EP1485518A1 - Vorrichtung zum abscheiden von d nnen schichten auf einem su bstrat - Google Patents

Vorrichtung zum abscheiden von d nnen schichten auf einem su bstrat

Info

Publication number
EP1485518A1
EP1485518A1 EP03708229A EP03708229A EP1485518A1 EP 1485518 A1 EP1485518 A1 EP 1485518A1 EP 03708229 A EP03708229 A EP 03708229A EP 03708229 A EP03708229 A EP 03708229A EP 1485518 A1 EP1485518 A1 EP 1485518A1
Authority
EP
European Patent Office
Prior art keywords
gas outlet
gas
diffuser plate
process chamber
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03708229A
Other languages
English (en)
French (fr)
Inventor
Holger JÜRGENSEN
Gerd Strauch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aixtron SE
Original Assignee
Aixtron SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aixtron SE filed Critical Aixtron SE
Publication of EP1485518A1 publication Critical patent/EP1485518A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45568Porous nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles

Definitions

  • the invention relates to a device for depositing thin layers on a substrate, with a process chamber arranged in a reactor housing, the bottom of which is formed by a susceptor for receiving at least one substrate and the cover of which is associated with a gas inlet element, from which an essentially flat uniform distribution occurs the entire gas outlet surface pointing to the susceptor, the process gas can be introduced into the process chamber.
  • Such a device is known from DE 695 04762 T2.
  • This document describes an apparatus and a method for depositing III-V semiconductors on a substrate arranged in a process chamber, which lies on a susceptor which forms the bottom of a process chamber, the cover of which is formed by a gas inlet element.
  • the gas inlet member has a flat gas outlet surface which extends parallel to the surface of the susceptor.
  • the diameter of the susceptor is considerably larger than the clear distance between the susceptor and the gas outlet surface.
  • the gas outlet surface has a plurality of openings opening there, to which channels are assigned, which penetrate the base plate of the gas inlet element and in a gas volume arise, which is fed from a gas supply line with the process gas.
  • This shower head-like gas supply into the process chamber has the advantage that it enables homogeneous growth of the semiconductor layers on the substrates lying on the susceptor.
  • the susceptor is heated inductively from below, that is to say from the side facing away from the process chamber, by means of a high-frequency coil.
  • the susceptor can be rotated around its axis.
  • the process gas is fed into the process chamber in a jet-like manner due to the nozzle-like openings.
  • the "jets" emerging from the gas outlet openings relax above the diffusion boundary layer and abut one another there, so that there is no influence on the layer homogeneity. Any influences can also be reduced by increasing the process chamber pressure.
  • the gas inlet element While the susceptor is being heated to a relatively high temperature, the gas inlet element has to be cooled in order to avoid premature decomposition of the process gases and parasitic deposits. In the prior art, this is done by water cooling the base plate of the gas inlet element.
  • the process chamber height is reduced, however, there is a risk that, due to the increasing temperature gradient in the vertical direction in the process chamber and the diffusion transport mechanisms thereby changed, the gas outlet areas in the area between the openings can still be occupied.
  • the openings act like nozzles. Flow may stall at the opening edges. The tear behavior depends on the size of the Reynolds number. Conical or conical openings have already been proposed in the prior art. Even with this, the breaking off of the flow cannot be completely avoided. The stall has the consequence that there is a space between two nozzles that has little flow. There is a dynamic pressure difference with the jet. As a result, the concentration of the starting materials can accumulate in this room via diffusion. Enrichment can exceed the condensation temperature.
