EP1515880A1 - Driving stability management by a vehicle regulator system - Google Patents
Driving stability management by a vehicle regulator systemInfo
- Publication number
- EP1515880A1 EP1515880A1 EP03720195A EP03720195A EP1515880A1 EP 1515880 A1 EP1515880 A1 EP 1515880A1 EP 03720195 A EP03720195 A EP 03720195A EP 03720195 A EP03720195 A EP 03720195A EP 1515880 A1 EP1515880 A1 EP 1515880A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- control
- driving behavior
- systems
- deviation
- vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 claims abstract description 15
- 230000000694 effects Effects 0.000 claims abstract description 11
- 230000006641 stabilisation Effects 0.000 claims description 7
- 238000011105 stabilization Methods 0.000 claims description 7
- 230000004913 activation Effects 0.000 claims description 6
- 239000000725 suspension Substances 0.000 claims description 6
- 230000001419 dependent effect Effects 0.000 claims description 3
- 238000013016 damping Methods 0.000 claims description 2
- 230000001960 triggered effect Effects 0.000 abstract 2
- 230000008859 change Effects 0.000 description 17
- 230000005484 gravity Effects 0.000 description 12
- 230000008901 benefit Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000012913 prioritisation Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/1755—Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
- B60T8/17555—Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve specially adapted for enhancing driver or passenger comfort, e.g. soft intervention or pre-actuation strategies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/0195—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/02—Control of vehicle driving stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/002—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
- B62D6/003—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/16—Running
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/70—Estimating or calculating vehicle parameters or state variables
- B60G2800/704—Estimating or calculating vehicle parameters or state variables predicting unorthodox driving conditions for safe or optimal driving
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/85—System Prioritisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/90—System Controller type
- B60G2800/91—Suspension Control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/90—System Controller type
- B60G2800/92—ABS - Brake Control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/90—System Controller type
- B60G2800/96—ASC - Assisted or power Steering control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2260/00—Interaction of vehicle brake system with other systems
- B60T2260/02—Active Steering, Steer-by-Wire
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2260/00—Interaction of vehicle brake system with other systems
- B60T2260/06—Active Suspension System
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2260/00—Interaction of vehicle brake system with other systems
- B60T2260/08—Coordination of integrated systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2260/00—Interaction of vehicle brake system with other systems
- B60T2260/09—Complex systems; Conjoint control of two or more vehicle active control systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2720/00—Output or target parameters relating to overall vehicle dynamics
- B60W2720/14—Yaw
Definitions
- the invention relates to a method and a device for coordinating the subsystems of a vehicle dynamics
- a complex vehicle control system which, for example, combines an anti-lock braking system (ABS) with an anti-slip control (ASR) and a yaw control (GMR) in a driving stability control (FSR). Occurs at this
- DE 41 40 270 AI describes a method in which the suspension systems are actuated during braking and / or acceleration maneuvers in such a way that the instantaneous normal force between the tire and the road, or the wheel load, is influenced in the direction of its greatest possible value on each wheel unit.
- AI is a compound control system consisting of an active chassis control and an anti-lock braking system (ABS) and / or
- ASR Traction control system components
- the invention describes a method or a device for influencing the driving behavior of a vehicle.
- the influence is aimed at increasing driving stability while maintaining driving comfort for the driver of the vehicle.
- This goal is achieved by controlling at least two systems in the vehicle which improve driving behavior and thus driving stability.
- the essence of the invention is that the activation of a system takes place in a predetermined sequence depending on the activation and / or the effect on the driving behavior of the above systems achieved by the activation.
- the main focus is on stabilizing driving behavior.
- the order is determined based on the effects of the interventions of the systems on driving behavior. Another important aspect when choosing the sequence of the controlled systems is the sensible driving comfort of the driver.
- An intervention of a system is thus prioritized in which the driver of the vehicle at least notices the effect of the intervention on driving behavior, ie the stabilizing effect.
- an additional steering intervention for driver stabilization which is superimposed on the driver's steering interventions and generated by the controlled steering system, is perceived more clearly than an intervention of the chassis system (eg an adjustment of the spring or damper hardness).
- a driver feels a braking process and thus an occurring change in the longitudinal movement of the vehicle more than is the case with an additional steering intervention.
- the advantage over known strategies for peaceful coexistence is that the overall benefit is increased without abandoning the basic idea of self-sufficient subsystems.
- the operating state of the controlled system and / or the achievable effect on driving behavior is taken into account when controlling the systems. This allows the individual actuators of the system to be controlled depending on the situation.
- Deviation between a specifiable target driving behavior and the current actual driving behavior is then influenced by controlling the systems as a function of the determined deviation.
- the deviation between a predetermined target driving behavior, in particular a driving behavior based on the driver's wishes being provided, and the current actual driving behavior is determined by a stabilization variable which represents the deviation.
- the control of the systems can take place in the following depending on the determined target yaw moment.
- One advantage of the invention is that the control of the systems leads to the deviation between the target and actual driving behavior being minimized. An increase in driving stability can thereby be achieved. With the dependent actuation of the systems in the specified sequence, it is provided to achieve the greatest possible minimization of the deviation by actuating an above system. The minimization of the deviation achieved in previous systems is then taken into account when controlling the subsequent systems.
- a force between the vehicle body and at least one wheel unit by controlling a chassis system.
- a chassis system for example, a advantageous adjustment of the suspension and / or damping property of the chassis can be carried out.
- a further influence on the driving behavior can be achieved by controlling the position of at least one steerable wheel of a steering system.
- Chassis system and a steering system can be advantageously influenced by driving a brake system on the driving behavior.
- the control of the braking force of at least one wheel of the motor vehicle can have a favorable effect on the driving behavior by critical
- Fig. 1 shows a block diagram of the recording of the operating parameters of the systems within the
- FIG. 2 shows in a flowchart the processing of the deviation between the target and actual driving behavior and the influencing of the driving behavior by the dynamic vehicle systems
- FIG. 4 shows the algorithm for calculating the normal force intervention of a chassis system in the vehicle group. Accordingly, FIG. 5 shows the determination of the lateral force intervention of a steering system and FIG. 6 shows the determination
- FIG. 1 shows an exemplary embodiment for influencing the driving behavior of a motor vehicle, with the focus in particular on increasing driving stability.
- control block 100 in addition to the current actual yaw rate ⁇ l (160), one
- Yaw rate sensor 110 reads the operating variables 170, 180, 190 of the existing systems suspension control 120, steering 130 and driving dynamics control 140.
- the target yaw rate l ⁇ l (210) is calculated from the determined operating variables (170, 180, 190) and with the actual
- Interventions 175, 185, 195 determined in driving stability management in control block 100 are passed on to control systems 120, 130, 140 in accordance with the predetermined prioritization. These interventions can be used with a chassis system 120, as is the case, for example, with an Electronic Active
- Roll stabilizer EAR
- ABSC Active Body Control
- the roll tendency can be suppressed by stabilizing interventions 175.
- the rolling moment distribution e.g. the over- and
- a steering system 130 such as an Electronic Active Steering (EAS) or a Steer bye Wire (SbW), in addition to the steering movements of the driver, can be superimposed on steering interventions 185 that increase the steering
- driving dynamics control 140 as implemented by an electronic stability program (ESP), Brake interventions 195 which stabilize the driving are also carried out.
- ESP electronic stability program
- FIG. 2 the mode of operation for determining the necessary ones is shown on the basis of a block diagram
- a control deviation 230 is determined in block 220 by comparing a suitable actual value 200 with a target value 210.
- the control deviation 230 can be formed, for example, by a difference between the actual yaw rate ⁇ M (160) and the determined target yaw rate ⁇ wll (210). However, it is also conceivable to form the control deviation by comparing the actual float angle with the desired float angle. Based on the control deviation 230 thus obtained, a So11 yaw moment M z (250) is calculated in block 240 with respect to the center of gravity of the vehicle for the necessary stabilization of the driving behavior.
- the target yaw moment M z (250) determined in this way from the control deviation 230 is forwarded to the vehicle controller network 260 as an actuating command.
- the chassis system 120, the steering system 130 and the brake system 140 are actuated by this vehicle controller network in the intended sequence and depending on their possible influencing of the driving behavior.
- the flowchart in FIG. 3 shows how the control systems are activated in the specified sequence and as a function of the target yaw moment M z (250).
- a modification to the target is made in block 300 - Yaw moment 250 performed, which is necessary due to a residual torque 360 from a previous control intervention.
- the current target yaw moment 302 determined in this way is dependent on the current operating variables 170 des Chassis used for determining the intervention of the chassis system 120 on the torque change of the vehicle's center of gravity.
- the calculated interventions in the chassis are converted into control commands 175 for the chassis.
- the change in torque generated by the intervention in the chassis system 120 with respect to the center of gravity of the vehicle is then determined in block 315 and used in block 320 to modify the target yaw moment 302.
