseau de regulateurs de vehicule

Country Status (5)

Country Link
US (1) US20050256622A1 (fr)
EP (1) EP1515880A1 (fr)
JP (1) JP2005529788A (fr)
DE (1) DE10226683A1 (fr)
WO (1) WO2003106235A1 (fr)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004023497B4 (de) * 2003-05-12 2014-03-20 Continental Teves Ag & Co. Ohg Verfahren zum Verbessern des Fahrzeugverhaltens
RU2005137540A (ru) * 2003-05-13 2006-04-27 Континенталь Тевес Аг Энд Ко. Охг (De) Система регулирования динамики движения
DE10328979B4 (de) 2003-06-27 2021-07-22 Robert Bosch Gmbh Verfahren zur Koordination eines Fahrdynamikregelungssystems mit einem aktiven Normalkraftverstellsystem
DE102004024545A1 (de) * 2003-09-05 2005-04-07 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zum Regeln der Fahrdynamik eines Fahrzeugs
EP1687193B1 (fr) * 2003-11-14 2018-01-10 Continental Teves AG & Co. oHG Procede et dispositif de reglage de la dynamique d'un vehicule
DE102004004336A1 (de) * 2004-01-29 2005-08-18 Zf Friedrichshafen Ag Fahrstabilitätsregelungsverfahren für ein Kraftfahrzeug
DE102004007549B4 (de) 2004-02-17 2016-09-08 Daimler Ag Verfahren zum Betrieb eines aktiven Fahrwerksystems
DE102004040876A1 (de) * 2004-03-11 2005-12-29 Continental Teves Ag & Co. Ohg Verfahren zur Fahrdynamikregelung eines Fahrzeugs, Vorrichtung zur Durchführung des Verfahrens und ihre Verwendung
JP4029856B2 (ja) * 2004-03-26 2008-01-09 トヨタ自動車株式会社 車輌の挙動制御装置
DE102004017385A1 (de) * 2004-04-08 2005-10-27 Robert Bosch Gmbh Koordination eines Fahrdynamikregelungssystems mit anderen Fahrzeugstabilisierungssystemen
DE102004019281A1 (de) * 2004-04-21 2005-11-17 Zf Friedrichshafen Ag Verfahren zur Fahrstabilitätsregelung eines Fahrzeugs
DE102004035004A1 (de) * 2004-07-20 2006-02-16 Bayerische Motoren Werke Ag Verfahren zur Erhöhung der Fahrstabilität eines Kraftfahrzeugs
DE102004036565B4 (de) * 2004-07-28 2008-12-18 Robert Bosch Gmbh Vorrichtung und Verfahren zum Stabilisieren eines Fahrzeugs
DE102004047860A1 (de) * 2004-10-01 2006-04-20 Daimlerchrysler Ag Verfahren und Vorrichtung zur Beeinflussung der Querdynamik eines Fahrzeugs
DE102004051758A1 (de) * 2004-10-23 2006-04-27 Daimlerchrysler Ag Planung von Prozessabläufen in Fahrsystemeinrichtungen
JP4445889B2 (ja) * 2005-03-24 2010-04-07 株式会社豊田中央研究所 車両制御装置
DE102005041745A1 (de) * 2005-09-02 2007-03-08 Bayerische Motoren Werke Ag Fahrdynamik-Regelsystem für ein Kraftfahrzeug mit einem System zur beliebigen Veränderung der Antriebsmomentverteilung zwischen den beiden angetriebenen Rädern einer Achse
US7890239B2 (en) 2005-10-13 2011-02-15 Toyota Jidosha Kabushiki Kaisha Vehicle suppressing OS or US by stagedly different devices
JP4274189B2 (ja) 2006-02-13 2009-06-03 トヨタ自動車株式会社 車両制御システム
WO2007107362A1 (fr) * 2006-03-22 2007-09-27 Gm Global Technology Operations, Inc. Procédé, unité de commande et de réglage et système de personnalisation de véhicule à moteur pour effectuer un réglage personnalisé sur le châssis d'un véhicule à moteur mécatronique
CN101405176B (zh) * 2006-03-22 2013-01-23 Gm全球科技运作股份有限公司 对驾驶方式敏感的车辆子系统控制方法和装置
WO2007107364A1 (fr) * 2006-03-22 2007-09-27 Gm Global Technology Operations, Inc. Procédé pour déterminer une valeur d'indice d'état de véhicule automobile pour commander le châssis d'un véhicule
DE102006019790A1 (de) * 2006-04-28 2007-10-31 Zf Lenksysteme Gmbh Verfahren zur Lenkungsregelung
DE102006025904B4 (de) 2006-06-02 2024-01-25 Robert Bosch Gmbh Verfahren zur Einstellung von Fahrdynamikreglern
FR2907090B1 (fr) * 2006-10-16 2008-12-26 Renault Sas Dispositif de correction de la trajectoire d'un vehicule automobile comportant des premiers moyens de freinage selectifs des roues et des deuxiemes moyens de pivotement des roues arriere
DE102008017950A1 (de) * 2008-04-09 2009-10-15 Daimler Ag Verfahren zum Beeinflussen der Querdynamik eines Fahrzeugs
DE102008001993B4 (de) 2008-05-27 2022-08-25 Robert Bosch Gmbh Verfahren zum Regeln des fahrdynamischen Verhaltens eines Kraftfahrzeugs mit zumindest zwei unterschiedlichen Stellvorrichtungen und Vorrichtung hierfür
WO2010043686A1 (fr) * 2008-10-17 2010-04-22 Continental Teves Ag & Co. Ohg Système de régulation de la dynamique de conduite pour véhicules automobiles
DE102009049635A1 (de) * 2009-10-15 2011-04-21 Continental Teves Ag & Co. Ohg Fahrdynamikregelsystem für Fahrzeuge
JP5706130B2 (ja) 2010-10-29 2015-04-22 株式会社アドヴィックス 車両の挙動制御装置及び車両の挙動制御方法
JP5672968B2 (ja) 2010-10-29 2015-02-18 株式会社デンソー 車両運動制御装置およびそれを有する車両運動制御システム
DE102011010845B3 (de) * 2011-02-10 2012-06-28 Audi Ag Verfahren und Vorrichtung zum Beeinflussen des Kurvenfahrverhaltens eines Kraftwagens sowie Kraftwagen
JP5998492B2 (ja) * 2012-01-31 2016-09-28 日産自動車株式会社 車両の制御装置
JP5918167B2 (ja) * 2013-04-09 2016-05-18 アイシン精機株式会社 車両挙動制御装置および車両挙動制御システム
DE102014214272A1 (de) * 2014-07-22 2016-01-28 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Bestimmung eines resultierenden Giermoments sowie Verfahren zur Fahrdynamikregelung
JP6338614B2 (ja) 2016-04-27 2018-06-06 株式会社Subaru 車両の走行制御装置
DE102017207536A1 (de) * 2017-05-04 2018-11-08 Bayerische Motoren Werke Aktiengesellschaft Steuereinheit und System zur Stabilisierung eines Fahrzeugs
DE102017213750A1 (de) * 2017-08-08 2019-02-14 Audi Ag Verfahren und Einstellsystem zur Einhaltung einer Kursbewegung eines Fahrzeuges bei auftretenden Wankbewegungen eines Fahrzeugaufbaus
DE102018201191A1 (de) * 2018-01-25 2019-07-25 Audi Ag Verfahren zum Betrieb eines Fahrerassistenzsystems
DE102018203182B4 (de) 2018-03-02 2024-05-16 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Regelung der Fahrzeugquerdynamik

