EP1512154B1 - Strahlenschutzmaterial sowie verfahren zur herstellung eines strahlenschutzmaterials und verwendung desselben - Google Patents

Strahlenschutzmaterial sowie verfahren zur herstellung eines strahlenschutzmaterials und verwendung desselben Download PDF

Info

Publication number
EP1512154B1
EP1512154B1 EP20030787749 EP03787749A EP1512154B1 EP 1512154 B1 EP1512154 B1 EP 1512154B1 EP 20030787749 EP20030787749 EP 20030787749 EP 03787749 A EP03787749 A EP 03787749A EP 1512154 B1 EP1512154 B1 EP 1512154B1
Authority
EP
European Patent Office
Prior art keywords
radiation
weight
radiation protection
material according
protection material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20030787749
Other languages
English (en)
French (fr)
Other versions
EP1512154A1 (de
Inventor
Axel Thiess
Clemens Reizel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paul Hartmann AG
Original Assignee
Paul Hartmann AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Hartmann AG filed Critical Paul Hartmann AG
Publication of EP1512154A1 publication Critical patent/EP1512154A1/de
Application granted granted Critical
Publication of EP1512154B1 publication Critical patent/EP1512154B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/10Organic substances; Dispersions in organic carriers
    • G21F1/103Dispersions in organic carriers
    • G21F1/106Dispersions in organic carriers metallic dispersions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • Y10T428/257Iron oxide or aluminum oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/258Alkali metal or alkaline earth metal or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers

Definitions

  • the invention relates to a radiation protection material for the shielding of X-rays and / or gamma rays from a film-like, multilayer coating material in which radiation-absorbing particles are dispersed.
  • an energy absorbing material comprising a layer consisting of a polymer composition comprising 7 to 30% by weight of a specific polar thermoplastic polymer, 0 to 15% by weight of plasticizer and 70 to 93% by weight of an inorganic composition.
  • the inorganic composition consists of at least two elements, which should protect against radiation in a way that is better than lead.
  • EP 0 372 758 A1 a material consisting of 4 to 19% by weight of a polar thermoplastic polymer, 0 to 10% by weight of a plasticizer and 81 to 96% by weight of an inorganic compound.
  • DE 199 55 192 A1 discloses a method for producing a radiation protection material in which a thermoplastic, vulcanizable elastomer to which a metal powder is added is used.
  • Another radiation protection material describes the U.S. Patent 5,908,884 in which a high-absorptivity material for radiation is embedded in a vulcanized fluororubber material.
  • PVC plastisol materials are from the documents US 3,061,491 such as US 3,200,085 previously known.
  • the invention has for its object to provide a radiation protection material, which with a low weight and high flexibility of the material a high Radiation protection effect over a wide application or energy range allows.
  • the invention solves this object by a radiation protection material for the shielding of X-rays and gamma rays from a film-like multilayer coating material in which radiation-absorbing particles are dispersed, with the features of claim 1 and by a method according to claim 15 and a use according to claim 16
  • the layer material consists of at least one support layer and at least one radiation-absorbing layer, wherein the radiation-absorbing layer comprises a curable polymer preparation which is flowable in the processing state and wherein the effective lead content ⁇ 15 wt .-% is.
  • a material is provided whose radiation-absorbing layer in the state to be applied to the support layer is flowable, that is, either liquid or syrupy viscous and in particular in the range of 20,000 - 100,000 mPa s.
  • the fluidity should preferably be below 80 ° C, especially at room temperature. At temperatures above 80 ° C, curing of the polymer preparation may occur.
  • the curable polymer preparation comprises a PVC plastisol. This is flowable at room temperature. Furthermore, the polymer preparation comprises a liquid synthetic rubber. Such a preparation makes it possible to plasticize and vulcanize the liquid, crosslinkable and vulcanizable polymer matrix in one step and to harden it as a result. After hardening, a three-dimensional wide-mesh plastic structure with rubber-elastic behavior forms.
  • Liquid synthetic rubber is a group of specialty rubbers. It has a lower viscosity than the conventional rubbers, which are uncrosslinked, but crosslinkable (vulcanizable) polymers with rubber-elastic properties at room temperature. At higher temperatures and under the influence of deforming forces, rubbers also show viscous flow and can therefore also be shaped using appropriate conditions.
  • liquid rubbers make it easier to incorporate additives such as vulcanization accelerators, fillers, plasticizers or activators and are based on silicone, polyurethane, polyesters, polyethers and diene rubbers. With liquid silicone rubbers, the "cold-curing" one-component types RTV dominate.
  • Liquid polyurethane rubbers usually consist of polyurethane with isocyanate end groups and are usually vulcanized with weakly basic di- and polyamines.
  • Liquid diene rubbers are predominantly prepared by anionic polymerization of dienes with bifunctional starters. The resulting macro-dianions are reacted with carbon dioxide, ethylene oxide or ethylene sulfide to give polymers with carboxy, hydroxy or sulfhydryl end groups.
  • the vulcanization then takes place by reaction of these end groups with, for example, polyfunctional isocyanates.
  • concentration of crosslinkers must be relatively high because of the low molecular weights of the liquid rubbers. While the properties of the resulting elastomers in the liquid rubbers based on polyurethane similar to those of regular. Polyurethanes, vulcanizates of liquid diene rubbers have far lower tear strengths and elongation at break than vulcanizates of regular diene rubbers.
  • the plastisols which can be used according to the invention are a dispersion of plastics, in particular of by emulsion or microemulsion polymerization polyvinyl chloride, in high-boiling organic solvents which act as a plasticizer at higher temperatures for a polymer. Upon heating, the solvents diffuse into the dispersed plastic particles, intercalating there between the macromolecules, thereby plasticizing the plastics. Upon cooling, the materials treated in this way gel into flexible, dimensionally stable and abrasion-resistant systems whose properties can be influenced by added auxiliaries, such as pigments or stabilizers.
  • auxiliaries such as pigments or stabilizers.
  • plasticizable polymers or copolymers or block polymers or polymer blends dissolved or mixed in one or more plasticizers, for example PVC plastisol, polyolefin plastisol and LDPE plastisol or HDPE plastisol and polymethacrylate plastisol or mixtures thereof may be used.
  • plasticizers for example PVC plastisol, polyolefin plastisol and LDPE plastisol or HDPE plastisol and polymethacrylate plastisol or mixtures thereof may be used.
  • synthetic rubbers all liquid rubbers such as polyurethane rubbers, silicone rubbers and other synthetic rubbers, based on polyesters, polyethers or dienes, which are flowable or liquid up to a temperature of 80 ° C, such as acrylonitrile-butadiene synthetic rubbers are used.
  • a composition may be provided in which the polymer preparation contains between 20 and 40 wt .-% PVC and between 10 and 35 wt .-% of the liquid synthetic rubber, in particular an acrylonitrile-butadiene polymer and additives between 0 and 10 wt. -% such as stabilizers, anti-aging agents, starters and accelerators and residual plasticizers.
  • the proportion of PVC is between 25 and 35 wt .-% and in particular between 29 and 32 wt .-%.
  • the liquid rubber can be provided in particular be that between 15 and 25 wt .-% and in particular between 17 and 23 wt .-% of liquid rubber, in particular acrylonitrile-butadiene polymer is provided.
  • the effective lead content is ⁇ 10% by weight, in particular ⁇ 5% by weight and in particular ⁇ 1% by weight and in particular 0% by weight, ie it is therefore a completely lead-free material where the toxic substance lead is no longer present.
  • the specific lead equivalent of the material is ⁇ 30, in particular ⁇ 32 and preferably ⁇ 35 at a tube voltage in the range of 60 to 125 kV.
  • the lead equivalent value of the material as a specific lead equivalent value ⁇ 30 at at least two measuring points at least 20 kV apart in a tube voltage range between 60 - 125 kV according to IEC 1331-1 / EN 61331, in particular at three or more points apart where the furthest apart points are for example 40 kV, in particular 45 kV and particularly preferably 65 kV apart.
  • a measurement is carried out at, for example, 60 kV, 80 kV and 100 kV and 125 kV, and at all of these measuring points and in particular also in the areas between, the specific lead equivalent is ⁇ 30, in particular ⁇ 32 and in particular ⁇ 34.
  • the determination of the lead equivalent or lead equivalent is carried out according to the specified standard on a difference measurement, that is, the amount of radiation is incident on a detector, once as empty measurement and once with a radiation-absorbing material and from the difference of these values, the transmitted radiation is determined directly ,
  • the test setup is to be taken from IEC 1331-1 / EN 61331.
  • the amount of transmitted radiation is used to determine the lead equivalent.
  • the radiation source is an X-ray tube with a standard tungsten anode. This tube is operated at 300 - 500 mA.
  • the emission of the radiation is metered in the range of 10 - 100 ms.
  • the radiation quality reflects the radiation of the radiation used in the medical field. For illustration, the value as a specific lead equivalent value was referred to leadless, with the inaccuracy being +/- 1.
  • the carrier layer also consists of PVC plastisol material and / or polyurethane and / or polyester and / or polyolefins and / or silicone rubbers and / or the polymer preparation of the radiation-absorbing layer.
  • radiation-absorbing particles which realize a radiation-absorbing effect of the carrier layer can also be introduced into the carrier layer.
  • the combination of one or more carrier layers and one or more radiation protection layers can produce a material which is extremely flexible and thin, in particular lead-free and a foil-like design having.
  • the sequence of layers is freely selectable.
  • the layers can be made of different materials and have different properties. In this way, the material is particularly suitable for textile applications. Due to the high flexibility and low weight, a wearer is not hindered in their activity, while a high radiation protection effect is achieved by the high specific lead equivalent at the same time.
  • the carrier layer serves in particular to give strength.
  • the proportion of the polymer preparation to the radiation-absorbing layer less than 20 wt .-%, but more than 0 wt .-% and the proportion of the radiation-absorbing particles is more than 80 wt .-%.
  • the polymer preparation on the radiation-absorbing layer can be between 5 and 20% by weight and in particular between 10 and 20% by weight.
  • the proportion of the radiation-absorbing particles may in particular be between 80 and 95% by weight and in particular between 80 and 90% by weight. In this case, the amount of polymer preparation must be sufficient to securely connect the particles introduced therein.
