EP1509815A1 - Photosensitiver lack zur beschichtung auf einem halbleiter-substrat oder einer maske - Google Patents

Photosensitiver lack zur beschichtung auf einem halbleiter-substrat oder einer maske

Info

Publication number
EP1509815A1
EP1509815A1 EP03755914A EP03755914A EP1509815A1 EP 1509815 A1 EP1509815 A1 EP 1509815A1 EP 03755914 A EP03755914 A EP 03755914A EP 03755914 A EP03755914 A EP 03755914A EP 1509815 A1 EP1509815 A1 EP 1509815A1
Authority
EP
European Patent Office
Prior art keywords
lacquer
photosensitive
base polymer
basic structures
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03755914A
Other languages
English (en)
French (fr)
Inventor
Michael Rogalli
Lars VÖLKEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1509815A1 publication Critical patent/EP1509815A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0395Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having a backbone with alicyclic moieties

Definitions

  • the present invention relates to a photosensitive lacquer for coating on a semiconductor substrate or a mask.
  • semiconductor substrates or masks as precursors for the exposure of the semiconductor substrates are coated with photosensitive lacquers, which are then exposed in a photolithographic step with a structure that represents a component of the circuit.
  • the exposed or unexposed structures are used after an development step as an etching or implantation mask, etc. for the transfer of the structures into the substrate or the mask.
  • the sizes of structures to be achieved on the substrates or masks are reduced.
  • the minimum structure size that can be achieved is linearly related to the wavelength of the light used in the photolithographic step. It follows that transitions to technology generations with a reduced structure size often require the provision of exposure devices which operate at a lower wavelength. In recent years, the transition from wavelengths of 365 nm to 248 nm to currently 193 nm has been accomplished for photolithographic structuring.
  • a photosensitive varnish typically comprises one or more photoactive substances, a layer-forming base polymer and a solvent.
  • the solvent is used for bring the varnish on the substrate.
  • the photoactive substance acts on the base polymer when irradiating light with a specific wavelength, changing its chemical properties. Exposed areas thus differ chemically from the unexposed areas, so that the desired areas can be selectively removed in a developer process.
  • the varnish used must be transparent to the incident light.
  • the photoactive substance must also have a sufficient sensitivity for the given wavelength of the incident light.
  • the lacquers used in the photolithographic structuring are only transparent over a limited wavelength range.
  • the diazonaphtoquinone conventionally used as a photoactive substance in conjunction with a novolak resin can only be used over a wavelength range of approximately 300 to 450 nm for the incident light.
  • Photosensitive coatings that can be used in the deep ultraviolet (DUV) wavelength range have a photosensitive acid generator as the photoactive substance, which releases an acid upon absorption of the incident light, which generates an alkali-soluble acid group by acid-catalyzed deblocking of the alkali-insoluble base polymer. This applies, for example, if it is a positive resist.
  • DUV deep ultraviolet
  • the photosensitive lacquer for the photolithographic structuring at 193 nm has a base polymer which essentially consists of cyclo-aliphatic basic structures and is transparent especially at this wavelength.
  • the paints still have considerable problems with the structure transfer to the substrate. For example, roughened edges appear in the exposed and developed structures, which lead to inadequate passivation of the side walls. Due to a reduced stability of the lacquer webs remaining after development, these can also break down, for example, in a subsequent measurement of the structure width in a scanning electron microscope.
  • Another disadvantage arises from the fact that common lacquers which are transparent at a wavelength of 193 nm interact chemically with the anti-reflection layers underneath them, so that lacquer residues can occur within the webs between the lacquer webs.
  • the photosensitive lacquer similar to the case in the case of conventional photosensitive lacquers which can be used in the ultraviolet wavelength range, comprises a photosensitive acid generator and a solvent, but in order to form the polymer matrix, the lacquer comprises hardened paint on at least two different base polymers.
  • a first base polymer comprises cyclo-aliphatic basic structures. As a further property, these basic structures have a transparency towards light radiation, in particular in the wavelength range around 193 nm, which corresponds to the light radiation of the ArF excimer laser used for the 90-110 nm structure technologies. In contrast, this first base polymer is essentially non-transparent when exposed to light of 248 nm.
  • the wavelength of 248 nm corresponds to the light radiation which is generated by a KrF excimer laser for photolithographic structuring and usually corresponds to the closest, lower technology generation above structure widths of 130 nm.
  • the at least second base polymer comprises aromatic basic structures, as are conventionally used for the 248 nm lasers.
  • the second base polymer has the property of being opaque when exposed to light of 193 nm wavelength, while it is translucent at just 248 nm.
  • the bandwidths of the specified wavelengths for the transparency of the base polymers are in each case at least so large that a substantial part of the output spectrum of the KrF (248 nm) or ArF excimer laser (193 nm) is detected thereby with its corresponding resonance mode ,
  • At least two base polymers are either in the form of block copolymers or they are together in a mixture (blend) without chemical bonds being built up. It has been found that the lacquer according to the invention also applies the advantages applicable to its wavelength range in a mixture or block copolymer formation of the at least two polymer substances in order to effect a structural transfer with high resolution can be used if only one of the wavelengths, in particular 193 nm, is used for the light irradiation.
  • the respective volume fractions of the base polymers and the total layer thickness of the lacquer are to be selected such that, despite the absorption property of the one base polymer, exposure to the base surface of the lacquer is ensured at a given light wavelength.
  • a second base polymer with aromatic base structures which is provided with a lower molar proportion than the first base polymer with the cycloaliphatic base structures, is used at an exposure wavelength of 193 nm, this has the advantage that an interaction of the lacquer with the base is reduced , This significantly reduces residual paint after an exposure and developer process in the exposed structures.
  • the reason for this are the polymer components of the second base polymer containing the aromatic basic structures.
  • the additional proportions of the second polymer also have the effect that the roughness of the resist flanks is reduced after an etching process due to the aromatic component.
  • the reason for this is an improved fluorine sidewall passivation in the exposed structures, which on the one hand leads to an increased stability of stopping webs and also to a dimensionally accurate structure transfer.
  • the so-called etch bias, a lead for etching, which must be used to compensate for the described effect is also advantageously reduced.
  • the increased resistance to etching, which is provided by the aromatic component offers a further advantage for reducing the thickness of the lacquer and, as a result, for the stability of the lacquer mask.
  • the absorption properties due to the low mole fraction of the second base polymer include the aromatic basic structures have only an insignificant influence on the total absorption or the penetration depth of the incident light. This could be compensated for by a reduced process thickness by a reduced coating thickness, an increased light intensity or an extended exposure time.
  • the proportion of the second base polymer in all the base polymers used is between 1 and 25 mol%. With such a fraction, the photosensitive lacquer still has sufficient transparency, in particular at an irradiated light wavelength of 193 nm, because the complementary base polymers comprising cyclo-aliphatic basic structures are completely transparent here. Depending on the proportion, the
  • Layer thicknesses on the semiconductor substrate or the mask are adapted in such a way that, despite the increased absorption coefficient of the coating material due to the non-transparent base polymer, the coating layer can be illuminated up to its base area.
  • a particularly advantageous value of 50-400 nm for the layer thickness of such lacquers was found for the quantitative ratio of the base polymers given above.
  • Figure 1 schematically shows a mixture of two different base polymers in one lacquer, each comprising cycloaliphatic and aromatic basic structures.
  • FIG. 1 shows a photosensitive lacquer 100 with solvents E, acid generators D and with first base polymers synthesized as block copolymers C, which comprise cycloaliphatic basic structures A, and second base polymers, which comprise aromatic basic structures B.
  • the proportion of the second base polymers containing aromatic base structures B in all base polymers A, B is 5 mol%.
  • the second base polymer with aromatic basic structures B in this exemplary embodiment comprises poly (4-hydroxystyrene) which is blocked with acid-sensitive tert-butoxycarbonyl groups.
  • the first base polymer with the cyclo-aliphatic basic structures A comprises an acid-sensitive blocking group, which here is a poly-methacrylate. It also includes an alkali-soluble cyclo-olefin maleic anhydride unit.
  • the lacquer is produced using a polymer synthesis with the specified molar proportions of the base polymers.
  • This varnish is applied to a wafer with a layer thickness of 100-150 nm, preheated in a so-called prebake step to remove the solvent from the photoresist and irradiated at the desired locations with ultraviolet light at a wavelength of 193 nm to form a structure. Due to the small proportion of the non-transparent base polymers with the aromatic basic structures B at this wavelength, the lacquer is nevertheless sufficiently transparent for the irradiated
  • ARC anti-reflection layer
  • the varnish is developed and the polymer components converted by exposure to the acid released are removed.
  • a high etching stability is achieved by adding the second base polymer comprising the aromatic basic structures B.
  • the thickness of the lacquer between 100 and 150 nm, with the proportion of 5% of the second base polymer containing aromatic basic structures B, ensures complete exposure of the desired structures over all depth ranges of the lacquer.
  • a first base polymer with cyclo-aliphatic base structures B second base polymer with aromatic base structures