  • the invention is therefore based on the object of specifying means in order to avoid parasitic coating on a generic gas inlet element.
  • the gas outlet surface is formed by a gas-permeable diffuser plate.
  • This diffuser plate can extend parallel to a gas outlet plate having a plurality of gas outlet openings arranged in a sieve shape.
  • This gas outlet plate can form the bottom of a chamber of the gas inlet member.
  • the distance between the susceptor and the gas outlet surface, that is to say the underside of the diffuser plate, is preferably less than 80 mm or 50 mm. This distance can even be less than 40 mm or less than 30 mm. It is also provided that this distance is less than 25 mm, 20 mm, 16 mm or less than 11 mm.
  • the process chamber is surrounded by a gas outlet ring.
  • This gas outlet ring has a plurality of openings directed towards the center of the circular process chamber, through which the gas can flow from the process chamber into the cavity of the gas outlet ring.
  • the gas outlet ring there is one or more discharge lines leading to a pump whose pumping capacity is adjustable so that the total pressure within the process chamber can be set.
  • the diffuser plate can preferably consist of a porous material.
  • the porous material can be formed from a metallic material, a ceramic material or from quartz glass.
  • the diffuser plate can be a solid, open-cell foam. However, the diffuser plate can also be formed from a multi-layer fabric or a scrim.
  • the diffuser plate widens the gas flow introduced at different, spatially separated positions, so that a homogeneous gas curtain flows into the process chamber.
  • the diffuser plate can be arranged in touching contact under the gas outlet plate of the gas inlet element. Since the gas outlet plate of the gas inlet element can be cooled, as described, for example, in DE 695 04762 T2, the diffuser plate is also cooled as a result of the contacting system.
  • the spacing of the openings provided in the gas outlet plate in a sieve-like manner can, according to this configuration, be made relatively large, so that between these openings, which can be formed by tubes, there is still sufficient space for a volume through which coolant can flow. The distance between the openings can thus be greater than a quarter of the distance between the susceptor and the gas outlet surface.
  • the spacing of the openings of the gas outlet plate can be even greater than is normally necessary in order to achieve relaxation of the jets emerging from the openings in front of the diffusion boundary layer.
  • the gas flows into the diffuser plate in a jet-like manner from these openings, the gas enters the process chamber at a reduced flow rate, which is in particular the same over the entire area of the gas outlet area. There are practically no more discrete jets emerging from the gas inlet member.
  • the material thickness of the diffuser plate can be selected so that its underside, which faces the process chamber, still has a temperature ratures in which there is no local decomposition of the starting materials. There is therefore no limiting growth. Typically, the temperature of the diffuser plate surface is between 100 ° C and 300 ° C.
  • the porosity and the material thickness as well as the thermal conductivity of the diffuser plate can be adapted to the respective process parameters and in particular to the carrier gas.
  • the process chamber height can be reduced to values that are smaller than with a conventional design of the gas outlet surface. This is particularly advantageous when depositing semiconductor layers using the MOCVD method, in which the growth is limited by diffusion.
  • the process gas is fed directly into the diffusion zone, homogeneously.
  • the reactor housing 1 consists of a lower housing part, which consists of the wall 4 and the bottom 5, and a cover part 3, which can be removed for loading the process chamber 6.
  • a gas inlet element 2 is fixedly attached to the cover part 3.
  • This gas inlet element 2 is fed by means of a gas feed line 17.