  • the radiation-absorbing particles comprise tin, bismuth, barium and / or tungsten. It can be selected from the metal itself, metal oxides or metal salts.
  • the effective amount of the radiation-absorbing particles in the radiation-absorbing layer should in particular 55-75 wt .-% tin powder, between 0 and 30 wt .-% bismuth, 0 - 10 wt .-% barium and / or 0 - 20 wt .-% Tungsten, the sum in each case 100 wt .-% results.
  • lead components are included, pure lead as well as lead oxide and lead salts can be provided here.
  • the tin powder consists of a mixture of two tin powders of different particle size distributions with approximately equal weight ratios.
  • the bismuth oxide powder that can be used has a D 50 value in the range of 4-100 ⁇ m.
  • the multilayer coating material preferably has a weight per unit area of 1.2 to 1.5 kg / m 2 , with a value of approximately 1.35 kg / m 2 being particularly desired.
  • the multilayered layer material in particular has a film thickness of 0.3 to 1.2 mm, in particular of 0.3 to 0.5 mm, preferably 0.35 to 0.45 mm.
  • the radiation protection material may be designed so that the carrier layer on its side facing away from the radiation-absorbing layer washable or abrasion resistant and / or solid to alcohols and / or disinfectants or has textile properties, for example, a flock is provided, the pleasant tactile properties when wearing ensures a product made of the material.
  • abrasion resistance may be provided to extend the shelf life of a product made from the material, as well as washability, especially in the medical field to be able to easily clean manufactured objects after use.
  • the material is very flexible.
  • the bending stiffness which is a measure of the flexibility of the material was determined according to DIN 53121 and compared for comparison with the bending stiffness of other lead-free radiation protection films.
  • the width-related bending stiffness measurement of the lead-free materials in the three-point method was carried out according to the beam method, wherein the test is carried out on a Zwick testing machine.
  • the method is used to produce a radiation protection material of the type described above.
  • the liquid phases are mixed before addition of the radiation-absorbing particles.
  • the overall material for the radiation absorbing layer may be processed so that the particles are homogeneously distributed and then degassed prior to painting, pouring, knife coating and / or applying to the backing layer.
  • the radiation-absorbing layer is subjected to ultrasound after it has been applied to the carrier layer.
  • the carrier layer is not only adhesively bonded to the radiation-absorbing layer, but is integrally connected to the radiation-absorbing layer by crosslinking the two layers together during application and curing of the radiation-absorbing layer on the carrier layer.
  • a physical anchor formation of the layers takes place with each other. This is done, for example, when using a PVC plastisol in the radiation-absorbing layer, provided that the material of the carrier layer is chosen so that the PVC plastisol can dissolve it.
  • the invention comprises a use of the radiation protection material described above as Radiation protection clothing, in particular as a radiation protection apron or radiation protection apron or sheath or flexible barriers, such as covers or curtains.
  • a radiation protection material can be easily produced, whereby a uniform, rapid and homogeneous distribution of the metal particles can be ensured in the polymer matrix, since a uniform distribution in a liquid polymer matrix is easy to implement and cumbersome kneading or walking as in the conventional radiation protection film materials can be omitted.
  • the resulting radiation protection material of several layers is very flexible and uniformly radiation-absorbing over a wide energy range.
  • FIG. 1 shows a cross-section through the lead-free foil-like radiation protection material, which is applied to a silicone-coated release paper 4.
  • the release paper 4 can be structured to produce a structure, for example a leather grain, on a carrier layer 2.
  • the carrier layer 2 of a PVC plastisol film is by knife coating on a silicone-coated release paper 4 and through subsequent gelling at 190-200 ° C formed.
  • the carrier layer 2 gives the radiation protection material sufficient strength.
  • a paste of the radiation-absorbing layer 3 is doctored onto this carrier layer 2 with a weight per unit area of 70-80 g / m 3 and then crosslinked or vulcanized in the drying oven at about 200 °.
  • the total thickness of the film-like layer material is then about 0.35-0.45 mm and has a total basis weight of about 1.35 kg / m 2 .
  • the paste from which the radiation-absorbing layer is formed consists of a PVC plastisol and a solvent-free and water-free acrylonitrile-butadiene liquid rubber and the metallic additives of tin powder and bismuth oxide powder.
  • the polymer mixture of the radiation absorbing layer 3 has 13 parts by weight of polymer material, 65 parts by weight of tin powder and 22 parts by weight of bismuth powder.
  • the tin powder consists of two different types with different grain size distribution (product name: TEGO-Zinngr imagine, TEGO 30 BG, TEGO 60 BG - Fa. Ecka Granules).
  • the tin powders with different particle size distribution are mixed in a ratio of 1: 1.
  • the bismuth oxide powder is also referred to in the nomenclature as yellow bismuth (Bi 2 O 3 ).
  • the D 50 value is a maximum of 10 ⁇ m with a typical value of 5.5 ⁇ m.
  • the lead-free radiation protection material may initially remain on the silicone-coated release paper layer 4 until it is made up into a radiation protection apron, for example.
  • polymer mixture 13% by weight Tin powder TEGO 60 BG (metallic) 35% by weight Tin powder TEGO 30 BG (metallic) 30% by weight Bismuth trioxide (Bi 2 O 3 ) 22% by weight
  • a polymer blend is given below. Parts by weight [g] DINP (plasticizer) 3400 TXIB (plasticizer) 600 Tin oxide (ZnO) 100 Sulfur (S) 100 Vulkazit D (vulcanization accelerator) 60 Vulkazit M (vulcanization accelerator) 60 Vestolit 1415 K 80 (PVC) 2800 Tegoprene (dispersing agent / anti-tack) 200 Nipol 1312 LV (liquid rubber) 1600 Total 8820
  • This polymer mixture enters the initially pasty radiation-absorbing layer at a weight fraction of about 13% by weight.
  • the proportion of PVC is about 31 wt .-%, the proportion of liquid rubber about 18 wt .-% and the amount of plasticizer about 45 wt .-% of the polymer composition.
  • the carrier layer 2 has the following composition: PVC 40-70% by weight Plasticizer (DINP) 30-50% by weight Aggregates for aging protection, ozone resistance, color pigments 0.1-0.5% by weight
  • the viscosity can be adjusted by changing the proportion of the plasticizer TXIB.
  • the radiation protection material described does not show a collapse of the shielding efficiency at tube voltage over 100 kV, but is within a voltage range of 60-150 kV within the prescribed tolerance limits of the international standard IEC 1331-1 / EN 61331.
  • the second figure now shows a table in which the sample number, the recipe number, the basis weight, the bending stiffness, the material thickness and then the shielding effects at a given x-ray tube voltage for 60 kV, 80 kV, 100 kV and 125 kV respectively for the specific as well the general lead equivalent.
  • the sample numbers 1-14 relate to radiation protection materials according to the invention. Sample Nos. 15 - 19 Xenolite lead-free and Suprasine are marketed products for lead-free radiation protection materials.
  • the specific lead equivalent of the x-ray tube voltage is defined as the lead equivalent at x-ray tube voltage x 100 / material thickness.
  • the lead equivalent was determined according to IEC 1331-1 / EN 61331.
  • compositions for the radiation protection layer are as follows: Recipe 1: 13% by weight of polymer preparation, 65% by weight of tin powder, 22% by weight of bismuth trioxide. Recipe 2: 11% by weight of polymer preparation, 62-66% by weight of tin powder, 27-23% by weight of bismuth powder. Recipe 3: 10-11% by weight of polymer preparation, 60-64% by weight of tin powder, 18-20% by weight of bismuth powder, 8-10% by weight of tungsten powder. Recipe 4: 12% by weight of polymer preparation, 65% by weight of tin powder, 10% by weight of barium fluoride, 13% by weight of tungsten powder.
  • composition of the polymer preparation is as follows in the formulations 1 - 4: composition Wt .-% Di-isononyl phthalate (DINP) - Vestolit 38 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB) - Kran Chemie 6 Zinc oxide active - Rheinchemie Rheinau GmbH 1 Grinding sulfur - Solveig 1 N, N'-diphenylguanidine (Vulkacit D) - Rheinchemie Rheinau GmbH 0.5 2-mercaptobenzothiazole (MBT, Vulkacit Merkapto) - Rheinchemie Rheinau GmbH 0.5 PVC (Vestolit P 1415 K 80) - Vestolit 31 Ba / Zn stabilizer for PVC (Mark BZ 505) - Compton Vinyl Additive GmbH 1 Vulkanox DDA, (anti-aging agent) - Rheinchemie Rheinau GmbH 1 Acrylonitrile-butadiene polymer (Nipol 1312 LV
  • the samples made, in particular according to formulation 2 have a particularly good specific lead equivalent, in comparison with the known products, in particular via a Tube voltage range of at least 20 kV difference, where the absolute voltage values are between 60 and 125 kV.
  • the thickness of the xenolite material is 0.6 mm and this results in a bending stiffness for the material of 1.28 cN.
  • Suprasine needs a thickness of 0.65 mm to achieve this shielding performance and then has a flexural stiffness of 1.11 cN.
  • the composition according to the invention for example according to recipe 2, only needs a thickness of 0.45 mm to achieve this shielding value and achieves a bending stiffness of 0.43 cN. In this way, particularly light and flexible, comfortable for the wearer materials, especially for the production of textiles, such as clothing and barriers, created.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Inorganic Insulating Materials (AREA)
  • Sealing Material Composition (AREA)