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3939292A1 (de) 1989-11-28 1991-05-29 Teves Gmbh Alfred Verbundregelsystem fuer kraftfahrzeuge
DE4111023C2 (de) 1991-04-05 2003-11-20 Bosch Gmbh Robert Elektronisches System für ein Fahrzeug
DE4140270A1 (de) 1991-12-06 1993-06-09 Robert Bosch Gmbh, 7000 Stuttgart, De Verfahren und vorrichtung zur fahrwerkregelung
JP3114006B2 (ja) * 1994-08-29 2000-12-04 セイコーインスツルメンツ株式会社 半導体装置、及び、その製造方法
DE4439060A1 (de) 1994-11-02 1996-05-09 Teves Gmbh Alfred Mikroprozessoranordnung für ein Fahrzeug-Regelungssystem
US5857160A (en) * 1996-05-23 1999-01-05 General Motors Corporation Sensor-responsive control method and apparatus
US5941919A (en) * 1996-10-16 1999-08-24 General Motors Corporation Chassis control system
US5746486A (en) * 1996-10-16 1998-05-05 General Motors Corporation Brake control system
US6205391B1 (en) * 1998-05-18 2001-03-20 General Motors Corporation Vehicle yaw control based on yaw rate estimate
DE19838336A1 (de) * 1998-08-24 2000-03-02 Bosch Gmbh Robert System zur Steuerung der Bewegung eines Fahrzeugs
US6056371A (en) * 1998-08-24 2000-05-02 General Motors Corporation Feed-forward active brake control
US6212461B1 (en) * 1999-05-28 2001-04-03 General Motors Corporation Extended brake switch software for vehicle stability enhancement system
US6282479B1 (en) * 1999-08-16 2001-08-28 General Motors Corporation Vehicle stability enhancement system in high center of gravity vehicle
US6681167B2 (en) * 1999-12-15 2004-01-20 Delphi Technologies, Inc. Vehicle chassis control with coordinated brake and steering control on split coefficient surface
DE10025493B4 (de) * 2000-05-23 2008-05-29 Daimler Ag Verfahren und Vorrichtung zur Koordination mehrerer Fahrsystemeinrichtungen eines Fahrzeugs
DE10032179A1 (de) * 2000-07-01 2002-01-17 Daimler Chrysler Ag Steuerungssystem für ein Fahrzeug und Verfahren zur Steuerung eines Fahrzeugs
DE10050420A1 (de) * 2000-10-12 2003-03-27 Bayerische Motoren Werke Ag Fahrdynamik-Regelsystem eines Kraftfahrzeuges
DE10053604A1 (de) * 2000-10-28 2002-05-02 Bosch Gmbh Robert Einrichtung und Verfahren zum Betrieb eines Fahrzeugs
US6862506B2 (en) * 2001-08-29 2005-03-01 Delphi Technologies, Inc. Method for automatically adjusting reference models in vehicle stability enhancement (VSE) systems
US6658342B1 (en) * 2002-06-05 2003-12-02 Delphi Technologies, Inc. Vehicle stability control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03106235A1 *