- the residual yaw moment 322 thus generated is then in block 330, in accordance with the procedure for controlling the
- Chassis control depending on the current operating variables of the steering system 180 for determining the intervention of the steering system 130 on the torque change of the vehicle center of gravity.
- the calculated steering interventions are in control commands 185 for the
- the change in torque generated by the intervention with respect to the center of gravity of the vehicle is then determined in block 335 and used in block 340 to modify the residual yaw moment 322.
- the residual yaw torque 342 generated in this way is then used in block 350, in accordance with the procedure for controlling the previous vehicle controls, depending on the current operating variables (190) of the brake system for determining the intervention of the brake system 140 on the change in torque of the vehicle's center of gravity.
- Brake interventions are converted into control commands 185 for the brake system.
- the change in torque generated by the intervention in relation to the center of gravity of the vehicle is then determined in block 355 and used in block 360 to modify the residual yaw moment 342. If it is determined that a residual torque 362 still occurs after the brake intervention, this can be used via a model correction 365 to carry out an additive correction of the torque balance in block 300. With the target yaw moment 302 thus updated, the control systems can be actuated again.
- the flowchart in FIG. 4 shows the calculation and control of the chassis interventions.
- changes in the normal forces can be generated that act from the wheels perpendicular to the ground.
- the change in the normal forces on the wheels of the vehicle is used to cause a change in the target yaw moment M z (302) with respect to the center of gravity.
- a block algorithm is used in block 400 to calculate the required normal force interventions.
- the reserve 430 of the normal forces on the actuators as well as the current operating state of the actuators of the chassis are taken into account. For example, it can be prevented that an actuator is actuated that has no grip on the ground and therefore cannot change the normal force.
- the required target manipulated variables 405 are determined from the intervention selection made and transferred to the control unit of the vehicle system 120 via an inverse vehicle model in block 400.
- Actual manipulated variables 415 of the actuators are queried in block 420 as feedback from the chassis system. These actual manipulated variables 415 are converted into a normal force distribution together with the general operating state variables of the components and a chassis model.
- This distribution is used to determine the reserves of normal forces 430.
- the vehicle geometry is used to estimate the change in torque with respect to the center of gravity of the vehicle due to the interventions in the chassis. The determined thereby Reduction of the yaw moment is subtracted from the target yaw moment 302 and results in the remaining yaw moment 322.
- the flowchart in FIG. 5 shows the calculation and control of the steering interventions of the steering system 130.
- the change in the residual yaw moment 322 is related the focus by changing the
- a block algorithm is used in block 500 to calculate the required lateral force interventions.
- the actuating reserves 530 of the lateral forces on the wheels as well as the current operating state of the wheels are taken into account to control the steering system 130. For example, it can be prevented that a wheel is driven that has no grip on the ground and therefore cannot change the lateral force.
- the required target steering angles 505 of the wheels are calculated via an inverse vehicle model and transferred to the steering system 130.
- the actual steering angle 515 of the wheels is queried in block 520 as feedback from the steering system. From these actual steering angles 515, reserves 530 for changing the lateral forces are determined together with a tire model.
- the change in torque with respect to the center of gravity of the vehicle is estimated by the steering interventions using the vehicle geometry.
- the reduction in the yaw moment determined in this way is subtracted from the residual yaw moment 322 and thus results in the new, updated residual yaw moment 342.
- FIG. 6 shows the calculation and the control and describes the control of the brake interventions.
- the change in residual yaw moment 342 with respect to the center of gravity is brought about by a change in the longitudinal force on the vehicle.
- Block 600 uses a controller algorithm.
- the reserve reserves 630 of the longitudinal forces on the wheel brakes of the vehicle as well as the current operating state of the brake system are taken into account. In this way it can be prevented, for example, that brake control by the vehicle controller network counteracts any other brake control.
- the determined brake interventions are transferred to the control unit of the brake system 140 via an inverse vehicle model as the required target slip sizes 605 on the wheels.
- the actual slip sizes 615 are queried in block 620 as feedback from the brake system 140.
- These actual slip sizes 615 are converted into a longitudinal force distribution together with the general operating state variables of the brake system and a chassis model. This distribution enables the reserve reserves 630 of the longitudinal forces to be determined.
- the vehicle geometry is used to estimate the change in torque with respect to the center of gravity due to the braking interventions. The resulting reduction in
- Yaw moment is subtracted from the residual yaw moment 342 and results in a possibly remaining residual yaw moment 362.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Regulating Braking Force (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
The invention relates to a method and a device for influencing the driving behaviour of a vehicle in such a way as to increase the driving stability and thus the driving comfort for the driver of the vehicle. This is achieved by triggering at least two systems in the vehicle, which improve the driving behaviour and the driving stability. The essence of the invention lies in the fact that a system is triggered in a pre-determined order according to the triggering and/or the effect caused thereby on the driving behaviour of the above-mentioned systems. A chassis system is triggered first of all, followed by a steering system and then a braking system.
Description
FAHRSTABILITÄTSMANAGEMENT DURCH EINEN FARHZEUGREG ERVERBUND DRIVING STABILITY MANAGEMENT CONNECTED BY A VEHICLE RAIN
Stand der TechnikState of the art
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Koordinierung der Teilsysteme eines fahrdynamischenThe invention relates to a method and a device for coordinating the subsystems of a vehicle dynamics
Verbundsystems mit den Merkmalen der unabhängigen Ansprüche.Compound system with the features of the independent claims.
Die zunehmende Komplexität und die steigende Zahl der elektronischen Systeme in Fahrzeugen, die sich aktiv auf das Fahrverhalten bzw. die Fahrstabilität auswirken, machen einen Reglerverbund notwendig, um ein optimales Zusammenwirken der elektronischen Einzelsysteme zu erreichen.The increasing complexity and the increasing number of electronic systems in vehicles, which have an active effect on driving behavior and driving stability, make a controller network necessary in order to achieve optimal interaction between the individual electronic systems.
Aus der EP 0 507 072 Bl ist solch ein Verbundsystem bekannt, das den Befehl zur Ausführung des Fahrerwunschs in einer hierarchischen Struktur eines Gesamtsystems von oben nach unten weiterleitet. Dabei ergibt sich eine übersichtliche Struktur mit voneinander unabhängigen Elementen.Such a network system is known from EP 0 507 072 B1, which forwards the command for executing the driver's request from top to bottom in a hierarchical structure of an overall system. The result is a clear structure with independent elements.
Weiterhin ist aus der DE 44 39 060 AI ein komplexes FahrzeugregelungsSystem bekannt, das beispielsweise ein Antiblockiersystem (ABS) mit einer Antischlupfregelung (ASR) und einer Giermo entenregelung (GMR) in einer Fahrstabilitätsregelung (FSR) kombiniert. Tritt bei diesemFurthermore, from DE 44 39 060 AI a complex vehicle control system is known which, for example, combines an anti-lock braking system (ABS) with an anti-slip control (ASR) and a yaw control (GMR) in a driving stability control (FSR). Occurs at this
Regelungssystem ein Fehler auf, so wird möglichst nur die betroffene Komponente abgeschaltet.
Die DE 41 40 270 AI beschreibt ein Verfahren, bei dem während Brems- und/oder Beschleunigungsmanöver die Aufhängungssysteme derart betätigt werden, dass an jeder Radeinheit die momentane Normalkraft zwischen Reifen und Fahrbahn, beziehungsweise die Radlast, in Richtung ihres größtmöglichen Wertes beeinflusst wird.Control system an error, only the affected component is switched off if possible. DE 41 40 270 AI describes a method in which the suspension systems are actuated during braking and / or acceleration maneuvers in such a way that the instantaneous normal force between the tire and the road, or the wheel load, is influenced in the direction of its greatest possible value on each wheel unit.
Aus der DE 39 39 292 AI ist ein VerbundregelSystem bestehend aus einer aktiven Fahrwerkregelung und einem Antiblockiersystem (ABS) und/oderFrom DE 39 39 292 AI is a compound control system consisting of an active chassis control and an anti-lock braking system (ABS) and / or
Antriebsschlupfregelungskomponenten (ASR) bekannt, das während der ABS- oder ASR-Regelungsphasen die Dämpferkraftverstellungen stets so tätigt, dass minimale RadlastSchwankungen auftreten.Traction control system components (ASR) known that the damper force adjustments always during the ABS or ASR control phases so that minimal wheel load fluctuations occur.