  • the gas inlet member 2 has a hollow chamber into which the gas feed line 17 opens. This chamber is delimited at the top by a cover plate 11, on the side by a circular ring 12 and on the process chamber 6 by a gas outlet plate 13, the gas outlet plate can be water-cooled in the form as described in DE 695 04762 T2. It can also consist of two plates 13 ', 13 "between which coolant through which channels can be arranged.
  • a diffuser plate 15 is located below the gas outlet plate 13. The diffuser plate 15 is an additional plate which is brought into contact with the gas outlet plate 13.
  • a circular susceptor 7 in parallel to the diffuser plate 15, which can be inductively heated from below by means of an HF heating coil 16.
  • the susceptor 7, which can consist of quartz, graphite or coated graphite, for example, can be rotated about its central axis. It is driven by rotation.
  • One or more substrates 8 can be applied to the surface of the susceptor 7, which faces the diffuser plate 15.
  • the process chamber 6 is surrounded by a gas outlet ring 9.
  • This gas outlet ring has an annular cavity which has openings to the process chamber 6 through which the process gas can flow into the cavity of the gas outlet ring 9.
  • the gas outlet ring 9 has leads, not shown in the drawing, which lead to a pump, not shown.
  • the pump output is adjustable. A predetermined total gas pressure can thereby be set within the process chamber 6.
  • the diffuser plate 15 can be made of a porous material. For example, it can be formed by a quartz frit.
  • the diffuser plate can also be made of metal, especially stainless steel. Ceramic is also provided as the material.
  • the diffuser plate can have the structure of an open-pore hard foam.
  • the diffuser plate can also be a random scrim or a multi-layer fabric.
  • An essential feature of the diffuser plate 15 is its property of uniformly guiding the gas flowing out of the gas volume of the gas inlet element 2 through the gas inlet openings 14 and having a high gas velocity into the process chamber 6.
  • the gas, which emerges locally through the openings 14, is conducted over a wide area into the process chamber 6, the gas velocity being homogenized and reduced, so that the jet effect which the gas outlet openings 14 would develop without the diffuser plate is reduced.
  • the zones of low flow velocity which are disadvantageous in the prior art in addition to the jets emerging from the openings no longer exist. There is no increase in concentration and therefore no condensation.
  • the temperature on the underside of the diffuser plate is selected so that there is no local decomposition of the starting materials. The temperature is preferably between 100 ° C and 300 ° C.
  • the material thickness and the porosity of the diffuser plate are selected such that the gas “jets” emerging from the individual gas outlet openings 14 expand.
  • the diffuser plate 15 lies in close contact with the water-cooled gas outlet plate 13 in particular. As a result, the diffuser plate 15 is also kept at a relatively low temperature, so that a large vertical temperature gradient can be established in the process chamber 6.
  • the device can be operated at total gas pressures between 10 mbar and atmospheric pressure. However, it is also provided that the device is operated at lower pressures.
  • the speed of the susceptor can be between 10 rpm and 1000 rpm.
  • a total gas flow of 8 slm to 50 slm can be introduced into the process chamber, which preferably has a height of 50 mm and a diameter of more than 10, 20 or 30 cm.
  • the height of the process chamber can also be less than 50 mm. So are Process chamber heights of 75, 50, 40, 35, 30, 25, 15, 11 or a few millimeters possible.
  • the height H is not only limited upwards, but also downwards. Such a downward limitation is particularly provided if, due to manufacturing tolerances or due to the material properties and their inhomogeneous thermal expansion, a parallel position between the gas outlet surface 15 and the substrate holder surface cannot be guaranteed. Then it is advantageous if the process chamber height does not fall below 11 mm.

