EP1513625B1 - Verfahren und vorrichtung zur behandlung der äusseren oberfläche eines metalldrahts, insbesondere als beschichtungsvorbehandlung - Google Patents

Verfahren und vorrichtung zur behandlung der äusseren oberfläche eines metalldrahts, insbesondere als beschichtungsvorbehandlung Download PDF

Info

Publication number
EP1513625B1
EP1513625B1 EP03729921A EP03729921A EP1513625B1 EP 1513625 B1 EP1513625 B1 EP 1513625B1 EP 03729921 A EP03729921 A EP 03729921A EP 03729921 A EP03729921 A EP 03729921A EP 1513625 B1 EP1513625 B1 EP 1513625B1
Authority
EP
European Patent Office
Prior art keywords
metal wire
electrodes
electrode
dielectric
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03729921A
Other languages
English (en)
French (fr)
Other versions
EP1513625A2 (de
Inventor
Wolfgang Viöl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fachhochschule Hildesheim Holzminden Gottingen
Original Assignee
Fachhochschule Hildesheim Holzminden Gottingen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10219197A external-priority patent/DE10219197C1/de
Application filed by Fachhochschule Hildesheim Holzminden Gottingen filed Critical Fachhochschule Hildesheim Holzminden Gottingen
Publication of EP1513625A2 publication Critical patent/EP1513625A2/de
Application granted granted Critical
Publication of EP1513625B1 publication Critical patent/EP1513625B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C43/00Devices for cleaning metal products combined with or specially adapted for use with machines or apparatus provided for in this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes

