EP1510697B1 - Vakuumpumpe - Google Patents

Vakuumpumpe Download PDF

Info

Publication number
EP1510697B1
EP1510697B1 EP04292018A EP04292018A EP1510697B1 EP 1510697 B1 EP1510697 B1 EP 1510697B1 EP 04292018 A EP04292018 A EP 04292018A EP 04292018 A EP04292018 A EP 04292018A EP 1510697 B1 EP1510697 B1 EP 1510697B1
Authority
EP
European Patent Office
Prior art keywords
rotor
primary
pump
stator
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04292018A
Other languages
English (en)
French (fr)
Other versions
EP1510697A1 (de
Inventor
Jean-Luc Rival
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34089871&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1510697(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP1510697A1 publication Critical patent/EP1510697A1/de
Application granted granted Critical
Publication of EP1510697B1 publication Critical patent/EP1510697B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/008Regenerative pumps

Definitions

  • the present invention relates to vacuum pumps for generating and maintaining an appropriate vacuum in a vacuum chamber or a vacuum line.
  • Vacuum pumps of different types are known which are generally each adapted to particular flow conditions and pumped gas pressure.
  • primary pumps have been designed which are required to repress at atmospheric pressure, which have a plurality of compression stages, and whose last stages produce a high compression under a relatively low volume flow.
  • An example of such a primary pump is a kinematic pump formed of a disk-shaped rotor with concentric ribs equipped with individual radial blades engaged in corresponding communicating concentric annular grooves of the stator.
  • the primary pumps thus formed do not achieve sufficiently advanced voids for many vacuum applications. They are then associated in series with at least one secondary pump, for example a pump of molecular type or turbomolecular type, the discharge is connected aerauliquement to the suction of the primary pump.
  • at least one secondary pump for example a pump of molecular type or turbomolecular type
  • a molecular or turbomolecular pump must be placed in the immediate vicinity of the vacuum chamber that it must evacuate, in order to benefit from the maximum pumping speed in the vacuum chamber.
  • the size and weight of the single-axis primary pumping stage is incompatible with integration close to the vacuum chamber, and therefore the primary pump must be removed from the vacuum chamber, and the pumping performance are thus degraded.
  • the motor of such a composite pump must be able to provide sufficient power for driving the primary pump.
  • the position of the motor at the end of the motor shaft leads to a space that prevents the integration of the composite pump in the immediate vicinity of the vacuum chamber that the pump must evacuate.
  • the problem proposed by the present invention is to design a new composite pump structure which is compact enough to be integrated in close proximity to the vacuum chamber or process chamber, and which is capable of pumping from atmospheric pressure (1000 mbar). to the high vacuum usually required in some industries (10 -8 mbar).
  • the idea behind the invention is to both reduce the size of the motor itself that drives the pump, and to place the engine inside the pump to further reduce the total space of the motor-pump assembly.
  • a primary stage pump structure which has improved and adjustable pumping properties, so as to achieve a satisfactory pumping with the aid of a pump of smaller volume.
  • the speed-compatible primary pumping stage is a statically and statically viscous, viscous drive pumping structure which is able to discharge at atmospheric pressure and which operates correctly at the usual rotational speeds of the molecular or turbomolecular stages, ie say speeds of around 20,000 rpm.
  • the motor shaft is rotated by an upstream bearing and a downstream bearing, the upstream bearing being located between the motor and the coupling zone to the molecular rotor, the downstream bearing being located between the motor and the coupling zone to the primary rotor.
  • the areas of reduced section grooves have the role of providing a leak barrier between two distinct annular grooves, which are at different pressures.
  • a vacuum pump according to the invention is such that the primary rotor is a multi-stage kinematic rotor with viscous drive comprising one or more disks whose transverse face comprises oblique centrifugal ribs which cooperate with a corresponding transverse face a multi-stage kinematic stator.
