EP1515806B1 - Durchf hrung f r elektrische hochspannung durch eine wa nd, die einen umgebungsbereich von einem prozessbereich trennt - Google Patents

Durchf hrung f r elektrische hochspannung durch eine wa nd, die einen umgebungsbereich von einem prozessbereich trennt Download PDF

Info

Publication number
EP1515806B1
EP1515806B1 EP03725015A EP03725015A EP1515806B1 EP 1515806 B1 EP1515806 B1 EP 1515806B1 EP 03725015 A EP03725015 A EP 03725015A EP 03725015 A EP03725015 A EP 03725015A EP 1515806 B1 EP1515806 B1 EP 1515806B1
Authority
EP
European Patent Office
Prior art keywords
cylinder
truncated cone
voltage
process area
front surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03725015A
Other languages
English (en)
French (fr)
Other versions
EP1515806A1 (de
Inventor
Andrei Bologa
Thomas WÄSCHER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP1515806A1 publication Critical patent/EP1515806A1/de
Application granted granted Critical
Publication of EP1515806B1 publication Critical patent/EP1515806B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/66Applications of electricity supply techniques
    • B03C3/70Applications of electricity supply techniques insulating in electric separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/86Electrode-carrying means

Definitions

  • the invention relates to a high voltage electrical feedthrough through a wall separating a surrounding area from a process area.
  • the process area has at least one atmosphere in its entrance area. Liquid droplets (aerosols) and / or soot / dust particles loaded / contaminated and is therefore kept separate from the environment.
  • Such devices are electrostatic precipitators or electrostatic wet cleaners. With them, such impurities are removed from air / gases.
  • the process of precipitation is effected by electrostatic charging and collection of the charged particles on grounded electrodes.
  • electrical high voltage must be conducted from a source in the environment to corresponding high-voltage equipment in the process area.
  • electrostatic precipitators and electrostatically enhanced wet scrubbers remove particles from flue gas.
  • Many devices have been developed in recent years, in which a reduction in size was accompanied by the extension of the long-term stability. Often high voltage feedthroughs are routed through the wall or attached to an annex.
  • a high voltage electrostatic shield may be used to prevent particle deposition on the insulator (see WO 00/30755).
  • the conductive sheath is connected to the same high voltage source as the discharge electrode, so that the high electric field is generated in the area between the sheath and the nearby grounded surface of the housing. Accordingly, the existing in the gas charged droplets or Particles precipitate on the grounded surface and not on the high voltage insulator.
  • the insulator is heated because condensation can cause a reduction in the high voltage on the electrical connection.
  • An electrostatic heater is connected to the insulator to keep it at a temperature 10 ° C or more higher than the surrounding gas temperature. This also, to avoid steam condensation, usually some degrees C are sufficient.
  • the heating of the insulator is also effected by an injection of dry, warm cleaning gas into the shield surrounding the insulator (US 6,156,098 or WO 00/47326).
  • the movement of airflow around the insulator is used to keep the insulator on its surface free from moisture build-up and dust deposits, helping to keep the insulator clean and generally free of flashovers.
  • air is supplied by a blower or other air pressure generating means, air cooling and controlled heating as well as cleaning associated with air conditioning in the failure device are provided to some degree.
  • the self-cleaning venturi insulator for an electrostatic precipitator is described in US 5,421,863.
  • the insulator is made of a dielectric material in which an arc / flashover is very difficult to burn.
  • the effect of directing the airflow through a Venturi nozzle is used to protect the surface of the isolator from the deposition of contaminants from flue gas.
  • the effectiveness of gas cleaning depends on the working reliability of the high voltage device.
  • good electrical high-voltage insulator materials which are versatile, and suitable for the environment and the process area suitable and in particular produced geometries of paramount importance.
  • the high voltage insulator is exposed to the charged / uncharged particles suspended in the gas as well as any condensable vapor that may be present.
  • the accumulation of condensed material on the insulator affects its insulating property. Therefore, the insulator must be kept free from deposits of impurities and consequent rollovers. Furthermore, the cleaning intervals must be extended. In addition, the cost of manufacturing must be reduced while maintaining or even improving the insulating properties.
  • a high-voltage bushing with the features of claim 1 in principle. It consists of a dielectric, high-voltage resistant and kriechspurresistenten material such as glass or PTFE (P oly t etra f luor e Thylen) or glazed ceramics, on the one hand in his / n Aussgangssubstanz / s readily pourable (glass) or well ductile (ceramic ) On the other hand machinable (PTFE) is machinable.
  • PTFE oly t etra f luor e Thylen
  • the body of the high voltage feedthrough consists of two coaxially related geometric basic structures: a cylinder and a truncated cone.
  • the cylinder merges into the truncated cone with a smaller end face on its one end face facing the process area. This end face of the cylinder and the attached truncated cone are fully exposed in the process area, the free end face of the cylinder in the environment.
  • the outer radius of the cylinder is greater than that of this smaller end face of the truncated cone.
  • At least two evenly distributed, axially parallel holes go through the cylinder. Through it air or gas is forced out of the environment during operation with a pump or a fan and the lateral surface of the truncated cone flows.
  • the high-voltage feedthrough sits with its lateral surface tight in the wall, which separates the environment from the process area.
  • the clear width is at the outlet of the bore at most so far that it does not enter the jacket wall of the truncated cone (claim 3). Equally effective is when these holes open in the ground in an axis concentric with the annular groove with at least the inner radius equal to the radius of the local front of the truncated cone.
  • the bores are provided at their respective output with a lip, in particular when the opening angle of the truncated cone / cone is less than 20 °, which directs the air / gas flow through the inclination to the axis correspondingly strong toward her.
  • the opening angle of the truncated cone / cone is less than 20 °, which directs the air / gas flow through the inclination to the axis correspondingly strong toward her.
  • Claims 5 to 11 describe measures which reliably suppress creeping discharges along the surface of the truncated cone exposed in the process area during nominal operation
  • the large, exposed in the process area face of the truncated cone (2) is in a kind of basic structure plan or funnel-shaped or conical in the process environment (claim 6).