Definitions

  • the invention relates to methods for the treatment of the outer surface of a metal wire with sheath according to the preamble of patent claim 1 and to an apparatus for carrying out such methods with the features of the preamble of claim 8.
  • Metal wires of defined diameter are made by drawing. In this process, lubricants are used which are found on the surface of the finished metal wires. If a drawn metal wire, for example, to be coated with other metals or plastics, it must first be freed from the lubricant residues. This is done in today's practice in alkaline baths. The renewal and disposal of these alkaline baths is costly. In addition, they represent a considerable expenditure on equipment.
  • the known method and related to its implementation device are less suitable because of their geometry.
  • these lubricant residues must first be removed. This can not readily be achieved by simply sweeping over the surface of the metal wire with the bundled beam of reactive medium produced in the known method.
  • a method for the plasma treatment of rod or thread-like materials in which the respective material passes coaxially through a plasma nozzle.
  • the plasma nozzle has a nozzle tube forming an outer electrode and an inner electrode disposed coaxially in the nozzle tube.
  • the rod or thread-like material is introduced into the interior of the plasma nozzle.
  • the channel in the inner electrode is lined with a guide tube for the rod or thread-like material made of electrically insulating material.
  • This known method should also be suitable for the plasma treatment of wires.
  • the plasma nozzle In wires of conductive material, ie in particular in metal wires, but the plasma nozzle would be shorted by the coaxially passing rod or filamentary material between the inner electrode and the outer electrode, so that no more plasma discharge occurred.
  • the applied voltage between the outer electrode and the inner electrode for inducing the plasma discharge is a high-frequency alternating high voltage, in which a local insulation of the rod or filamentary material in the region of the inner electrode through the guide tube is not sufficient to a through To prevent a metal wire impending short circuit between the inner electrode and the outer electrode.
  • JP 11222530 A A method for treating the outer surface of a fluorine resin coated metal wire having the features of the preamble of claim 1 and a corresponding apparatus having the features of the preamble of claim 8 are known from JP 11222530 A known.
  • An electrode is wound spirally on a tube of dielectric. Due to the free cross-section of the tube, the metal wire is guided on the tube axis in one direction and an inert atmospheric gas is passed through the tube in the opposite direction. The oxygen concentration of this gas is lowered to 500 ppm or less.
  • a dielectrically impeded discharge is caused between the metal wire grounded as the counter electrode and as such and the dielectric shielding of the electrode to improve the adhesion properties of the fluororesin coating of the metal wire. With the problem of electrically grounding the fluorine resin coated metal wire, the JP 11222530 A not apart.
  • a method for treating a metal wire without sheathing with the features of the preamble of claim 1 and a corresponding device with the features of the preamble of claim 8 is known.
  • a plurality of annular electrodes in the direction of the tube axis are arranged one behind the other on a tube of dielectric material, which are connected to different phases of a three-phase high voltage AC generator.
  • the zero phase of this AC high voltage generator is connected to the guided on the tube axis metal wire.
  • the metal wire is not only treated by the discharge between the dielectric shield of the electrodes and its outer surface, but also by the applied AC voltage, which is tuned to its mechanical resonance frequency, intentionally vibrated to shake off coarse contaminants of the metal wire.
  • the suitable frequencies of the alternating high voltages to be applied to the electrodes with the alternating high voltage generator are rather below the usual frequency range for exciting a dielectrically impeded discharge.
  • problems in the electrical contacting of the metal wire with the zero phase of the AC high voltage generator is the SU 1362526 A1 not apart.
  • the invention has for its object to provide a method and apparatus for treating the surface of a sheathed metal wire, in which problems in connection with an unreliable electrical contacting of the surface of a sheath or contaminants wholly or partially insulated metal wire are avoided.
  • a dielectrically impeded discharge i. H. a gas discharge
  • the dielectrically impeded discharge provides a chemically sufficient environment for the metal wire in the gas space to effectively clean its surface of any lubricant residue within a very short time.
  • there is a surface activation which has the consequence that in a subsequent coating of the wire, the applied layer better adheres to the surface of the metal wire or its sheath.
  • the metal wire or its sheath is heated by the discharge over its surface.
  • a wire for a plastic coating usually not only has to be cleaned of lubricant residues and surface-activated, but also heated to a defined temperature in the order of 250 ° C. All this is achieved in a single step with the new process.
  • Dielectric discharge is also advantageous over an unobstructed discharge used in the prior art methods and apparatuses in that the maximum flowing currents are limited and correspondingly relatively simple AC generators may be used.
  • the dielectric discharge can be carried out at atmospheric pressure.
  • Such a blowing out of reaction products of the lubricant residues can also be ensured by flowing through the gas space with air.
  • the flow of ambient air should be in the opposite direction in order to keep as far as possible the resulting reaction products from the finished metal wire.
  • the AC high voltage to cause the dielectrically impeded discharge should be greater than 1 kV and will typically be a few kV. Their frequency is typically in the range of 20 kHz to 3 MHz.
  • the heating by the discharge in the gas space is often advantageous, as explained above.
  • the side of the electrode and its dielectric shield it makes sense to dissipate accumulating heat energy in order to avoid overheating. This is preferably done by cooling the dielectric shield of the electrode.
  • the gas space in the form of an elongated cylinder, wherein the metal wire is arranged on the cylinder axis.
  • the electrode and its dielectric shield enclose this gas chamber in the shape of a cylinder jacket.
  • the metal wire is continuously conveyed through the gas space.
  • the dielectric discharge may be intensified to place multiple gas spaces one behind the other around the metal wire.
  • These parameters also have an influence on the temperature to which the metal wire is heated by the dielectrically impeded discharge. By tuning the parameters, it is possible to heat the metal wire in the gas space to a defined temperature above 200 ° C.
  • the metal wire serves as a counter electrode to the electrode the dielectric shield, so that the discharge between the shield and the surface of the metal wire or its sheath takes place.
  • the alternating high voltage is generated between two electrodes spaced apart in the longitudinal direction of the metal wire, each with its own dielectric shields.
  • the metal wire connects the regions of the two electrodes with each other, and because of its conductivity, it serves as a counter electrode to both dielectrically shielded electrodes. It can be understood as an intermediate electrode in the middle between the two dielectrically shielded electrodes, on both sides of which gas spaces are formed, in which dielectrically impeded discharges take place.
  • the gas space preferably surrounds the metal wire on all sides.
  • a compressed air source can be provided, which causes an air flow through the gas space.
  • This air flow preferably has the opposite direction of movement of the metal wire through the treatment space.
  • the AC generator is designed for an AC voltage greater than 1 kV and a frequency of 20 kHz to 3 MHz.
  • a cooling device is preferably provided.
  • the shield may be in two parts, wherein a free space between the two parts of the shield is connected to a circulation device for a cooling liquid.
  • This circulation device promotes a cooling fluid through the space between the two parts of the shield.
  • the coolant can be water. To reduce the electrical conductivity of the water, it should be distilled water.
  • the dielectric shield of the electrode may comprise at least one tube.
  • a two-part shield can be formed from two spaced-apart tubes, wherein the distance between the two tubes defines the free space for the coolant.
  • the electrode can also be arranged directly on the inner tube and thus in the cooling liquid, such that only the inner tube forms the dielectric shield of the electrode.
  • the outer tube then not only defines the clearance for the coolant, but also forms an outer insulation for the electrode.
  • a guide device is preferably provided, which guides it on the tube axis. If the metal wire is already aligned in some other defined way, for example by adjacent devices, but no additional guide device is necessary.
  • the gas space through the electrode and its dielectric shield is apparent.
  • the transparency of the shield can be realized that it is made of glass, such as quartz glass. Also, water as a coolant is sufficiently transparent.
  • the transparency of the electrode can be realized by winding the electrode onto its shield in the form of a wire or ribbon with spaced turns.
  • the dielectric shield can of course also be made of a material other than glass.
  • ceramic materials such as, for example, aluminum oxide, which in addition to their dielectric properties are distinguished by a high heat resistance, are suitable.
  • the new device there are provided two electrodes with dielectric shields spaced apart in the direction of elongation of the metal wire, the AC generator generating the alternating high voltage between the two electrodes.
  • the metal wire forms the counter electrode to both electrodes and it does not necessarily have to be earthed. In particular, problems with an unreliable grounding of the metal wire partially insulated on its surface by the lubricant residues can be avoided.
  • the device 10 shown in Fig. 1 is used for the treatment of the surface of a metal wire 3.
  • the metal wire 3 is passed through a glass tube 11 and that in the region of the tube axis. Between the surface of the metal wire 3 and the inner surface of the glass tube 11, a gas space 5 containing air remains. The air may be added to reaction or noble gases, but this is not mandatory.
  • an electrode 4 is arranged made of solid copper, wherein no gaps between the electrode 4 and the glass tube 11 are present. Any originally existing gaps are filled with a dielectric paste.
  • the electrode 4 is provided with an opening 12 in order to be able to see the gas space 5 through the glass tube 11 also in the region of the electrode 12.
  • the electrode 4 is connected via a high voltage supply 1 to an AC generator 6 which is grounded to generate a high AC voltage with respect to the ground.
  • This alternating high voltage in the range of a few kV and with a frequency of typically several 100 kHz is applied to the electrode 4 via the high voltage supply line 1. Since the wire 3 is also earthed here, an alternating electric field acts between it and the electrode 4. This alternating field causes a discharge in the gas space 5. This discharge is dielectrically impeded because the glass tube 11 serves as a dielectric shield 2 of the electrode 4. Through the dielectric Disruption of the discharge in the gas space 5 prevents locally larger currents flow through the gas space 5, ie that there is an arc discharge and thus a short circuit of the electrode 4 to earth.
  • the discharge via the volume of the gas space 5 is stabilized and the AC voltage generator 6 is subject to lower requirements than when occurring arc discharges.
  • the discharge in the gas space 5 provides a reactive environment around the metal wire 3 to remove lubricant residues and the like attached to the surface of the metal wire 3, ie, to substantially oxidize to CO 2 and water.
  • the surface of the metal wire is activated and the metal wire undergoes heating so that it is completely pre-treated for a plastic coating that requires a cleaned and warmed activated surface wire.
  • Fig. 2 shows a side view of the reproduced in Fig. 1 device 10, wherein in addition a compressed air source 13 is indicated, with the compressed air 14 in the gas space 5 is blown to cause an air flow 15 through the gas space 5 therethrough.
  • the air flow 15 is preferably carried out in the opposite direction to a movement of the metal wire 3 through the gas space 5 in the direction of an arrow 16. With the air flow 15 and any oxidation residues from the oxidation of surface contamination of the metal wire 5 or ablated there inert particles are blown out of the glass tube 11 which could otherwise affect a controlled discharge in the gas space 5.
  • the glass tube 11 When testing the device according to FIGS. 1 and 2, the glass tube 11 has an inner diameter of 6 mm. Its length was 400 mm. It stood on both sides by more than 50 mm over the electrode. Using a semiconductor-based AC voltage generator 6 having an efficiency of 90% at a medium-frequency high voltage, the dielectrically impeded discharge at diameters of the metal wire of 0.6 to 1.3 mm could be easily ignited and maintained. The desired cleaning of the surface of the metal wire within a very short time, i. specifically achieved at feed speeds of the metal wire 3 of well over 1 m / s and also up to 5 m / s. The heating was done quickly, which naturally decreased with increasing strength of the metal wire. Subsequent plastic coating of the metal wire so pretreated gave excellent adhesion of the coated plastic.
  • FIG. 3 shows a comparison with FIGS. 1 and 2 thereby modified embodiment, a further glass tube 17 is arranged in the glass tube 11 and that coaxial with the glass tube 11 and the metal wire 3. Between the glass tubes 11 and 17 remains a cylinder jacket-shaped space 18. Through the space 18 circulates a circulation device 19, a cooling liquid 20 to to cool the dielectric shield 2 of the electrode 4. While heating of the metal wire 3 is desired and can be adjusted to a certain extent in a conveyed through the device 10 metal wire 3, ie, is a heating of the dielectric shield 2, here practically from the glass tubes 11 and 17 and the cooling liquid 20 in the free space 18 is undesirable beyond a certain extent. Suitable cooling fluids are, in particular, those which have no appreciable electrical conductivity, such as, for example, distilled water.
  • Fig. 5 shows an embodiment of the device 10 with two electrodes 4 and one dielectric shield 2 for each electrode 4 each of a glass tube 11.
  • Each of the electrode 12 and dielectric shield 2 units may be formed as shown in Figs , That All variants described in these figures can also be realized here.
  • the device 10 according to FIG. 5 is not restricted to a series connection of two devices 10, as described in the preceding FIGS. Rather, the AC voltage generator 6 according to FIG. 5 is not grounded, but it brings the alternating high voltage between the two electrodes 4 on. In this way, can be dispensed with a grounding of the metal wire 3.
  • the metal wire 3 acts as an intermediate electrode between the two electrodes 4 and is thus a complete counter electrode for the respective discharge in the respective gas space 5, all conceivable metal wires, the AC conductivity is completely sufficient to the distance between the two electrodes 4 in the longitudinal direction of the metal wire 3 to bridge.
  • the metal wire 3 can, of course, be grounded in order to reliably preclude the build-up of charges thereon. This does not preclude the function of the device 10 according to FIG. 5. However, it avoids all problems with imperfect grounding, for example due to the insulating effect of impurities on the surface of the metal wire 3.
  • Fig. 6 shows the device according to Fig. 5 in the treatment of a metal wire 3 provided with a sheath 9. This may serve for the outer surface of the metal wire 3, which is actually the surface of the sheath 9, for printing for example, prepare with a color jet printer, not shown here, so that the color on the outside Surface better and more durable clings.
  • the operation of the device 10 in the treatment of the sheathed metal wire 3 according to FIG. 6 is in principle the same as in the treatment of the non-sheathed metal wire 3 according to FIG. 5. The only difference is that a non-electrically conductive sheath 9 the metal wire 3, ie an insulating layer, acts as an additional dielectric shield 11 of the electrodes 4 with respect to the metal wire 3.
  • All embodiments of the device 10 shown so far advantageously provide an all-round treatment of the outer surface of the metal wire 3 or its sheathing 9.
  • the gas atmosphere in the gas space 5, in which the dielectrically impeded discharge is caused may be simple ambient air.
  • pure oxygen or other reaction gases can be added.
  • noble gases may also be added.