  • An improvement consists in providing that the primary pumping stage is furthermore such that the primary rotor comprises an upstream transverse face with oblique centrifugal ribs which cooperate with a corresponding transverse face of the pump body to constitute an additional kinematic pumping stage.
  • the composite vacuum pump according to the invention comprises a plurality of molecular pumping stages consisting of concentric cylindrical rotor elements connected to the motor shaft according to their upstream ends, and stator elements in the form of concentric cylinders with helical ribs connected to the pump body according to their downstream ends and engaged between the successive concentric rotor cylinders.
  • the pump according to the invention further comprises at least one turbomolecular pumping stage connected aeraulically upstream of the molecular pumping stage or stages, the turbomolecular pumping stage comprising a rotor turbomolecular device having at least one stage of radial vanes and a turbomolecular stator having at least one annular groove in which are engaged the radial vanes of the turbomolecular rotor.
  • turbomolecular stages consisting of a rotor having a plurality of radial fin stages distributed along the motor shaft, and a plurality of corresponding annular grooves distributed over the stator.
  • the internal position of the motor preferably leads to providing means for increasing the overall efficiency of the engine, in order to reduce the losses and therefore the heating of the engine in operation.
  • the goal is to provide the mechanical energy needed to drive the pump, with a smaller motor.
  • it is possible in particular to provide recessed cooling means in the stator of the engine, for example pipes in which is passed a cooling fluid.
  • a multi-stage kinematic type primary stator mounted displaceable in the axial direction relative to the pump body, and biased by displacement means for modifying its relative axial position with respect to the primary rotor, so that the pumping performance is adjustable. Note that this arrangement can be used in a kinematic stage pump regardless of the presence or absence of the other characteristics defined above, and thus constitutes an independent invention.
  • the motor shaft can advantageously be guided in rotation by magnetic bearings which allow an increase in the service life and a reduction of vibrations.
  • a composite vacuum pump comprises, in the same pump body 100 having a suction orifice 1 and a discharge orifice 2, at least one molecular pumping stage. 5 connected aerauliquement, by a transfer conduit 6, in series with at least one primary pump stage 9 kinematic type multi-stage viscous drive.
  • the pump further comprises at least one turbomolecular pumping stage 4, connected aeromagnetically upstream of the molecular pumping stage (s) 5.
  • the molecular pumping stage 5 comprises a molecular rotor 5a which cooperates with a molecular stator 5b provided in the pump body 100.
  • the primary pumping stage 9 comprises a primary rotor 9a of kinematic type cooperating with a primary stator 9b kinematic type provided in the pump body 100.
  • the molecular rotor 5a and the primary rotor 9a are rotated by the same motor shaft 8 coupled to an electric motor 7.
  • the motor 7 comprises a motor rotor 7a, keyed on the central section of the motor shaft 8, and rotating in a motor stator 7b itself fixed in a housing 100b of the pump body 100.
  • the motor shaft 8 is rotated by an upstream bearing 15 and a downstream bearing 16, on either side of the motor rotor 7a.
  • the bearings 15 and 16 are mechanical bearings with ball bearings.
  • the bearings 15 and / or 16 are magnetic bearings, in a manner known per se.
  • the molecular rotor 5a has a blind axial cavity 5c, open downstream of the pump body 100, that is to say open towards the discharge orifice 2, and closed upstream, that is to say say towards the suction port 1, by a transverse wall 5d.
  • the motor 7 is housed at least partially in said blind axial cavity 5c of the molecular rotor 5a.
  • the motor 7 is housed entirely in the blind axial cavity 5c of the molecular rotor 5a.
  • the motor shaft 8 is coupled by its end Upstream 8a to the molecular rotor 5a, and the motor shaft 8 is coupled by its downstream portion 8b to the primary rotor 9a.
  • the upstream end 8a of the motor shaft 8 passes through an axial hole provided in the transverse wall 5d of the molecular rotor 5a, and is fixed thereto by a nut 8c.