  • the large end face of the truncated cone can extend to extend the creepage path coaxially and with at least the clear width of the electrical conductor to be performed by a predetermined length in the process environment (claim 7).
  • the large end face of the truncated cone can be provided for electrical strength with at least one groove concentric to the axis with u- or v-shaped cross-section (claim 8). For just this reason, this can also be extended to the coaxial extension (claim 9).
  • At least one u- or v-shaped annular groove is recessed.
  • an axial creepage would then meander and is thus considerably longer. If the edges of the annular gap or round (claim 11) then deposits that can be electrically problematic or are easier to rinse off.
  • the recessed approach of the truncated cone on the cylinder is described in claim 12 and may be the isolationstechnisch effective solution for space saving reasons.
  • the end of the cylinder exposed in the process area is recessed frustoconically.
  • the truncated cone is now at the bottom of this depression under with the cylinder funnel-shaped gap formation. This gap remains constant or widens towards the process area.
  • a heater high-voltage bushing can be an acceptable solution because of difficult process circumstances and, for example, space constraints.
  • an electric heater in the form of built-in insulator material / retracted heating rods or a recessed fluid-flow channel into consideration.
  • the high voltage feedthrough has advantages: Depending on the modification of the basic structure of cylinder and truncated cone, it can be selected according to the problematic environmental conditions in the process area. This ranges from a little risk of flashover environmental conditions or almost such and thus smooth coat of the conical part to high risk of flashover atmosphere in which then the conical part is provided with annular grooves.
  • the high-voltage bushing is a single body, which is produced by casting or cutting from a solid body. Both manufacturing techniques can be automated and thus perform economically.
  • the conical part is flown through the paraxial bores with air or gas, natural or conditioned.
  • air or gas natural or conditioned.
  • the incoming air has ambient conditions, such as temperature or humidity, and is, for example, a fan in the process area.
  • conditioned the technically more complex system case is meant that the air / gas is cooled or heated, for example above the dew point, and / or dried and more or less forced flows into the process area. This prolongs the operating time and prolongs the cleaning intervals considerably.
  • a suitable dielectric, high-voltage resistant and kriechspurresistentes material from which the body is the high-voltage bushing is PTFE (P oly t etra f luo r ethylene).
  • the body consists, as can be seen in section from Figure 1, from the cylindrical part 1 and the conical, frusto-conical part 2.
  • the conical part has the forehead with the smaller diameter D1 and goes with this forehead concentric in the cylinder with the diameter D3 over.
  • the other, free end of the truncated cone with the larger diameter D2 is exposed in the process area.
  • the axially parallel bores 4, here for example 16 are indicated by the cylinder 1 (see section AA below), through which air is flowed here, are concentric with the central bore 3 for passage of the electrical conductor for the high voltage. This tightly inserted in the bore 3 metallic conductor itself is not indicated.
  • the angle ⁇ the half opening angle of the truncated cone
  • the mass L1 (height of the truncated cone 2 or length of the cone 2) and the length L2 of the cylindrical part 1 vary as well as the diameters D1, D2 and D3.
  • the high-voltage bushing is adapted geometrically from case to case to meet the requirements and optimally adapted to the plant conditions.
  • the outputs of the axis-parallel holes in the process area are each closed with the lip 5 according to magnification and plan view in Figure 2 on it. This helps to direct the airflow at the respective outlet to the foot of the truncated cone shell.
  • the axis-parallel holes open through the cylinder 1 in the concentric annular groove 6 in his exposed in the process area end (see Figure 3, section B-B).
  • the inner radius of the annular groove 6 is at least equal to the there attaching end of the truncated cone 2.
  • the edge concentric with the axis at the free end of the truncated cone 2 is rounded off (see FIG. 4).
  • the free end of the truncated cone is funnel-shaped (see Figure 5).
  • the peripheral edge of this forehead is sharply drawn here, it can also be rounded as in FIG. 4.
  • annular grooves 8 of Figure 6b reduce the accumulation of impurities on the mantle surface in the case of wet scrubbers, namely, the liquid that condenses flows on the side walls of the annular grooves 8 in the direction of the jacket wall of the truncated cone 2 and thereby ensures the self-cleaning effect of the high-voltage feedthrough.
  • the high voltage bushing is tightly installed / inserted with its cylindrical part 1 in the wall 9 between the environment and process area. From the installation structure forth that is shown schematically in Figure 7, 8 and 9 in exemplary variants. In all cases, however, the axis-parallel holes 4 are completely free, from the environmental side to the process area there is a free passage.
  • air is blown from the surroundings through the openings 4, which are axially parallel in the cylinder 1, onto the jacket surface of the truncated cone 2, thus preventing the deposition of solid or liquid particles from flue gas there.
  • the air also gas, cold or at ambient or warm, is supplied with a technical device, such as a fan or a pump (nowhere indicated in the drawing).
  • a technical device such as a fan or a pump (nowhere indicated in the drawing).
  • the purpose of heating the air or gas above the dew point in the process area is to avoid liquid condensation on the process area exposed surface of the duct to prevent the tendency of reducing the high voltage strength of the electrical connection.
  • the condensation of water / liquid vapor on the inner wall in the process area be very intense, the resulting liquid flow on the inner wall can be redirected by a flange 11 around the exposed in the process area end of the cylinder 1, it forms with the cylinder and the inner wall a channel which deflects the liquid flowing in from the region of the high-voltage bushing (FIG. 9).
  • FIG. 10 shows by way of example the high-voltage feedthrough made of PTFE in its dimension for a maximum of 15 kV. Except for the coaxial hollow cylindrical extension into the process environment and the two coaxial annular groove in the lateral wall of the truncated cone, it has a structurally simplest design. Their over-all length is only 75 mm, their largest diameter only 48 mm. It is flush with its cylindrical part in a 30 mm thick wall can be used. The around the Scope equally distributed here 12 holes 3 ends with a steady transition at the base of the frustoconical part 2 of the high-voltage bushing, so that this approach is immediately blown around. For mechanical, in particular weight reasons, the centrally performed electrical conductor made of titanium. Tests for hours with water vapor saturated, condensing process atmosphere to be cleaned were carried out at highest rated voltage without electrical flashovers.