Description

  • Die Erfindung bezieht sich auf Verfahren zur Behandlung der äußeren Oberfläche eines Metalldrahts mit Ummantelung gemäß dem Oberbegriff des Patentanspruchs 1 sowie auf einen Vorrichtung zur Durchführung solcher Verfahren mit den Merkmalen des Oberbegriffs des Patentanspruchs 8.
  • Metalldrähte definierten Durchmessers werden durch Ziehen hergestellt. Bei diesem Prozess werden Schmiermittel verwendet, die sich auf der Oberfläche der fertigen Metalldrähte wiederfinden. Soll ein gezogener Metalldraht beispielsweise mit anderen Metallen oder Kunststoffen beschichtet werden, muss er vorher von den Schmiermittelrückständen befreit werden. Dies wird in der heutigen Praxis in alkalischen Bädern durchgeführt. Die Erneuerung und Entsorgung dieser alkalischen Bäder ist kostenintensiv. Zudem stellen sie einen erheblichen apparativen Aufwand dar.
  • Aus der EP 0 761 415 B1 ist ein Verfahren zur Erhöhung der Benetzbarkeit von Werkstücken mit Flüssigkeiten durch eine Oberflächenvorbehandlung mittels elektrischer Entladung bekannt. Bei diesem Verfahren wird durch Plasmaentladung unter Zufuhr eines Arbeitsgases ein gebündelter Strahl eines reaktiven Mediums erzeugt, und die zu behandelnde Oberfläche des Werkstücks wird mit diesem Strahl überstrichen. Die Plasmaentladung findet in einer Plasmadüse zwischen einer von hinten koaxial in die Plasmadüse hineinragenden Stiftelektrode und einer eine Düsenöffnung begrenzenden Ringelektrode statt, wobei zwischen der Stiftelektrode und der Ringelektrode eine Wechselhochspannung im Bereich von 5 bis 30 kV und mit einer Frequenz in der Größenordnung von 20 kHz anliegt und wobei der gebündelte Strahl des reaktiven Mediums durch die Düsenöffnung austritt. Bei den mit dem bekannten Verfahren behandelten Werkstücken kann es sich um metallische Werkstücke handeln.
  • Zur Behandlung von Metalldrähten sind das bekannte Verfahren und die zu seiner Durchführung verwandte Vorrichtung aufgrund ihrer Geometrie wenig geeignet. Um die Benetzbarkeit der Oberfläche eines Metalldrahts zu erhöhen, der Schmiermittelrückstände an seiner Oberfläche aufweist, müssen zunächst diese Schmiermittelrückstände entfernt werden. Dies ist mit einem einfachen Überstreichen der Oberfläche des Metalldrahts mit dem bei dem bekannten Verfahren erzeugten gebündelten Strahl aus reaktivem Medium nicht ohne weiteres realisierbar.
  • Aus der EP 0 994 637 A2 ist ein Verfahren zur Plasmabehandlung von stab- oder fadenförmigen Materialien bekannt, bei dem das jeweilige Material koaxial durch eine Plasmadüse hindurchläuft. Die Plasmadüse weist ein eine Außenelektrode bildendes Düsenrohr und eine koaxial in dem Düsenrohr angeordnete Innenelektrode auf. Durch einen koaxial in der Innenelektrode ausgebildeten Kanal wird das stab- oder fadenförmige Material in den Innenraum der Plasmadüse eingebracht. Dabei ist der Kanal in der Innenelektrode mit einem Führungsrohr für das stab- oder fadenförmige Material aus elektrisch isolierendem Material ausgekleidet. Dieses bekannte Verfahren soll auch zur Plasmabehandlung von Drähten geeignet sein. Bei Drähten aus leitfähigem Material, d.h. insbesondere bei Metalldrähten, würde aber die Plasmadüse durch das koaxial hindurchlaufende stab- oder fadenförmige Material zwischen der Innenelektrode und der Außenelektrode kurzgeschlossen, so dass keine Plasmaentladung mehr aufträte. Dabei ist zu berücksichtigen, dass die zwischen der Außenelektrode und der Innenelektrode angelegte Spannung zum Hervorrufen der Plasmaentladung eine hochfrequente Wechselhochspannung ist, bei der eine lokale Isolierung des stab- bzw. fadenförmigen Materials im Bereich der Innenelektrode durch das Führungsrohr nicht ausreichend ist, um einen durch einen Metalldraht drohenden Kurzschluss zwischen der Innenelektrode und der Außenelektrode zu verhindern.
  • Auch bei einem Metalldraht, der bereits mit einer leitenden oder nicht leitenden Ummantelung, also beispielsweise einer Isolierschicht versehen ist, stellt sich heraus, dass auf eine Vorbehandlung der Ummantelung vor einer weiteren Beschichtung oder auch einem Bedrucken der Ummantelung z. B. mit Typen- oder Herstellerangaben mittels eines Farbstrahldruckers nicht verzichtet werden kann.
  • Ein Verfahren zur Behandlung der äußeren Oberfläche eines eine Fluorharzbeschichtung aufweisenden Metalldrahts mit den Merkmalen des Oberbegriffs des Patentanspruchs 1 und eine entsprechende Vorrichtung mit den Merkmalen des Oberbegriffs des Patentanspruchs 8 sind aus der JP 11222530 A bekannt. Eine Elektrode ist spiralförmig auf ein Rohr aus einem Dielektrikum gewickelt. Durch den freien Querschnitt des Rohrs wird in der einen Richtung der Metalldraht auf der Rohrachse hindurchgeführt und in der Gegenrichtung dazu ein inertes atmosphärisches Gas durch das Rohr hindurchgeleitet. Die Sauerstoffkonzentration dieses Gases wird auf 500 ppm oder weniger abgesenkt. Bei atmosphärischem Druck wird eine dielektrisch behinderte Entladung zwischen dem als Gegenelektrode und als solchem geerdeten Metalldraht und der dielektrischen Abschirmung der Elektrode hervorgerufen, um die Haftungseigenschaften der Fluorharzbeschichtung des Metalldrahtes zu verbessern. Mit dem Problem, den mit Fluorharz beschichteten Metalldraht elektrisch zu erden, setzt sich die JP 11222530 A nicht auseinander.
  • Aus der SU 1362526 A1 ist ein Verfahren zur Behandlung eines Metalldrahtes ohne Ummantelung mit den Merkmalen des Oberbegriffs des Patentanspruchs 1 und eine entsprechende Vorrichtung mit den Merkmalen des Oberbegriffs des Patentanspruchs 8 bekannt. Dabei sind hier auf einem Rohr aus dielektrischem Material mehrere ringförmige Elektroden in Richtung der Rohrachse hintereinander angeordnet, die an unterschiedliche Phasen eines dreiphasigen Hochspannungswechselstromgenerators angeschlossen sind. Die Nullphase dieses Wechselhochspannungsgenerators ist mit dem auf der Rohrachse geführten Metalldraht verbunden. Der Metalldraht wird nicht nur durch die Entladung zwischen der dielektrischen Abschirmung der Elektroden und seiner äußeren Oberfläche behandelt, sondern auch durch die anliegende Wechselspannung, die auf seine mechanische Resonanzfrequenz abgestimmt ist, gewollt zu Schwingungen angeregt, um grobe Verunreinigungen des Metalldrahtes abzuschütteln. Die hierfür geeigneten Frequenzen der mit dem Wechselhochspannungsgenerator an die Elektroden anzulegenden Wechselhochspannungen liegen eher unterhalb des üblichen Frequenzbereichs für die Anregung einer dielektrisch behinderten Entladung. Mit Problemen bei der elektrischen Kontaktierung des Metalldrahtes mit der Nullphase des Wechselhochspannungsgenerators setzt sich die SU 1362526 A1 nicht auseinander.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Behandlung der Oberfläche eines ummantelten Metalldrahts aufzuzeigen, bei denen Probleme im Zusammenhang mit einer unzuverlässigen elektrischen Kontaktierung des an seiner Oberfläche durch eine Ummantelung oder Verunreinigungen ganz oder teilweise isolierten Metalldrahtes vermieden werden.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 und eine Vorrichtung mit den Merkmalen des Patentanspruchs 8 gelöst. Vorteilhafte Ausführungsformen des Verfahrens und der Vorrichtung sind in den Unteransprüchen 2-7 bzw. 9-13 definiert.