  • the downstream portion 8b of the motor shaft 8 passes through a hole in the primary rotor 9a and is fixed to it by a nut 13.
  • the upstream bearing 15 comprises, in the illustrated embodiment, an elastic washer 15a for pre-loading the ball bearing constituting said upstream bearing 15.
  • the upstream bearing 15 is located between the motor 7 and the upstream end 8a of the motor shaft 8 or coupling zone to the molecular rotor 5a.
  • the downstream bearing 16 is located between the motor 7 and the downstream portion 8b of the motor shaft 8 or coupling zone to the primary rotor 9a.
  • the primary rotor 9a is a kinematic rotor comprising a disk whose transverse face, for example the downstream transverse face in the illustrated embodiment, comprises a series of concentric annular ribs each having blades. individual radial.
  • FIG. 2 illustrates in perspective an embodiment of such a transverse face 9c of a disk-shaped kinematic rotor 9a: the successive concentric annular ribs 9d, 9e, are distinguished 9f, 9g and 9h, which extend from the periphery to the center of the disc.
  • Each concentric annular rib 9d-9h comprises individual radial blades such as the blade 10, protruding axially from the ridge of the corresponding concentric annular rib 9d and each oriented substantially in a radial direction relative to the disk forming the kinematic rotor 9a.
  • the kinematic stator 9b has a transverse wall integral with the pump body 100 and which comprises a corresponding transverse face, the upstream transverse face in the illustrated embodiment, which comprises a series of concentric annular grooves.
  • FIG. 4 illustrates in perspective an embodiment of such a kinematic stator 9b, with concentric annular grooves 9j, 9k, 9l, 9m and 9n, which respectively correspond to the annular ribs. respective concentric 9d-9h of the kinematic rotor 9a.
  • the individual radial blades such as the blade 10 of the kinematic rotor 9a engage in the concentric annular grooves 9j-9n, and for this the concentric annular grooves 9j-9n of the kinematic stator 9b have a larger cross-section than the individual radial blades 10 corresponding to the kinematic rotor 9a, with the exception of a short region of reduced section groove in which the individual radial blades 10 engage with little clearance.
  • a reduced section groove area 9o in which the groove 9k is not flared towards its bottom unlike the other portions of the same groove 9k.
  • the successive concentric annular grooves 9j-9n are connected to each other by a communication channel provided at the downstream end of the corresponding groove area.
  • a communication channel provided at the downstream end of the corresponding groove area.
  • the channel 9p which connects the concentric annular grooves 9j and 9k.
  • an additional pumping stage 11 has also been represented, at the interface between the primary rotor 9a and the upstream portion of the pump body 100.
  • the second transverse face or upstream transverse face of the kinematic rotor disk 9a may be as shown in perspective in FIG. 3 to constitute a rotor 11a, having oblique centrifugal ribs 11c, 11d, 11e and 11f, to cooperate with a corresponding transverse face 11b (FIG. 1) of the pump body 100 which constitutes a stator.
  • a plurality of molecular pumping stages 5, consisting of rotor elements in the form of concentric cylinders connected to the shaft.
  • -moteur 8 according to their upstream ends, that is to say according to the transverse wall 5d, and stator elements in the form of concentric cylinders with helical ribs connected to the pump body 100 according to their downstream ends and engaged between the cylinders successive rotor concentrics.
  • stator elements in the form of concentric cylinders with helical ribs connected to the pump body 100 according to their downstream ends and engaged between the cylinders successive rotor concentrics.
  • turbomolecular pumping stage 4 comprising a turbomolecular rotor 4a having at least one stage of radial fins, two stages of radial fins in the figure, and a turbomolecular stator 4b having annular rings, two rings in Figure 1, which engage between the radial fins of the turbomolecular rotor 4a.
  • the rings may be inserts, stacked axially with appropriate spacers, in a manner known per se.
  • the stator may consist of the peripheral assembly of several shells reported radially around the rotor.
  • the motor 7 must be adapted to allow a high speed of rotation, greater than 20 000 revolutions per minute in nominal speed.