Vorteile der ErfindungAdvantages of the invention
Die Erfindung beschreibt ein Verfahren beziehungsweise eine Vorrichtung zur Beeinflussung des Fahrverhaitens eines Fahrzeugs. Die Beeinflussung zielt darauf ab, die Fahrstabilität unter Aufrechterhaltung des Fahrkomforts für den Fahrer des Fahrzeugs zu erhöhen. Dieses Ziel wird durch die Ansteuerung wenigstens zweier Systeme im Fahrzeug erreicht, die das Fahrverhalten und damit die Fahrstabilität verbessern. Der Kern der Erfindung besteht nun darin, dass die Ansteuerung eines Systems in einer vorgegebenen Reihenfolge in Abhängigkeit von der Ansteuerung und/oder von der durch die Ansteuerung erzielten Wirkung auf das Fahrverhalten der vorstehenden Systeme erfolgt. Dabei steht in erster Linie die Stabilisierung des Fahrverhaitens im Vordergrund. Die Reihenfolge wird anhand der Auswirkungen der Eingriffe der Systeme auf das Fahrverhalten festgelegt. Ein weiterer wichtiger Aspekt bei der Wahl der Reihenfolge der angesteuerten Systeme spielt der empfindbare Fahrkomfort
des Fahrers. So wird ein Eingriff eines Systems priorisiert, bei dem der Fahrer des Fahrzeugs die Auswirkung des Eingriffs auf das Fahrverhalten, d.h. die stabilisierende Wirkung am wenigstens bemerkt. Beispielsweise wird ein zusätzlicher, den Lenkeingriffen des Fahrers überlagerter und vom angesteuerten Lenksystem erzeugter Lenkeingriff zur Fahrstabilisierung deutlicher wahrgenommen als ein Eingriff des Fahrwerksystems (z.B. einer Verstellung der Feder- bzw. Dämpferhärte) . Weiterhin verspürt ein Fahrer einen Bremsvorgang und damit eine auftretende Änderung der Längsbewegung des Fahrzeugs stärker, als es bei einem zusätzlichen Lenkeingriff der Fall ist. Dadurch ergibt sich mit der Ansteuerung eines Fahrwerksystems, gefolgt von einem Lenksystem und abschließend einem Bremssyste eine Priorisierung der Ansteuerung, die dem Fahrer eine erhöhte Fahrstabilität mit großem Fahrkomfort bei minimalem Geschwindigkeitsverlust bzw. optimierter Verzögerungsleistung ermöglicht. Der Vorteil gegenüber bekannten Strategien zur friedlichen Koexistenz ist die Erhöhung des Gesamtnutzens ohne Aufgabe der Grundidee autarker Teilsysteme .The invention describes a method or a device for influencing the driving behavior of a vehicle. The influence is aimed at increasing driving stability while maintaining driving comfort for the driver of the vehicle. This goal is achieved by controlling at least two systems in the vehicle which improve driving behavior and thus driving stability. The essence of the invention is that the activation of a system takes place in a predetermined sequence depending on the activation and / or the effect on the driving behavior of the above systems achieved by the activation. The main focus is on stabilizing driving behavior. The order is determined based on the effects of the interventions of the systems on driving behavior. Another important aspect when choosing the sequence of the controlled systems is the sensible driving comfort of the driver. An intervention of a system is thus prioritized in which the driver of the vehicle at least notices the effect of the intervention on driving behavior, ie the stabilizing effect. For example, an additional steering intervention for driver stabilization, which is superimposed on the driver's steering interventions and generated by the controlled steering system, is perceived more clearly than an intervention of the chassis system (eg an adjustment of the spring or damper hardness). Furthermore, a driver feels a braking process and thus an occurring change in the longitudinal movement of the vehicle more than is the case with an additional steering intervention. This results in the activation of a chassis system, followed by a steering system and finally a braking system, a prioritization of the activation, which enables the driver to have increased driving stability with great driving comfort with minimal loss of speed or optimized deceleration performance. The advantage over known strategies for peaceful coexistence is that the overall benefit is increased without abandoning the basic idea of self-sufficient subsystems.
In einer vorteilhaften Ausgestaltung der Erfindung wird bei der Ansteuerung der Systeme der Betriebszustand des angesteuerten Systems und/oder die erzielbare Wirkung auf das Fahrverhalten berücksichtigt. Dies erlaubt eine situationsabhängige Ansteuerung der einzelnen Stellglieder des Systems .In an advantageous embodiment of the invention, the operating state of the controlled system and / or the achievable effect on driving behavior is taken into account when controlling the systems. This allows the individual actuators of the system to be controlled depending on the situation.
Eine besondere Ausgestaltung der Erfindung ermittelt eineA particular embodiment of the invention determines a
Abweichung zwischen einem vorgebbaren Soll-Fahrverhalten und dem momentanen Ist-Fahrverhalten. Die Beeinflussung des Fahrverhaltens erfolgt anschließend durch die Ansteuerung der Systeme in Abhängigkeit von der ermittelten Abweichung.
In einer weiteren Ausgestaltung wird die Abweichung zwischen einem vorgegebenen Soll-Fahrverhalten, wobei darunter insbesondere ein Fahrverhalten anhand des Fahrerwunscb.es vorgesehen ist, und dem momentanen Ist-Fahrverhalten durch eine Stabilisierungsgröße ermittelt, die die Abweichung repräsentiert. Weiterhin ist vorgesehen, derDeviation between a specifiable target driving behavior and the current actual driving behavior. The driving behavior is then influenced by controlling the systems as a function of the determined deviation. In a further embodiment, the deviation between a predetermined target driving behavior, in particular a driving behavior based on the driver's wishes being provided, and the current actual driving behavior is determined by a stabilization variable which represents the deviation. It is also provided that
Stabilisierungsgröße ein Soll-Giermoment in Abhängigkeit von der Stabilisierungsgröße zuzuordnen. Die Ansteuerung der Systeme kann im folgenden in Abhängigkeit von dem ermittelten Soll-Giermoment stattfinden.Assign a target yaw moment depending on the stabilization variable to the stabilization variable. The control of the systems can take place in the following depending on the determined target yaw moment.
Ein Vorteil der Erfindung besteht darin, dass die Ansteuerung der Systeme dazu führt, dass die ermittelte Abweichung zwischen Soll- und Ist-Fahrverhalten minimiert wird. Dadurch kann eine Erhöhung der Fahrstabilitat erreicht werden. Mit der abhängigen Ansteuerung der Systeme in der vorgegeben Reihenfolge ist vorgesehen, durch die Ansteuerung eines vorstehenden Systems eine größtmögliche Minimierung der Abweichung zu erreichen. Die erreichte Minimierung der Abweichung in vorhergehender Systeme wird anschließend bei der Ansteuerung der nachfolgenden Systeme berücksichtigt.One advantage of the invention is that the control of the systems leads to the deviation between the target and actual driving behavior being minimized. An increase in driving stability can thereby be achieved. With the dependent actuation of the systems in the specified sequence, it is provided to achieve the greatest possible minimization of the deviation by actuating an above system. The minimization of the deviation achieved in previous systems is then taken into account when controlling the subsequent systems.
Vorteilhaft wirkt sich auch die Überprüfung der Notwendigkeit der Ansteuerung nachfolgender Systeme aus, die nach erfolgter Ansteuerung eines vorstehenden Systems durchgeführt wird. So kann aufgrund einer ausreichenden Minimierung der Abweichung zwischen Soll- und Ist- Fahrverhalten durch vorstehende Systeme eine Ansteuerung in der Reihenfolge nachfolgender Systeme unterbleiben.The checking of the need to control subsequent systems, which is carried out after control of a preceding system, has an advantageous effect. For example, due to a sufficient minimization of the deviation between target and actual driving behavior by the above systems, control in the order of subsequent systems can be omitted.
Für die Beeinflussung des Fahrverhaitens, insbesondere der Fahrstabilität, ist bei einer Ausgestaltung der Erfindung vorgesehen, durch die Ansteuerung eines Fahrwerksystems eine Kraft zwischen dem Fahrzeugaufbau und wenigstens einer Radeinheit zu beeinflussen. Dadurch kann beispielsweise eine
vorteilhafte Verstellung der Federungs- und/oder Dämpfungseigenschaft des Fahrwerks durchgeführt werden. Eine weitere Beeinflussung des Fahrverhaitens kann über die Ansteuerung der Stellung wenigstens eines lenkbaren Rades eines Lenksystems erreicht werden. Ebenso wie einIn order to influence the driving behavior, in particular the driving stability, it is provided in one embodiment of the invention to influence a force between the vehicle body and at least one wheel unit by controlling a chassis system. For example, a advantageous adjustment of the suspension and / or damping property of the chassis can be carried out. A further influence on the driving behavior can be achieved by controlling the position of at least one steerable wheel of a steering system. Just like a
Fahrwerksystem und ein Lenksystem, kann über die Ansteuerung eines Bremssystems vorteilhaft auf das Fahrverhalten Einfluss ausgeübt werden. So kann sich die Ansteuerung der Bremskraft wenigstens eines Rades des Kraftfahrzeugs günstig auf das Fahrverhalten auswirken, indem kritischeChassis system and a steering system can be advantageously influenced by driving a brake system on the driving behavior. For example, the control of the braking force of at least one wheel of the motor vehicle can have a favorable effect on the driving behavior by critical
Fahrsituationen unabhängig von der Fahrersituation erkannt und entschärft werden.Driving situations can be recognized and defused regardless of the driver's situation.