Landscapes

  • Insulators (AREA)
  • Electrostatic Separation (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Insulating Bodies (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Paper (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

  • Die Erfindung betrifft eine Durchführung für elektrischen Hochspannung durch eine Wand, die einen Umgebungsbereich von einem Prozessbereich trennt. Der Prozessbereich hat in seinem Eingangsbereich zumindest eine Atmosphäre, die mit. Flüssigkeitströpfchen (Aerosolen) und/oder Russ-/Staubpartikeln belastet/verunreinigt ist und deshalb von der Umgebung getrennt gehalten wird.
  • Um die Prozessatmosphäre von solchen belastenden Aerosolen oder festen Partikeln zu säubern, wird sie durch Reinigungseinrichtungen im Prozessbereich geführt. Solche Einrichtungen sind elektrostatische Abscheider oder elektrostatische Nassreiniger. Mit ihnen werden solche Verunreinigungen aus Luft/Gasen entfernt. Der Prozess des Ausfällens wird über elektrostatisches Laden und Einsammeln der geladenen Partikel auf geerdeten Elektroden bewirkt. Hierzu muss elektrische Hochspannung von einer Quelle in der Umgebung zu entsprechenden hochspannungstechnischen Einrichtungen im Prozessbereich geführt werden. Solche elektrostatische Abscheider und elektrostatisch verstärkte Nassreiniger entfernen Partikel aus Rauchgas. Viele Einrichtungen wurden in den letzten Jahren entwickelt, bei denen eine Verkleinerung der Baugröße mit der Verlängerung der Langzeitstabilität einherging. Oft werden Hochspannungsdurchführungen durch die Wand geführt oder an einen Anbau daran angebaut.
  • Ein elektrostatisches Hochspannungsschild kann verwendet werden, um Partikelablagerung auf dem Isolator zu verhindern (sieh WO 00/30755). In einem solchen Fall ist die leitende Hülle an dieselbe Hochspannungsquelle wie die Entladungselektrode angeschlossen, so dass das hohe elektrische Feld in dem Gebiet zwischen der Hülle und der naheliegenden geerdeten Oberfläche des Gehäuses erzeugt wird. Dem entsprechend werden die im Gas vorhandenen geladenen Tröpfchen oder Partikel auf die geerdete Oberfläche und nicht auf den Hochspannungsisolator ausgefällt. Um den Isolator vor Dampfkondensation zu bewahren, ist der Isolator erwärmt, weil Kondensation eine Verkleinerung der Hochspannung am elektrischen Anschluss verursachen kann. Ein elektrostatische Heizung ist an den Isolator angeschlossen, um ihn auf einer um 10°C oder mehr höheren Temperatur als die umgebende Gastemperatur zu halten. Dies auch, um Dampfkondensation zu vermeiden, gewöhnlich sind dabei einige Grad C ausreichend.
  • Die Heizung des Isolators wird auch durch eine Injektion von trockenem, warmen Reinigungsgas in den Schild, der den Isolator umgibt, bewirkt (US 6,156,098 oder WO 00/47326). Die Bewegung eines Luftstroms um den Isolator wird benützt, um den Isolator auf seiner Oberfläche von Feuchtigkeitsbeschlag und Staubablagerungen freizuhalten und hilft damit, den Isolator sauber und im allgemeinen frei von Überschlägen zu halten. Bei Zuführung der Luft mit einem Gebläse oder anderen luftdruckerzeugenden Mitteln ist sowohl bis zu einem gewissen Grad Luftkühlung und geregelte Erwärmung als auch Reinigung in Verbindung mit Luftkonditionierung in der Ausfälleinrichtung vorgesehen.
  • Der selbstreinigende Venturi-Isolator für einen elektrostatischen Ausfäller ist in der US 5,421,863 beschrieben. Der Isolator ist aus einem dielektrischen Material, in das sich ein Lichtbogen/Überschlag nur sehr schwer einbrennen kann. Die Wirkung, den Luftstrom durch eine Venturi-Düse zu leiten, wird für den Schutz der Oberfläche des Isolators vor der Ablagerung von Verunreinigungen aus Rauchgas verwendet.
  • Die Wirksamkeit des Gasreinigens hängt von der Arbeitszuverlässigkeit der Hochspannungseinrichtung ab. Dazu sind gute elektrische Hochspannungsisolatormaterialien, die es vielfältig gibt, und für die Umgebung und den Prozessbereich geeignete und insbesondere daraus hergestellte Geometrien von maßgebender Bedeutung. Während des Betriebs ist der Hochspannungsisolator den im Gas suspendierten, geladenen /ungeladenen Partikeln genauso ausgesetzt wie auch jedem kondensierbaren Dampf, der eventuell vorhanden ist. Über längere Zeit beeinträchtigt die Ansammlung von kondensiertem Material auf dem Isolator seine Isolationseigenschaft. Deshalb muss der Isolator von Ablagerungen von Verunreinigungen und daraus folgenden Überschlägen freigehalten werden. Weiter müssen die Reinigungsintervalle verlängert werden. Darüber hinaus müssen die Kosten zur Herstellung unter Wahrung oder sogar Verbesserung der Isolationseigenschaften gesenkt werden.
  • Das betrifft eine Anlagenkomponente besonders, nämlich die Hochspannungsdurchführung, die in der Wand zwischen der Umgebung und dem Prozessbereich eingebaut ist und mit der die für die elektrostatische Reinigungseinrichtung notwendige Hochspannung sicher und langzeitzuverlässig geführt werden kann. Damit ist die Aufgabe, die der Erfindung zugrunde liegt, auch formuliert.
  • Die Aufgabe wird durch eine Hochspannungsdurchführung mit den Merkmalen des Anspruch 1 grundsätzlich gelöst. Sie besteht aus einem dielektrischen, hochspannungsfesten und kriechspurresistenten Material, wie beispielsweise Glas oder PTFE (Polytetrafluorethylen) oder glasierte Keramik, das einerseits in seiner/n Aussgangssubstanz/en gut giess- (Glas) oder gut formbar (Keramik) andrerseits spanabhebend (PTFE) bearbeitbar ist.