  • the electric power density is, in this way, higher, which reduces the size of the engine.
  • the concentric annular grooves 9j-9n and the corresponding individual radial blades 10 have a smaller size in the vicinity of the discharge of the kinematic stage.
  • the transverse dimension of the grooves and the blades is smaller and smaller when moving from the peripheral annular groove 9j to the central annular groove 9n, and the same is true of the ribs concentric 9d-9h and individual radial blades 10.
  • the blades are reduced in the high pressure zone, that is to say in the vicinity of the axis of rotation, which reduces the viscous friction and allows to reduce the power that must develop the engine.
  • means are provided for reducing leakage between the kinematic pumping stages, providing a very small clearance between the individual radial blades 10 and the reduced section grooves areas 9o. This can be achieved by providing a high machining accuracy of the corresponding parts, but also by providing means for adjusting the axial position of the kinematic stator 9b with respect to the kinematic rotor 9a, as will be described below.
  • the kinematic stator 9b can be displaced axially between a maximum approach position illustrated in FIG. 1 and a maximum position of displacement shown in FIG. 5.
  • the rotor kinematic 9a can slide axially in the pump body 100, with the interposition of an annular seal 100a, being guided by guide means 21 and biased by displacement means such as a jack not shown.
  • the axial position adjustment means make it possible to minimize internal leakage when it is in the maximum approaching position of FIG. 1, allowing the constitution of an improved performance kinematic pump.
  • the composite pump takes up the essential means of the embodiment of FIG. 1, with the molecular pumping stages 5, possibly the turbomolecular pumping stages. 4, with the kinematic pump stage 9, and with the motor 7 engaged in the rear cavity 5c and mounted on the central section of the motor shaft 8, whose upstream end 8a is coupled to the molecular rotor 5a and whose downstream zone 8b is coupled to the kinematic rotor 9a.
  • the means are preferred to protect the bearings 15 and 16 against the harmful action of corrosive gases, powders and dust that the pump is often required to extract vacuum chambers.
  • a purge 19 is provided by which a purge neutral gas can be introduced into the housing 100b containing the engine 7, and means are provided for sucking up the neutral gas through the zones occupied by the bearings 15 and 16.
  • a suction duct 20 which goes directly from the discharge of the molecular pumping stage 5 to the kinematic pumping stage 9, at the periphery of the disk forming the kinematic rotor 9a, and the direction of the grooves is reversed.
  • helical in the last stage of molecular pumping 5e so that it constitutes an upstream dynamic seal that sucks the gases from the upstream bearing 15 to drive back to the kinematic pumping stage 9.
  • the second transverse face upstream 11a of the kinematic rotor disk 9a comprises oblique centrifugal ribs 11c-11f for cooperating with a corresponding face 11b of the pump body 100 and constituting a downstream dynamic seal which draws the gases from the downstream bearing 16 to the primary pumping stage 9.
  • the motor 7 is powered by electrical conductors connected to a power supply connector 18.
  • FIG. 3 An example of another possible structure of such a suitable primary stage is illustrated in FIG. 3. It is then considered that the face 11a constitutes the main face of the rotor 9a, and that the oblique centrifugal ribs 11c-11f, cooperating with a corresponding transverse face of the stator or pump body, constitute a kinematic stage with viscous drive.
  • a transverse face comprises the oblique centrifugal ribs which cooperate with a corresponding transverse face of a multi-stage kinematic stator.
  • This embodiment is also compatible with the presence of an additional kinematic pumping stage constituted by the upstream transverse face of the rotor with other oblique centrifugal ribs.
  • the embodiment is also compatible with a particular arrangement of dynamic seals and neutral gas purges in the bearing area.
  • a plurality of molecular and / or turbomolecular pumping stages can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Electrophonic Musical Instruments (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Claims (13)