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Ein photosensitiver Lack (100) zur Beschichtung auf einem Halbleitersubstrat oder eine Maske umfaßt einen photosensitiven Säurebildner (D), ein Lösungsmittel (E) und wenigstens zwei verschiedene Basispolymere, von denen ein erstes Basispolymer cyclo-aliphatische Grundstrukturen (A) umfaßt, welche eine Lichteinstrahlung bei 248 nm im wesentlichen absorbieren und gegenüber einer Lichteinstrahlung bei 193 nm im wesentlichen transparent sind, und ein zweites Basispolymer aromatische Grundstrukturen (B) umfaßt, welche eine Lichteinstrahlung bei 193 nm im wesentlichen absorbieren und gegenüber einer Lichteinstrahlung bei 248 nm im wesentlichen transparent sind. Wird ein solcher Lack (100) mit einer Schichtdicke von 50 bis 400 nm auf ein Substrat aufgetragen und beträgt der Mengenanteil des zweiten Basispolymers mit den aromatischen Grundstrukturen zwischen 1 und 25 mol%, so wird vorteilhaft in einer Belichtung bei einer Wellenlänge von 193 nm ein höherer Strukturkontrast, eine bessere Ätzstabilität und eine Verringerung von Defekten erreicht. Eine Belichtung über den gesamten Tiefenbereich des Lackes (100) ist dabei gewährleistet.