Abstract

Die Erfindung betrifft eine Vorrichtung zum Abscheiden von dünnen Schichten auf einem Substrat, mit einer in einem Reaktorgehäuse (1) angeordneten Prozesskammer (6) deren Boden von einem Suszeptor (7) zur Aufnahme mindestens eines Substrates gebildet ist und deren Deckel ein Gaseinlassorgan (2) zugeordnet ist, auf welchem in im Wesentlichen flächiger Gleichverteilung über seiner gesamten auf den Suszeptor hinweisenden Gasaustrittsfläche das Prozessgas in die Prozesskammer einleitbar ist. Zur Vermeidung einer parasitären Belegung am Gaseinlassorgan ist vorgesehen, dass die Gasaustrittsfläche von einer gasdurchlässigen Diffuserplatte (15) gebildet ist. Diese kann sich parallel zu einer eine Vielzahl siebartig angeordneter Gasaustrittsöffnungen (14) aufweisenden Gasauslassplatte (13) erstrecken.

Description

Vorrichtung zum Abscheiden von dünnen Schichten auf einem Substrat
Die Erfindung betrifft eine Vorrichtung zum Abscheiden von dünnen Schichten auf einem Substrat, mit einer in einem Reaktorgehäuse angeordneten Prozesskammer, deren Boden von einem Suszeptor zur Aufnahme mindestens eines Substrates gebildet ist und deren Deckel ein Gaseinlassorgan zugeordnet ist, aus welchem in im Wesentlichen flächiger Gleichverteilung über seiner gesamten auf den Suszeptor hinweisenden Gasaustrittsfläche das Prozessgas in die Prozesskammer einleitbar ist.
Eine derartige Vorrichtung ist aus der DE 695 04762 T2 bekannt. Diese Schrift beschreibt eine Vorrichtung und ein Verfahren zum Abscheiden von III- V- Halbleiter auf einem in einer Prozesskammer angeordneten Substrat, welches auf einem Suszeptor liegt, der den Boden einer Prozesskammer ausbildet, deren Deckel von einem Gaseinlassorgan ausgebildet ist. Das Gaseinlassorgan besitzt eine ebene Gasauslassfläche, welche sich in parallelem Abstand zur Oberfläche des Suszeptors erstreckt. Der Durchmesser des Suszeptors ist dabei erheblich größer, als der lichte Abstand zwischen dem Suszeptor und der Gasaustrittsflä- che. Um eine im Wesentlichen flächige Gleichverteilung des aus dem Gaseinlas- sorgan austretenden Prozessgases über seine gesamte auf den Suszeptor hinweisende Gasaustrittsfläche zu erreichen, besitzt die Gasaustrittsfläche eine Vielzahl von dort mündenden Öffnungen, denen Kanälen zugeordnet sind, die die Bodenplatte des Gaseinlassorganes durchdringen und in einem Gasvolumen entspringen, welches von einer Gaszuleitung mit dem Prozessgas gespeist wird. Diese duschkopfartige Gaszuführung in die Prozesskammer hat den Vorteil, dass dadurch ein homogenes Wachstum der Halbleiterschichten auf den auf dem Suszeptor liegenden Substraten möglich ist. Der Suszeptor wird von unten, also von der der Prozesskammer abgewandten Seite mittels einer Hochfrequenz-Spule induktiv beheizt. Der Suszeptor kann um seine Achse drehan- getrieben werden. In Journal of Crystal Growth 195 (1998) 725-732 werden Überlegungen angestellt, welche Einflüsse von Drehzahl des Suszeptors und Abstand des Suszeptors von der Gasaustrittsfläche sowie Durchmesser des Suszeptors auf die Schichteigenschaften haben können. Das Ergebnis dieser Überlegungen ist, dass geringe Abstände zu optimalen Schichteigenschaften und zu einer erhöhten Effizienz der Ausnutzung der Prozessgase führen. Die besten Ergebnisse werden für Abstände vorausgesagt, die zwischen 16 und 25 mm liegen.