  • Der Körper der Hochspannungsdurchführung besteht aus zwei koaxial zusammenhängenden geometrischen Grundstrukturen: einem Zylinder und einem Kegelstumpf. Der Zylinder geht an seiner einen, Richtung Prozessbereich weisenden Stirnseite in den Kegelstumpf mit kleinerer Stirnfläche über. Diese Stirnseite des Zylinders und der ansetzende Kegelstumpf sind völlig im Prozessbereich exponiert, die freie Stirnseite des Zylinders in die Umgebung. Der Aussenradius des Zylinders ist grösser als der dieser kleineren Stirnfläche des Kegelstumpfes.
  • Durch den Körper geht eine zentrale Bohrung, durch die die Hochspannung über einen dichteinliegenden elektrischen Leiter hindurchgeführt wird.
  • Geometrisch auf einem koaxialen Kreis innerhalb des Zylinders gehen mindestens zwei darauf gleichverteilte, achsparallele Bohrungen durch den Zylinder hindurch. Durch sie wird im Betrieb Luft oder Gas aus der Umgebung mit einer Pumpe oder einem Ventilator hindurchgedrückt und die Mantelfläche des Kegelstumpfes angeströmt.
  • Die Hochspannungsdurchführung sitzt mit ihrer Mantelfläche dicht in der Wand, die die Umgebung vom Prozessbereich trennt.
  • Mit dieser grundsätzlichen Struktur besteht einerseits bei dem geeigneten Isolatormaterial eine sichere Isolation der mit dem durch die zentrale Bohrung gehenden und dort dicht eingebetteten Leiter geführten Hochspannung und andrerseits ist am im Prozessbereich exponierten Teil der Hochspannungsdurchführung die Geometrie für ausreichend große Distanzen zu anderen elektrischen Potentialgebieten als dem Hochspannungspotential vorhanden.
  • In den Unteransprüchen 2 bis 4 sind Ausgestaltungen an den nicht zentral liegenden Bohrungen beschrieben, die die Anströmung der Mantelfläche des Kegelstumpfes gezielt und wirksam beeinflussen. So ist nach Anspruch 2 die lichte Weite einer solchen Bohrung über die Länge nicht konstant, insbesondere zum Luft/Gasaustritt in die Prozessumgebung hin größer, um den Kegelstumpf schon an seinem Ansatz am Zylinder, abhängig von dem um den Umfang verteilten axialen Bohrungen möglichst vollständig um den Umfang anzuströmen.
  • Die lichte Weite ist am Austritt der Bohrung höchstens so weit, dass sie nicht in die Mantelwand des Kegelstumpfes eintritt (Anspruch 3). Gleich wirksam ist, wenn diese Bohrungen im Boden in einer zur Achse konzentrischen Ringnut mit mindestens dem Innenradius gleich dem Radius der dortigen Stirn des Kegelstumpfes münden.
  • Nach Anspruch 4 sind die Bohrungen an ihrem jeweiligen Ausgang mit einer Lippe versehen, insbesondere wenn der Öffnungswinkel des Kegelstumpfes/Konus kleiner 20° ist, die die Luft/Gasströmung durch die Neigung zur Achse hin entsprechend stark in Richtung zu ihr lenkt. Je nach atmosphärischen Bedingungen im Prozessbereich kann es für den sicheren elektrischen Betrieb, insbesondere langzeitlich betrachtet, von massgebendem Einfluss sein, schon den Ansatzbereich des Kegelstumpfes am Zylinder umfassend sicher anzuströmen und anströmungstechnische Totbereiche zu vermeiden.
  • In den Ansprüchen 5 bis 11 sind Massnahmen beschrieben, die Kriechentladungen entlang der in den Prozessbereich exponierten Oberfläche des Kegelstumpfes bei Nennbetrieb sicher unterdrücken
  • Um die elektrischen Feldverhältnisse entlang der Oberfläche am Kegelstumpf zu entspannen sind nach Anspruch 5. in den Prozessbereich exponierte Kanten abgerundet.
  • Die große, in den Prozessbereich exponierte Stirnfläche des Kegelstumpfs (2) ist in einer Art Grundstruktur plan oder trichterförmig oder in die Prozessumgebung hin kegelförmig(Anspruch 6).
  • Sofern die räumliche Situation es zulässt, kann sich zur Verlängerung des Kriechwegs die große Stirnfläche des Kegelstumpfs koaxial und mit mindestens der lichten Weite des durchzuführenden elektrischen Leiters hohlzylindrisch um eine vorgegebene Länge in die Prozessumgebung fortsetzen (Anspruch 7).
  • Die große Stirnfläche des Kegelstumpfs kann zur elektrischen Festigkeit mit mindestens einer zur Achse konzentrische Nut mit u- oder v-förmigem Querschnitt versehen sein (Anspruch 8). Aus eben diesem Grunde kann das auch auf den koaxialen Fortsatz ausgedehnt sein (Anspruch 9).
  • In die Mantelfläche des Kegelstumpfes ist nach Anspruch 10 mindestens eine u- oder v-förmige Ringnut eingelassen. Ein beispielsweise axialer Kriechweg würde dann mäandern und ist dadurch erheblich länger. Sind die Kanten des oder der Ringspalte rund (Anspruch 11) dann sind Ablagerungen, die elektrisch problematisch werden können oder sind, leichter abspülbar.
  • Der versenkte Ansatz des Kegelstumpfes am Zylinder wird in Anspruch 12 beschrieben und kann aus Platzersparnisgründen die isolationstechnisch wirksame Lösung sein. Hierzu ist die in den Prozessbereich exponierte Stirn des Zylinders kegelstumpfförmig vertieft ist. Der Kegelstumpf setzt jetzt am Boden dieser Vertiefung unter mit dem Zylinder trichterförmiger Spaltbildung an. Dieser Spalt bleibt zum Prozessbereich hin konstant oder weitet sich nach dorthin. Die Bohrungen im Zylinder um die Achse münden bei dieser Ausgestaltung am Ringboden dieses trichterförmigen Spaltes. So wird dadurch ebenfalls ein anströmungstechnisches Totgebiet vermieden.
  • Bei hoher Feuchtigkeit im Prozessbereich, Flüssigkeitsausfällung oder problematischer Dampfkondensation wird die hochspannungstechnische Problematik weiter entschärft, wenn am äußeren Rand der in den Prozessbereich ragenden Stirn des Zylinders um den Umfang eine ringförmige Lippe angebracht ist, die mit der Wand eine Rinne bildet (Anspruch 13). Bei horizontalem Einbau der Durchführung und damit vertikaler Lage dieses eine Rinne bildenden Ringes wird an der Wand herunterlaufende Flüssigkeit um die Durchführung herumgeleitet und kann nach tiefer liegenden Zonen abfließen.