Weitere vorteilhafte Ausgestaltungen sind den Unteransprüchen zu entnehmen.Further advantageous refinements can be found in the subclaims.
Zeichnungendrawings
Die Fig. 1 zeigt in einem Blockschaltbild schematisch die Aufnahme der Betriebsparameter der Systeme innerhalb desFig. 1 shows a block diagram of the recording of the operating parameters of the systems within the
Fahrzeugreglerverbunds, sowie die Ansteuerung der fahrdynamischen Systeme. Fig. 2 stellt in einem Flußdiagramm die Verarbeitung der Abweichung zwischen Soll- und Ist- Fahrverhalten und die Beeinflussung des Fahrverhaltens durch die fahrdynamischen Systeme dar. In Fig. 3 ist derVehicle controller network, as well as the control of the dynamic vehicle systems. FIG. 2 shows in a flowchart the processing of the deviation between the target and actual driving behavior and the influencing of the driving behavior by the dynamic vehicle systems
Regelablauf im Fahrzeugverbundsystem abgebildet. Den Algorithmus zur Berechnung des Normalkrafteingriffs eines Fahrwerksystems im Fahrzeugverbünd zeigt Fig. 4. Entsprechend zeigen Fig. 5 die Bestimmung des Seitenkrafteingriffs eines Lenksystems und Fig. 6 dieControl sequence shown in the vehicle system. FIG. 4 shows the algorithm for calculating the normal force intervention of a chassis system in the vehicle group. Accordingly, FIG. 5 shows the determination of the lateral force intervention of a steering system and FIG. 6 shows the determination
Bestimmung des Längskrafteingriffs eines Bremssystems .
Beschreibung des AusführungsbeispielsDetermination of the longitudinal force intervention of a brake system. Description of the embodiment
Figur 1 zeigt ein Ausführungsbeispiel zur Beeinflussung des Fahrverhaltens eines Kraftfahrzeugs, wobei insbesondere die Erhöhung der Fahrstabilität im Vordergrund steht. Im Regelblock 100 werden neben der aktuellen Ist- Giergeschwindigkeit ψ l (160) aus einemFIG. 1 shows an exemplary embodiment for influencing the driving behavior of a motor vehicle, with the focus in particular on increasing driving stability. In control block 100, in addition to the current actual yaw rate ψ l (160), one
Giergeschwindigkeitssensor 110 die Betriebsgrößen 170, 180, 190 der vorhandenen Systeme Fahrwerkregelung 120, Lenkung 130 und Fahrdynamikregelung 140 eingelesen. Aus den ermittelten Betriebsgrößen (170, 180, 190) wird die Soll- Giergeschwindigkeit ψ ι l (210) berechnet und mit der Ist-Yaw rate sensor 110 reads the operating variables 170, 180, 190 of the existing systems suspension control 120, steering 130 and driving dynamics control 140. The target yaw rate l ι l (210) is calculated from the determined operating variables (170, 180, 190) and with the actual
Giergeschwindigkeit ψ ι , (160) verglichen. Beim Vorliegen einer Abweichung zwischen dem Ist-Wert 160 und dem Soll-Wert 210 der Giergeschwindigkeit ψ l werden die im Rahmen einesYaw rate ψ ι , (160) compared. If there is a discrepancy between the actual value 160 and the desired value 210 of the yaw rate ψ l , the
Fahrstabilitätsmanagement ermittelten Eingriffe 175, 185, 195 im Regelblock 100 an die Regelsysteme 120, 130, 140 entsprechend der vorgegebenen Priorisierung weitergegeben. Durch diese Eingriffe kann mit einem Fahrwerksystem 120, wie es beispielsweise durch einen Electronic ActiveInterventions 175, 185, 195 determined in driving stability management in control block 100 are passed on to control systems 120, 130, 140 in accordance with the predetermined prioritization. These interventions can be used with a chassis system 120, as is the case, for example, with an Electronic Active
Rollstabilizer (EAR) oder einem Active Body Control (ABC) realisiert werden kann, die Wankneigung durch stabilisierende Eingriffe 175 unterdrückt werden. Zusätzlich kann durch eine derartige Fahrwerkskomponente die Wankmomentverteilung (z.B. das Über- undRoll stabilizer (EAR) or an Active Body Control (ABC) can be realized, the roll tendency can be suppressed by stabilizing interventions 175. In addition, the rolling moment distribution (e.g. the over- and
Untersteuerverhalten) beeinflusst werden. Durch ein Lenksystem 130 wie es ein Electronic Active Steering (EAS) oder ein Steer bye Wire (SbW) aufweist, können der Lenkung zusätzlich zu den Lenkbewegungen des Fahrers Lenkeingriffe 185 überlagert werden, die zu einer Erhöhung derUndersteering behavior). A steering system 130 such as an Electronic Active Steering (EAS) or a Steer bye Wire (SbW), in addition to the steering movements of the driver, can be superimposed on steering interventions 185 that increase the steering
Fahrstabilität führen. Daneben können mit der Ansteuerung einer Fahrdynamikregelung 140, wie sie durch ein Elektronisches Stabilitäts-Programm (ESP) realisiert wird,
ebenfalls fahrstabilisierende Bremseingriffe 195 vorgenommen werden .Lead driving stability. In addition, driving dynamics control 140, as implemented by an electronic stability program (ESP), Brake interventions 195 which stabilize the driving are also carried out.
In Figur 2 wird anhand eines Blockschaltbildes die Funktionsweise bei der Ermittlung der notwendigenIn FIG. 2, the mode of operation for determining the necessary ones is shown on the basis of a block diagram
Regeleingriffe zur Erhöhung der Fahrstabilität dargestellt. Durch einen Vergleich eines geeignete Ist-Wertes 200 mit einem Soll-Werte 210 wird im Block 220 eine Regelabweichung 230 ermittelt. Dabei kann die Regelabweichung 230 beispielsweise durch eine Differenz der Ist- Giergeschwindigkeit ψM (160) mit der ermittelten Soll- Giergeschwindigkeit ψ wll (210) gebildet werden. Weiterhin ist jedoch auch eine Bildung der Regelabweichung durch einen Vergleich der Ist-Schwimmwinkel mit den Soll-Schwimmwinkeln denkbar. Basierend auf der so erhaltenen Regelabweichung 230 wird in Block 240 ein So11-Giermoment Mz (250) bezüglich des Fahrzeugschwerpunkts zur notwendigen Stabilisierung des Fahrverhaitens berechnet. Das so aus der Regelabweichung 230 ermittelte Soll-Giermoment Mz (250) wird als Stellbefehl an den Fahrzeugreglerverbund 260 weitergeleitet. Von diesem Fahrzeugreglerverbund werden das Fahrwerksystem 120, das Lenksystem 130 und das Bremssystem 140 in der vorgesehenen Reihenfolge und in Abhängigkeit von deren möglichen Beeinflussung des Fahrverhaltens angesteuert.Control interventions to increase driving stability are shown. A control deviation 230 is determined in block 220 by comparing a suitable actual value 200 with a target value 210. The control deviation 230 can be formed, for example, by a difference between the actual yaw rate ψ M (160) and the determined target yaw rate ψ wll (210). However, it is also conceivable to form the control deviation by comparing the actual float angle with the desired float angle. Based on the control deviation 230 thus obtained, a So11 yaw moment M z (250) is calculated in block 240 with respect to the center of gravity of the vehicle for the necessary stabilization of the driving behavior. The target yaw moment M z (250) determined in this way from the control deviation 230 is forwarded to the vehicle controller network 260 as an actuating command. The chassis system 120, the steering system 130 and the brake system 140 are actuated by this vehicle controller network in the intended sequence and depending on their possible influencing of the driving behavior.