Description

  • Die Erfindung betrifft ein Strahlenschutzmaterial für die Abschirmung von Röntgen- und/oder Gammastrahlen aus einem folienartigen, mehrschichtigen Schichtmaterial, in dem strahlenabsorbierende Partikel dispergiert sind.
  • Aus dem Stand der Technik ist es bekannt, folienartige Materialien zur Herstellung von Röntgenschutzschürzen und anderen strahlenabsorbierenden Anwendungen unter Zusätzen von metallischem Bleipulver oder auch Bleisalzen wie Oxiden oder Sulfiden und Polymeren wie zum Beispiel PVC-Plastisol, EVA-Copolymeren oder Kautschuk herzustellen. Dabei ist Blei als toxische Substanz einzustufen. Sogenannte Bleischürzen haben darüber hinaus ein Gewicht, das den Träger in seiner Tätigkeit behindert.
  • Zur Vermeidung dieser Nachteile sind aus dem Stand der Technik eine Reihe von Produkten bekannt. So zeigt beispielsweise die WO 93/11544 einen strahlungsresistenten Film aus einem thermoplastischen Elastomer, der zwischen 60 und 90 Gew.-% Bariumsulfat oder ein anderes Bariumsalz enthält.
  • Des Weiteren ist aus EP 0 371 699 A1 ein energieabsorbierendes Material bekannt, umfassend eine Schicht bestehend aus einer Polymerzusammensetzung umfassend 7 - 30 Gew.-% eines spezifischen polaren, thermoplastischen Polymers, 0 - 15 Gew.-% Weichmacher und 70 - 93 Gew.-% einer anorganischen Komposition. Die anorganische Komposition besteht dabei aus wenigstens zwei Elementen, wobei diese gegen Strahlung schützen sollen in einer Weise, die besser ist als Blei.
  • Des Weiteren zeigt die EP 0 372 758 A1 ein Material bestehend zu 4 - 19 Gew.-% eines polaren thermoplastischen Polymers, 0 - 10 Gew.-% eines Weichmachers und 81 - 96 Gew.-% einer anorganischen Verbindung.
  • Weitere mehrschichtige flexible Röntgenschutzmaterialen sind aus G 94 02 609.2 sowie aus der DE 201 00 267 U1 bekannt.
  • DE 199 55 192 A1 offenbart ein Verfahren zur Herstellung eines Strahlenschutzmaterials, bei dem ein thermoplastisches, vulkanisierbares Elastomer, dem ein Metallpulver zugegeben wird, eingesetzt wird.
  • Weiterhin ist aus der US 6,232,383 B1 ein einschichtiges Strahlenschutzmaterial bekannt, bei dem es sich um ein besonders hartes Material handeln soll, das zum Einschließen von radioaktiven Abfällen zu deren Immobilisierung dient.
  • Ein weiteres Strahlenschutzmaterial beschreibt die US-PS 5,908,884 , bei der ein Material mit hoher Absorptivität für Strahlung in einem vulkanisierten Fluorkautschukmaterial eingebettet ist.
  • Weitere PVC-Plastisolmaterialien sind aus den Dokumenten US 3,061,491 sowie US 3,200,085 vorbekannt.
  • Schließlich ist aus US-PS 6,153,666 eine Polymermatrix bekannt, in der Metall eingebettet ist zur Abschirmung von Röntgenstrahlung und die Polymermatrix ein plastifiziertes nicht-elastomeres Polymer betrifft.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Strahlenschutzmaterial zu schaffen, das bei einem geringen Gewicht und hoher Flexibilität des Materials eine hohe Strahlenschutzwirkung über einen weiten Einsatz- bzw. Energiebereich ermöglicht.
  • Die Erfindung löst diese Aufgabe durch ein Strahlenschutzmaterial für die Abschirmung von Röntgen- und Gammastrahlen aus einem folienartigen mehrschichtigen Schichtmaterial, in dem strahlenabsorbierende Partikel dispergiert sind, mit den Merkmalen des Anspruchs 1 sowie durch ein Verfahren nach Anspruch 15 und eine Verwendung nach Anspruch 16. Beim erfindungsgemäßen Strahlenschutzmaterial besteht das Schichtmaterial aus mindestens einer Trägerschicht und mindestens einer strahlenabsorbierenden Schicht, wobei die strahlenabsorbierende Schicht eine aushärtbare Polymerzubereitung umfasst, die im Verarbeitungszustand fließfähig ist und wobei der wirksame Bleigehalt ≤ 15 Gew.-% beträgt.
  • Auf diese Weise wird ein Material bereitgestellt, dessen strahlenabsorbierende Schicht im aufzubringenden Zustand auf die Trägerschicht fließfähig ist, das heißt entweder flüssig oder sirupartig viskos und insbesondere im Bereich von 20.000 - 100.000 mPa s liegt. Die Fließfähigkeit soll dabei vorzugsweise unterhalb 80° C insbesondere bei Raumtemperatur gegeben sein. Bei Temperaturen über 80° C kann es zu einem Aushärten der Polymerzubereitung kommen.
  • Dabei ist vorgesehen, dass die härtbare Polymerzubereitung ein PVC-Plastisol umfasst. Dieses ist bei Raumtemperatur fließfähig. Des Weiteren umfasst die Polymerzubereitung einen flüssigen Synthesekautschuk. Eine solche Zubereitung erlaubt es, in einem Schritt die flüssige, vernetzbare und vulkanisierbare Polymermatrix zu plastifizieren und zu vulkanisieren und hierdurch zu erhärten. Nach Härten bildet sich ein dreidimensionales weitmaschiges Kunststoffgebilde mit gummmielastischem Verhalten.
  • Bei flüssigem Synthesekautschuk handelt es sich um eine Gruppe der Spezialkautschuke. Sie besitzt eine niedrigere Viskosität als die klassischen Kautschuke, bei denen es sich um unvernetzte, aber vernetzbare (vulkanisierbare) Polymere mit gummielastischen Eigenschaften bei Raumtemperatur handelt. Bei höheren Temperaturen und bei Einfluss deformierender Kräfte zeigen zwar auch Kautschuke viskoses Fließen und können daher bei geeigneten Bedingungen auch formgebend verarbeitet werden. Flüssige Kautschuke erlauben dahingegen ein leichteres Einarbeiten von Additiven wie Vulkanisationsbeschleunigern, Füllstoffen, Weichmachern oder Aktivatoren und basieren auf Silikon, Polyurethan, Polyestern, Polyethern und Dienkautschuken. Bei flüssigen Silikon-Kautschuken dominieren die "kalthärtenden" Einkompohententypen RTV. Bei ihnen handelt es sich um verzweige Poly-Dimethylsiloxane mit Silanol-Endgruppen, die zum Beispiel mit Tetrabutyltitanat oder Triacetoxymethylsilan versetzt werden und bei Zutritt von Luftfeuchtigkeit vulkanisieren. Flüssige Polyurethankautschuke bestehen meist aus Polyurethan mit Isocyanat-Endgruppen und werden in der Regel mit schwach basischen Di- und Polyaminen vulkanisiert. Flüssige Dien-Kautschuke werden vorwiegend durch anionische Polymerisation von Dienen mit bifunktionellen Startern hergestellt. Die entstehenden Makro-Dianionen werden mit Kohlendioxid, Ethylenoxid oder Ethylensulfid zu Polymeren mit Caboxy-, Hydroxy- oder Sulfhydryl-Endgruppen umgesetzt.
    Die Vulkanisation erfolgt dann durch Reaktion dieser Endgruppen mit zum Beispiel polyfunktionellen Isocyanaten. Die Konzentration der Vernetzer muss wegen der niedrigen Molmassen der flüssigen Kautschuke relativ hoch gewählt werden. Während die Eigenschaften der resultierenden Elastomere bei den flüssigen Kautschuken auf Polyurethanbasis ähnlich denen regulärer. Polyurethane sind, weisen Vulkanisate flüssiger Dien-Kautschuke weit niedrigere Reißfestigkeiten und Reißdehnungen auf als Vulkanisate regulärer Dien-Kautschuke.
  • Bei dem erfindungsgemäß einsetzbaren Plastisolen handelt es sich um eine Dispersion von Kunststoffen, insbesondere von durch Emulsions- oder Mikroemulsionspolymerisation dargestelltem Polyvinylchlorid, in hoch siedenden organischen Lösungsmittel, die bei höheren Temperaturen als Weichmacher für ein Polymer fungieren. Beim Erwärmen diffundieren die Lösungmittel in die dispergierten Kunststoffpartikel, lagern sich dort zwischen den Makromolekülen ein und bewirken dadurch ein Plastifizieren der Kunststoffe. Beim Abkühlen gelieren die so behandelten Stoffe zu flexiblen, formstabilen und abriebfesten Systemen, deren Eigenschaften durch zugesetzte Hilfsstoffe wie Pigmente oder Stabilisatoren beeinflusst werden können.
  • Als Plastisole können insbesondere alle plastifizierbaren Polymere oder Copolymere oder Blockpolymere oder Polymergemische, gelöst oder vermischt in einem oder mehreren Weichmachern, zum Beispiel PVC-Plastisol, Polyolefin-Plastisol sowie LDPE-Plastisol oder HDPE-Plastisol sowie Polymetacrylat-Plastisol oder Mischungen hiervon verwandt werden.
  • Als Synthesekautschuke können alle Flüssigkautschuke wie Polyurethan-Kautschuke, Silikonkautschuke sowie weitere Synthesekautschuke, auf Basis von Polyestern, Polyether oder Dienen, die bis zu einer Temperatur von 80° C fließfähig oder flüssig sind, wie zum Beispiel Acrylnitril-Butadien-Synthesekautschuke verwandt werden.
  • Dabei kann insbesondere eine Zusammensetzung vorgesehen sein, bei der die Polymerzubereitung zwischen 20 und 40 Gew.-% PVC enthält sowie zwischen 10 und 35 Gew.-% des flüssigen Synthesekautschuks, insbesondere eines Acrylonitril-Butadien-Polymers sowie Zuschlagstoffe zwischen 0 und 10 Gew.-% wie beispielsweise Stabilisatoren, Alterungsschutzmittel, Starter sowie Beschleuniger und Rest Weichmacher.