Also Published As

Publication number Publication date
DE10226683A1 (de) 2003-12-24
US20050256622A1 (en) 2005-11-17
WO2003106235A1 (fr) 2003-12-24
JP2005529788A (ja) 2005-10-06

Similar Documents

Publication Publication Date Title
EP1515880A1 (fr) Gestion de la stabilite dynamique par un reseau de regulateurs de vehicule
EP1197409B1 (fr) Procédé pour le réglage de la dynamique de marche d'un véhicule automobile
EP1843926B1 (fr) Dispositif et procede de regulation de la dynamique de conduite d'un vehicule
EP0920389A1 (fr) Procede et dispositif pour le reglage de grandeurs representatives du mouvement d'un vehicule
EP1890920A1 (fr) Regulation de dynamique de vehicule adaptee a l'etat de mouvement et fondee sur des interventions sur l'angle de braquage
WO2007054500A1 (fr) Procede et dispositif pour stabiliser un vehicule automobile
WO2004101337A1 (fr) Systeme de reglage de la dynamique de translation de vehicules automobiles
WO2001026943A1 (fr) Dispositif et procede pour reguler au moins une grandeur de deplacement d'un vehicule
EP1131235B1 (fr) Procede et dispositif de stabilisation d'un vehicule equipe d'un systeme de freinage a controle de glissement
EP2437958B1 (fr) Procede et systeme pour reguler la traction d'un vehicule
EP0985586B1 (fr) Système d'antiblocage pour un système de freinage électromécanique de véhicule basé sur un régulateur de logique floue
EP1545950B1 (fr) Procede pour ameliorer la tenue de route d'un vehicule en cas de conduite avec freinage partiel
DE102004008265A1 (de) Verfahren zur Antriebsschlupfregelung eines Kraftfahrzeugs
WO2019129533A1 (fr) Dispositif et procédé pour le calcul de pression de freinage, véhicule, programme informatique et appareil de commande
WO2019129534A1 (fr) Dispositif de traitement de signaux pour un véhicule comprenant un dispositif antiblocage, véhicule, procédé de traitement de signaux pour un véhicule, programme informatique et appareil de commande
DE102005029716B4 (de) Verfahren zur Erhöhung der Fahrstabilität eines Fahrzeugs
EP2247477B1 (fr) Procédé et dispositif pour stabiliser un véhicule
DE102004058996A1 (de) Verfahren und Fahrfunktionssystem zum Überführen von sicherheitsrelevanten Fahrfunktionen eines Fahrzeugs in den sicheren Zustand
WO2020057854A1 (fr) Procédé de commande d'un véhicule pendant un freinage mu-split, système de commande et véhicule
DE102019220356B4 (de) Fahrstabilitätsregelung für ein Kraftfahrzeug mit vor- und nachspurfreier Vorder- und/oder Hinterachse
DE102006037394A1 (de) Verfahren und Vorrichtung zur Beeinflussung des Regelverhaltens einer Querstabilisierungseinrichtung eines Fahrzeugs
WO2023186560A1 (fr) Procédé et dispositif pour contrôler un dispositif de direction d'un véhicule dont les roues sur au moins un essieu se déplacent sur des zones d'une chaussée présentant différents coefficients de frottement
WO2023198361A1 (fr) Procédé de fonctionnement d'un véhicule
WO2024056665A1 (fr) Procédé d'adaptation dynamique d'un angle de braquage de roue d'au moins une roue de véhicule d'un véhicule par modification d'un pincement de la roue de véhicule
WO2023110453A1 (fr) Procédé de freinage avec trajet de pédale raccourci, système de freinage et véhicule motorisé

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20061017