  • Technisch aufwendiger ist die mit einer Heizeinrichtung versehene Hochspannungsdurchführung, kann aber wegen schwieriger Prozessumstände und beispielsweise Platzbeschränkung eine akzeptable Lösung sein. Nach Anspruch 14 kommt dafür eine elektrische Heizung in Form von in das Isolatormaterial eingebauten/eingezogenen Heizstäben oder ein darin eingelassener fluiddurchströmbarer Kanal in Betracht.
  • Die Hochspannungsdurchführung hat Vorzüge:
    Je nach Modifikation der Grundstruktur aus Zylinder und Kegelstumpf kann sie entsprechend der problematischen Umgebungsbedingungen im Prozessbereich ausgewählt werden. Das reicht von wenig überschlagsgefährdeter Atmosphäre mit Umgebungsbedingungen oder nahezu solchen und damit glattem Mantel des konischen Teils bis zu hochüberschlagsgefährdeter Atmosphäre, in der dann der konische Teil mit Ringnuten versehen ist.
  • Sie funktioniert in Rauchgas mit festen Partikeln und flüssigen Tröpfchen.
  • Die Hochspannungsdurchführung ist ein einziger Körper, der giesstechnisch zu oder spanabhebend aus einem Vollkörper hergestellt wird. Beide Herstellungstechniken lassen sich automatisiert und damit wirtschaftlich durchführen.
  • Der konische Teil wird über die achsparallelen Bohrungen mit Luft oder Gas, natürlich oder konditioniert, angeströmt. Mit natürlich ist der einfachste Anlagenfall gemeint, dass die eingeströmte Luft Umgebungszustand hat, wie Temperatur oder Feuchte, und beispielsweise über einen Ventilator in den Prozessbereich geströmt wird. Mit konditioniert ist der technisch aufwendigere Anlagenfall gemeint, dass die Luft/das Gas gekühlt oder erwärmt, beispielsweise über den Taupunkt, und/oder getrocknet ist und mehr oder weniger forciert in den Prozessbereich geströmt wird. Damit wird die Einsatzzeit verlängert und werden die Reiningungsintervalle erheblich verlängert.
  • Die Erfindung wird anhand der Zeichnung näher erläutert. Die Zeichnung besteht aus den Figuren 1 bis 9.
  • Es zeigt:
    • Figur 1 den Schnitt durch die Achse der Hochspannungsdurchführung,
    • Figur 2 die Hochspannungsdurchführung mit kleinem Öffnungswinkel des Konus,
    • Figur 3 Mündung der achsparallelen Bohrungen in einer konzentrischen Ringnut,
    • Figur 4 den Kegelstumpf mit freier Stirn und abgerundetem Rand,
    • Figur 5 den Kegelstumpf mit freier, trichterförmiger Stirn,
    • Figur 6 die Hochspannungsdurchführung mit u-und v-förmiger Ringnut,
    • Figur 7 den Einbau der Hochspannungsdurchführung in die Trennwand,
    • Figur 8 die in den Prozessbereich exponierte, kegelstumpfförmig vertiefte Stirn des Zylinders,
    • Figur 9 die in den Prozessbereich exponierte, kegelstumpfförmig vertiefte Stirn des Zylinders mit umlaufender Rinne,
    • Figur 10 die Hochspannungsdurchführung für 15 kV.
  • Ein geeignetes dielektrisches, hochspannungsfestes und kriechspurresistentes Material, aus dem der Körper der Hochspannungsdurchführung ist, ist PTFE (Polytetrafluorethylen). Der Körper besteht, wie aus Figur 1 im Schnitt zu sehen ist, aus dem zylindrischen Teil 1 und dem konischen, kegelstumpfförmigen Teil 2. Der konische Teil hat die Stirn mit dem kleineren Durchmesser D1 und geht mit dieser Stirn konzentrisch in den Zylinder mit dem Durchmesser D3 über. Die andere, freie Stirn des Kegelstumpfes mit dem größeren Durchmesser D2 ist in den Prozessbereich exponiert. Die achsparallelen Bohrungen 4, hier sind beispielsweise 16 Stück angedeutet, durch den Zylinder 1 (siehe Schnitt A-A darunter), durch die hier Luft geströmt wird, liegen konzentrisch zu der zentralen Bohrung 3 für Durchführung des elektrischen Leiters für die Hochspannung. Dieser dicht in der Bohrung 3 einliegende metallische Leiter selber ist nicht angedeutet.
  • Abhängig vom Wert der Kriechspannung kann der Winkel α, der halbe Öffnungswinkel des Kegelstumpfes, variieren, was die geometrische Größe der Durchführung mit bestimmt. Abhängig von den Bedingungen des technischen Prozesses variieren die Masse L1 (Höhe des Kegelstumpfes 2 bzw. Länge des Konus 2) und die Länge L2 des zylindrischen Teils1 sowie die Durchmesser D1, D2 und D3. Die Hochspannungsdurchführung wird in Hinblick auf die Anforderungen geometrisch von Fall zu Fall individuell und optimal an die Anlagenbedingungen angepasst.
  • Bei kleinem Öffnungswinkel, α ≤ 20°, sind die Ausgänge der achsparallelen Bohrungen in den Prozessbereich jeweils mit der Lippe 5 gemäss Vergrößerung und Draufsicht in Figur 2 darauf verschlossen. Dies hilft, den Luftstrom am jeweiligen Ausgang auf den Fuß des Mantels des Kegelstumpfes zu richten.
  • Um tote Bereiche in der Anströmung des Fußes des Kegelstumpfs zu vermeiden, münden die achsparallelen Bohrungen durch den Zylinder 1 in der konzentrischen Ringnut 6 in seiner in den Prozessbereich exponierten Stirn (siehe Figur 3, Schnitt B-B). Der innere Radius der Ringnut 6 ist mindestens gleich dem der dort ansetzenden Stirn des Kegelstumpfs 2. Dadurch beginnen sich dort die Luftströme zu vereinigen und werden zu einem homogenen hohlzylindrischen Luftstrom verteilt, der umfassend den Mantel des Kegelstumpfes schon in seinem Fußbereich anströmt.