Die Durchführung der Ansteuerung der Regelsysteme in der vorgegebenen Reihenfolge und in Abhängigkeit vom Soll- Giermoment Mz (250) zeigt das Flussdiagramm in Figur 3. Ausgehend von dem ursprünglich ermittelten Soll-Giermoment Mz (250) wird im Block 300 eine Modifikation am Soll- Giermoment 250 durchgeführt, die aufgrund eines Restmoments 360 eines vorhergehenden Regeleingriffs notwendig ist. Im Block 310 wird das so ermittelte aktuelle Soll-Giermoment 302 in Abhängigkeit von den aktuellen Betriebsgrößen 170 des
Fahrwerks für die Bestimmung des Eingriffs des Fahrwerksystems 120 auf die Momentenänderung des Fahrzeug- Schwerpunkts verwendet. Die berechneten Fahrwerkseingriffe werden dabei in Stellbefehle 175 für das Fahrwerk umgesetzt. Die durch den Eingriff auf das Fahrwerksystem 120 erzeugte Momentenänderung bezogen auf den Fahrzeugschwerpunkt wird anschließend im Block 315 bestimmt und im Block 320 zur Modifikation des Soll-Giermoments 302 verwendet. Das so erzeugte Restgiermoment 322 wird dann im Block 330, entsprechend dem Vorgehen bei der Ansteuerung derThe flowchart in FIG. 3 shows how the control systems are activated in the specified sequence and as a function of the target yaw moment M z (250). Starting from the originally determined target yaw moment M z (250), a modification to the target is made in block 300 - Yaw moment 250 performed, which is necessary due to a residual torque 360 from a previous control intervention. In block 310, the current target yaw moment 302 determined in this way is dependent on the current operating variables 170 des Chassis used for determining the intervention of the chassis system 120 on the torque change of the vehicle's center of gravity. The calculated interventions in the chassis are converted into control commands 175 for the chassis. The change in torque generated by the intervention in the chassis system 120 with respect to the center of gravity of the vehicle is then determined in block 315 and used in block 320 to modify the target yaw moment 302. The residual yaw moment 322 thus generated is then in block 330, in accordance with the procedure for controlling the
Fahrwerksregelung, in Abhängigkeit von den aktuellen Betriebsgrößen der Lenkung 180 für die Bestimmung des Eingriffs des Lenksystems 130 auf die Momentenänderung des Fahrzeug-Schwerpunkts verwendet. Die berechneten Lenkeingriffe werden dabei in Stellbefehle 185 für dasChassis control, depending on the current operating variables of the steering system 180 for determining the intervention of the steering system 130 on the torque change of the vehicle center of gravity. The calculated steering interventions are in control commands 185 for the
Lenksystem 130 umgesetzt. Die durch den Eingriff erzeugte Momentenänderung bezogen auf den Fahrzeugschwerpunkt wird dann im Block 335 bestimmt und im Block 340 zur Modifikation des Restgiermoments 322 verwendet. Das so erzeugte Restgiermo ent 342 wird anschließend im Block 350, entsprechend dem Vorgehen bei der Ansteuerung der vorherigen Fahrzeugregelungen, in Abhängigkeit von den aktuellen Betriebsgrößen (190) der Bremsanlage für die Bestimmung des Eingriffs des BremsSystems 140 auf die Momentenänderung des Fahrzeug-Schwerpunkts verwendet. Die berechnetenSteering system 130 implemented. The change in torque generated by the intervention with respect to the center of gravity of the vehicle is then determined in block 335 and used in block 340 to modify the residual yaw moment 322. The residual yaw torque 342 generated in this way is then used in block 350, in accordance with the procedure for controlling the previous vehicle controls, depending on the current operating variables (190) of the brake system for determining the intervention of the brake system 140 on the change in torque of the vehicle's center of gravity. The calculated
Bremseingriffe werden dabei in Stellbefehle 185 für das Bremssyste umgesetzt. Die durch den Eingriff erzeugte Momentenänderung bezogen auf den Fahrzeugschwerpunkt wird dann im Block 355 bestimmt und im Block 360 zur Modifikation des Restgiermoments 342 verwendet. Wird dabei festgestellt, dass nach dem Bremseingriff noch ein verbleibendes Restmoment 362 auftritt, so kann dieses über eine Modellkorrektur 365 genutzt werden, um eine additive Korrektur der Momentenbilanz in Block 300 durchzuführen.
Mit dem dadurch aktualisierten Soll-Giermoment 302 kann die Ansteuerung der Regelsysteme erneut durchlaufen werden.Brake interventions are converted into control commands 185 for the brake system. The change in torque generated by the intervention in relation to the center of gravity of the vehicle is then determined in block 355 and used in block 360 to modify the residual yaw moment 342. If it is determined that a residual torque 362 still occurs after the brake intervention, this can be used via a model correction 365 to carry out an additive correction of the torque balance in block 300. With the target yaw moment 302 thus updated, the control systems can be actuated again.
Im Flussdiagramm der Figur 4 ist die Berechnung und die Kontrolle der Fahrwerkseingriffe dargestellt. Mit diesen Eingriffen können Veränderungen der Normalkräfte erzeugt werden, die von den Rädern senkrecht zum Untergrund wirken. Im vorliegenden Ausführungsbeispiel wird die Änderung der Normalkräfte an den Rädern des Fahrzeugs dazu genutzt, eine Änderung des Soll-Giermoments Mz (302) bezüglich des Schwerpunkts hervorzurufen . Zur Berechnung der erforderlichen Normalkrafteingriffe wird im Block 400 ein Regler-Algorithmus verwendet. Dabei werden zur Ansteuerung der einzelnen Stellglieder des FahrwerksSystems 120 die Stellreserven 430 der Normalkräfte an den Stellgliedern ebenso wie der momentane Betriebszustand der Stellglieder des Fahrwerks berücksichtigt. So kann beispielsweise verhindert werden, dass ein Stellglied angesteuert wird, das keine Bodenhaftung aufweist und somit keine Änderung der Normalkraft bewirken kann. Weiterhin kann der Ausfall eines Stellgliedes bei der Ansteuerung berücksichtigt werden. Über ein inverses Fahrzeugmodell im Block 400 werden aus der getroffenen Eingriffsauswahl die erforderlichen Soll- Stellgrößen 405 ermittelt und dem Steuergerät des Fahrzeugssystems 120 übergeben. Als Rückmeldung des Fahrwerksystems werden die Ist-Stellgrößen 415 der Stellglieder im Block 420 abgefragt. Diese Ist-Stellgrößen 415 werden zusammen mit den allgemeinen Betriebszustandsgrößen der Komponenten und einem Fahrwerkmodell in eine Normalkraftverteilung umgerechnet.The flowchart in FIG. 4 shows the calculation and control of the chassis interventions. With these interventions, changes in the normal forces can be generated that act from the wheels perpendicular to the ground. In the present exemplary embodiment, the change in the normal forces on the wheels of the vehicle is used to cause a change in the target yaw moment M z (302) with respect to the center of gravity. A block algorithm is used in block 400 to calculate the required normal force interventions. To control the individual actuators of the chassis system 120, the reserve 430 of the normal forces on the actuators as well as the current operating state of the actuators of the chassis are taken into account. For example, it can be prevented that an actuator is actuated that has no grip on the ground and therefore cannot change the normal force. Furthermore, the failure of an actuator can be taken into account in the control. The required target manipulated variables 405 are determined from the intervention selection made and transferred to the control unit of the vehicle system 120 via an inverse vehicle model in block 400. Actual manipulated variables 415 of the actuators are queried in block 420 as feedback from the chassis system. These actual manipulated variables 415 are converted into a normal force distribution together with the general operating state variables of the components and a chassis model.
Dabei wird diese Verteilung dazu genutzt, die Stellreserven der Normalkräfte 430 zu bestimmen. Abschließend wird im Block 440 mit Hilfe der Fahrzeuggeometrie die Momentenänderung bezüglich des Fahrzeugschwerpunktes durch die Fahrwerkseingriffe abgeschätzt. Die dadurch ermittelte
Verringerung des Giermoments wird von dem Soll-Giermoment 302 abgezogen und ergibt das Restgiermoment 322.This distribution is used to determine the reserves of normal forces 430. Finally, in block 440, the vehicle geometry is used to estimate the change in torque with respect to the center of gravity of the vehicle due to the interventions in the chassis. The determined thereby Reduction of the yaw moment is subtracted from the target yaw moment 302 and results in the remaining yaw moment 322.