Description

Beschreibung
Photosensitiver Lack zur Beschichtung auf einem Halbleitersubstrat oder einer Maske
Die vorliegende Erfindung betrifft einen photosensitiven Lack zur Beschichtung auf einem Halbleitersubstrat oder einer Maske.
Zur Herstellung integrierter Schaltungen in der Halbleiterindustrie werden Halbleitersubstrate bzw. Masken als Vorprodukte für die Belichtung der Halbleitersubstrate mit photosensitiven Lacken beschichtet, welche anschließend in einem photolithographischen Schritt mit einer einen Bestandteil der Schaltung repräsentierenden Struktur belichtet wird. Je nach Ausbildung des Lackes als Positiv- oder Negativ-Lack werden die belichteten bzw. unbelichteten Strukturen nach einem Entwicklungsschritt als Ätz- oder Implantationsmaske etc. für die Übertragung der Strukturen in das Substrat oder die Maske verwendet.
Infolge der fortschreitenden Erhöhung der Integrationsdichte auf den Substraten oder Masken verringern sich die zu erreichenden Größen von Strukturen auf den Substraten oder Masken. Die minimal erreichbare Strukturgröße steht in einem linearen Zusammenhang mit der Wellenlänge des in dem Photolithographischen Schritt verwendeten Lichtes. Daraus folgt, daß Übergänge zu Technologiegenerationen mit verringerter Strukturgröße oftmals die Bereitstellung von Belichtungsgeräten, welche mit niedrigerer Wellenlänge arbeiten, erforderlich machen. So wurde in den letzten Jahren der Übergang von Wellenlängen mit 365 nm über 248 nm zu derzeit 193 nm für die photolithographische Strukturierung bewerkstelligt.
Ein photosensitiver Lack umfaßt typischerweise eine oder mehrere photoaktive Substanzen, ein schichtbildendes Basispolymer sowie ein Lösungsmittel. Das Lösungsmittel dient zum Auf- bringen des Lackes auf dem Substrat. Die photoaktive Substanz wirkt bei Einstrahlung von Licht mit einer bestimmten Wellenlänge unter Änderung seiner chemischen Eigenschaften auf das Basispolymer ein. Belichtete Bereiche unterscheiden sich so- mit chemisch von den unbelichteten Bereichen, so daß in einem Entwicklervorgang selektiv die gewünschten Bereiche herausgelöst werden können.
Zur Ausbildung einer Maske in dem Lack, beispielsweise für einen Ätzschritt, ist eine Durchdringung der Lackschicht mit dem eingestrahlten Licht bis zu der Grundfläche der Lackschicht notwendig. Daher muß der verwendete Lack jeweils transparent gegenüber dem eingestrahlten Licht sein. Außerdem muß auch die photoaktive Substanz für die gegebene Wellenlän- ge des eingestrahlten Lichts eine hinreichende Sensitivität aufweisen. Im allgemeinen sind jedoch die bei der photolithographischen Strukturierung verwendeten Lacke nur über einen begrenzten Wellenlängenbereich transparent. So ist beispielsweise das herkömmlich als photoaktive Substanz verwendete Diazonaphtochinon in Verbindung mit einem Novolak-Harz nur über einen Wellenlängenbereich von etwa 300 bis 450 nm für das eingestrahlte Licht einsetzbar.
Zur Bildung von Strukturen mit Breiten von 90 - 110 nm werden derzeit ArF-Excimer-Laser mit einer Wellenlänge von 193 nm verwendet. Im tief-ultravioletten (DUV) Wellenlängenbereich nutzbare photosensitive Lacke besitzen als photoaktive Substanz einen photosensitiven Säurebildner, welcher bei Absorption des eingestrahlten Lichts eine Säure freisetzt, die durch säurekatalysierte Deblockierung des alkali-unlöslichen Basispolymers eine alkali-lösliche Säuregruppe erzeugt. Dies gilt beispielsweise, wenn es sich um einen Positiv-Resist handelt .
Der photosensitive Lack für die photolithographische Strukturierung bei 193 nm besitzt ein Basispolymer, welches im wesentlichen aus cyclo-aliphatischen Grundstrukturen aufgebaut und gerade bei dieser Wellenlänge transparent ist. Die Lacke weisen jedoch noch erhebliche Probleme bei der Strukturübertragung auf den Untergrund auf. So treten beispielsweise bei den belichteten und entwickelten Strukturen in besonderem Ma- ße aufgerauhte Kanten auf, die zu einer ungenügenden Passi- vierung der Seitenwände führen. Durch eine verringerte Stabilität der nach dem Entwickeln verbleibenden Lackstege können diese beispielsweise auch in einer anschließenden Messung der Strukturbreite in einem Raster-Elektronenmikroskop zusammen- brechen. Ein weiterer Nachteil entsteht dadurch, daß gängige, bei einer Wellenlänge von 193 nm transparente Lacke mit den unter ihnen liegenden Anti -Reflexionsschichten chemisch wechselwirken, so daß es zu Lackresten innerhalb der Bahnen zwischen den Lackstegen kommen kann.