  • Um den Einfluss der scharfen Kante an der Hochspannungsdurchführung während des Betriebs zu vermeiden, ist die konzentrisch zur Achse umlaufende Kante an der freien Stirn des Kegelstumpfes 2 abgerundet (siehe Figur 4). Um die Lichtbogenentfernung zu vergrößern, ist die freie Stirn des Kegelstumpfes trichterförmig gestaltet (sieh Figur 5). Die umlaufende Kante dieser Stirn ist hier zwar scharf gezeichnet, kann aber wie in Figur 4 auch abgerundet sein.
  • Die Kriechweglänge ist bei schweren Prozessbedingungen länger zu halten als bei moderaten. Eine wirksame Maßnahme ist das Einbringen von aneinandergereihten konzentrischen Ringnuten 8, 4 Stück nach den Figuren 6a und 6b. Um die scharfe Kante zu vermeiden, sind sämtliche Kanten diese Ringnuten 8 abgerundet. Figur 6a zeigt u-förmige, Figur 6b v-förmige Ringnuten 8, also Ringnuten 8 mit konstanter Weite H, bzw. Ringnuten 8mit nach außen weiter werdender Weite H. Wenn die Hochspannungsdurchführung in eine Anlage mit elektrostatisch verstärkten Nasswäschern eingebaut ist, ist die Spaltweite H der Ringnuten 8 größer als die in der zu reinigenden Gasströmung vorhandenen Flüssigkeitstropfen, bzw. die sich an der Oberfläche bildenden. Insbesondere die Ringnuten 8 nach Figur 6b verringern die Ansammlung von Verunreinigungen auf der Manteloberfläche im Fall bei Nasswäschern, Die Flüssigkeit nämlich, die kondensiert, fließt an den Seitenwänden der Ringnuten 8 in Richtung Mantelwand des Kegelstumpfes 2 und sichert dadurch den Selbstreinigungseffekt der Hochspannungsdurchführung.
  • Die Hochspannungsdurchführung wird mit ihrem zylindrischen Teil 1 in die Wand 9 zwischen Umgebung und Prozessbereich dicht eingebaut/eingesetzt. Von der Einbaustruktur her ist das in Figur 7, 8 und 9 in beispielhaften Varianten schematisch dargestellt. In allen Fällen liegen aber die achsparallelen Bohrungen 4 gänzlich frei, von der Umgebungsseite zum Prozessbereich besteht dadurch ein freier Durchgang.
  • Während des Prozesses wird hier Luft von der Umbebung durch die im Zylinder 1 achsparallelen Öffnungen 4 auf die Mantelfläche des Kegelstumpfs 2 geblasen, und verhindert so dort die Ablagerung von festen oder flüssigen Partikeln aus Rauchgas. Die Luft, auch Gas, kalt oder mit Umgebungstemperatur oder warm, wird mit einer technischen Einrichtung, wie ein Ventilator oder eine Pumpe (in der Zeichnung nirgendwo angedeutet). Der Zweck, die Luft oder Gas über den Taupunkt im Prozessbereich zu erwärmen, dient der Vermeidung der Flüssigkeitskondensation auf der im Prozessbereich exponierten Oberfläche der Durchführung, um die Neigung der Verringerung der Hochspannungsfestigkeit der elektrischen Verbindung zu verhindern.
  • Im Falle, dass im Prozessgebiet niedrigerer Atmosphärendruck als in der Umgebung besteht, wird die Luft/das Gas von der Umgebung über die Bohrungen 4 natürlich angesogen und auf die Mantelfläche 2 geblasen.
  • Somit entfällt eine Pumpe oder ein Ventilator, der die Luft/das Gas durch die Bohrungen forciert drücken muss.
  • Ragt die Hochspannungsdurchführung in eine Prozessatmosphäre mit hoher Feuchtigkeit, könnte unter kritischen Prozessbedingungen ein Überfließen mit Flüssigkeit/Wasser eintreten und elektrische Überschläge provozieren, bzw. zu solchen führen. Um Überschläge zu vermeiden, kann das durch Modifizieren der konzentrischen Ringnut 6 nach Figur 3 zu dem konischen, konzentrischen Ringspalt 10 in der zum Prozessbereich exponierten Stirn des Zylinders 1 nach Figur 8 erreicht werden. Dieser Ringspalt 10 hat hier entlang seiner Tiefe konstante Weite, und zwar nur so weit, das der am Boden durch die dort endenden Bohrungen 4 rundherum eintretende Luft-/Gasstrom soviel Geschwindigkeit behält, dass eindringende Flüssigkeit oder Feuchtigkeit herawsgeblasen , bzw. das Eindringen überhaupt verhindert wird. Damit werden unter solch erschwerten Bedingungen Überschläge vermieden. Die umlaufende Kante dieser Ringnut 10 zum Prozessbereich hin ist zur Vermeidung des scharfe Kanteneffekts zusätzlich abgerundet (siehe Vergrößerung in der Figur 8).
  • Sollte die Kondensation von Wasser-/Flüssigkeitsdampf an der Innenwand im Prozessbereich sehr intensiv sein, lässt sich der dadurch entstehende Flüssigkeitsstrom an der Innenwand durch einen Flanschring 11 um die in den Prozessbereich exponierte Stirn des Zylinders 1 umleiten, er bildet mit dem Zylinder und der Innenwand eine Rinne, die heranfließende Flüssigkeit vom Bereich der Hochspannungsdurchführung umlenkt (Figur 9).
  • Figur 10 zeigt beispielhaft die Hochspannungsdurchführung aus PTFE in ihrer Dimension für maximal 15 kV. Bis auf den koaxialen hohlzylindrischen Fortsatz in die Prozessumgebung hinein und die beiden koaxialen Ringnute in der Mantelwand des Kegelstumpfs ist sie konstruktiv einfachst aufgebaut. Ihre Über-alles-Länge beträgt nur 75 mm, ihr größter Durchmesser lediglich 48 mm. Bündig ist sie mit ihrem zylindrischen Teil in eine 30 mm dicke Wand einsetzbar. Die um den Umfang gleichverteilten hier 12 Bohrungen 3 enden mit stetigem Übergang am Ansatz des kegelstumpfförmigen Teils 2 der Hochspannungsdurchführung, so dass dieser Ansatz sofort ringsum angeblasen wird. Aus mechanischen, insbesondere Gewichtsgründen ist der zentral durchgeführte elektrische Leiter aus Titan. Tests über Stunden mit zu reinigender, wasserdampfgesättigter, kondensierender Prozessatmosphäre verliefen bei höchster Nennspannung ohne elektrische Überschläge.
  • Bezugszeichenliste:
  • 1
    Zylinder
    2
    Kegelstumpf
    3
    Bohrung
    4
    Bohrung
    5
    Lippe
    6
    Ringnut
    7
    Trichterförmige Stirn
    8
    Ringnut
    9
    Wand
    10
    Ringspalt
    11
    Flanschring