  • Insbesondere ist vorgesehen, dass der Anteil an PVC zwischen 25 und 35 Gew.-% und insbesondere zwischen 29 und 32 Gew.-% liegt. Für den Flüssigkautschuk kann insbesondere vorgesehen sein, dass zwischen 15 und 25 Gew.-% und insbesondere zwischen 17 und 23 Gew.-% an Flüssigkautschuk, insbesondere Acrylonitril-Butadien-Polymer vorgesehen ist.
  • Insbesondere kann vorgesehen sein, dass der wirksame Bleigehalt ≤ 10 Gew.-%, insbesondere ≤ 5 Gew.-% und insbesondere ≤ 1 Gew.-% sowie insbesondere 0 Gew.-% beträgt, das heißt es sich also um ein vollständig bleifreies Material handelt, in dem der als toxisch einzustufende Stoff Blei nicht länger enthalten ist.
  • Es kann dabei vorgesehen sein, dass der spezifische Bleigleichwert des Materials ≥ 30, insbesondere ≥ 32 sowie vorzugsweise ≥ 35 bei einer Röhrenspannung im Bereich von 60 - 125 kV beträgt. Insbesondere kann vorgesehen sein, dass der Bleigleichwert des Materials als spezifischer Bleigleichwert ≥ 30 an mindestens zwei mindestens 20 kV auseinander liegenden Messpunkten in einem Röhrenspannungsbereich zwischen 60 - 125 kV nach IEC 1331-1/EN 61331 beträgt, insbesondere an drei oder mehr auseinander liegenden Punkten, wobei die am weitesten auseinander liegenden Punkte beispielsweise 40 kV, insbesondere 45 kV und besonders bevorzugt 65 kV auseinander liegen. Insbesondere erfolgt eine Messung bei zum Beispiel 60 kV, 80 kV und 100 kV sowie 125 kV, und an sämtlichen dieser Messpunkte sowie insbesondere auch in den Bereichen dazwischen liegt der spezifische Bleigleichwert bei ≥ 30, insbesondere ≥ 32 und insbesondere ≥ 34.
  • Bei dem spezifischen Bleigleichwert handelt es sich um eine Messung zur Bestimmung der Abschirmwerte und damit des Bleigleichwerts nach IEC 1331-1/EN 61331, wobei die Werte auf die Dicke der Probe normiert wurden und die Dickenmessung durch mechanisches Abtasten nach DIN 53370 vorgenommen wurde. Die Dickenmessung erfolgte dabei unter Zugrundelegung folgender Größen:
    • Messfläche: rund, Durchmesser 10 cm
    • Messkraft: 0,8 N
    • Anpressdruck: 10 kPa +/- 2 kPa
    • Skaleneinteilung: 0,01 mm
    • Messgenauigkeit: +/- 0,01 mm.
    • Flächengewicht: Messungenauigkeit +/- 0,02 kg/m2.
  • Die Bestimmung des Bleigleichwertes oder Bleiäquivalentes erfolgt nach der angegebenen Norm über eine Differenzmessung, das heißt es wird die Strahlenmenge gemessen, die auf einen Detektor auftrifft, einmal als Leermessung und einmal mit einem strahlenabsorbierenden Material und aus der Differenz dieser Werte wird direkt die durchgelassene Strahlung bestimmt. Der Versuchsaufbau ist dabei der IEC 1331-1/EN 61331 zu entnehmen. Über die Menge der durchgelassenen Strahlung erfolgt die Bestimmung des Bleigleichwerts. Die Strahlenquelle ist dabei eine Röntgenröhre mit einer Standard-Wolfram-Anode. Diese Röhre wird mit 300 - 500 mA betrieben. Die Abgabe der Strahlung erfolgt dosiert im Bereich von 10 - 100 ms. Die Strahlenqualität spiegelt dabei die Strahlung der im medizinischen Bereich eingesetzten Strahlung wieder. Zur Darstellung wurde der Wert als spezifischer Bleigleichwert dimensionslos auf Blei bezogen, wobei die Ungenauigkeit +/- 1 beträgt.
  • Nach einer weiteren Ausgestaltung kann vorgesehen sein, dass die Trägerschicht ebenfalls aus PVC-Plastisol-Material und/oder Polyurethan und/oder Polyester und/oder Polyolefinen und/oder Silikonkautschuken und/oder der Polymerzubereitung der strahlenabsorbierenden Schicht besteht. Grundsätzlich können auch in die Trägerschicht strahlenabsorbierende Teilchen eingebracht werden, die eine strahlenabsorbierende Wirkung der Trägerschicht realisieren. Durch die Zusammenstellung von einer oder mehreren Trägerschichten sowie von einer oder mehreren Strahlenschutzschichten kann ein Material erzeugt werden, das äußerst flexibel sowie dünn ist, insbesondere bleifrei und eine folienartige Gestaltung aufweist. Die Abfolge der Schichten ist dabei frei wählbar. Die Schichten können aus verschiedenen Materialien bestehen und unterschiedliche Eigenschaften besitzen. Auf diese Weise ist das Material insbesondere für textile Anwendungen geeignet. Aufgrund der hohen Flexibilität und des geringen Gewichts wird eine Trägerperson bei ihrer Tätigkeit nicht behindert, wobei gleichzeitig eine hohe Strahlenschutzwirkung durch den hohen spezifischen Bleigleichwert erzielt wird. Dabei dient die Trägerschicht insbesondere dazu Festigkeit zu geben.
  • Es kann dabei vorgesehen sein, dass der Anteil der Polymerzubereitung an der strahlenabsorbierenden Schicht weniger als 20 Gew.-%, aber mehr als 0 Gew.-% und der Anteil der strahlenabsorbierenden Teilchen mehr als 80 Gew.-% beträgt. Insbesondere kann die Polymerzubereitung an der strahlenabsorbierenden Schicht zwischen 5 und 20 Gew.-% und insbesondere zwischen 10 und 20 Gew.-% liegen. Der Anteil der strahlenabsorbierenden Teilchen kann insbesondere zwischen 80 und 95 Gew.-% und insbesondere zwischen 80 und 90 Gew.-% betragen. Dabei muss die Menge der Polymerzubereitung ausreichen, die darin eingebrachten Teilchen sicher zu verbinden.
  • Nach einem ersten Ausführungsbeispiel kann vorgesehen sein, dass die strahlenabsorbierenden Teilchen Zinn, Wismut, Barium und/oder Wolfram umfassen. Dabei kann ausgewählt werden aus dem Metall selbst, Metalloxiden oder Metallsalzen. Die wirksame Menge der strahlenabsorbierenden Teilchen in der strahlenabsorbierenden Schicht soll dabei insbesondere 55 - 75 Gew.-% Zinnpulver, zwischen 0 und 30 Gew.-% Wismut, 0 - 10 Gew.-% Barium und/oder 0 - 20 Gew.-% Wolfram enthalten, wobei die Summe jeweils 100 Gew.-% ergibt. Durch eine derartige Polymerzubereitung mit eingefügten strahlenabsorbierenden Teilchen, lassen sich das Abschirmverhalten, aber auch Gewicht, Flexibilität und Strahlenschutzwirkung optimieren. So wirkt sich die Verwendung der Metalle anstelle der Oxide oder Salze stets positiv auf das Gewicht des Materials aus, sofern dieses mit einem Metallsalz oder Metalloxid des gleichen Metalls verglichen wird bei gleicher Abschirmwirkung.
  • Sofern Bleianteile enthalten sind, können hierbei sowohl reines Blei als auch Bleioxid und Bleisalze vorgesehen sein.
  • Bei einer Weiterbildung der Erfindung ist vorgesehen, dass das Zinnpulver aus einem Gemisch zweier Zinnpulver unterschiedlicher Korngrößenverteilungen mit etwa gleichen Gewichtsverhältnissen besteht.
  • Dabei sind ca. 90 % der Teilchen des ersten Zinnpulvers (TEGO 30) kleiner 125 µm und ca. 90 % der Teilchen des zweiten Zinnpulvers (TEGO 60) kleiner 75 µm. Das Wismut-Oxid-Pulver, das verwendet werden kann, weist ein D50-Wert im Bereich von 4 - 100 µm auf.
  • Das mehrschichtige Schichtmaterial weist vorzugsweise ein Flächengewicht von 1,2 - 1,5 kg/m2 auf, wobei insbesondere ein Wert von ca. 1,35 kg/m2 angestrebt ist. Das mehrschichtige Schichtmaterial besitzt dabei insbesondere eine Folienstärke von 0,3 bis 1,2 mm, insbesondere von 0,3 - 0,5 mm, vorzugsweise 0,35 - 0,45 mm.
  • Das Strahlenschutzmaterial kann dabei so gestaltet sein, dass die Trägerschicht auf ihrer der strahlenabsorbierenden Schicht abgewandten Seite abwaschbar oder abriebfest und/oder fest gegenüber Alkoholen und/oder Desinfektionsmitteln ist oder textile Eigenschaften aufweist, wobei beispielsweise eine Beflockung vorgesehen ist, die angenehme taktile Eigenschaften beim Tragen eines aus dem Material hergestellten Produktes sicherstellt. Darüber hinaus kann eine Abriebfestigkeit vorgesehen sein, um die Haltbarkeit eines aus dem Material hergestellten Produktes zu verlängern sowie eine Abwaschbarkeit, um gerade im medizinischen Bereich daraus hergestellte Gegenstände nach Gebrauch problemlos reinigen zu können.
  • Schließlich kann vorgesehen sein, dass das Material sehr flexibel ist. Die Biegesteifigkeit, die ein Maß für die Flexibilität des Materials ist, wurde nach DIN 53121 bestimmt und zum Vergleich mit der Biegesteifigkeit anderer bleifreier Strahlenschutzfolien verglichen. Dabei erfolgte die breitenbezogenen Biegesteifigkeitsmessung der bleifreien Materialien im Dreipunkt-Verfahren nach der Balkenmethode, wobei die Prüfung an einer Zwick-Prüfmaschine erfolgt. Die Formel zur Berechnung beträgt nach DIN 53121 dabei: S breitenbezogene Biegesteifigkeit = F cN / f × l 2 / 48 b .
    Figure imgb0001