Als Lösung wurde bisher vorgeschlagen, noch dünnere Lacksysteme bei einer gleichzeitigen Behandlung des Untergrundes mit beispielsweise Kohlenstoffhartmasken zu verwenden. Dies führt jedoch zu einem erheblich vergrößerten Prozeßaufwand.
Es ist daher die Aufgabe der vorliegenden Erfindung, ein Lacksystem bereitzustellen, welches die vorgenannten Probleme reduziert und eine Verbesserung der Qualität bei der Strukturübertragung von Lackstrukturen in unterliegende Schichten ermöglicht.
Die Aufgabe wird gelöst durch einen photosensitiven Lack mit den Merkmalen des Anspruchs 1. Die Aufgabe wird desweiteren gelöst durch eine Verwendung des photosensitiven Lacks mit den Merkmalen des Anspruchs 6. Jeweils vorteilhafte Ausgestaltungen sind den abhängigen Ansprüchen zu entnehmen.
Der vorliegenden Erfindung zufolge umfaßt der photosensitive Lack, ähnlich wie im Fall herkömmlicher, im ultravioletten Wellenlängenbereich einsetzbarer photosensitiver Lacke, einen Photosensitiven Säurebildner sowie ein Lösungsmittel, jedoch weist der Lack zur Bildung der Polymermatrix im in einem aus- gehärteten Lack wenigstens zwei verschiedene Basispolymere auf. Ein erstes Basispolymer umfaßt dabei cyclo-aliphatische Grundstrukturen. Als weitere Eigenschaft besitzen diese Grundstrukturen eine Transparenz gegenüber Lichteinstrahlung, insbesondere in dem Wellenlängenbereich um 193 nm, welcher der Lichteinstrahlung des für die 90-110 nm- Strukturtechnologien verwendeten ArF-Excimer-Lasers entspricht. Demgegenüber ist dieses erste Basispolymer bei einer Lichteinstrahlung von 248 nm im wesentlichen intransparent.
Die Wellenlänge von 248 nm entspricht derjenigen Lichteinstrahlung, welche durch einen KrF-Excimer-Laser zur photolithographischen Strukturierung erzeugt wird und üblicherweise der nächstliegenden, niedrigeren Technologiegeneration ober- halb von 130 nm großen Strukturbreiten entspricht.
Das wenigstens zweite Basispolymer umfaßt hingegen aromatische Grundstrukturen, wie sie herkömmlich gerade für die 248 nm-Laser eingesetzt werden. Das zweite Basispolymer hat die Eigenschaft, bei einer Lichteinstrahlung von 193 nm Wellenlänge intransparent zu sein, während es gerade bei 248 nm lichtdurchlässig ist.
Die Bandbreiten der angegebenen Wellenlängen für die Transpa- renz der Basispolymere sind dabei jeweils mindestens so groß, daß ein wesentlicher Teil des Ausgangsspektrums des KrF- (248 nm) bzw. ArF-Excimer-Lasers (193 nm) bei dessen entsprechender Resonanzmode davon erfaßt wird.
Gemäß zweier vorteilhafter Ausgestaltungen liegen wenigstens zwei Basispolymere entweder als Block-Copolymere vor oder sie befinden sich gemeinsam in einer Mischung (Blend) , ohne daß chemische Bindungen aufgebaut werden. Es wurde gefunden, daß durch den erfindungsgemäßen Lack die jeweils für ihren Wel- lenlängenbereich geltenden Vorteile auch noch in einer Mischung oder Block-Copolymerbildung der wenigstens zwei Polymersubstanzen zur Bewirkung einer Strukturübertragung mit ho- her Auflösung nutzbar sind, wenn auch nur eine der Wellenlängen, insbesondere 193 nm, für die Lichteinstrahlung verwendet wird. Die jeweiligen Volumenanteile der Basispolymere sowie die Gesamtschichtdicke des Lacks sind dabei derart zu wählen, daß trotz der Absorptionseigenschaft des einen Basispolymers bei gegebener Lichtwellenlänge eine Belichtung bis auf die Bodenfläche des Lacks gewährleistet ist.
Wird beispielsweise ein im Vergleich zum ersten Basispolymer mit den cyclo-aliphatischen Grundstrukturen mit einem geringeren Mol-Anteil versehenes zweites Basispolymer mit aromatischen Grundstrukturen bei einer Belichtungswellenlänge von 193 nm verwendet, so entsteht dadurch ein Vorteil, daß eine Wechselwirkung des Lacks mit dem Untergrund reduziert wird. Dadurch werden Lackreste nach einem Belichtungs- und Entwicklervorgang in den belichteten Strukturen erheblich vermindert. Ursache hierfür sind die Polymerbestandteile des zweiten Basispolymers enthaltend die aromatischen Grundstrukturen.