  • Eine dielektrisch behinderte Entladung, d. h. eine Gasentladung, kann mit geringem technischem Aufwand bei Atmosphärendruck aufrechterhalten werden. Die dielektrisch behinderte Entladung sorgt für eine chemisch hinreichend aktive Umgebung des Metalldrahts in dem Gasraum, dass seine Oberfläche effektiv von jeglichen Schmiermittelrückständen innerhalb sehr kurzer Zeit gereinigt wird. Zusätzlich erfolgt eine Oberflächenaktivierung, die zur Folge hat, dass bei einer nachfolgenden Beschichtung des Drahts die aufgebrachte Schicht besser an der Oberfläche des Metalldrahts bzw. seiner Ummantelung anhaftet. Zusätzlich wird der Metalldraht bzw. seine Ummantelung durch die Entladung über seine Oberfläche aufgeheizt. Dies ist nicht von Nachteil; vielmehr muss beispielsweise ein Draht für eine Kunststoffbeschichtung üblicherweise nicht nur von Schmiermittelrückständen gereinigt und oberflächenaktiviert, sondern auch auf eine definierte Temperatur in der Größenordnung von 250 °C aufgeheizt werden. All dies wird mit dem neuen Verfahren in einem einzigen Schritt erreicht. Eine dielektrische Entladung ist gegenüber einer unbehinderten Entladung, wie sie bei den Verfahren und Vorrichtungen nach dem oben beschriebenen Stand der Technik zur Anwendung kommt, auch insoweit von Vorteil, als dass die maximal fließenden Ströme begrenzt sind und entsprechend relativ einfache Wechselspannungsgeneratoren zur Anwendung kommen können.
  • Bei der Behandlung der Oberfläche eines Metalldrahts mit nicht elektrisch leitender Ummantelung kann allein die Isolierschicht um den Draht die dielektrische Abschirmung der Elektrode gegenüber dem leitenden Metalldraht bereitstellen. Es ist aber bevorzugt, wenn auch in diesem Fall eine dann zusätzliche dielektrische Abschirmung direkt vor der Elektrode und damit auf der anderen Seite des Gasraums über der äußeren Oberfläche der Ummantelung des Metalldrahts vorgesehen ist.
  • Wie bereits angesprochen wurde, kann die dielektrische Entladung bei Normaldruck erfolgen. Es kann aber ohne weiteres auch ein gewisser Über- oder Unterdruck in dem Gasraum eingestellt werden. Bevorzugt ist ein Überdruck von etwa bis zu 2000 hPa. Mit Hilfe dieses Überdrucks kann eine Art Sperrluftsystem realisiert werden, um das Eintragen von flüchtigen Fremdstoffen in den Gasraum zu verhindern. Insbesondere kann durch einen Überdruck in dem Gasraum aber dafür gesorgt werden, dass Reaktionsprodukte der Schmiermittelrückstände aus dem Gasraum ausgeblasen werden.
  • Ein solches Ausblasen von Reaktionsprodukten der Schmiermittelrückstände kann auch dadurch sichergestellt werden, dass der Gasraum mit Luft durchströmt wird. Bei einem in einer Richtung durch den Gasraum geförderten Metalldraht sollte die Durchströmung mit Umgebungsluft in der entgegengesetzten Richtung erfolgen, um die anfallenden Reaktionsprodukte von dem fertig behandelten Metalldraht möglichst fernzuhalten.
  • Die Wechselhochspannung zum Hervorrufen der dielektrisch behinderten Entladung sollte größer als 1 kV sein und wird typischerweise einige kV betragen. Ihre Frequenz liegt typischerweise im Bereich von 20 kHz bis 3 MHz.
  • Auf Seiten des Drahts ist die Erwärmung durch die Entladung in dem Gasraum häufig vorteilhaft, wie oben erläutert wurde. Auf der Seite der Elektrode und ihrer dielektrischen Abschirmung ist es aber sinnvoll, anfallende Wärmeenergie abzuführen, um eine Überhitzung zu vermeiden. Dies erfolgt vorzugsweise dadurch, dass die dielektrische Abschirmung der Elektrode gekühlt wird.
  • In einer konkreten Ausführungsform des neuen Verfahrens weist der Gasraum die Form eines langgestreckten Zylinders auf, wobei der Metalldraht auf der Zylinderachse angeordnet ist. Die Elektrode und ihre dielektrische Abschirmung umschließen diesen Gasraum zylindermantelförmig. Der Metalldraht wird kontinuierlich durch den Gasraum hindurchgefördert.
  • Um eine ausreichende Entfernung von Schmiermittelrückständen von der Oberfläche des Metalldrahts sicherzustellen, kann die dielektrische Entladung intensiviert werden mehrere Gasräume hintereinander um den Metalldraht herum anzuordnen. Diese Parameter haben jeweils auch Einfluss auf die Temperatur, auf die der Metalldraht durch die dielektrisch behinderte Entladung aufgeheizt wird. Durch Abstimmung der Parameter ist es möglich, den Metalldraht in dem Gasraum auf eine definierte Temperatur oberhalb 200 °C aufzuheizen.
  • Bei dem neuen Verfahren dient der Metalldraht als Gegenelektrode zu der Elektrode mit der dielektrischen Abschirmung, so dass die Entladung zwischen der Abschirmung und der Oberfläche des Metalldrahts bzw. seiner Ummantelung erfolgt. Dabei wird die Wechselhochspannung zwischen zwei in der Längserstreckungsrichtung des Metalldrahts beabstandeten Elektroden mit jeweils eigenen dielektrischen Abschirmungen erzeugt. Der Metalldraht verbindet die Bereiche der beiden Elektroden miteinander, und aufgrund seiner Leitfähigkeit dient er als Gegenelektrode zu beiden dielektrisch abgeschirmten Elektroden. Er kann dabei als Zwischenelektrode in der Mitte zwischen den beiden dielektrisch abgeschirmten Elektroden verstanden werden, auf deren beiden Seiten Gasräume ausgebildet sind, in denen dielektrisch behinderte Entladungen erfolgen.
  • Bei der erfindungsgemäßen Vorrichtung für die Behandlung der Oberfläche eines Metalldrahts nach dem neuen Verfahren umgibt der Gasraum den Metalldraht vorzugsweise allseitig.
  • Um Reaktionsprodukte aus dem Gasraum abzuführen, kann eine Druckluftquelle vorgesehen sein, die eine Luftströmung durch den Gasraum hervorruft. Diese Luftströmung weist vorzugsweise die entgegengesetzte Richtung einer Bewegung des Metalldrahts durch den Behandlungsraum auf.