  1. Vakuumpumpe, die in ein und demselben Pumpengehäuse (100) mindestens eine Molekularpumpstufe (5) beinhaltet, welche pneumatisch mit mindestens einer Vorvakuumpumpstufe (9) mit kompatibler Geschwindigkeit in Reihe geschaltet ist, wobei die Molekularpumpstufe (5) einen Molekularrotor (5a) hat, der mit einem Molekularstator (5b) zusammenwirkt, der im Pumpengehäuse (100) vorgesehen ist, wobei die Vorvakuumpumpstufe (9) einen Vorvakuumrotor (9a) hat, der mit einem Vorvakuumstator (9b) zusammenwirkt, der im Pumpengehäuse (100) vorgesehen ist, wobei der Molekularrotor (5a) und der Vorvakuumrotor (9a) durch ein und dieselbe an einen Motor (7) gekoppelte Antriebswelle (8) in Drehbewegung angetrieben werden, dadurch gekennzeichnet, dass:
    - der Molekularrotor (5a) einen axialen Blindhohlraum (5c) beinhaltet, der zur nachgeschalteten Seite des Pumpengehäuses (100) offen ist,
    - der Motor (7) zumindest teilweise in diesem axialen Blindhohlraum (5c) des Molekularrotors (5a) sitzt,
    - die Antriebswelle (8) mit ihrem vorgeschalteten Ende (8a) an den Molekularrotor (5a) gekoppelt ist,
    - die Antriebswelle (8) mit ihrem nachgeschalteten Teil (8b) an den Vorvakuumrotor (9a) gekoppelt ist.
  2. Vakuumpumpe gemäß Anspruch 1, dadurch gekennzeichnet, dass die Antriebswelle (8) durch ein vorgeschaltetes Lager (15) und ein nachgeschaltetes Lager (16) in Drehbewegung gebracht wird, wobei das vorgeschaltete Lager (15) zwischen dem Motor (7) und dem Ankupplungsbereich (8a) an den Molekularrotor (5a) liegt, und das nachgeschaltete Lager (16) zwischen dem Motor (7) und dem Ankupplungsbereich (8b) an den Vorvakuumrotor (9a) liegt.
  3. Vakuumpumpe gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass:
    - der Vorvakuumrotor (9a) ein kinematischer Mehrstufenrotor mit viskosem Antrieb ist, der eine Scheibe beinhaltet, deren eine transversale Fläche (9c) eine Reihe konzentrischer ringförmiger Rippen (9d-9h) beinhaltet, die jeweils einzelne radiale Lamellen (10) besitzen,
    - der Vorvakuumstator (9b) ein kinematischer Stator ist, der eine entsprechende transversale Fläche beinhaltet, die eine Reihe konzentrischer ringförmiger Rillen (9j-9n) besitzt, in welche die einzelnen radialen Lamellen (10) des kinematischen Rotors (9a) eingreifen,
    - die konzentrischen ringförmigen Rillen (9j-9n) des kinematischen Stators (9b) einen größeren Querschnitt haben als die entsprechenden einzelnen radialen Lamellen (10) des kinematischen Rotors (9a), mit Ausnahme eines kurzen Rillenbereichs mit geringerem Querschnitt (9o), in den die einzelnen radialen Lamellen (10) mit geringem Spiel eingreifen,
    - die aufeinander folgenden konzentrischen ringförmigen Rillen (9j-9n) über einen Verbindungskanal (9p) miteinander verbunden sind, der am nachgeschalteten Ende des Rillenbereichs mit dem geringeren Querschnitt (9o) vorgesehen ist.
  4. Vakuumpumpe gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Vorvakuumrotor (9a) ein kinematischer Mehrstufenrotor mit viskosem Antrieb ist, der eine oder mehrere Scheiben beinhaltet, deren eine transversale Fläche schräge zentrifugale Rippen beinhaltet, die mit einer entsprechenden transversalen Fläche eines kinematischen Mehrstufenstators zusammenwirken.
  5. Vakuumpumpe gemäß Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Vorvakuumpumpstufe (9) außerdem dergestalt ist, dass der Vorvakuumrotor (9a) eine vorgeschaltete transversale Fläche (11a) mit schrägen zentrifugalen Rippen (11c-11f) beinhaltet, die mit einer entsprechenden transversalen Fläche (11b) des Pumpengehäuses (100) zusammenwirken, um eine zusätzliche kinematische Pumpstufe (11) zu bilden.