Die zusätzlichen Anteile des zweiten Polymers bewirken auch, daß die Rauhigkeit der Resistflanken nach einem Ätzvorgang verringert wird aufgrund des aromatischen Anteiles. Ursache hierfür ist eine verbesserte Fluor-Seitenwandpassivierung in den belichteten Strukturen, welches einerseits zu einer erhöhten Stabilität stehengebliebener Stege wie aber auch zu einer maßhaltigen Strukturübertragung führt. Desweiteren wird dadurch der sogenannte Etch-Bias, ein Vorhalt für das Ätzen, welcher zum Ausgleich des beschriebenen Effekts eingesetzt werden muß, ebenfalls vorteilhaft verringert. Einen weiteren Vorteil bietet die erhöhte Ätzresistenz, welche durch den aromatischen Anteil gegeben ist, für die Verringerung der Lackdicke und daraus resultierend für die Stabilität der Lackmaske .
Andererseits wird durch die Absorptionseigenschaften aufgrund des geringen Mol -Anteils des zweiten Basispolymers umfassend die aromatischen Grundstrukturen die Gesamtabsorption bzw. die Eindringtiefe des einstrahlenden Lichts nur unwesentlich beeinflußt . Dies könnte bei nur geringem Prozeß-Mehraufwand durch eine verminderte Lackdicke, eine erhöhte Lichtintensi- tat oder eine verlängerte Belichtungsdauer ausgeglichen werden.
Gemäß einer besonders vorteilhaften Ausgestaltung beträgt der Mengenanteil des zweiten Basispolymers an allen eingesetzten Basispolymeren zwischen 1 und 25 mol%. Mit einem solchen Anteil besitzt der photosensitive Lack insbesondere bei einer eingestrahlten Lichtwellenlänge von 193 nm noch eine hinreichende Transparenz, weil die komplementären Basispolymere umfassend cyclo-aliphatische Grundstrukturen hier völlig trans- parent sind. In Abhängigkeit vom Mengenanteil können die
Schichtdicken auf dem Halbleitersubstrat oder der Maske derart angepaßt werden, daß trotz der durch das intransparente Basispolymer erhöhte mittlere Absorptionskoeffizizent des Lackmaterials die Lackschicht bis zu ihrer Grundfläche ausge- leuchtet werden kann. Für das oben angegebene Mengenverhältnis der Basispolymere wurde ein besonders vorteilhafter Wert von 50 - 400 nm für die Schichtdicke solcher Lacke gefunden.
Die Erfindung soll nun anhand eines Ausführungsbeispiels mit Hilfe einer Zeichnung näher erläutert werden. Darin zeigt:
Figur 1 schematisch eine Mischung zweier verschiedener Basispolymere in einem Lack, jeweils umfassend cyclo- aliphatische und aromatische Grundstrukturen.
Figur 1 zeigt einen photosensitiven Lack 100 mit Lösungsmitteln E, Säurebildnern D und mit als Block-Copolymere C synthetisierten ersten Basispolymeren, welche cyclo-aliphatischen Grundstrukturen A umfassen, und zweiten Basispolyme- ren, welche aromatischen Grundstrukturen B umfassen. Der Anteil der zweiten Basispolymere enthaltend aromatische Grundstrukturen B an allen Basispolymeren A, B beträgt 5 mol%. Das zweite Basispolymer mit aromatischen Grundstrukturen B in diesem Ausführungsbeispiel umfaßt Poly (4-Hydroxystyrol) , welches mit säureempfindlichen tert-Butoxy-carbonyl -Gruppen blockiert ist.
Das erste Basispolymer mit den cyclo-aliphatischen Grundstrukturen A umfaßt eine säureempfindliche Blockiergruppe, welche hier ein Poly-Methacrylat ist. Es umfaßt ebenfalls eine alkali-lösliche Einheit aus Cyclo-Olefinmalein-Anhydrid.
Der Lack wird hergestellt unter einer Polymersynthese mit den angegebenen mol -Anteilen der Basispolymere. Dieser Lack wird auf einen Wafer mit einer Schichtdicke von 100 - 150 nm aufgetragen, in einem sogenannten Prebake-Schritt zur Entfernung des Lösungsmittels aus dem Photolack vorgeheizt und an den gewünschten Stellen zur Bildung einer Struktur mit ultraviolettem Licht der Wellenlänge 193 nm bestrahlt. Durch den geringen Anteil der bei dieser Wellenlänge intransparenten Basispolymere mit den aromatischen Grundstrukturen B ist der Lack dennoch hinreichend transparent für das eingestrahlte
Licht, so daß dieser in den betrahlten Bereichen bis zu seiner Grundfläche, welche an eine Anti -Reflexionsschicht (ARC) angrenzt, vollständig belichtet wird.
Nach einem sogenannten Post-Exposure-Bake-Schritt wird der Lack entwickelt und die in dem durch die Belichtung mittels der freigesetzten Säure umgewandelten Polymerbestandteile entfernt. Durch die Zugabe des zweiten Basispolymers umfassend die aromatischen Grundstrukturen B wird eine hohe Ätz- Stabilität erreicht. Die Dicke des Lackes zwischen 100 und 150 nm gewährleistet bei dem Anteil von 5 % des zweiten Basispolymers enthaltend aromatische Grundstrukturen B die vollständige Belichtung der gewünschten Strukturen über alle Tiefenbereiche des Lackes. Bezugszeichenliste
A erstes Basispolymer mit cyclo-aliphatischen Grundstrukturen B zweites Basispolymer mit aromatischen Grundstrukturen
C Block-Copolymer
D Säurebildner (PAG)
E Lösungsmittel
100 Photosensitiver Lack