  • Der Wechselspannungsgenerator ist für eine Wechselspannung größer als 1 kV und eine Frequenz von 20 kHz bis 3 MHz ausgelegt.
  • Für die dielektrische Abschirmung der Elektrode ist vorzugsweise eine Kühleinrichtung vorgesehen. Um diese Kühleinrichtung zu realisieren, kann die Abschirmung zweiteilig sein, wobei ein Freiraum zwischen den beiden Teilen der Abschirmung an einer Umwälzeinrichtung für eine Kühlflüssigkeit angeschlossen ist. Diese Umwälzeinrichtung fördert eine Kühlflüssigkeit durch den Freiraum zwischen den beiden Teilen der Abschirmung. Bei der Kühlflüssigkeit kann es sich um Wasser handeln. Zur Herabsetzung der elektrischen Leitfähigkeit des Wassers, sollte es sich um destilliertes Wasser handeln.
  • Die dielektrische Abschirmung der Elektrode kann mindestens ein Rohr umfassen. Eine zweiteilige Abschirmung kann dabei aus zwei mit Abstand ineinander angeordneten Rohren ausgebildet sein, wobei der Abstand zwischen den beiden Rohren den Freiraum für die Kühlflüssigkeit definiert. Bei einer Anordnung von zwei Rohren ineinander, zwischen denen ein Freiraum für die Kühlflüssigkeit ausgebildet ist, kann die Elektrode aber auch direkt auf dem inneren Rohr und damit in der Kühlflüssigkeit angeordnet sein, so dass nur das innere Rohr die dielektrische Abschirmung der Elektrode ausbildet. Das äußere Rohr definiert dann aber nicht nur den Freiraum für die Kühlflüssigkeit, sondern bildet auch eine äußere Isolierung für die Elektrode.
  • Für den Metalldraht ist vorzugsweise eine Führungseinrichtung vorgesehen, die ihn auf der Rohrachse führt. Wenn der Metalldraht bereits anderweitig definiert ausgerichtet ist, beispielsweise durch angrenzende Vorrichtungen, ist aber keine zusätzliche Führungseinrichtung nötig.
  • In einer besonders bevorzugten Ausführungsform der neuen Vorrichtung ist der Gasraum durch die Elektrode und deren dielektrische Abschirmung hindurch einsichtig. Auf diese Weise kann optisch kontrolliert werden, ob die gewünschte dielektrisch behinderte Entladung in dem Gasraum tatsächlich erfolgt. Die Durchsichtigkeit der Abschirmung kann dadurch realisiert werden, dass sie aus Glas, beispielsweise Quarzglas aufgebaut wird. Auch Wasser als Kühlflüssigkeit ist hinreichend durchsichtig. Die Durchsichtigkeit der Elektrode kann dadurch realisiert werden, dass die Elektrode in Form eines Drahts oder eines Bands mit untereinander beabstandeten Windungen auf ihre Abschirmung aufgewickelt wird.
  • Wenn der Gasraum bei der neuen Vorrichtung nicht einsichtig sein muss, kann die dielektrische Abschirmung natürlich auch aus einem anderen Material als Glas ausgebildet werden. In Frage kommen dabei insbesondere keramische Materialien, wie beispielsweise Aluminiumoxid, die sich neben ihren dielektrischen Eigenschaften auch durch eine hohe Wärmebeständigkeit auszeichnen.
  • Bei der neuen Vorrichtung sind zwei in der Längserstreckungsrichtung des Metalldrahts beabstandete Elektroden mit dielektrischen Abschirmungen vorgesehen, wobei der Wechselspannungsgenerator die Wechselhochspannung zwischen den beiden Elektroden erzeugt. Der Metalldraht bildet dabei die Gegenelektrode zu beiden Elektroden und er muss nicht zwingend geerdet sein. So können insbesondere Probleme mit einer unzuverlässigen Erdung des an seiner Oberfläche durch die Schmiermittelrückstände teilweise isolierten Metalldrahts vermieden werden.
  • Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen näher erläutert und beschrieben, dabei zeigt
  • Fig. 1
    eine erste nicht unter die Patentansprüche fallende Vorrichtung in einer perspektivischen Ansicht,
    Fig. 2
    die Vorrichtung gemäß Fig. 1 mit einer zusätzlichen Druckluftquelle in einer Seitenansicht,
    Fig. 3
    eine zweite nicht unter die Patentansprüche fallende Vorrichtung in einer Seitenansicht,
    Fig. 4
    einen vergrößerten Querschnitt durch die Vorrichtung gemäß Fig. 3,
    Fig. 5
    eine Ausführungsform der erfindungsgemäßen Vorrichtung in einer Seitenansicht, und
    Fig. 6
    die Ausführungsform der Vorrichtung gemäß Fig. 5 in einer Seitenansicht bei der Behandlung eines mit einer nicht leitenden Ummantelung versehenen Metalldrahts.
  • Die in Fig. 1 dargestellte Vorrichtung 10 dient zur Behandlung der Oberfläche eines Metalldrahts 3. Der Metalldraht 3 wird durch ein Glasrohr 11 hindurchgeführt und zwar im Bereich dessen Rohrachse. Zwischen der Oberfläche des Metalldrahts 3 und der Innenoberfläche des Glasrohrs 11 verbleibt ein Gasraum 5, der Luft enthält. Der Luft können Reaktions- oder Edelgase zugesetzt sein, was jedoch nicht zwingend ist. Auf dem Glasrohr 11 ist eine Elektrode 4 aus massivem Kupfer angeordnet, wobei keine Spalte zwischen der Elektrode 4 und dem Glasrohr 11 vorliegen. Etwaige ursprünglich vorhandene Spalte sind mit einer dielektrischen Paste ausgefüllt. Die Elektrode 4 ist mit einer Durchbrechung 12 versehen, um auch im Bereich der Elektrode 12 den Gasraum 5 durch das Glasrohr 11 hindurch einsehen zu können. Die Elektrode 4 ist über eine Hochspannungszuführung 1 mit einem Wechselspannungsgenerator 6 verbunden, der geerdet ist, um gegenüber der Erde eine Wechselhochspannung zu erzeugen. Diese Wechselhochspannung im Bereich einiger kV und mit einer Frequenz von typischerweise einigen 100 kHz wird über die Hochspannungszuleitung 1 an die Elektrode 4 angelegt. Da der Draht 3 hier ebenfalls geerdet ist, wirkt zwischen ihm und der Elektrode 4 ein elektrisches Wechselfeld. Dieses Wechselfeld ruft eine Entladung in dem Gasraum 5 hervor. Diese Entladung ist dielektrisch behindert, weil das Glasrohr 11 als dielektrische Abschirmung 2 der Elektrode 4 dient. Durch die dielektrische Behinderung der Entladung in dem Gasraum 5 wird verhindert, dass lokal größere Ströme durch den Gasraum 5 fließen, d.h. dass es zu einer Bogenentladung und damit zu einem Kurzschluss der Elektrode 4 zur Erde kommt. Hierdurch wird die Entladung über das Volumen des Gasraums 5 stabilisiert und der Wechselspannungsgenerator 6 unterliegt geringeren Anforderungen als bei auftretenden Bogenentladungen. Dennoch sorgt die Entladung in dem Gasraum 5 für eine reaktive Umgebung um den Metalldraht 3, um an der Oberfläche des Metalldrahts 3 anhaftende Schmiermittelrückstände und dergleichen zu entfernen, d.h. im Wesentlichen zu CO2 und Wasser zu oxidieren. Darüber hinaus wird die Oberfläche des Metalldrahts aktiviert, und der Metalldraht erfährt eine Aufheizung, so dass er insgesamt für eine Kunststoffbeschichtung fertig vorbehandelt ist, die einen gereinigten und angewärmten Draht mit aktivierter Oberfläche verlangt.