Die Zuführung des Prozessgases in die Prozesskammer erfolgt zufolge der düsenartig wirkenden Öffnungen strahlartig. Bei einer genügend großen Entfernung von Substrathalter zu Gasaustrittsöffnung macht sich die Wirkung der einzelnen Strahlen auf die Schichteigenschaften kaum bemerkbar. Die aus den Gasaustrittsöffnungen austretenden "Jets" relaxieren oberhalb der Diffusions- randschicht und stoßen dort aneinander, so dass ein Einfluss auf die Schichthomogenität nicht entstehen kann. Etwaige Einflüsse können auch durch einen erhöhten Prozesskammerdruck reduziert werden. Während der Suszeptor auf eine relativ hohe Temperatur geheizt wird, muss das Gaseinlassorgan zur Vermeidung eines vorzeitigen Zerfalls der Prozessgase und parasitärer Depositio- nen gekühlt werden. Dies erfolgt beim Stand der Technik durch eine Wasserkühlung der Bodenplatte des Gaseinlassorganes. Bei einer Reduzierung der Prozesskammerhöhe besteht aber die Gefahr, dass aufgrund des sich erhöhenden Temperaturgradienten in vertikaler Richtung in der Prozesskammer und durch die dadurch veränderten Diffusions-Transport-Mechanismen trotzdem eine Belegung der Gasaustrittsflächen im Bereich zwischen den Öffnungen erfolgen kann. Die Öffnungen wirken wie Düsen. An den Öffnungsrändern kann es zu Strömungsabrissen kommen. Das Abreißverhalten hängt von der Größe der Reynoldszahl ab. Im Stand der Technik wurden schon konische oder kegelförmige Öffnungen vorgeschlagen. Auch damit lässt sich das Abreißen der Strömung nicht gänzlich vermeiden. Der Strömungsabriss hat zur Folge, dass sich zwischen zwei Düsen ein Raum ergibt, der gering durchströmt wird. Es entsteht zum Düsenstrahl ein dynamischer Druckunterschied. In Folge dessen kann sich in diesem Raum über die Diffusion die Konzentration der Ausgangsstoffe dort anreichern. Die Anreicherung kann die Kondensationstemperatur überschreiten. Dies hätte zur Folge, dass eine Kondensation in der Gasphase oder an der Oberfläche des Gaseinlassorganes stattfindet. Eine Erhöhung der Temperatur des Gaseinlassorganes verhindert zwar die Kondensation. Es kann aber zu einer lokalen Zerlegung der Ausgangsstoff dort kommen, was nicht erwünscht ist. Hierdurch kann parasitäres Wachstum einsetzen. Das dort abge- schiedene Material kann durch Abplatzen den CVD-Prozess negativ beeinflussen.
Der Erfindung liegt daher die Aufgabe zugrunde, Mittel anzugeben, um eine parasitäre Belegung an einem gattungsgemäßen Gaseinlassorgan zu vermei- den.
Gelöst wird die Aufgabe durch die in den Ansprüchen angegebene Erfindung, wobei der Anspruch 1 darauf abstellt, dass die Gasaustrittsfläche von einer gasdurchlässigen Diffuserplatte gebildet ist. Diese Diffuserplatte kann sich par- allel zu einer eine Vielzahl siebartig angeordneter Gasaustrittsöffnungen aufweisenden Gasauslassplatte erstrecken. Diese Gasauslassplatte kann den Boden einer Kammer des Gaseinlassorganes ausbilden. Der Abstand zwischen dem Suszeptor und der Gasauslassfläche, also der Unterseite der Diffuserplatte beträgt bevorzugt weniger als 80 mm oder 50 mm. Dieser Abstand kann sogar weniger als 40 mm oder weniger als 30 mm betragen. Es ist auch vorgesehen, dass dieser Abstand geringer als 25 mm, 20 mm, 16 mm oder geringer als 11 mm ist. Die Prozesskammer wird von einem Gasauslassring umgeben. Dieser Gasauslassring hat eine Vielzahl von auf das Zentrum der kreisrunden Prozesskammer gerichteten Öffnungen, durch die das Gas aus der Prozesskammer in den Hohlraum des Gasauslassringes strömen kann. Der Gasauslassring be- sitzt ein oder mehrere Ableitungen, die zu einer Pumpe führen, deren Pumpleistung einstellbar ist, so dass der Totaldruck innerhalb der Prozesskammer einstellbar ist. Die Diffuserplatte kann bevorzugt aus einem porösen Material bestehen. Das poröse Material kann von einem metallischen Werkstoff, einem ke- ramischen Werkstoff oder von Quarzglas gebildet sein. So kann die Diffuser- platte ein fester, offenporiger Schaum sein. Die Diffuserplatte kann aber auch von einem mehrlagigen Gewebe oder einem Wirrgelege gebildet sein. Wesentlich ist, dass die Diffuserplatte den an verschiedenen örtlich voneinander getrennten Positionen eingebrachten Gasstrom aufweitet, so dass in die Prozess- kammer ein homogener Gasvorhang hinein strömt. Hierzu kann die Diffuserplatte in berührender Anlage unter der Gasauslassplatte des Gaseinlassorganes angeordnet sein. Da die Gasauslassplatte des Gaseinlassorganes gekühlt werden kann, wie es beispielsweise die DE 695 04762 T2 beschreibt, wird zufolge der berührenden Anlage auch die Diffuserplatte gekühlt. Der Abstand der sie- bartig in der Gasauslassplatte vorgesehenen Öffnungen, kann zufolge dieser Ausgestaltung relativ groß gestaltet werden, so dass zwischen diesen Öffnungen, die von Röhrchen gebildet sein können, noch genügend Platz für ein kühlmitteldurchströmbares Volumen bleibt. Der Abstand der Öffnungen kann somit größer sein, als ein Viertel des Abstandes zwischen Suszeptor und Gas- auslassfläche.