  6. Vakuumpumpe gemäß Anspruch 5, dadurch gekennzeichnet, dass die Vorvakuumpumpstufc (9) außerdem dergestalt ist, dass:
    - die schrägen zentrifugalen Rotorrippen (11c-11f) mit der entsprechenden transversalen Fläche (11b) des Pumpengehäuses (100) zusammenwirken, um eine nachgeschaltete Bewegungsdichtung zu bilden, die eine Ansaugung erzeugt, welche das nachgeschaltete Lager (16) schützt,
    - eine letzte molekulare Stufe (5d) umgekehrt wird, um eine vorgeschaltete Bewegungsdichtung zu bilden, die eine Ansaugung erzeugt, welche das vorgeschaltete Lager (15) schützt,
    - ein Neutralgasablass (19) angepasst wird, um einen Neutralgasstrom in die Aufnahme (100b) zu bringen, welche den Motor (7) enthält, und um somit einen Neutralgasstrom durch die Lager (15, 16) zu erzeugen.
  7. Vakuumpumpe gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sie eine Vielzahl von Molekularpumpstufen (5) enthält, die aus Rotorelementen in Form von konzentrischen Zylindern bestehen, die mit der AnTriebswelle. (8) entsprechend ihren vorgeschalteten Enden verbunden sind, und aus Statorelementen in Form konzentrischer Zylinder mit schraubenförmigen Rippen, die mit dem Pumpengehäuse (100) entsprechend ihren nachgeschalteten Enden verbunden sind und zwischen die aufeinander folgenden konzentrischen Rotorzylinder eingreifen.
  8. Vakuumpumpe gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sie außerdem mindestens eine Turbomolekularpumpstufe (4) enthält, die pneumatisch oberhalb der Molekularpumpstufe oder -stufen (5) verbunden ist, wobei die Turbomolekularpumpstufe (4) einen Turbomolekularrotor (4a) beinhaltet, der mindestens eine Stufe mit radialen Flügeln besitzt, und einen Turbomolekularstator (4b), der mindestens eine ringförmige Rille hat, in die die radialen Flügel des Turbomolekularrotors (4a) eingepasst sind.
  9. Vakuumpumpe gemäß Anspruch 8, dadurch gekennzeichnet, dass sie eine Vielzahl von Turbomolekularstufen beinhaltet, die aus einem Rotor mit einer Vielzahl von entlang der Antriebswelle (8) angeordneten Stufen mit radialen Flügeln und einer Vielzahl über den Stator (4b) verteilter entsprechender ringförmiger Rillen besteht.
  10. Vakuumpumpe gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Motor (7) Kühlmittel (17) enthält, die in den Motorstator (7b) eingebaut sind,
  11. Vakuumpumpe gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass:
    - der Motor (7) für eine hohe Drehzahl über 20.000 Umdrehungen pro Minute im Nennbetrieb angepasst ist,
    - die konzentrischen ringförmigen Rillen (9j-9n) und die entsprechenden einzelnen radialen Lamellen (10) in der Nähe der Förderung der kinematischen Pumpstufe (9) eine geringerc Größe haben.
  12. Vakuumpumpe gemäß einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Vorvakuumstator (9b) in der Axialrichtung bezogen auf das Pumpengehäuse (100) verschiebbar angebracht ist und durch Verschiebungsmittel angetrieben wird, die es ermöglichen, seine relative axiale Position bezogen auf den Vorvakuumrotor (9a) abzuändern, so dass die Pumpleistungen regulierbar sind.
  13. Vakuumpumpe gemäß einem der Anspruche 1 bis 12, dadurch gekennzeichnet, dass die Antriebswelle (8) durch Magnetlager (15, 16) in der Drehbewegung geführt wird.
EP04292018A 2003-08-29 2004-08-09 Vakuumpumpe Expired - Lifetime EP1510697B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0310282 2003-08-29
FR0310282A FR2859250B1 (fr) 2003-08-29 2003-08-29 Pompe a vide