  • Fig. 2 zeigt eine Seitenansicht der in Fig. 1 perspektivisch wiedergegebenen Vorrichtung 10, wobei zusätzlich eine Druckluftquelle 13 angedeutet ist, mit der Druckluft 14 in den Gasraum 5 einblasbar ist, um durch den Gasraum 5 hindurch eine Luftströmung 15 hervorzurufen. Die Luftströmung 15 erfolgt vorzugsweise in entgegengesetzter Richtung zu einer Bewegung des Metalldrahts 3 durch den Gasraum 5 in Richtung eines Pfeils 16. Mit der Luftströmung 15 werden auch etwaige Oxidationsrückstände von der Oxidation von Oberflächenverunreinigung des Metalldrahts 5 oder auch dort abgetragene Inertpartikel aus dem Glasrohr 11 ausgeblasen, die sonst eine kontrollierte Entladung in dem Gasraum 5 beeinträchtigen könnten.
  • Bei Erprobung der Vorrichtung gemäß den Fig. 1 und 2 weist das Glasrohr 11 einen Innendurchmesser von 6 mm auf. Seine Länge betrug 400 mm. Dabei stand es auf beiden Seiten um mehr als 50 mm über die Elektrode über. Unter Verwendung eines Wechselspannungsgenerators 6 auf Halbleiterbasis, der bei einer mittelfrequenten Hochspannung einen Wirkungsgrad von 90 % aufwies, konnte die dielektrisch behinderte Entladung bei Durchmessern des Metalldrahts von 0,6 bis 1,3 mm problemlos gezündet und aufrecht erhalten werden. Dabei wurde die erwünschte Reinigung der Oberfläche des Metalldrahts binnen sehr kurzer Zeit, d.h. konkret auch bei Vorschubgeschwindigkeiten des Metalldrahts 3 von deutlich über 1 m/s und auch bis zu 5 m/s erzielt. Auch die Aufheizung erfolgte schnell, wobei diese mit zunehmender Stärke des Metalldrahts naturgemäß abnahm. Eine anschließende Kunststoffbeschichtung des so vorbehandelten Metalldrahts ergab hervorragende Anhaftungswerte des aufgeschichteten Kunststoffs.
  • Fig. 3 zeigt eine gegenüber den Fig. 1 und 2 dadurch abgewandelte Ausführungsform, das in dem Glasrohr 11 noch ein weiteres Glasrohr 17 angeordnet ist und zwar koaxial zu dem Glasrohr 11 und dem Metalldraht 3. Zwischen den Glasrohren 11 und 17 verbleibt ein zylindermantelförmiger Freiraum 18. Durch den Freiraum 18 wälzt eine Umwälzeinrichtung 19 eine Kühlflüssigkeit 20 um, um die dielektrische Abschirmung 2 der Elektrode 4 zu kühlen. Während eine Aufheizung des Metalldrahts 3 erwünscht ist und sich bei einem durch die Vorrichtung 10 hindurchgeförderten Metalldraht 3 auch auf ein gewisses Maß einstellen, d.h. beschränken lässt, ist eine Aufheizung der dielektrischen Abschirmung 2, die hier praktisch aus den Glasrohren 11 und 17 sowie der Kühlflüssigkeit 20 in dem Freiraum 18 besteht, über ein gewisses Maß hinaus unerwünscht. Als Kühlflüssigkeit kommen insbesondere solche in Frage, die keine nennenswerte elektrische Leitfähigkeit haben, wie beispielsweise destilliertes Wasser.
  • Fig. 5 zeigt eine Ausführungsform der Vorrichtung 10 mit zwei Elektroden 4 und jeweils einer dielektrischen Abschirmung 2 für jede Elektrode 4 aus jeweils einem Glasrohr 11. Jede der Einheiten aus Elektrode 12 und dielektrischer Abschirmung 2 kann gemäß einer die Fig. 1 bis 4 ausgebildet sein. D.h. alle in diesen Fig. beschriebenen Varianten können auch hier verwirklicht werden. Die Vorrichtung 10 gemäß Fig. 5 beschränkt sich aber nicht auf einer Reihenschaltung von zwei Vorrichtungen 10, wie sie in den vorangegangenen Fig. beschrieben sind. Vielmehr ist der Wechselspannungsgenerator 6 gemäß Fig. 5 nicht geerdet, sondern er bringt die Wechselhochspannung zwischen den beiden Elektroden 4 auf. Auf diese Weise kann auf eine Erdung des Metalldrahts 3 verzichtet werden. Der Metalldraht 3 wirkt wie eine Zwischenelektrode zwischen den beiden Elektroden 4 und ist damit trotz fehlender Erdung eine vollwertige Gegenelektrode für die jeweilige Entladung in dem jeweiligen Gasraum 5. Dabei ist allen denkbaren Metalldrähten die Wechselstromleitfähigkeit vollkommen ausreichend, um den Abstand der beiden Elektroden 4 in Längsrichtung des Metalldrahts 3 zu überbrücken. Auch bei der Ausführungsform der Vorrichtung 10 gemäß Fig. 5 kann der Metalldraht 3 natürlich geerdet werden, um den Aufbau von Ladungen darauf sicher auszuschließen. Dies steht der Funktion der Vorrichtung 10 gemäß Fig. 5 nicht entgegen. Bei ihr werden aber alle Probleme mit einer unvollkommenen Erdung beispielsweise aufgrund der Isolierungswirkung von Verunreinigungen auf der Oberfläche des Metalldrahts 3 vermieden.
  • Fig. 6 zeigt die Vorrichtung gemäß Fig. 5 bei der Behandlung eines mit einer Ummantelung 9 versehenen Metalldrahts 3. Dies kann dazu dienen, die äußere Oberfläche des Metalldrahts 3, bei der es sich tatsächlich um die Oberfläche der Ummantelung 9 handelt, für ein Bedrucken beispielsweise mit einem hier nicht dargestellten Farbstrahldrucker vorzubereiten, damit die Farbe an der äußeren Oberfläche besser und dauerhafter anhaftet. Die Funktionsweise der Vorrichtung 10 bei der Behandlung des ummantelten Metalldrahts 3 gemäß Fig. 6 ist im Prinzip dieselbe wie bei der Behandlung des nicht ummantelten Metalldrahts 3 gemäß Fig. 5. Der einzige Unterschied ist darin zu sehen, dass eine nicht elektrisch leitende Ummantelung 9 auf dem Metalldraht 3, d.h. eine Isolierschicht, als zusätzliche dielektrische Abschirmung 11 der Elektroden 4 gegenüber dem Metalldraht 3 wirkt.
  • Alle bis hierher gezeigten Ausführungsformen der Vorrichtung 10 sorgen in vorteilhafter Weise für eine allseitige Behandlung der äußeren Oberfläche des Metalldrahts 3 bzw. seiner Ummantelung 9.
  • Die Gasatmosphäre in dem Gasraum 5, in dem die dielektrisch behinderte Entladung hervorgerufen wird, kann einfache Umgebungsluft sein. Um die Reinigungswirkung zu erhöhen, können reiner Sauerstoff oder andere Reaktionsgase zugesetzt werden. Um die Aktivierung der Oberfläche des Metalldrahts 3 für seine spätere Beschichtung zu verbessern, können auch Edelgase zugesetzt werden.
  • BEZUGSZEICHENLISTE
  • 1 -
    Hochspannungszuführung
    2 -
    dielektrische Abschirmung
    3 -
    Metalldraht
    4 -
    Elektrode
    5 -
    Gasraum
    6 -
    Wechselspannungsgenerator
    9 -
    Ummantelung
    10 -
    Vorrichtung
    11 -
    Glasrohr
    12 -
    Durchbrechung
    13 -
    Druckluftquelle
    14 -
    Druckluft
    15 -
    Luftströmung
    16 -
    Pfeil
    17 -
    Glasrohr
    18 -
    Freiraum
    19 -
    Umwälzeinrichtung
    20 -
    Kühlflüssigkeit