Claims

Patentansprüche :
1. Photosensitiver Lack (100) zur Beschichtung auf einem Halbleitersubstrat oder einer Maske, umfassend: - einen photosensitiven Säurebildner (D) ,
- ein Lösungsmittel (E) ,
- wenigstens zwei verschiedenen Basispolymere, von denen ein a) erstes Basispolymer cyclo-aliphatische Grundstrukturen (A) umfaßt, welche eine Lichteinstrahlung bei 248 Nano- metern absorbieren und gegenüber einer Lichteinstrahlung bei 193 Nanometern transparent sind, b) zweites Basispolymer aromatische Grundstrukturen (B) umfaßt, welche eine Lichteinstrahlung bei 193 Nanometern absorbieren und gegenüber einer Lichteinstrahlung bei 248 Nanometern transparent sind.
2. Photosensitiver Lack (100) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß von den Basispolymeren in dem Lack das erste Basispolymer um- fassend die cyclo-aliphatischen Grundstrukturen (A) einen
Mengenanteil von mehr als 75 mol% und von weniger als 99 mol% aufweist .
3. Photosensitiver Lack (100) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß von den Basispolymeren in dem Lack das zweite Basispolymer umfassend die aromatischen Grundstrukturen (B) einen Mengenanteil von mehr als 1 mol% und von weniger als 25 mol% aufweist .
4. Photosensitiver Lack (100) nach den Ansprüchen 2 oder 3, d a d u r c h g e k e n n z e i c h n e t , daß sich die wenigstens zwei verschiedenen Basispolymere (A, B) gemeinsam in einer Mischung befinden, ohne daß chemische Bin- düngen aufgebaut werden.
5. Photosensitiver Lack (100) nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die wenigstens zwei verschiedenen Basispolymere (A, B) Block- Copolymere (C) bilden.
6. Verwendung des photosensitiven Lackes (100) nach einem der Ansprüche 1 bis 5 zur Bildung einer photosensitiven Schicht auf einem Halbleiterwafer oder einer Maske mit einer Schicht - dicke von weniger als 400 Nanometern und mehr als 50 Nanometern.
7. Verwendung nach Anspruch 6 , d a d u r c h g e k e n n z e i c h n e t , daß die photosensitive Schicht mit Licht einer Wellenlänge von 193 Nanometern bestrahlt wird.
EP03755914A 2002-05-31 2003-05-30 Photosensitiver lack zur beschichtung auf einem halbleiter-substrat oder einer maske Withdrawn EP1509815A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10224217 2002-05-31
DE10224217A DE10224217A1 (de) 2002-05-31 2002-05-31 Photosensitiver Lack zur Beschichtung auf einem Halbleitersubstrat oder einer Maske
PCT/DE2003/001781 WO2003102694A1 (de) 2002-05-31 2003-05-30 Photosensitiver lack zur beschichtung auf einem halbleiter-substrat oder einer maske