    Dabei ist die Breite der Probe: b = 35 mm
    Messlänge: 1 = 30 mm
    maximale Durchbiegung: f = 5 mm.
  • Besonders bevorzugt sind Materialien insbesondere mit einer Biegesteifigkeit von kleiner 1 cN. Besonders bevorzugt ist, wenn gleichzeitig eine Abschirmwirkung im zuvor genannten Bereich beziehungsweise bei Einzelpunkten ≥ 30, insbesondere ≥ 32 und insbesondere ≥ 34 bezüglich des spezifischen Bleigleichwertes erzielt wird.
  • Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung eines Strahlenschutzmaterials, das folgende Schritte umfasst:
    • Bereitstellen einer Trägerschicht, insbesondere Herstellen durch Aufrakeln und Trocknen auf ein Substrat,
    • Herstellen des Materials für die strahlenabsorbierende Schicht aus einer flüssigen, gießfähigen Polymermatrix und kontinuierlichem oder diskontinuierlichem Zugeben von strahlenabsorbierenden Metallpartikeln,
    • Aufstreichen, Aufgießen, Aufrakeln und/oder Auftragen des Materials für die strahlenabsorbierende Schicht auf die Trägerschicht,
    • thermische, chemisches, und/oder physikalisches Vernetzen beziehungsweise Aushärten der Polymermatrix.
  • Dabei kann vorgesehen sein, dass das Verfahren zur Herstellung eines Strahlenschutzmaterials der vorstehend beschriebenen Art dient.
  • Des Weiteren kann vorgesehen sein, dass nach Herstellen der flüssigen gießfähigen Polymermatrix eine Durchmischung der flüssigen Phasen vor Zugeben der strahlenabsorbierenden Partikel erfolgt. Das Gesamtmaterial für die strahlenabsorbierende Schicht kann so bearbeitet werden, dass die Partikel homogen verteilt sind und dann entgast werden vor dem Aufstreichen, Aufgießen, Aufrakeln und/oder Auftragen auf die Trägerschicht. Darüber hinaus kann vorgesehen sein, dass zur Verdichtung der Feststoffpartikel in der Polymermatrix die strahlenabsorbierende Schicht mit Ultraschall beaufschlagt wird, nachdem sie auf die Trägerschicht aufgebracht wurde.
  • Schließlich kann nach einem besonders bevorzugten Ausführungsbeispiel vorgesehen sein, dass die Trägerschicht mit der strahlenabsorbierenden Schicht nicht lediglich adhäsiv verbunden ist, sondern mit der strahlenabsorbierenden Schicht integral verbunden ist, durch Vernetzung der beiden Schichten miteinander beim Aufbringen und Aushärten der strahlenabsorbierenden Schicht auf der Trägerschicht. Dabei erfolgt eine physikalische Ankerbildung der Schichten untereinander. Dies erfolgt zum Beispiel bei Einsatz eines PVC-Plastisols in der strahlenabsorbierenden Schicht, sofern das Material der Trägerschicht so gewählt ist, dass das PVC-Plastisol es anlösen kann.
  • Weiterhin umfasst die Erfindung eine Verwendung des vorstehend beschriebenen Strahlenschutzmaterials als Strahlenschutzkleidung, insbesondere als Strahlenschutzschürze oder Strahlenschutzschurz oder -mantel oder flexible Barrieren, wie Abdeckungen oder Vorhänge.
  • Auf diese Weise kann einfach ein Strahlenschutzmaterial hergestellt werden, wobei eine gleichmäßige, schnelle und homogene Verteilung der Metallpartikel in der Polymermatrix sichergestellt werden kann, da eine gleichmäßige Verteilung in einer flüssigen Polymermatrix leicht zu realisieren ist und ein umständliches Kneten oder Walken wie bei den herkömmlichen Strahlenschutzfolienmaterialien entfallen kann. Das entstehende Strahlenschutzmaterial aus mehreren Schichten ist sehr flexibel und über einen weiten Energiebereich gleichmäßig strahlenabsorbierend.
  • Weitere Vorteile und Merkmale ergeben sich aus den übrigen Unterlagen.
  • Die Erfindung soll im Folgenden anhand einer Zeichnung näher erläutert werden.
  • Dabei zeigen:
  • Figur 1
    Schnitt durch ein erfindungsgemäßes Strahlenschutzmaterial;
    Figur 2
    Tabelle der verschiedenen Materialparameter.
  • Figur 1 zeigt einen Querschnitt durch das bleifreie folienartige Strahlenschutzmaterial, das auf einem silikonbeschichteten Trennpapier 4 aufgebracht ist. Das Trennpapier 4 kann strukturiert sein, um auf einer Trägerschicht 2 eine Struktur, zum Beispiel eine Ledernarbung zu erzeugen.
  • Die Trägerschicht 2 aus einem PVC-Plastisolfilm wird durch Aufrakeln auf ein silikonbeschichtete Trennpapier 4 und durch anschließendes Gelieren bei 190 - 200 ° C gebildet. Die Trägerschicht 2 gibt dem Strahlenschutzmaterial eine ausreichende Festigkeit. Auf dieser Trägerschicht 2 mit einem Flächengewicht von 70 - 80 g/m3 wird nachfolgend eine Paste der strahlenabsorbierenden Schicht 3 aufgerakelt und dann im Trockenofen bei ca. 200 ° vernetzt beziehungsweise vulkanisiert. Die Gesamtdicke des folienartigen Schichtmaterials beträgt dann ca. 0,35 - 0,45 mm und hat ein Gesamtflächengewicht von ca. 1,35 kg/m2. Die Paste, aus der die strahlenabsorbierende Schicht gebildet ist, besteht aus einem PVC-Plastisol und einem lösungsmittelfreien und wasserfreien Acryl-Nitril-Butadien-Flüssigkautschuk sowie den metallischen Zuschlagstoffen aus Zinnpulver und Wismutoxidpulver. Die Polymermischung der strahlenabsorbierenden Schicht 3 weist 13 Gewichtsanteile Polymermaterial, 65 Gewichtsanteile Zinnpulver und 22 Gewichtsanteile Wismutpulver auf. Das Zinnpulver besteht aus zwei verschiedenen Typen mit unterschiedlicher Korngrößenverteilung (Produktbezeichnung: TEGO-Zinngrieß, TEGO 30 BG, TEGO 60 BG - Fa. Ecka Granules).
  • Die Zinnpulver mit unterschiedlicher Korngrößenverteilung sind im Verhältnis 1 : 1 gemischt. Das Wismutoxidpulver wird in der Nomenklatur auch als gelber Wismut (Bi2O3) bezeichnet. Der D50-Wert (Korngrößenverteilung) liegt maximal bei 10 µm mit einem typischen Wert von 5,5 µm.
  • Das bleifreie Strahlenschutzmaterial kann nach seiner Herstellung zunächst auf der silikonbeschichteten Trennpapierschicht 4 verbleiben, bis es zum Beispiel zu einer Strahlenschutzschürze konfektioniert wird.
  • Eine bevorzugte bleifreie Rezeptur wird nachstehend angegeben.
    Polymermischung 13 Gew.-%
    Zinnpulver TEGO 60 BG
    (metallisch)
    35 Gew.-%
    Zinnpulver TEGO 30 BG (metallisch) 30 Gew.-%
    Wismuttrioxid (Bi2O3) 22 Gew.-%
  • Ein Beispiel einer Polymermischung ist nachstehend angegeben.
    Gewichtsanteile [g]
    DINP (Weichmacher) 3.400
    TXIB (Weichmacher) 600
    Zinnoxid (ZnO) 100
    Schwefel (S) 100
    Vulkazit D (Vulkanisationsbeschleuniger) 60
    Vulkazit M (Vulkanisationsbeschleuniger) 60
    Vestolit 1415 K 80 (PVC) 2.800
    Tegopren (Dispergiermittel/Anti-Tack) 200
    Nipol 1312 LV (Flüssigkautschuk) 1.600
    Total 8.820
  • Diese Polymermischung geht mit einem Gewichtsanteil von ca. 13 Gew.-% in die zunächst pastenförmige strahlenabsorbierende Schicht ein. Dabei beträgt der Anteil des PVC ca. 31 Gew.-%, der Anteil Flüssigkautschuk ca. 18 Gew.-% und der Anteil Weichmacher ca. 45 Gew.-% an der Polymerzusammensetzung.
  • Die Trägerschicht 2 hat dabei folgende Zusammensetzung:
    PVC 40 - 70 Gew.-%
    Weichmacher (DINP) 30 - 50 Gew.-%
    Zuschlagstoffe für Alterungsschutz, Ozonbeständigkeit, Farbpigmente 0,1 - 0,5 Gew.-%
  • Beispiel:
  • Gewichtsanteile [g]
    Vestolit 1430 K90 3000
    TXIB (Weichmacher) 60
    DINP (Weichmacher) 1740
    Stabilisator 60
    Total: 4860
  • Die Viskosität lässt sich durch Verändern des Anteils des Weichmachers TXIB einstellen.
  • Ein derartiges Strahlenschutzmaterial mit einer Folienstärke von 0,35 - 0,45 mm und einem Gesamtflächengewicht von 1,35 kg/m2 erreicht nach der Prüfmethode IEC 1331-1/EN 61331 folgende Bleigleichwerte in Abhängigkeit von der Röhrenspannung einer Röntgenquelle:
    • 0,14 mm Pb bei 60 kV
    • 0,15 mm Pb bei 80 kV
    • 0,15 mm Pb bei 100 kV
    • 0,13 mm Pb bei 150 kV,
    so dass sich ein spezifischer Bleigleichwert, normiert auf die Dicke von über 30 ergibt.
  • Im Gegensatz zu bekannten Strahlenschutzmaterialien zeigt das beschriebene Strahlenschutzmaterial keinen Einbruch des Abschirmwirkungsgrades bei Röhrenspannung über 100 kV, sondern ist über eine Spannungsbreite von 60 - 150 kV innerhalb der vorgeschriebenen Toleranzgrenzen des internationalen Standards IEC 1331-1/EN 61331.
  • Die zweite Figur zeigt nun eine Tabelle, in der die Probennummer, die Rezepturnummer, das Flächengewicht, die Biegesteifigkeit, die Materialstärke sowie dann folgend die Abschirmwirkungen bei gegebener Röntgenröhrenspannung für 60 kV, 80 kV, 100 kV und 125 kV jeweils für den spezifischen wie auch den allgemeinen Bleigleichwert angegeben sind. Die Probennummern 1 - 14 beziehen sich auf erfindungsgemäße Strahlenschutzmaterialien. Bei den Proben Nr. 15 - 19 Xenolite bleifrei sowie Suprasine handelt es sich um auf dem Markt befindliche Produkte für bleifreie Strahlenschutzmaterialien. Der spezifische Bleigleichwert der Röntgenröhrenspannung definiert sich als der Bleigleichwert bei Röntgenröhrenspannung x 100/Materialstärke.
  • Der Bleigleichwert wurde nach IEC 1331-1/EN 61331 ermittelt.
  • Die Zusammensetzungen für die Strahlenschutzschicht sind dabei wie folgt:
    Rezeptur 1: 13 Gew.% Polymerzubereitung, 65 Gew.-% Zinnpulver, 22 Gew.-% Wismuttrioxid.
    Rezeptur 2: 11 Gew.-% Polymerzubereitung, 62 - 66 Gew.-% Zinnpulver, 27 - 23 Gew.% Wismutpulver.
    Rezeptur 3: 10 - 11 Gew.-% Polymerzubereitung, 60 - 64 Gew.-% Zinnpulver, 18 - 20 Gew.-% Wismutpulver, 8 - 10 Gew.-% Wolframpulver.
    Rezeptur 4: 12 Gew.-% Polymerzubereitung, 65 Gew.-% Zinnpulver, 10 Gew.-% Bariumfluorid, 13 Gew.-% Wolframpulver.
  • Die Zusammensetzung der Polymerzubereitung ist dabei wie folgt bei den Rezepturen 1 - 4 :
    Zusammensetzung Gew.-%
    Di-isononylphtalat (DINP) - Fa. Vestolit 38
    2,2,4-Trimethyl-1,3-pentandiol-diisobutyrat (TXIB) - Fa. Kran Chemie 6
    Zinkoxid aktiv - Fa. Rheinchemie Rheinau GmbH 1
    Mahlschwefel - Fa. Solveig 1
    N,N'-Diphenylguanidin (Vulkacit D) - Fa. Rheinchemie Rheinau GmbH 0,5
    2-Mercaptobenzothiazol (MBT, Vulkacit Merkapto) - Fa. Rheinchemie Rheinau GmbH 0,5
    PVC (Vestolit P 1415 K 80) - Fa. Vestolit 31
    Ba/Zn-Stabilisator für PVC (Mark BZ 505) - Fa. Compton Vinyladditiv GmbH 1
    Vulkanox DDA, (Alterungsschutzmittel) - Fa. Rheinchemie Rheinau GmbH 1
    Acrylonitril-Butadiene Polymer (Nipol 1312 LV) - Fa. Zeon Deutschland GmbH 19
    Alkyl-Polydimethylsiloxan (TEGOpren 6814) Fa. Goldschmidt AG 1
  • Aus der Tabelle ergibt sich, dass die vorgenommenen Proben insbesondere nach der Rezeptur 2 einen besonders guten spezifischen Bleigleichwert, im Vergleich zu den bekannten Produkten aufweisen, insbesondere über einen Röhrenspannungsbereich von mindestens 20 kV Differenz, wobei die absoluten Spannungswerte zwischen 60 und 125 kV liegen.
  • Daraus ergibt sich, dass, sofern man einen Abschirmwert von 0,175 Pb erzielen will, bei dem Xenolitematerial eine Dicke von 0,6 mm notwendig ist und sich hieraus eine Biegesteifigkeit für das Material von 1,28 cN ergibt. Suprasine benötigt eine Dicke von 0,65 mm zur Erzielung dieser Abschirmleistung und weist dann eine Biegesteifigkeit von 1,11 cN auf. Die erfindungsgemäße Zusammensetzung beispielsweise gemäß Rezeptur 2 benötigt zur Erreichung dieses Abschirmwerts lediglich eine Dicke von 0,45 mm und erreicht eine Biegesteifigkeit von 0,43 cN. Auf diese Weise können besonders leichte und flexible, für den Träger angenehme Materialien, insbesondere für die Herstellung von Textilien, wie Bekleidung und Barrieren, geschaffen werden.