In Anlehnung an das Vorgehen bei der Ermittlung der Eingriffe der Fahrwerksregelung zur Modifikation des Soll- Giermoments in Figur 4, zeigt das Flussdiagramm der Figur 5 die Berechnung und die Kontrolle der Lenkeingriffe des Lenksystems 130. Dabei wird im vorliegenden Ausführungsbeispiel die Änderung des Restgiermoments 322 bezüglich des Schwerpunkts durch eine Änderung derBased on the procedure for determining the interventions of the chassis control for modifying the target yaw moment in FIG. 4, the flowchart in FIG. 5 shows the calculation and control of the steering interventions of the steering system 130. In the present exemplary embodiment, the change in the residual yaw moment 322 is related the focus by changing the
Seitenkräfte an den lenkbaren Rädern hervorgerufen. Zur Berechnung der erforderlichen Seitenkrafteingriffe wird im Block 500 ein Regler-Algorithmus verwendet. Dabei werden zur Ansteuerung des Lenksystems 130 die Stellreserven 530 der Seitenkräfte an den Rädern ebenso wie der momentane Betriebszustand der Räder berücksichtigt. So kann beispielsweise verhindert werden, das ein Rad angesteuert wird, das keine Bodenhaftung aufweist und somit keine Änderung der Seitenkraft bewirken kann. Über ein inverses Fahrzeugmodell werden die erforderlichen Soll-Lenkwinkel 505 der Räder berechnet und an das Lenksystem 130 übergeben. Als Rückmeldung des Lenksystems werden die Ist-Lenkwinkel 515 der Räder im Block 520 abgefragt. Aus diesen Ist-Lenkwinkeln 515 werden zusammen mit einem Reifenmodell Stellreserven 530 für die Änderung der Seitenkräfte ermittelt. Abschließend wird im Block 540 mit Hilfe der Fahrzeuggeometrie die Momentenänderung bezüglich des Fahrzeugschwerpunktes durch die Lenkeingriffe abgeschätzt. Die dadurch ermittelte Verringerung des Giermoments wird von dem Restgiermoment 322 abgezogen und ergibt dadurch das neue, aktualisierte Restgiermoment 342.Lateral forces on the steerable wheels. A block algorithm is used in block 500 to calculate the required lateral force interventions. The actuating reserves 530 of the lateral forces on the wheels as well as the current operating state of the wheels are taken into account to control the steering system 130. For example, it can be prevented that a wheel is driven that has no grip on the ground and therefore cannot change the lateral force. The required target steering angles 505 of the wheels are calculated via an inverse vehicle model and transferred to the steering system 130. The actual steering angle 515 of the wheels is queried in block 520 as feedback from the steering system. From these actual steering angles 515, reserves 530 for changing the lateral forces are determined together with a tire model. Finally, in block 540, the change in torque with respect to the center of gravity of the vehicle is estimated by the steering interventions using the vehicle geometry. The reduction in the yaw moment determined in this way is subtracted from the residual yaw moment 322 and thus results in the new, updated residual yaw moment 342.
Wie schon bei den Fahrwerkseingriffen in Figur 4 und den Lenkeingriffen in Figur 5 gezeigt, ist in Figur 6 ein Flussdiagramm dargestellt, das die Berechnung, die Steuerung
und die Kontrolle der Bremseingriffe beschreibt. Dabei wird im vorliegenden Ausführungsbeispiel die Änderung des Restgier oments 342 bezüglich des Schwerpunkts durch eine Änderung der Längskraft auf das Fahrzeug hervorgerufen. Zur Berechnung der erforderlichen Längskrafteingriffe wird imAs already shown for the chassis interventions in FIG. 4 and the steering interventions in FIG. 5, a flow diagram is shown in FIG. 6, which shows the calculation and the control and describes the control of the brake interventions. In the present exemplary embodiment, the change in residual yaw moment 342 with respect to the center of gravity is brought about by a change in the longitudinal force on the vehicle. To calculate the required longitudinal force interventions, the
Block 600 ein Regler-Algorithmus verwendet. Dabei werden zur Ansteuerung der einzelnen Stellglieder des Bremsensystems 140 die Stellreserven 630 der Längskräfte an den Radbremsen des Fahrzeugs ebenso wie der momentane Betriebszustand der Bremsanlage berücksichtigt. So kann beispielsweise verhindert werden, dass eine Bremsenansteuerung durch den Fahrzeugreglerverbund einer sonstigen Bremsenanεteuerung entgegenwirkt. Die ermittelten Bremseingriffe werden dem Steuergerät des Bremsensystems 140 über ein inverses Fahrzeugmodell als erforderliche Soll-Schlupfgroßen 605 an den Rädern übergeben. Als Rückmeldung des Bremsensystems 140 werden die Ist-Schlupfgroßen 615 im Block 620 abgefragt. Diese Ist-Schlupfgroßen 615 werden zusammen mit den allgemeinen Betriebszustandsgrößen der Bremsanlage und einem Fahrwerkmodell in eine Längskraftverteilung umgerechnet. Durch diese Verteilung können die Stellreserven 630 der Längskräfte bestimmt werden. Abschließend wird im Block 640 mit Hilfe der Fahrzeuggeometrie die Momentenänderung bezüglich des Fahrzeugschwerpunktes durch die Bremseingriffe abgeschätzt. Die dadurch ermittelte Verringerung desBlock 600 uses a controller algorithm. To control the individual actuators of the brake system 140, the reserve reserves 630 of the longitudinal forces on the wheel brakes of the vehicle as well as the current operating state of the brake system are taken into account. In this way it can be prevented, for example, that brake control by the vehicle controller network counteracts any other brake control. The determined brake interventions are transferred to the control unit of the brake system 140 via an inverse vehicle model as the required target slip sizes 605 on the wheels. The actual slip sizes 615 are queried in block 620 as feedback from the brake system 140. These actual slip sizes 615 are converted into a longitudinal force distribution together with the general operating state variables of the brake system and a chassis model. This distribution enables the reserve reserves 630 of the longitudinal forces to be determined. Finally, in block 640, the vehicle geometry is used to estimate the change in torque with respect to the center of gravity due to the braking interventions. The resulting reduction in
Giermoments wird vom Restgiermoment 342 abgezogen und ergibt ein eventuell verbleibendes Restgiermoment 362.
Yaw moment is subtracted from the residual yaw moment 342 and results in a possibly remaining residual yaw moment 362.
Claims
1. Verfahren zur koordinierten Ansteuerung von wenigstens zwei Systemen, die das Fahrverhal en eines Kraftfahrzeugs beeinflussen und bezüglich ihrer Ansteuerung die Reihenfolge1. Method for coordinated control of at least two systems which influence the driving behavior of a motor vehicle and the sequence with regard to their control
- Fahrwerksystem (120) und/oder- Suspension system (120) and / or
- Lenksystem (130) und/oder- Steering system (130) and / or
- Bremssystem (140) aufweisen, wobei bei wenigstens einem Teil der Ansteuerungen der Systeme die Ansteuerung des in der Reihenfolge nachfolgenden Systems abhängig von der Ansteuerung (175, 185, 195) und/oder von der durch die Ansteuerung erzielten Wirkung (440, 540, 640) auf das Fahrverhalten des in der Reihenfolge vorstehenden Systems geschieht.- Have braking system (140), with in at least some of the controls of the systems, the control of the system following in the sequence depending on the control (175, 185, 195) and / or on the effect achieved by the control (440, 540, 640) happens to the driving behavior of the system in the order above.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei der Ansteuerung eines Systems - der Betriebszustand und/oder die durch diese Ansteuerung erzielbare Wirkung des Systems auf das Fahrverhalten berücksichtigt wird.2. The method according to claim 1, characterized in that when operating a system - the operating state and / or the effect of the system achievable by this control on driving behavior is taken into account.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Abweichung zwischen einem vorgebbaren Soll- Fahrverhaltens (210) und dem momentan vorliegenden Ist- Fahrverhalten (200) ermittelt wird und die Ansteuerung abhängig von der ermittelten Abweichung (230) erfolgt. 3. The method according to claim 1, characterized in that a deviation between a predetermined target driving behavior (210) and the current driving behavior (200) is determined and the control is dependent on the determined deviation (230).
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine die Abweichung (230) zwischen einem vorgebbaren Soll-Fahrverhaltens (210) , wobei insbesondere ein Soll-Fahrverhalten durch den Fahrerwunsch vorgesehen ist, und dem momentan vorliegenden Ist-Fahrverhalten (200) repräsentierende Stabilisierungsgröße ermittelt wird (240), wobei insbesondere vorgesehen ist, dass ein Soll-Giermoment (250) in Abhängigkeit von der Stabilisierungsgröße ermittelt wird (240), wobei insbesondere vorgesehen ist, die4. The method according to claim 1, characterized in that a the deviation (230) between a predetermined target driving behavior (210), in particular a target driving behavior is provided by the driver's request, and the current driving behavior (200) present Stabilization variable is determined (240), it being provided in particular that a target yaw moment (250) is determined as a function of the stabilization variable (240), wherein in particular it is provided that
Ansteuerung der Systeme in Abhängigkeit vom Soll-Giermoment (250) durchzuführen.Actuation of the systems depending on the target yaw moment (250).
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Ansteuerung im Sinne einer Minimierung der ermittelten Abweichung (230) erfolgt, wobei insbesondere vorgesehen ist, dass die Ansteuerung (175, 185, 195) derart erfolgt, dass durch die Ansteuerung eines in der Reihenfolge vorstehenden Systems eine größtmögliche Minimierung erzielt wird, und wobei insbesondere vorgesehen ist, dass bei der Ansteuerung eines Systems die erzielte Minimierung der Abweichung aus der Ansteuerung vorstehender Systeme berücksichtigt wird.5. The method according to claim 3 or 4, characterized in that the control takes place in the sense of minimizing the determined deviation (230), it being provided in particular that the control (175, 185, 195) takes place in such a way that by the control of a the greatest possible minimization is achieved in the order of the above system, and in particular it is provided that the minimization of the deviation achieved from the control of the above systems is taken into account when controlling a system.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei der Ansteuerung eines nachfolgenden Systems nach erfolgter Ansteuerung eines Systems die Notwendigkeit einer weiteren Ansteuerung eines nachfolgenden Systems überprüft wird.6. The method according to claim 1, characterized in that the control of a subsequent system after successful control of a system, the need for further control of a subsequent system is checked.