Der Abstand der Öffnungen der Gasauslassplatte kann sogar größer sein als es normalerweise notwendig ist, um ein Relaxieren der Jets, die aus den Öffnungen austreten, vor der Difussionsgrenzschicht zu erreichen. Obwohl aus diesen Öffnungen strahlartig das Gas in die Diffusorplatte einströmt, tritt das Gas mit einer verminderten Strömungsgeschwindigkeit, welche insbesondere über die gesamte Fläche der Gasauslassfläche gleich ist, in die Prozesskammer ein. Es gibt praktisch keine diskreten Strahlen mehr, die aus dem Gaseinlassorgan austreten. Die Materialstärke der Diffusorplatte kann so gewählt werden, dass de- ren Unterseite, die der Prozesskammer zugewandt ist, immer noch eine Tempe- ratur besitzt, bei der keine lokalen Zerlegungen der Ausgangsstoffe stattfinden. Es findet somit auch kein limitierendes Wachstum statt. Typischerweise liegt die Temperatur der Diffusorplattenoberfläche zwischen 100°C und 300°C. Die Porosität und die Materialstärke sowie die Wärmeleitfähigkeit der Diffusorplat- te kann den jeweiligen Prozessparametern und insbesondere an das Trägergas angepasst werden.
Zufolge der Diffusorplatte kann die Prozesskammerhöhe auf Werte reduziert werden, die kleiner sind als bei einer herkömmlichen Gestaltung der Gasaus- trittsfläche. Dies ist insbesondere vorteilhaft beim Abscheiden von Halbleiterschichten mit dem MOCVD-Verf ahren, bei dem das Wachstum diff usions- limitiert ist. Die Zuführung des Prozessgases erfolgt direkt in die Diffusionszone, und zwar homogen.
Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der beifügten Zeichnungen erläutert.
Das Reaktorgehäuse 1 besteht aus einem Gehäuseunterteil, welches aus der Wand 4 und dem Boden 5 besteht und einem Deckelteil 3, welches zum Beladen der Prozesskammer 6 abnehmbar ist. Am Deckelteil 3 ist fest ein Gaseinlassorgan 2 befestigt. Dieses Gaseinlassorgan 2 wird mittels einer Gaszuleitung 17 gespeist. Das Gaseinlassorgan 2 besitzt eine hohle Kammer, in welche die Gaszuleitung 17 mündet. Diese Kammer wird nach oben durch eine Deckelplatte 11, zur Seite hin durch einen kreisrunden Ring 12 und zur Prozesskammer 6 hin durch eine Gasauslassplatte 13 begrenzt, die Gasauslassplatte kann in der Form, wie es in der DE 695 04762 T2 beschrieben ist, wassergekühlt sein. Sie kann auch aus zwei Platten 13', 13" bestehen zwischen denen Kühlmittel durchströmbare Kanäle angeordnet sind. Innerhalb der Kammer des Gaseinlassorganes 2 kann sich zur Förderung der gleichmäßigen Gasverteilung eine Zwi- schenplatte 10 befinden, die nur um den Rand herum umströmbar ist. Unterhalb der Gasauslassplatte 13 befindet sich eine Diffuserplatte 15. Bei der Diffuserplatte 15 handelt es sich um eine Zusatzplatte, die in berührender Anlage unter die Gasauslassplatte 13 gebracht ist.
In einem Abstand H von der Gasaustrittsfläche, welche von der freien Oberfläche der Diffuserplatte 15 gebildet ist, befindet sich in Parallellage zur Diffuserplatte 15 ein kreisrunder Suszeptor 7, der von unten mittels einer HF-Heizspule 16 induktiv beheizbar ist. Der Suszeptor 7, der beispielsweise aus Quarz, aus Graphit oder beschichtetem Graphit bestehen kann, ist um seine zentrale Achse drehbar. Er ist drehangetrieben. Auf der Oberfläche des Suszeptors 7, die zur Diffuserplatte 15 weist, können ein oder mehrere Substrate 8 aufgebracht werden.