Claims (14)

  1. Durchführung für elektrische Hochspannung durch eine Wand, die einen Umgebungsbereich von einem Prozessbereich trennt, bestehend aus:
    - einem Körper aus dielektrischem, hochspannungsfestem und kriechspurresistentem Material, aus räumlich zwei koaxial aufeinanderfolgenden geometrischen Grundstrukturen: einem Zylinder (1) und einem Kegelstumpf (2), wobei letzterer (2) mit seiner kleineren Stirnfläche am Zylinder (1) ansetzt,
    - der Außenradius des Zylinders (1) größer als der dieser kleineren Stirnfläche ist und
    der Kegelstumpf (2) samt der einen Stirnfläche des Zylinders (1), an der er ansetzt, völlig im Prozessgebiet exponiert ist
    - einer zentralen durch den Körper gehenden Bohrung (3) für die Durchführung des elektrischen Leiters,
    - mindestens zwei auf einem Kreis um die Achse mit kleinerem Radius als dem Zylinderradius gleichverteilten, achsparallelen, durch den Zylinder (1) gehenden Bohrungen (4), deren jeweils beide Stirnöffnungen frei liegen und zum Durchblasen von Luft oder Gas aus der Umgebung auf die Mantelfläche des Kegelstumpfs (2) dienen, wobei die Durchführung über die Mantelfläche ihres Zylinders (1) dicht in die Wand (9) eingebaut sitzt und die freie Stirnfläche des Zylinders (1) in die Umgebung exponiert ist.
  2. Hochspannungsdurchführung nach Anspruch 1, dadurch gekennzeichnet, dass die lichte Weite der Bohrungen (4) über ihre jeweilige Länge konstant oder örtlich unterschiedlich ist.
  3. Hochspannungsdurchführung nach Anspruch 2, dadurch gekennzeichnet, dass sich die Bohrungen (4) in den Prozessbereich jeweils mit einer größeren lichten Weite als dem Durchmesser der Bohrung (4) jedoch höchstens bis zum Ansatz des Kegelstumpfes (2) oder im Boden in einer zur Achse konzentrischen Ringnut mit mindestens dem Innenradius gleich dem Radius der dortigen Stirn des Kegelstumpfes öffnen.
  4. Hochspannungsdurchführung nach Anspruch 2, dadurch gekennzeichnet, dass die Bohrungen (4) an ihrem jeweiligen Ausgangsbereich zum Prozessbereich hin eine die lichte Weite teilweise verschließende, zur Achse hin geneigte Lippe haben, die die Richtung der Luft/Gasströmung zur Achse hin neigt.
  5. Hochspannungsdurchführung nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass die große, in den Prozessbereich exponierte Stirnfläche des Kegelstumpfs (2) an ihrem Umfang abgerundet ist.
  6. Hochspannungsdurchführung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die große, in den Prozessbereich exponierte Stirnfläche des Kegelstumpfs (2) plan oder trichterförmig oder in die Umgebung hin kegelförmig ist.
  7. Hochspannungsdurchführung nach Anspruch 6, dadurch gekennzeichnet, dass sich die große Stirnfläche des Kegelstumpfs (2) koaxial und mit mindestens der lichten Weite des durchzuführenden elektrischen Leiters hohlzylindrisch um eine vorgegebene Länge in die Prozessumgebung fortsetzt.
  8. Hochspannungsdurchführung nach Anspruch 6, dadurch gekennzeichnet, dass in die große Stirnfläche des Kegelstumpfs (2) mindestens eine zur Achse konzentrische Nut mit u- oder v-förmigem Querschnitt eingelassen ist.
  9. Hochspannungsdurchführung nach Anspruch 7, dadurch gekennzeichnet, dass in die große Stirnfläche des Kegelstumpfs (2) und/oder in die nach außen weisende Mantelfläche des hohlzylindrischen Fortsatzes mindestens eine zur Achse konzentrische Nut mit u- oder v-förmigem Querschnitt eingelassen ist.
  10. Hochspannungsdurchführung nach einem der Ansprüche3 bis 9, dadurch gekennzeichnet, dass in der Mantelwand des Kegelstumpfes (2) mindestens eine u- oder v-förmige Ringnut eingelassen ist.
  11. Hochspannungsdurchführung nach Anspruch 10, dadurch gekennzeichnet, dass die Kanten des Ringnuts oder der Ringnuten rund sind.
  12. Hochspannungsdurchführung nach einem der Ansprüche 3 bis 11, dadurch gekennzeichnet, dass die in den Prozessbereich exponierte Stirn des Zylinders (1) kegelstumpfförmig vertieft ist, der Kegelstumpf (2) am Boden dieser Vertiefung unter mit dem Zylinder (1) trichterförmiger Spaltbildung ansetzt, wobei dieser Spalt zum Prozessbereich hin konstant weit bleibt oder sich nach dorthin weitet, und die Bohrungen (4) im Ringboden dieses trichterförmigen Spaltes münden.
  13. Hochspannungsdurchführung nach Anspruch 12, dadurch gekennzeichnet, dass am äußeren Rand der in den Prozessbereich ragenden Stirn des Zylinders um den Umfang eine ringförmige Lippe angebracht ist, die mit der Wand eine Rinne bildet.
  14. Hochspannungsdurchführung nach Anspruch 13, dadurch gekennzeichnet, dass die Hochspannungsdurchführung eine Heizeinrichtung, wie eingelassene elektrische Heizstäbe oder einen fluiddurchströmbaren Kanal, hat, mit der die Hochspannungsdurchführung thermostatisiert werden kann.
EP03725015A 2002-06-21 2003-04-12 Durchf hrung f r elektrische hochspannung durch eine wa nd, die einen umgebungsbereich von einem prozessbereich trennt Expired - Lifetime EP1515806B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10227703 2002-06-21
DE10227703A DE10227703B3 (de) 2002-06-21 2002-06-21 Durchführung für elektrische Hochspannung durch eine Wand, die einen Umgebungsbereich von einem Prozessbereich trennt
PCT/EP2003/003816 WO2004000465A1 (de) 2002-06-21 2003-04-12 Durchführung für elektrische hochspannung durch eine wand, die einen umgebungsbereich von einem prozessbereich trennt