Publications (2)

Publication Number Publication Date
EP1510697A1 EP1510697A1 (de) 2005-03-02
EP1510697B1 true EP1510697B1 (de) 2006-05-03

Family

ID=34089871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04292018A Expired - Lifetime EP1510697B1 (de) 2003-08-29 2004-08-09 Vakuumpumpe

Country Status (6)

Country Link
US (1) US7160081B2 (de)
EP (1) EP1510697B1 (de)
JP (1) JP2005076631A (de)
AT (1) ATE325274T1 (de)
DE (1) DE602004000798T2 (de)
FR (1) FR2859250B1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0229356D0 (en) * 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping arrangement
DE10353034A1 (de) * 2003-11-13 2005-06-09 Leybold Vakuum Gmbh Mehrstufige Reibungsvakuumpumpe
GB0329839D0 (en) * 2003-12-23 2004-01-28 Boc Group Plc Vacuum pump
US20090081022A1 (en) * 2007-09-21 2009-03-26 Honeywell International Inc. Radially Staged Microscale Turbomolecular Pump
DE102008024764A1 (de) * 2008-05-23 2009-11-26 Oerlikon Leybold Vacuum Gmbh Mehrstufige Vakuumpumpe
DE102008036623A1 (de) * 2008-08-06 2010-02-11 Oerlikon Leybold Vacuum Gmbh Verwendung eines Wälzlagers zur Lagerung rotierender Bauteile in Vakuumeinirchtungen sowie Vakuumeinrichtung
US8152442B2 (en) * 2008-12-24 2012-04-10 Agilent Technologies, Inc. Centripetal pumping stage and vacuum pump incorporating such pumping stage
US8070419B2 (en) * 2008-12-24 2011-12-06 Agilent Technologies, Inc. Spiral pumping stage and vacuum pump incorporating such pumping stage
DE102009021642B4 (de) * 2009-05-16 2021-07-22 Pfeiffer Vacuum Gmbh Vakuumpumpe
JP5785494B2 (ja) * 2009-08-28 2015-09-30 エドワーズ株式会社 真空ポンプ及び真空ポンプに使用される部材
DE202011002809U1 (de) * 2011-02-17 2012-06-12 Oerlikon Leybold Vacuum Gmbh Statorelement sowie Hochvakuumpumpe
KR101704053B1 (ko) * 2011-09-06 2017-02-07 현대자동차주식회사 진공펌프 통합형 주행 안정성 제어 장치
CN103195724B (zh) * 2012-01-04 2015-05-27 李晨 立式鼠笼分子泵
WO2013116820A1 (en) * 2012-02-03 2013-08-08 Invacare Corporation Pumping device
EP2956674B1 (de) * 2013-02-15 2019-05-01 Edwards Limited Vakuumpumpe
DE102013203421A1 (de) * 2013-02-28 2014-08-28 Pfeiffer Vacuum Gmbh Vakuumpumpe
DE102014112553A1 (de) * 2014-09-01 2016-03-03 Pfeiffer Vacuum Gmbh Vakuumpumpe
GB201715151D0 (en) 2017-09-20 2017-11-01 Edwards Ltd A drag pump and a set of vacuum pumps including a drag pump
FR3093544B1 (fr) * 2019-03-05 2021-03-12 Pfeiffer Vacuum Pompe à vide turbomoléculaire et procédé de purge