Claims (13)

  1. Verfahren zur Behandlung der äußeren Oberfläche eines Metalldrahts (3), der mit einer nicht elektrish leitfähigen Ummantelung (9) versehen ist, wobei an eine Elektrode (4), die zu dem Metalldraht (3) hin mit einer dielektrischen Abschirmung (2) versehen ist, eine Wechselhochspannung angelegt wird, um in einem Gasraum (5) über der äußeren Oberfläche eine dielektrisch behinderte Entladung hervorzurufen, dadurch gekennzeichnet, dass die Wechselhochspannung zwischen zwei in der Längserstreckungsrichtung des Metalldrahts (3) beabstandeten Elektroden (4) mit dielektrischen Abschirmungen (2) angelegt wird, wobei der Metalldraht (3) aufgrund seiner elektrischen Leitfähigkeit auch ohne Erdung als Gegenelektrode zu beiden dielektrisch abgeschirmten Elektroden (4) dient.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Ummantelung nicht elektrisch leitend ist und dass eine zusätzliche dielektrische Abschirmung (2) vor den Elektroden vorgesehen ist.
  3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass in dem Gasraum (5) ein Überdruck von bis zu 2000 hPa eingestellt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Wechselhochspannung größer als 1 kV ist und eine Frequenz von 20 kHz bis 3 MHz aufweist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die dielektrische Abschirmung (2) der Elektroden (4) gekühlt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Metalldraht (3) in dem Gasraum (5) auf eine definierte Temperatur oberhalb 200 °C aufgeheizt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die dielektrische Abschirmungen (2) der in der Längserstreckungsrichtung des Metalldrahts (3) beabstandeten Elektroden (4) getrennt sind.
  8. Vorrichtung für die Behandlung der Oberfläche eines mit einer nicht elektrisch leitfähigen Ummantelung Metalldrahts nach einem der Ansprüche 1 bis 6, mit einer Elektrode (4), mit einer an einen Gasraum (5) angrenzenden dielektrischen Abschirmung (2) für die Elektrode (4), wobei der Gasraum (5) über der äußeren Oberfläche des zu behandelnden Metalldrahts (3) angeordnet ist, und mit einem Wechselspannungsgenerator (6), der die Elektrode (4) mit einer Wechselhochspannung beaufschlagt, dadurch gekennzeichnet, dass zwei in der Längserstreckungsrichtung des Metalldrahts (3) beabstandete Elektroden (4) mit dielektrischen Abschirmungen (2) vorgesehen sind und dass der Wechselspannungsgenerator (6) die Wechselhochspannung zwischen den beiden Elektroden (4) erzeugt, wobei der Metalldraht (3) aufgrund seiner elektrischen Leitfähigkeit auch ohne Erdung als Gegenelektrode zu beiden dielektrisch abgeschirmten Elektroden (4) dient.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass eine Druckluftquelle (13) vorgesehen ist, die eine Luftströmung (15) durch den Gasraum (5) hervorruft, wobei die Luftströmung (15) die entgegengesetzte Richtung einer Bewegung des Metalldrahts (3) durch den Gasraum (5) aufweist.
  10. Vorrichtung nach einem der Ansprüche 8 und 9, dadurch gekennzeichnet, dass der Wechselspannungsgenerator (6) für eine Wechselhochspannung größer als 1 kV und eine Frequenz von 20 kHz bis 3 MHz ausgelegt ist.
  11. Vorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass eine Kühleinrichtung für die dielektrische Abschirmung (2) der Elektroden (4) vorgesehen ist, wobei die Abschirmung (2) zweiteilig ist und wobei ein Freiraum (18) zwischen den beiden Teilen der Abschirmung an eine Umwälzeinrichtung (19) für eine Kühlflüssigkeit (20) angeschlossen ist.
  12. Vorrichtung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, der Gasraum (5) durch die Elektroden (4) und deren dielektrische Abschirmung (2) hindurch einsichtig ist.
  13. Vorrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass die in der Längserstreckungsrichtung des Metalldrahts (3) beabstandeten Elektroden (4) separate dielektrische Abschirmungen (2) aufweisen.
EP03729921A 2002-04-29 2003-04-04 Verfahren und vorrichtung zur behandlung der äusseren oberfläche eines metalldrahts, insbesondere als beschichtungsvorbehandlung Expired - Lifetime EP1513625B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10219197 2002-04-29
DE10219197A DE10219197C1 (de) 2002-04-29 2002-04-29 Verfahren und Vorrichtung zur Behandlung der Oberflächen eines Metalldrahts, insbesondere als Beschichtungsvorbehandlung
DE10300471 2003-01-09
DE10300471 2003-01-09
PCT/EP2003/003509 WO2003093526A2 (de) 2002-04-29 2003-04-04 Verfahren und vorrichtung zur behandlung der äusseren oberfläche eines metalldrahts, insbesondere als beschichtungsvorbehandlung .