Claims (16)

  1. Strahlenschutzmaterial für die Abschirmung von Röntgen- und/oder Gamma-Strahlen aus einem folienartigen, mehrschichtigen Schichtmaterial, in dem strahlenabsorbierende Partikel dispergiert sind, wobei das Schichtmaterial aus mindestens einer Trägerschicht und einer strahlenabsorbierenden Schicht besteht, wobei die strahlenabsorbierende Schicht eine härtbare Polymerzubereitung umfasst, die im Verarbeitungszustand fließfähig ist und wobei der wirksame Bleianteil ≤ 15 Gew.-% beträgt., dadurch gekennzeichnet, dass die Polymerzubereitung der strahlenabsorbierenden Schicht ein PVC-Plastisol sowie eine flüssige Kautschukkomponente, insbesondere ein Gemisch aus PVC-Plastisol und einer Flüssigkautschukkomponente umfasst.
  2. Strahlenschutzmaterial nach Anspruch 1, dadurch gekennzeichnet, dass das Polymermaterial Weichmacher und/oder Vernetzungsmittel und/oder weitere Hilfsstoffe umfasst.
  3. Strahlenschutzmaterial nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Polymerzubereitung zwischen 20 und 40 Gew.-% PVC und 10 - 35 Gew.-% Flüssigkautschuk, 0 - 10 Gew.-% Zuschlag- und Hilfsstoffe, Rest Weichmacher enthält.
  4. Strahlenschutzmaterial nach Anspruch 3, dadurch gekennzeichnet, dass die Polymerzubereitung 25 - 35 Gew.-%, insbesondere 30 Gew.-% PVC, 15 - 25 Gew.-%, insbesondere 20 Gew.-% Flüssigkautschuk, 0 - 7 Gew.-% Zuschlagstoffe und Hilfsmittel, Rest Weichmacher enthält.
  5. Strahlenschutzmaterial nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der wirksame Bleigehalt ≥ 10 Gew.-%, insbesondere ≤ 5 Gew.-% und insbesondere 0 Gew.-% beträgt.
  6. Strahlenschutzmaterial nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der spezifische Bleigleichwert ≥ 30, insbesondere ≥ 32 und insbesondere ≥ 34 bei mindestens einer Röhrenspannung in einem Röhrenspannungsbereich zwischen 60 und 125 kV nach IEC 1331-1/EN 61331 ist.
  7. Strahlschutzmaterial nach Anspruch 6, dadurch gekennzeichnet, dass der spezifische Bleigleichwert ≥ 30 an mindestens zwei mindestens 20 kV auseinander liegenden Röhrenspannungen in einem Röhrenspannungsbereich zwischen 60 und 125 kV nach IEC 1331-1/EN 61331 und insbesondere ≥ 32 und insbesondere ≥ 34 ist und insbesondere die Röhrenspannungen 40 kV, 45 kV und insbesondere 65 kV auseinander liegen.
  8. Strahlenschutzmaterial nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Trägerschicht aus PVC-Plastisolmaterial und/oder Polyurethan und/oder Polyester besteht.
  9. Strahlenschutzmaterial nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil der Polymerzubereitung an der strahlenabsorbierenden Schicht > 0 und ≤ 20 Gew.-% und der Anteil an strahlenabsorbierenden Teilchen ≥ 80 Gew.-% und < 100 Gew.-% beträgt und insbesondere der Anteil der Polymerzubereitung 10 - 20 Gew.-% und der Anteil an strahlenabsorbierenden Teilchen 80 - 90 Gew.-% beträgt.
  10. Strahlenschutzmaterial nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die strahlenabsorbierenden Teilchen Zinn, Wismut, Barium und/oder Wolfram sowie Oxide und Salze der Metalle enthalten sowie Mischungen hiervon.
  11. Strahlenschutzmaterial nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das mehrschichtige Schichtmaterial eine Dicke von 0,3-1,2 mm, insbesondere von 0,3 - 0,5 mm, vorzugsweise 0,35 - 0,45 mm aufweist.
  12. Strahlenschutzmaterial nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass in der mindestens einen Trägerschicht strahlenabsorbierende Teilchen enthalten sind.
  13. Strahlenschutzmaterial nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine Trägerschicht auf ihrer der strahlenabsorbierenden Schicht abgewandten Seite abwaschbar und/oder abriebfest und/oder mit textilen Eigenschaften versehen ist.
  14. Strahlenabsorbierendes Material nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Trägerschicht mit der strahlenabsorbierenden Schicht integral verbunden ist.
  15. Verfahren zur Herstellung eines Strahlenschutzmaterials nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Trägerschicht bereitgestellt, insbesondere hergestellt wird durch Aufrakeln und Trocknen auf ein Substrat, ein Material für eine strahlenabsorbierende Schicht aus einer flüssigen, gießfähigen Polymerzubereitung durch Zugeben von strahlenabsorbierenden Partikeln hergestellt wird und das Material für die strahlenabsorbierende Schicht auf die Trägerschicht aufgestrichen, aufgegossen, aufgerakelt oder aufgetragen wird und das Material der strahlenabsorbierenden Schicht durch thermisches und/oder chemisches und/oder physikalisches Vernetzen ausgehärtet wird.
  16. Verwendung eines Strahlenschutzmaterials nach einem der vorangehenden Ansprüche, als Strahlenschutzkleidung, insbesondere als Strahlenschutzschürze oder Strahlenschutzschurz.
EP20030787749 2002-06-08 2003-06-10 Strahlenschutzmaterial sowie verfahren zur herstellung eines strahlenschutzmaterials und verwendung desselben Expired - Lifetime EP1512154B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE20208918U 2002-06-08
DE20208918U DE20208918U1 (de) 2002-06-08 2002-06-08 Bleifreies Strahlenschutzmaterial
PCT/EP2003/006085 WO2004017333A1 (de) 2002-06-08 2003-06-10 Strahlenschutzmaterial sowie verfahren zur hertellung eines strahlenschutzmaterials und verwendung desselben