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9810872D0 (en) * 1998-05-20 1998-07-22 Boc Group Plc Improved vacuum pump
JP3130890B2 (ja) * 1999-02-25 2001-01-31 セイコー精機株式会社 磁気軸受装置及び磁気軸受制御装置
JP2002138987A (ja) * 2000-10-31 2002-05-17 Seiko Instruments Inc 真空ポンプ
JP3961273B2 (ja) * 2001-12-04 2007-08-22 Bocエドワーズ株式会社 真空ポンプ

Also Published As

Publication number Publication date
ATE325274T1 (de) 2006-06-15
DE602004000798T2 (de) 2007-08-16
FR2859250B1 (fr) 2005-11-11
US7160081B2 (en) 2007-01-09
US20050047904A1 (en) 2005-03-03
FR2859250A1 (fr) 2005-03-04
JP2005076631A (ja) 2005-03-24
DE602004000798D1 (de) 2006-06-08
EP1510697A1 (de) 2005-03-02

Similar Documents

Publication Publication Date Title
EP1510697B1 (de) Vakuumpumpe
EP0435291B1 (de) Kombinierte Turbomolekularpumpe mit zwei Wellen und atmosphärischem Auslass
EP0401741B1 (de) Zweistufige Trockenprimärpumpe
EP3025061B1 (de) Kreiselpumpe, insbesondere zur versorgung von raketentriebwerken
CN109737094B (zh) 用于涡轮泵的动密封装置和涡轮泵组
FR2964425A1 (fr) Turbopompe, en particulier pour l'alimentation de moteurs de fusee
FR2806126A1 (fr) Turbo compresseur entraine par les gaz d'echappement, pour un moteur a combustion interne
FR2915535A1 (fr) Machine tournante comportant un systeme d'equilibrage axial passif
FR3132729A1 (fr) Ensemble propulsif pour aéronef comprenant une turbomachine à gaz et une machine électrique avec un système de refroidissement comprenant un organe de couplage principal et procédé d’utilisation associé
FR2598179A1 (fr) Dispositif de transfert d'air de refroidissement pour une turbine
FR2965858A1 (fr) Amortisseur a compression de film liquide
FR2951231A1 (fr) Systeme de lubrification de compresseur a spirale
FR3011592A1 (de)
FR2809141A1 (fr) Compresseur a volutes
FR2698661A1 (fr) Turbopompe compacte de forte puissance pour moteur-fusée.
WO2019038510A1 (fr) Turboreacteur a double corps ayant un palier de butee d'arbre basse pression positionne dans le carter d'echappement
FR2945330A1 (fr) Pompe centrifuge a double echappement.
FR2602833A1 (fr) Pompe a palettes
EP2376789A1 (de) Pumpe mit achsenausgleichsvorrichtung
FR3066533B1 (fr) Ensemble d'etancheite pour une turbomachine
EP3143260A1 (de) Luftströmungskreis für luftstrom durch ein lagergehäuse
WO2024125848A1 (fr) Machine à fluide à canal latéral
FR2590932A1 (fr) Dispositif volumetrique et perfectionnements aux machines tournantes a palettes ou parois
WO2016021616A1 (ja) スクロール式流体機械
EP4325065A1 (de) Pumpe für ein kühlsystem eines leistungstransformators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20050902

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 602004000798

Country of ref document: DE

Date of ref document: 20060608

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061003

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: THE BOC GROUP PLC

Effective date: 20070115

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALCATEL LUCENT

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: THE BOC GROUP PLC

Effective date: 20070115

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070822

Year of fee payment: 4

BERE Be: lapsed

Owner name: ALCATEL

Effective date: 20060831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070812

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060809

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060503

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080809

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080809

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070831

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080809

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PLAM Termination of opposition procedure: information related to despatch of decision modified

Free format text: ORIGINAL CODE: EPIDOSCOPC1

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20100329

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150521

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150521