Publications (1)

Publication Number Publication Date
EP1509815A1 true EP1509815A1 (de) 2005-03-02

Family

ID=29557437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03755914A Withdrawn EP1509815A1 (de) 2002-05-31 2003-05-30 Photosensitiver lack zur beschichtung auf einem halbleiter-substrat oder einer maske

Country Status (4)

Country Link
US (1) US7169716B2 (de)
EP (1) EP1509815A1 (de)
DE (1) DE10224217A1 (de)
WO (1) WO2003102694A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4368282B2 (ja) * 2004-09-24 2009-11-18 富士フイルム株式会社 ポジ型レジスト組成物及びそれを用いたパターン形成方法
JP4861767B2 (ja) 2005-07-26 2012-01-25 富士フイルム株式会社 ポジ型レジスト組成物およびそれを用いたパターン形成方法
TWI479266B (zh) 2005-12-27 2015-04-01 Fujifilm Corp 正型光阻組成物及使用它之圖案形成方法
TWI485064B (zh) * 2006-03-10 2015-05-21 羅門哈斯電子材料有限公司 用於光微影之組成物及製程
TWI605310B (zh) * 2009-12-15 2017-11-11 羅門哈斯電子材料有限公司 光阻劑及其使用方法
JP5844613B2 (ja) * 2010-11-17 2016-01-20 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC 感光性コポリマーおよびフォトレジスト組成物

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298365A (en) * 1990-03-20 1994-03-29 Hitachi, Ltd. Process for fabricating semiconductor integrated circuit device, and exposing system and mask inspecting method to be used in the process
KR100233367B1 (ko) * 1993-04-15 1999-12-01 카나가와 치히로 레지스트 재료
JP2936956B2 (ja) * 1993-04-15 1999-08-23 信越化学工業株式会社 レジスト材料
US5635332A (en) * 1993-07-14 1997-06-03 Nec Corporation Alkylsulfonium salts and photoresist compositions containing the same
EP0737897A1 (de) * 1995-03-15 1996-10-16 OCG Microelectronic Materials Inc. Nasschemisch entwickelbares, ätzstabiler Photoresist für UV-Strahlung mit einer Wellenlänge unter 200 nm
JP3433017B2 (ja) * 1995-08-31 2003-08-04 株式会社東芝 感光性組成物
US5939236A (en) * 1997-02-07 1999-08-17 Shipley Company, L.L.C. Antireflective coating compositions comprising photoacid generators
JP3680920B2 (ja) * 1999-02-25 2005-08-10 信越化学工業株式会社 新規なエステル化合物、高分子化合物、レジスト材料、及びパターン形成方法
US6492092B1 (en) * 1999-03-12 2002-12-10 Arch Specialty Chemicals, Inc. Hydroxy-epoxide thermally cured undercoat for 193 NM lithography
JP3734012B2 (ja) * 1999-10-25 2006-01-11 信越化学工業株式会社 レジスト材料及びパターン形成方法
KR100533364B1 (ko) * 1999-11-02 2005-12-06 주식회사 하이닉스반도체 레지스트 플로우 공정용 포토레지스트 조성물 및 이를이용한 콘택홀의 형성방법
US6509138B2 (en) * 2000-01-12 2003-01-21 Semiconductor Research Corporation Solventless, resistless direct dielectric patterning
EP1117003B1 (de) * 2000-01-17 2012-06-20 Shin-Etsu Chemical Co., Ltd. Verfahren zur Herstellung von chemisch verstärkter Resistzusammensetzung
JP3974319B2 (ja) * 2000-03-30 2007-09-12 株式会社東芝 エッチング方法
WO2002021216A2 (en) * 2000-09-08 2002-03-14 Shipley Company, L.L.C. Polymers and photoresist compositions comprising electronegative groups
US6680157B1 (en) * 2000-10-12 2004-01-20 Massachusetts Institute Of Technology Resist methods and materials for UV and electron-beam lithography with reduced outgassing
JP4226842B2 (ja) * 2002-05-01 2009-02-18 信越化学工業株式会社 光酸発生剤、化学増幅レジスト材料及びパターン形成方法
US7264913B2 (en) * 2002-11-21 2007-09-04 Az Electronic Materials Usa Corp. Antireflective compositions for photoresists
US7541131B2 (en) * 2005-02-18 2009-06-02 Fujifilm Corporation Resist composition, compound for use in the resist composition and pattern forming method using the resist composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03102694A1 *