Publications (2)

Publication Number Publication Date
EP1513625A2 EP1513625A2 (de) 2005-03-16
EP1513625B1 true EP1513625B1 (de) 2007-07-11

Family

ID=29403565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03729921A Expired - Lifetime EP1513625B1 (de) 2002-04-29 2003-04-04 Verfahren und vorrichtung zur behandlung der äusseren oberfläche eines metalldrahts, insbesondere als beschichtungsvorbehandlung

Country Status (6)

Country Link
US (1) US20050066896A1 (de)
EP (1) EP1513625B1 (de)
AT (1) ATE366624T1 (de)
AU (1) AU2003240447A1 (de)
DE (1) DE50307658D1 (de)
WO (1) WO2003093526A2 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10257344A1 (de) * 2002-12-06 2004-07-08 OTB Oberflächentechnik in Berlin GmbH & Co. Verfahren zur Konservierung von Metalloberflächen
DE102007024027B4 (de) 2007-05-22 2011-01-05 Fachhochschule Hildesheim/Holzminden/Göttingen - Körperschaft des öffentlichen Rechts - Verfahren und Vorrichtung zur kombinierten Behandlung einer Oberfläche mit einem Plasma und mit elektromagnetischer Strahlung sowie deren Anwendung
US9788571B2 (en) 2013-09-25 2017-10-17 R.J. Reynolds Tobacco Company Heat generation apparatus for an aerosol-generation system of a smoking article, and associated smoking article
EP3233338B1 (de) * 2014-12-17 2021-01-27 Universite Laval Barrierenentladungsplasmaverfahren und vorrichtung zur synthese von metallteilchen
CN112589008B (zh) * 2020-11-26 2023-03-10 山东鸿昌铁合金有限公司 一种便于脱氧合金化的复合合金铝线加工装置及其使用方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB829929A (en) * 1956-05-11 1960-03-09 Mathew Francis Kritchever Improvements in or relating to the decontamination of oil-contaminated metal foils, sheet or strip
SU1362526A1 (ru) * 1986-05-13 1987-12-30 Каунасский Политехнический Институт Им.Антанаса Снечкуса Способ очистки проволоки от окалины и устройство дл его осуществлени
CH670171A5 (de) * 1986-07-22 1989-05-12 Bbc Brown Boveri & Cie
DE3642375A1 (de) * 1986-12-11 1988-06-23 Castolin Sa Verfahren zur aufbringung einer innenbeschichtung in rohre od. dgl. hohlraeume engen querschnittes sowie plasmaspritzbrenner dafuer
DE3731168C2 (de) * 1987-09-14 1994-05-26 Trailigaz Ozonisator zur Erzeugung von Ozon durch kaltes Plasma für Wechselspannungsanregung im kHz-Bereich und Verfahren zur Herstellung der Vorrichtung
US5393955A (en) * 1993-01-14 1995-02-28 Simmons; Walter N. Preparation of fullerenes and apparatus therefor
DE4302465C1 (de) * 1993-01-29 1994-03-10 Fraunhofer Ges Forschung Vorrichtung zum Erzeugen einer dielektrisch behinderten Entladung
US5938854A (en) * 1993-05-28 1999-08-17 The University Of Tennessee Research Corporation Method and apparatus for cleaning surfaces with a glow discharge plasma at one atmosphere of pressure
DE4332866C2 (de) * 1993-09-27 1997-12-18 Fraunhofer Ges Forschung Direkte Oberflächenbehandlung mit Barrierenentladung
US6095084A (en) * 1996-02-02 2000-08-01 Applied Materials, Inc. High density plasma process chamber
FR2774400B1 (fr) * 1998-02-04 2000-04-28 Physiques Et Chimiques Dispositif electrique pour degraissage, decapage ou passivation plasmachimique de metaux
JPH11222530A (ja) * 1998-02-06 1999-08-17 Nitto Denko Corp フッ素樹脂被覆金属線の製造方法
US6441553B1 (en) * 1999-02-01 2002-08-27 Sigma Technologies International, Inc. Electrode for glow-discharge atmospheric-pressure plasma treatment
TW497986B (en) * 2001-12-20 2002-08-11 Ind Tech Res Inst Dielectric barrier discharge apparatus and module for perfluorocompounds abatement
US7737382B2 (en) * 2004-04-01 2010-06-15 Lincoln Global, Inc. Device for processing welding wire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2003093526A2 (de) 2003-11-13
ATE366624T1 (de) 2007-08-15
DE50307658D1 (de) 2007-08-23
US20050066896A1 (en) 2005-03-31
EP1513625A2 (de) 2005-03-16
AU2003240447A1 (en) 2003-11-17
AU2003240447A8 (en) 2003-11-17
WO2003093526A3 (de) 2004-09-02

Similar Documents

Publication Publication Date Title
DE102005023060B4 (de) Gasentladungs-Strahlungsquelle, insbesondere für EUV-Strahlung
DE19628954B4 (de) Vorrichtung zur Erzeugung von Plasma
EP0601595A1 (de) Zur Anordnung in einem Vakuumgefäss geeignete selbsttragende isolierte Leiteranordnung, insbesondere Antennenspule für einen Hochfrequenz-Plasmagenerator
DE102006048816A1 (de) Vorrichtung und Verfahren zur lokalen Erzeugung von Mikrowellenplasmen
DE102007011235A1 (de) Verfahren und Vorrichtung zur Behandlung einer Oberfläche eines Werkstückes
DE102012103425A1 (de) Mikrowellenplasmaerzeugungsvorrichtung und Verfahren zu deren Betrieb
DE102006048815A1 (de) Vorrichtung und Verfahren zur Erzeugung von Mikrowellenplasmen hoher Leistung
EP2415331B1 (de) Verfahren und strahlgenerator zur erzeugung eines gebuendelten plasmastrahls
DE3516078A1 (de) Verfahren zur glimmentladungsaktivierten reaktiven abscheidung von elektrisch leitendem material aus einer gasphase
DE19532105C2 (de) Verfahren und Vorrichtung zur Behandlung von dreidimensionalen Werkstücken mit einer direkten Barrierenentladung sowie Verfahren zur Herstellung einer mit einer Barriere versehenen Elektrode für diese Barrierenentladung
EP3593601A1 (de) Kühlvorrichtung für röntgengeneratoren
EP1513625B1 (de) Verfahren und vorrichtung zur behandlung der äusseren oberfläche eines metalldrahts, insbesondere als beschichtungsvorbehandlung
DE19907911A1 (de) Vorrichtung und Verfahren zur Behandlung von elektrisch leitfähigem Endlosmaterial
EP2168409B1 (de) Vorrichtung zur erzeugung eines plasma-jets
DE10219197C1 (de) Verfahren und Vorrichtung zur Behandlung der Oberflächen eines Metalldrahts, insbesondere als Beschichtungsvorbehandlung
WO2014191012A1 (de) Vorrichtung und verfahren zur behandlung eines drahts aus leitfähigem material
DE102012104224A1 (de) Vorrichtung und Verfahren zur Behandlung eines Drahts aus leitfähigem Material
EP0789437A2 (de) Leitungsabschnitt einer gasisolierten Leitung
EP1704756B1 (de) Plasmabehandlung grossvolumiger bauteile
DE2141188A1 (de) Vorrichtung fuer das tiegellose zonenschmelzen
DE102005001158B4 (de) Barrierenentladungselektroden mit Kühlung und Vorrichtung mit einer solchen Barrierenentladungselektrode
DE10320805B4 (de) Vorrichtung zur Bearbeitung von zylindrischen, zumindest eine elektrisch leitende Ader aufweisenden Substraten
EP0448999A2 (de) Verfahren und Vorrichtung zur Herstellung von Lackdrähten mit Schmelzharzen
DE19648999C2 (de) Vorrichtung zur Reinigung, Beschichtung und/oder Aktivierung von Kunststoffoberflächen
DE19503313C2 (de) Vorrichtung zur Ozonerzeugung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041124

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20050518

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50307658

Country of ref document: DE

Date of ref document: 20070823

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RIEDERER HASLER & PARTNER PATENTANWAELTE AG

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071011

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071022

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: GB

Effective date: 20080206

26N No opposition filed

Effective date: 20080414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090423

Year of fee payment: 7

Ref country code: FR

Payment date: 20090420

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090429

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090427

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090424

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080404

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

BERE Be: lapsed

Owner name: FACHHOCHSCHULE HILDESHEIM / HOLZMINDEN / GOTTINGEN

Effective date: 20100430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100404

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100404

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160301

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50307658

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103