Publications (2)

Publication Number Publication Date
EP1515806A1 EP1515806A1 (de) 2005-03-23
EP1515806B1 true EP1515806B1 (de) 2006-06-21

Family

ID=29795840

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03725015A Expired - Lifetime EP1515806B1 (de) 2002-06-21 2003-04-12 Durchf hrung f r elektrische hochspannung durch eine wa nd, die einen umgebungsbereich von einem prozessbereich trennt

Country Status (6)

Country Link
US (1) US8039765B2 (de)
EP (1) EP1515806B1 (de)
AT (1) ATE330706T1 (de)
AU (1) AU2003227611A1 (de)
DE (2) DE10227703B3 (de)
WO (1) WO2004000465A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2991095A1 (de) 2014-08-25 2016-03-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Hochspannungsdurchführungsanordnung, Elektronenbrechungsvorrichtung und Verfahren zur Elektrodenmanipulation in einer Vakuumumgebung

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004039124B4 (de) * 2004-08-11 2007-06-14 Eidgenössische Materialprüfungs- und Forschungsanstalt Empa Elektrofilter für eine Feuerungsanlage
AT503022B1 (de) * 2006-06-29 2007-07-15 Fleck Carl M Dr Elektrodenaufhängung für filteranordnung
DE202009013497U1 (de) * 2009-10-07 2011-02-17 Kutzner + Weber Gmbh Partikelabscheider mit Sicherheitsabsperrung
US20160221001A1 (en) * 2013-09-05 2016-08-04 Regal Beloit America, Inc. Electrostatic blower and methods of assembling the same
US10518272B2 (en) * 2015-02-20 2019-12-31 Current Ways, Inc. Air cleaner
CN106583048A (zh) * 2016-12-27 2017-04-26 西北工业大学 一种用于电除尘器气流分布板的锯齿尾缘结构
CN107946005A (zh) * 2017-05-27 2018-04-20 国网新疆电力公司经济技术研究院 一种应用于强风区的抗风复合绝缘子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1093447B (de) * 1959-07-28 1960-11-24 Metallgesellschaft Ag Vorrichtung zur Verhinderung einer zur Verschmutzung fuehrenden Wirbelbildung bei der Belueftung von Isolatoren in elektrischen Gasreinigungs- oder Emulsionstrennungsanlagen
GB2046132B (en) * 1979-04-02 1983-02-09 Environmental Elements Corp Protector tube for high voltage suspension insulator of an electro-static precipitator
US4239505A (en) * 1979-09-07 1980-12-16 Union Carbide Corporation Purge gas conditioning of high intensity ionization system for particle removal
DE3238794A1 (de) * 1982-10-20 1984-04-26 Robert Bosch Gmbh, 7000 Stuttgart Vorrichtung zum reinigen von gasen
US4741746A (en) * 1985-07-05 1988-05-03 University Of Illinois Electrostatic precipitator
US5421863A (en) * 1992-09-11 1995-06-06 Trion, Inc. Self-cleaning insulator for use in an electrostatic precipitator
DE19742178C1 (de) * 1997-09-24 1999-04-15 Siemens Ag Elektrische Leitungsdurchführung durch eine Gehäusewand
US6221136B1 (en) * 1998-11-25 2001-04-24 Msp Corporation Compact electrostatic precipitator for droplet aerosol collection
US6156098A (en) * 1999-02-10 2000-12-05 Richards; Clyde N. Charged droplet gas scrubber apparatus and method
DE202005005297U1 (de) * 2005-04-04 2006-08-10 Cooper Crouse-Hinds Gmbh Leitungsdurchführungsvorrichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2991095A1 (de) 2014-08-25 2016-03-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Hochspannungsdurchführungsanordnung, Elektronenbrechungsvorrichtung und Verfahren zur Elektrodenmanipulation in einer Vakuumumgebung

Also Published As

Publication number Publication date
AU2003227611A1 (en) 2004-01-06
DE50303967D1 (de) 2006-08-03
US8039765B2 (en) 2011-10-18
DE10227703B3 (de) 2004-02-12
EP1515806A1 (de) 2005-03-23
US20090044974A1 (en) 2009-02-19
ATE330706T1 (de) 2006-07-15
WO2004000465A1 (de) 2003-12-31

Similar Documents

Publication Publication Date Title
EP2244834B1 (de) Elektrostatischer abscheider
DE102004022288B4 (de) Elektrostatischer Abscheider mit internem Netzgerät
DE69318655T2 (de) Venturi Isolator für einen elektrostatischen Abscheider
DE102005045010B3 (de) Elektrostatische Ionisierungsstufe in einer Abscheidungseinrichtung
EP1883477A1 (de) Nasselektrostatische ionisierungsstufe in einer elektrostatischen abscheideeinrichtung
DE10244051C1 (de) Ionisator und seine Verwendung in einer Abgasreinigungsanlage für tropfenbeladene und/oder kondensierende Feuchtgase
EP1515806B1 (de) Durchf hrung f r elektrische hochspannung durch eine wa nd, die einen umgebungsbereich von einem prozessbereich trennt
DE2505190A1 (de) Elektrostatisches filter
EP1930081B1 (de) Optimierter elektrostatischer Abscheider
DE102004039124B4 (de) Elektrofilter für eine Feuerungsanlage
AT504902B1 (de) Elektrofilter für eine feuerungsanlage
WO1996035512A1 (de) Zyklon mit sprühelektrode
EP2091653B1 (de) Ionisierungsstufe und kollektor einer abgasreinigungsanlage
CH623240A5 (de)
EP2251088B1 (de) Elektrostatischer Abscheider und Heizsystem
EP3025785B1 (de) Vorrichtung und verfahren zum reinigen von rauchgas einer metallurgischen anlage
EP2006023B1 (de) Elektrostatischer Abscheider und sein Heizungssystem
DE102017114638B4 (de) Elektrostatischer Abscheider und Verfahren zur elektrostatischen Abscheidung von Stoffen aus einem Abgasstrom
CH620057A5 (en) Device for ionising gases
DE4407152C1 (de) Vorrichtung zur Isolierung elektrostatischer Abscheider
DE2914241A1 (de) Schutzrohr fuer einen isolierkoerper eines elektrostatischen abscheiders
WO2023073215A2 (de) Raumluftreiniger
DE2717804A1 (de) Hochleistungs-ionisiergeraet
DE102021119736A1 (de) Raumluftreiniger
WO2023073213A1 (de) Raumluftreiniger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: 7B 03C 3/86 B

Ipc: 7H 01B 17/26 B

Ipc: 7H 01B 17/52 B

Ipc: 7B 03C 3/70 A

Ipc: 7B 03C 3/36 B

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060621

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50303967

Country of ref document: DE

Date of ref document: 20060803

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061121

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060621

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070412

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090420

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060621

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061222

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101230

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH

Free format text: FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE) -TRANSFER TO- FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: GARTENSTRASSE 28 A, 5400 BADEN (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180423

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180423

Year of fee payment: 16

Ref country code: CH

Payment date: 20180424

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180418

Year of fee payment: 16

Ref country code: BE

Payment date: 20180423

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50303967

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190501

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 330706

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190412

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190412

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190501

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430