Also Published As

Publication number Publication date
WO2003102694A1 (de) 2003-12-11
US7169716B2 (en) 2007-01-30
US20050130444A1 (en) 2005-06-16
DE10224217A1 (de) 2003-12-18

Similar Documents

Publication Publication Date Title
DE4414808B4 (de) Verwendung einer Antireflexbeschichtungszusammensetzung und Herstellungsverfahren für eine Antireflexschicht und ein Halbleiterbauelement
EP0002795B1 (de) Verfahren zum Erzeugen von Masken für lithographische Prozesse unter Verwendung von Photolack
DE10203838A1 (de) Fluorhaltiger Fotoresist mit Reaktionsankern für eine chemische Nachverstärkung und verbesserten Copolymerisationseigenschaften
DD206607A1 (de) Verfahren und vorrichtung zur beseitigung von interferenzeffekten
DE10142590A1 (de) Verfahren zur Seitenwandverstärkung von Resiststrukturen und zur Herstellung von Strukturen mit reduzierter Strukturgröße
EP0146834A2 (de) Entwickler für Positiv-Fotoresists
DE102004047355B4 (de) Verfahren zur Herstellung von Maskenrohlingen
DE10361257A1 (de) Verfahren zur Herstellung von feinen Mustern
DE3337315C2 (de)
DE10134501A1 (de) Verfahren zum Bilden von Mikromustern eines Halbleiterbauelementes
DE10147011A1 (de) Chemisch verstärkte Resistzusammensetzung und Verfahren zur Bildung eines gemusterten Films unter Verwendung derselben
DE4341302A1 (de) Verfahren zum Herstellen einer Halbleitervorrichtung und einer darin verwendeten Resistverbindung
EP1509815A1 (de) Photosensitiver lack zur beschichtung auf einem halbleiter-substrat oder einer maske
DE10309266B3 (de) Verfahren zum Bilden einer Öffnung einer Licht absorbierenden Schicht auf einer Maske
EP0525625A1 (de) Negativ arbeitendes strahlungsempfindliches Gemisch und damit hergestelltes strahlungsempfindliches Aufzeichnungsmaterial
DE3112196A1 (de) "photosensitive zusammensetzung zur trockenentwicklung"
DE102006002032A1 (de) Fotoempfindliche Beschichtung zum Verstärken eines Kontrasts einer fotolithographischen Belichtung
DE3443400A1 (de) Verfahren zur erzeugung eines bildes
DE10238783A1 (de) Verfahren zur Herstellung einer Phasenverschiebungsmaske, Phasenverschiebungsmaske und Vorrichtung
EP0388484B1 (de) Hochauflösender Photoresist
DE10228546B4 (de) Verfahren zur Strukturierung einer Lithographiemaske
DE102004022329B3 (de) Verfahren zur dynamischen Dosisanpassung in einem lithographischen Projektionsapparat und Projektionsapparat
DE4443934A1 (de) Verfahren zur Bildung eines Resistmusters und eines darin verwendeten sauren, wasserlöslichen Materialgemisches
DE10228325B4 (de) Verfahren zur Herstellung einer Halbleiterspeichervorrichtung durch den Einsatz eines mit ArF-Laserstrahl belichteten Photoresist-Musters
DD250400A1 (de) Schablonenabbildungsverfahren zur verringerung des strukturrasters

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

18D Application deemed to be withdrawn

Effective date: 20091201