Publications (2)

Publication Number Publication Date
EP1512154A1 EP1512154A1 (de) 2005-03-09
EP1512154B1 true EP1512154B1 (de) 2010-03-31

Family

ID=29285776

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030787749 Expired - Lifetime EP1512154B1 (de) 2002-06-08 2003-06-10 Strahlenschutzmaterial sowie verfahren zur herstellung eines strahlenschutzmaterials und verwendung desselben

Country Status (7)

Country Link
US (2) US20060151749A1 (de)
EP (1) EP1512154B1 (de)
JP (1) JP4620460B2 (de)
AT (1) ATE463035T1 (de)
AU (1) AU2003285657A1 (de)
DE (2) DE20208918U1 (de)
WO (1) WO2004017333A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4268162B2 (ja) * 2005-10-18 2009-05-27 日本特装株式会社 車両用放射線防護装置
US20140151584A1 (en) * 2012-10-29 2014-06-05 Bloxr Corporation Nuclear radiation shields, shielding systems and associated methods
US9114121B2 (en) * 2010-01-07 2015-08-25 Bloxr Solutions, Llc Radiation protection system
US20110165373A1 (en) * 2010-01-07 2011-07-07 BIoXR, LLC Radio-opaque films of laminate construction
US8754389B2 (en) * 2010-01-07 2014-06-17 Bloxr Corporation Apparatuses and methods employing multiple layers for attenuating ionizing radiation
JP5791281B2 (ja) * 2010-02-18 2015-10-07 キヤノン株式会社 放射線検出装置及び放射線検出システム
US20140106635A1 (en) * 2011-09-23 2014-04-17 Planideia Confecção De Vestuário De Proteção Ltda. -Epp Radiopaque carbon-carbon linked elastomeric materials, preparation method and uses of same
CN102496396B (zh) * 2011-11-16 2013-11-06 哈尔滨工业大学 稀土/钨/聚乙烯复合梯度防核辐射材料及其制备方法
CN102648783A (zh) * 2012-05-19 2012-08-29 扬州锦江有色金属有限公司 一种设有防核辐射合金纤维丝织层的防护鞋
CN102664050B (zh) * 2012-05-28 2014-10-29 丁俊 一种辐射防护材料
USD751256S1 (en) 2013-08-22 2016-03-08 Gonaprons Llc Radiation shielding device
US9534089B2 (en) * 2014-07-11 2017-01-03 The Boeing Company Temperature-resistant silicone resins
WO2016098725A1 (ja) * 2014-12-15 2016-06-23 株式会社トクヤマ 放射線遮蔽材料及びその製造方法
CN108586777A (zh) * 2018-04-19 2018-09-28 孙海 一种无铅防射线辐射橡胶复合材料的制备方法
JP7092302B2 (ja) 2018-05-31 2022-06-28 早川ゴム株式会社 放射線遮蔽指サック
RU2709596C1 (ru) * 2019-02-15 2019-12-18 Акционерное общество "Научно-исследовательский институт резиновых покрытий и изделий" (АО "НИИРПИ") Терморадиационностойкая эластомерная композиция
CN113674888A (zh) * 2021-08-20 2021-11-19 山东双鹰医疗器械有限公司 一种X、γ射线防护硬质材料及制备方法
CN113696369A (zh) * 2021-09-08 2021-11-26 西安工程大学 一种基于热塑性弹性体的X、γ射线防护体的制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3200085A (en) * 1959-03-02 1965-08-10 Arthur L Barber Jr Radiation barrier material and method of making the same
US3061491A (en) * 1959-07-24 1962-10-30 Cordo Chemical Corp Laminated structures
US3627707A (en) * 1968-12-31 1971-12-14 Ball Corp Thixotropic polyvinyl chloride plastisol composition
US4056161A (en) * 1975-10-30 1977-11-01 Tillotson Corporation Sound attenuation material
JPS56131649A (en) * 1980-03-21 1981-10-15 Showa Denko Kk Neutron shield
US4938233A (en) * 1987-08-03 1990-07-03 Techton, Inc. Radiation shield
GB9300564D0 (en) * 1993-01-12 1993-03-03 Smith & Nephew Protective articles
JP3557864B2 (ja) * 1996-09-24 2004-08-25 住友電気工業株式会社 放射線遮蔽材及びその製造方法
US6153666A (en) * 1998-07-16 2000-11-28 Bar-Ray Products, Inc. Radiation-attenuating sheet material
US6232383B1 (en) * 1998-11-06 2001-05-15 Nurescell, Inc. Nuclear resistance cell and methods for making same
US6828578B2 (en) * 1998-12-07 2004-12-07 Meridian Research And Development Lightweight radiation protective articles and methods for making them
DE20100267U1 (de) * 2001-01-08 2001-06-28 Thiess, Axel, Dipl.-Holzw., 41065 Mönchengladbach Bleifreies Röntgenschutzmaterial
DE10234159C1 (de) * 2002-07-26 2003-11-06 Heinrich Eder Blei-Ersatzmaterial für Strahlenschutzzwecke
US7196023B2 (en) * 2003-04-10 2007-03-27 Kappler, Inc. Chemically resistant radiation attenuation barrier

Also Published As

Publication number Publication date
JP2005529352A (ja) 2005-09-29
EP1512154A1 (de) 2005-03-09
DE50312570D1 (de) 2010-05-12
WO2004017333A1 (de) 2004-02-26
JP4620460B2 (ja) 2011-01-26
DE20208918U1 (de) 2003-10-23
US7645506B2 (en) 2010-01-12
US20080128660A1 (en) 2008-06-05
AU2003285657A1 (en) 2004-03-03
US20060151749A1 (en) 2006-07-13
ATE463035T1 (de) 2010-04-15

Similar Documents

Publication Publication Date Title
EP1512154B1 (de) Strahlenschutzmaterial sowie verfahren zur herstellung eines strahlenschutzmaterials und verwendung desselben
DE19955192C2 (de) Verfahren zur Herstellung eines Strahlenschutzmaterials
DE112009002123B4 (de) Bleifreier Röntgenabschirmungs-Gummiverbundwerkstoff und Verfahren zu dessen Herstellung
EP1576619B1 (de) Bleifreie mischung als strahlenschutz-additiv
US6153666A (en) Radiation-attenuating sheet material
DE102004015613A1 (de) Strahlenschutzmaterial auf Silikonbasis
DE1694881A1 (de) Mit Zuschlagstoffen versehener,flexibler Werkstoff
DE1650105B2 (de) Dichtungswerkstoff
EP3249006A1 (de) Kautschuk- oder elastomerzusammensetzungen und verfahren zu deren herstellung
DE1558645A1 (de) Flexibles Strahlenschutzmaterial und Verfahren zu seiner Herstellung
DE2155375B2 (de) Mischungen von fluorierten Elastomeren
DE3409414C2 (de) Polyamid-Gummi-Gemisch
EP1536732A1 (de) Leichtes strahlenschutzmaterial für einen grossen energieanwendungsbereich
DE3323151C2 (de)
EP1549220B1 (de) Strahlenschutzmaterial auf silikonbasis
DE2550664C3 (de) Verfahren zum Herstellen eines druckmittelfiihrenden Schlauches
DE2530039B2 (de) Verfahren zum Verbinden von Butadien-Acrylnitril-Kautschuk mit Metallen
DE2252686A1 (de) Polyvinylchloridpraeparate
EP0111287A2 (de) Unvernetzbare, elektrisch leitfähige Formmassen auf der Basis von thermoplastischen Kunststoffen und Russ
DE2954186C2 (de) Anordnung zur Modifizierung der Festigkeit eines Kunststoffteiles durch Bestrahlung
EP0769539B1 (de) Beschichtungsmaterial auf Basis nichtwässriger Polyolefin-Dispersionen und ein Verfahren zu dessen Herstellung
DE202004006711U1 (de) Strahlenschutzmaterial auf Silikonbasis
WO2005049713A1 (de) Strahlenschutzmaterial für schutzkleidung, wie schürzen u. dgl.
EP3684856B1 (de) Dachbahn
DE10231001A1 (de) Aus Kunststoff bestehendes Werkzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17Q First examination report despatched

Effective date: 20050411

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI & CIE SA

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50312570

Country of ref document: DE

Date of ref document: 20100512

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100712

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

BERE Be: lapsed

Owner name: PAUL HARTMANN A.G.

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100802

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100610

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160628

Year of fee payment: 14

Ref country code: DE

Payment date: 20160622

Year of fee payment: 14

Ref country code: CH

Payment date: 20160621

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160621

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50312570

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170610

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630