Die Prozesskammer 6 ist von einem Gasauslassring 9 umgeben. Dieser Gasauslassring besitzt einen ringförmigen Hohlraum, der zur Prozesskammer 6 hin Öffnungen aufweist, durch welche das Prozessgas in den Hohlraum des Gasauslassringes 9 hineinströmen kann. An einer oder mehreren Stellen besitzt der Gasauslassring 9 in der Zeichnung nicht dargestellt Ableitungen, die zu einer nicht dargestellten Pumpe führen. Die Pumpleistung ist regelbar. Dadurch kann innerhalb der Prozesskammer 6 ein vorgegebener Totalgasdruck eingestellt werden.
Die Diffusorplatte 15 kann aus einem porösen Material bestehen. Sie kann bei- spielsweise von einer Quarz-Fritte gebildet sein. Die Diffuserplatte kann aber auch aus Metall bestehen, insbesondere aus Edelstahl. Auch Keramik ist als Werkstoff vorgesehen. Die Diffuserplatte kann die Struktur eines offenporigen harten Schaumes haben. Die Diffuserplatte kann aber auch ein Wirrgelege oder ein mehrlagiges Gewebe sein. Wesentlich an der Diffusorplatte 15 ist ihre Eigenschaft, das Lokal durch die Gaseinlassöffnungen 14 aus dem Gasvolumen des Gaseinlassorganes 2 ausströmende Gas, welches eine hohe Gasgeschwindigkeit besitzt, gleichmäßig in die Prozesskammer 6 hineinzuleiten. Das Gas, welches lokal durch die Öffnungen 14 austritt, wird breitflächig in die Prozesskammer 6 geleitet, wobei die Gasgeschwindigkeit homogenisiert und reduziert wird, so dass die Strahlwirkung, die die Gasauslassöffnungen 14 ohne die Diffuserplatte entfalten würden, vermindert wird. Die beim Stand der Technik nachteilhaften Zonen geringer Strömungsgeschwindigkeit neben den aus den Öffnungen austretenden Strahlen existieren jetzt nicht mehr. Es findet dort keine Konzentrationserhöhung statt und somit keine Kondensation. Die Temperatur auf der Unterseite der Diffusorplatte ist so gewählt, dass dort keine lokale Zerlegung der Ausgangsstoffe stattfindet. Die Temperatur liegt bevorzugt zwischen 100°C und 300°C. Die Ma- terialstärke und die Porosität der Diffusorplatte wird so gewählt, dass sich die aus den einzelnen Gasauslassöffnungen 14 austretenden Gas-"Strahlen" aufweiten.
Die Diffusorplatte 15 liegt in enger berührender Anlage an die insbesondere wassergekühlte Gasauslassplatte 13. Hierdurch wird auch die Diffuserplatte 15 auf einer relativ niedrigen Temperatur gehalten, so dass sich in der Prozesskammer 6 ein großer vertikaler Temperaturgradient einstellen kann.
Die Vorrichtung kann bei Totalgasdrucken zwischen 10 mbar und Atmosphä- rendruck betrieben werden. Es ist aber auch vorgesehen, dass die Vorrichtung bei niedrigeren Drücken betrieben wird. Die Drehzahl des Suszeptors kann zwischen 10 rpm und 1000 rpm liegen. In die Prozesskammer, die eine Höhe von bevorzugt 50 mm und einen Durchmesser von mehr als 10, 20 oder 30 cm besitzt, kann ein Totalgasstrom von 8 slm bis 50 slm eingeleitet werden. Die Höhe der Prozesskammer kann aber auch weniger als 50 mm betragen. So sind Prozesskammerhöhen von 75, 50, 40, 35, 30, 25, 15, 11 oder jeweils weniger Millimeter möglich.
Unter bestimmten Bedingungen kann es erforderlich sein, dass die Höhe H nicht nur nach oben hin limitiert ist, sondern auch nach unten hin. Eine solche Limitierung nach unten ist insbesondere dann vorgesehen, wenn aufgrund von Fertigungstoleranzen oder aufgrund der Materialeigenschaften und deren inhomogener Wärmeausdehnung eine Parallellage zwischen Gasaustrittsfläche 15 und Substrathalter-Oberfläche nicht gewährleistet werden kann. Dann ist es von Vorteil, wenn die Prozesskammerhöhe 11 mm nicht unterschreitet.
Alle offenbarten Merkmale sind (für sich) erfindungswesentlich. In die Offenbarung der Anmeldung wird hiermit auch der Offenbarungsinhalt der zugehörigen/beigefügten Prioritätsunterlagen (Abschrift der Voranmeldung) vollin- haltlich mit einbezogen, auch zu dem Zweck, Merkmale dieser Unterlagen in Ansprüche vorliegender Anmeldung mit aufzunehmen.