7. Verfahren nach wenigstens einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass durch die Ansteuerung eines Fahrwerksystems (120) zwischen dem Fahrzeugaufbau und wenigstens einer Radeinheit eine Kraft, insbesondere durch Verstellung der Federungs- und/oder der Dämpfungseigenschaft , und/oder eines Lenksystems (130) die Stellung wenigstens eines lenkbaren Rades des Kraftfahrzeugs, und/oder - eines Bremssystems (140) die Bremskraft an wenigstens einem der Räder des Kraftfahrzeugs beeinflusst wird.7. The method according to at least one of the preceding claims, characterized in that a force, in particular, by controlling a chassis system (120) between the vehicle body and at least one wheel unit by adjusting the suspension and / or damping property, and / or a steering system (130) the position of at least one steerable wheel of the motor vehicle, and / or - a braking system (140) the braking force on at least one of the wheels of the motor vehicle is influenced.
8. Vorrichtung zur koordinierten Ansteuerung von wenigstens zwei Systemen, die das Fahrverhalten eines Kraftfahrzeugs beeinflussen und bezüglich ihrer Ansteuerung die Reihenfolge8. Device for coordinated control of at least two systems that influence the driving behavior of a motor vehicle and the sequence with regard to their control
- Fahrwerksystem (120) und/oder- Suspension system (120) and / or
- Lenksystem (130) und/oder- Steering system (130) and / or
- Bremssystem (140) aufweisen, wobei bei wenigstens einem Teil der Ansteuerungen der Systeme die Ansteuerung des in der Reihenfolge nachfolgenden Systems abhängig von der Ansteuerung und/oder von der durch die Ansteuerung erzielten Wirkung auf das Fahrverhalten des in der Reihenfolge vorstehenden Systems geschieht .- Have braking system (140), wherein in at least some of the controls of the systems, the control of the system following in the sequence occurs depending on the control and / or on the effect achieved by the control on the driving behavior of the system in the sequence above.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass bei der Ansteuerung eines Systems - der Betriebszustand und/oder die durch diese Ansteuerung erzielbare Wirkung des Systems auf das Fahrverhalten berücksichtigt wird.9. The device according to claim 8, characterized in that when a system is activated, the operating state and / or the effect of the system on the driving behavior that can be achieved by this activation is taken into account.
10. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass erste Mittel vorgesehen sind, die eine Abweichung zwischen einem vorgebbaren Soll-Fahrverhaltens (210) und dem momentan vorliegenden Ist-Fahrverhalten (200) ermitteln und zweite Mittel vorgesehen sind, die die Ansteuerung abhängig von der ermittelten Abweichung (230) durchführen. 10. The device according to claim 8, characterized in that first means are provided which determine a deviation between a predetermined target driving behavior (210) and the current driving behavior (200) and second means are provided which depend on the control the determined deviation (230).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10226683 | 2002-06-15 | ||
DE10226683A DE10226683A1 (en) | 2002-06-15 | 2002-06-15 | Driving stability management through a vehicle controller network |
PCT/DE2003/000870 WO2003106235A1 (en) | 2002-06-15 | 2003-03-18 | Driving stability management by a vehicle regulator system |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1515880A1 true EP1515880A1 (en) | 2005-03-23 |
Family
ID=29594541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03720195A Withdrawn EP1515880A1 (en) | 2002-06-15 | 2003-03-18 | Driving stability management by a vehicle regulator system |
Country Status (5)
Country | Link |
---|---|
US (1) | US20050256622A1 (en) |
EP (1) | EP1515880A1 (en) |
JP (1) | JP2005529788A (en) |
DE (1) | DE10226683A1 (en) |
WO (1) | WO2003106235A1 (en) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004023497B4 (en) * | 2003-05-12 | 2014-03-20 | Continental Teves Ag & Co. Ohg | Method for improving vehicle behavior |
KR101195011B1 (en) | 2003-05-13 | 2012-10-31 | 콘티넨탈 테베스 아게 운트 코. 오하게 | Driving dynamics control system for vehicles |
DE10328979B4 (en) | 2003-06-27 | 2021-07-22 | Robert Bosch Gmbh | Method for coordinating a vehicle dynamics control system with an active normal force adjustment system |
DE102004024545A1 (en) * | 2003-09-05 | 2005-04-07 | Continental Teves Ag & Co. Ohg | Vehicle movement control process has electronic stabilization with steering control comparing actual and ideal conditions and smoothing driver adjustment |
US7818107B2 (en) * | 2003-11-14 | 2010-10-19 | Continental Teves Ag & Co. Ohg | Method and device for controlling the driving dynamics of a vehicle |
DE102004004336A1 (en) * | 2004-01-29 | 2005-08-18 | Zf Friedrichshafen Ag | Driving stability regulation method for motor vehicle involves determining target and actual paths through corner to produce deviation figure for controlling stabiliser |
DE102004007549B4 (en) | 2004-02-17 | 2016-09-08 | Daimler Ag | Method for operating an active chassis system |
DE102004040876A1 (en) * | 2004-03-11 | 2005-12-29 | Continental Teves Ag & Co. Ohg | Method for driving dynamics control of a vehicle, device for carrying out the method and its use |
JP4029856B2 (en) * | 2004-03-26 | 2008-01-09 | トヨタ自動車株式会社 | Vehicle behavior control device |
DE102004017385A1 (en) * | 2004-04-08 | 2005-10-27 | Robert Bosch Gmbh | Coordination of a vehicle dynamics control system with other vehicle stabilization systems |
DE102004019281A1 (en) * | 2004-04-21 | 2005-11-17 | Zf Friedrichshafen Ag | Method for driving stability control of a vehicle |
DE102004035004A1 (en) * | 2004-07-20 | 2006-02-16 | Bayerische Motoren Werke Ag | Method for increasing the driving stability of a motor vehicle |
DE102004036565B4 (en) * | 2004-07-28 | 2008-12-18 | Robert Bosch Gmbh | Device and method for stabilizing a vehicle |
DE102004047860A1 (en) * | 2004-10-01 | 2006-04-20 | Daimlerchrysler Ag | Method and device for influencing the lateral dynamics of a vehicle |
DE102004051758A1 (en) * | 2004-10-23 | 2006-04-27 | Daimlerchrysler Ag | Planning of processes in driving system equipment |
JP4445889B2 (en) * | 2005-03-24 | 2010-04-07 | 株式会社豊田中央研究所 | Vehicle control device |
DE102005041745A1 (en) * | 2005-09-02 | 2007-03-08 | Bayerische Motoren Werke Ag | Vehicle dynamics control system for a motor vehicle with a system for arbitrarily changing the torque distribution between the two driven wheels of an axle |
US7890239B2 (en) | 2005-10-13 | 2011-02-15 | Toyota Jidosha Kabushiki Kaisha | Vehicle suppressing OS or US by stagedly different devices |
JP4274189B2 (en) * | 2006-02-13 | 2009-06-03 | トヨタ自動車株式会社 | Vehicle control system |
WO2007107362A1 (en) * | 2006-03-22 | 2007-09-27 | Gm Global Technology Operations, Inc. | Method, control unit and motor vehicle personalization system for the personalized adjustment of a mechatronic automotive chassis |
WO2007107364A1 (en) * | 2006-03-22 | 2007-09-27 | Gm Global Technology Operations, Inc. | Method for determining a motor vehicle status index for controlling an automotive chassis |
CN101405176B (en) * | 2006-03-22 | 2013-01-23 | Gm全球科技运作股份有限公司 | Driver-specific vehicle subsystem control method and apparatus |
DE102006019790A1 (en) * | 2006-04-28 | 2007-10-31 | Zf Lenksysteme Gmbh | Steering control method |
DE102006025904B4 (en) | 2006-06-02 | 2024-01-25 | Robert Bosch Gmbh | Method for setting driving dynamics controllers |
FR2907090B1 (en) * | 2006-10-16 | 2008-12-26 | Renault Sas | DEVICE FOR CORRECTING THE TRACK OF A MOTOR VEHICLE COMPRISING THE FIRST SELECTIVE BRAKING MEANS OF THE WHEELS AND THE SECOND MEANS OF PIVOTING THE REAR WHEELS |
DE102008017950A1 (en) * | 2008-04-09 | 2009-10-15 | Daimler Ag | Method for influencing the lateral dynamics of a vehicle |
DE102008001993B4 (en) | 2008-05-27 | 2022-08-25 | Robert Bosch Gmbh | Method for controlling the driving dynamics behavior of a motor vehicle with at least two different adjusting devices and device for this |
JP5420672B2 (en) * | 2008-10-17 | 2014-02-19 | コンチネンタル・テベス・アーゲー・ウント・コンパニー・オーハーゲー | Driving dynamics control system for vehicles |
DE102009049635A1 (en) * | 2009-10-15 | 2011-04-21 | Continental Teves Ag & Co. Ohg | System for regulating driving dynamic e.g. longitudinal dynamic, of motor vehicle, has actuators whose state is supplied to distribution algorithm to provide adjusting potential and speed of actuators for conversion of regulating parameter |
JP5706130B2 (en) | 2010-10-29 | 2015-04-22 | 株式会社アドヴィックス | Vehicle behavior control apparatus and vehicle behavior control method |
JP5672968B2 (en) | 2010-10-29 | 2015-02-18 | 株式会社デンソー | Vehicle motion control device and vehicle motion control system having the same |
DE102011010845B3 (en) * | 2011-02-10 | 2012-06-28 | Audi Ag | Method and device for influencing the cornering behavior of a motor vehicle and motor vehicles |
JP5998492B2 (en) * | 2012-01-31 | 2016-09-28 | 日産自動車株式会社 | Vehicle control device |
JP5918167B2 (en) * | 2013-04-09 | 2016-05-18 | アイシン精機株式会社 | Vehicle behavior control device and vehicle behavior control system |
DE102014214272A1 (en) * | 2014-07-22 | 2016-01-28 | Volkswagen Aktiengesellschaft | Method and device for determining a resulting yawing moment as well as methods for driving dynamics control |
JP6338614B2 (en) | 2016-04-27 | 2018-06-06 | 株式会社Subaru | Vehicle travel control device |
DE102017207536A1 (en) * | 2017-05-04 | 2018-11-08 | Bayerische Motoren Werke Aktiengesellschaft | Control unit and system for stabilizing a vehicle |
DE102017213750A1 (en) * | 2017-08-08 | 2019-02-14 | Audi Ag | Method and adjustment system for maintaining a course movement of a vehicle in the event of roll movements of a vehicle body |
DE102018201191A1 (en) * | 2018-01-25 | 2019-07-25 | Audi Ag | Method for operating a driver assistance system |
DE102018203182B4 (en) | 2018-03-02 | 2024-05-16 | Volkswagen Aktiengesellschaft | Method and device for controlling vehicle lateral dynamics |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3939292A1 (en) | 1989-11-28 | 1991-05-29 | Teves Gmbh Alfred | COMPOSITE CONTROL SYSTEM FOR MOTOR VEHICLES |
DE4111023C2 (en) | 1991-04-05 | 2003-11-20 | Bosch Gmbh Robert | Electronic system for a vehicle |
DE4140270A1 (en) | 1991-12-06 | 1993-06-09 | Robert Bosch Gmbh, 7000 Stuttgart, De | METHOD AND DEVICE FOR CHASSIS CONTROL |
JP3114006B2 (en) * | 1994-08-29 | 2000-12-04 | セイコーインスツルメンツ株式会社 | Semiconductor device and manufacturing method thereof |
DE4439060A1 (en) | 1994-11-02 | 1996-05-09 | Teves Gmbh Alfred | Microprocessor arrangement for a vehicle control system |
US5857160A (en) * | 1996-05-23 | 1999-01-05 | General Motors Corporation | Sensor-responsive control method and apparatus |
US5941919A (en) * | 1996-10-16 | 1999-08-24 | General Motors Corporation | Chassis control system |
US5746486A (en) * | 1996-10-16 | 1998-05-05 | General Motors Corporation | Brake control system |
US6205391B1 (en) * | 1998-05-18 | 2001-03-20 | General Motors Corporation | Vehicle yaw control based on yaw rate estimate |
US6056371A (en) * | 1998-08-24 | 2000-05-02 | General Motors Corporation | Feed-forward active brake control |
DE19838336A1 (en) * | 1998-08-24 | 2000-03-02 | Bosch Gmbh Robert | System for controlling the movement of a vehicle |
US6212461B1 (en) * | 1999-05-28 | 2001-04-03 | General Motors Corporation | Extended brake switch software for vehicle stability enhancement system |
US6282479B1 (en) * | 1999-08-16 | 2001-08-28 | General Motors Corporation | Vehicle stability enhancement system in high center of gravity vehicle |
US6681167B2 (en) * | 1999-12-15 | 2004-01-20 | Delphi Technologies, Inc. | Vehicle chassis control with coordinated brake and steering control on split coefficient surface |
DE10025493B4 (en) * | 2000-05-23 | 2008-05-29 | Daimler Ag | Method and device for coordinating a plurality of driving system devices of a vehicle |
DE10032179A1 (en) * | 2000-07-01 | 2002-01-17 | Daimler Chrysler Ag | Control system for a vehicle and method for controlling a vehicle |
DE10050420A1 (en) * | 2000-10-12 | 2003-03-27 | Bayerische Motoren Werke Ag | Driving dynamics control system of a motor vehicle |
DE10053604A1 (en) * | 2000-10-28 | 2002-05-02 | Bosch Gmbh Robert | Device and method for operating a vehicle |
US6862506B2 (en) * | 2001-08-29 | 2005-03-01 | Delphi Technologies, Inc. | Method for automatically adjusting reference models in vehicle stability enhancement (VSE) systems |
US6658342B1 (en) * | 2002-06-05 | 2003-12-02 | Delphi Technologies, Inc. | Vehicle stability control |
-
2002
- 2002-06-15 DE DE10226683A patent/DE10226683A1/en not_active Withdrawn
-
2003
- 2003-03-18 JP JP2004513089A patent/JP2005529788A/en not_active Withdrawn
- 2003-03-18 EP EP03720195A patent/EP1515880A1/en not_active Withdrawn
- 2003-03-18 US US10/517,254 patent/US20050256622A1/en not_active Abandoned
- 2003-03-18 WO PCT/DE2003/000870 patent/WO2003106235A1/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO03106235A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2005529788A (en) | 2005-10-06 |
DE10226683A1 (en) | 2003-12-24 |
US20050256622A1 (en) | 2005-11-17 |
WO2003106235A1 (en) | 2003-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1515880A1 (en) | Driving stability management by a vehicle regulator system | |
EP1197409B1 (en) | Vehicle dynamics control method | |
EP1843926B1 (en) | Device and method for regulating the dynamics of the movement of a vehicle | |
EP0920389A1 (en) | Method and device for regulating motion quantities representing the movement of a vehicle | |
EP2437958B1 (en) | Method and system for controlling traction of a vehicle | |
EP1890920A1 (en) | Driving condition adapted to the steering engagement based on vehicle dynamic control | |
WO2007054500A1 (en) | Method and device for stabilizing a motor vehicle | |
WO2004101337A1 (en) | Driving dynamics control system for vehicles | |
WO2001026943A1 (en) | Device and method for controlling at least one variable of vehicle movement | |
EP1131235B1 (en) | Method and device for stabilising a vehicle equipped with a slip-controlled brake system | |
EP0985586B1 (en) | Anti lock system for a vehicle electromechanical brake system based on a fuzzy controller | |
EP1545950B1 (en) | Method for improving the handling characteristic of a vehicle during partially braked driving | |
DE102004008265A1 (en) | Control method for a motor vehicle's wheel drift control system uses a wheel drift/slippage controller to generate adjustment variables for individual wheels | |
WO2019129533A1 (en) | Device and method for calculating brake pressure, vehicle, computer programme and control unit | |
WO2019129534A1 (en) | Signal-processing device for a vehicle having an abs unit, vehicle, signal-processing method for a vehicle, computer programme and control unit | |
EP2247477B1 (en) | Method and device for stabilizing a vehicle | |
DE102004058996A1 (en) | Method and driving function system for transferring safety-relevant driving functions of a vehicle into the safe state | |
DE102005029716B4 (en) | Method for increasing the driving stability of a vehicle | |
WO2020057854A1 (en) | Method for controlling a vehicle during a split-mu braking, control system and vehicle | |
DE102019220356B4 (en) | Driving stability control for a motor vehicle with toe-in and toe-out front and / or rear axles | |
DE102006037394A1 (en) | Process and yaw detection assembly to correct automobile oversteer or understeer arising from driver action | |
WO2023186560A1 (en) | Method and device for controlling a steering device of a vehicle, the wheels of which on at least one axle move on regions of a roadway having different coefficients of friction | |
WO2023198361A1 (en) | Method for operating a vehicle | |
WO2024056665A1 (en) | Method for dynamic adjustment of a wheel steering angle of at least one vehicle wheel of a vehicle by changing a toe of the vehicle wheel | |
EP4448350A1 (en) | Braking method with a shortened pedal path, braking system and motor vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050117 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20061017 |