Claims

ANSPRUCHE
1. Vorrichtung zum Abscheiden von dünnen Schichten auf einem Substrat, mit einer in einem Reaktorgehäuse (1) angeordneten Prozesskammer (6) deren Boden von einem Suszeptor (7) zur Aufnahme mindestens eines Substrates gebildet ist und deren Deckel ein Gaseinlassorgan (2) zugeordnet ist, auf welchem in im Wesentlichen flächiger Gleichverteilung über seiner gesamten auf den Suszeptor hinweisenden Gasaustrittsfläche das Prozessgas in die Prozesskammer einleitbar ist, dadurch gekennzeichnet, dass die Gasaustritts- fläche von einer gasdurchlässigen Diffuserplatte (15) gebildet ist.
2. Vorrichtung nach Anspruch 1 oder insbesondere danach, dadurch gekennzeichnet, dass die Diffuserplatte (15) sich parallel zu einer eine Vielzahl siebartig angeordnete Gasaustrittsöffnungen (14) aufweisenden Gasauslassplat- te (13) erstreckt.
3. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch kennzeichnet, dass die Gasauslassplatte (13) den Boden einer Kammer des Gaseinlassorganes (2) bildet.
4. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass der Abstand (H) zwischen dem Suszeptor (7) und der Gasauslassfläche weniger als 50 mm, weniger als 40 mm, weniger als 30 mm, weniger als 25 mm, weniger als 16 mm oder, weniger als 11 mm beträgt.
5. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, gekennzeichnet durch einen die Prozesskammer (2) ringförmig umgebenden Gasauslassring (9).
6. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Diffuserplatte (15) aus einem porösen metallischen oder keramischen Werkstoff oder aus Quarzglas besteht.
7. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Diffuserplatte (15) ein fester, offenporiger Schaum ist.
8. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Diffuserplatte (15) ein Gewebe oder ein Wirrgelege ist.
9. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Diffuserplatte (15) in berührender Anlage unter der insbesondere wassergekühlten Gasauslassplatte (13) angeordnet ist.
10. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass der Abstand der Öffnungen der Gasauslassplatte (13) größer ist als die Hälfte des Abstandes (H) zwischen Suszeptor und Gasaustrittsfläche der Diffuserplatte (15).
11. Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche oder insbesondere danach, dadurch gekennzeichnet, dass die Dicke der Diffuserplatte 3, 5, 7, 9 oder 11 mm beträgt.
EP03708229A 2002-03-15 2003-03-13 Vorrichtung zum abscheiden von d nnen schichten auf einem su bstrat Withdrawn EP1485518A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10211442 2002-03-15
DE10211442A DE10211442A1 (de) 2002-03-15 2002-03-15 Vorrichtung zum Abscheiden von dünnen Schichten auf einem Substrat
PCT/EP2003/002608 WO2003078681A1 (de) 2002-03-15 2003-03-13 Vorrichtung zum abscheiden von dünnen schichten auf einem substrat

Publications (1)

Publication Number Publication Date
EP1485518A1 true EP1485518A1 (de) 2004-12-15

Family

ID=27771333

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03708229A Withdrawn EP1485518A1 (de) 2002-03-15 2003-03-13 Vorrichtung zum abscheiden von d nnen schichten auf einem su bstrat

Country Status (7)

Country Link
EP (1) EP1485518A1 (de)
JP (1) JP2005520932A (de)
KR (1) KR20040101261A (de)
AU (1) AU2003212349A1 (de)
DE (1) DE10211442A1 (de)
TW (1) TW200305658A (de)
WO (1) WO2003078681A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035971A (ja) * 2002-07-05 2004-02-05 Ulvac Japan Ltd 薄膜製造装置
US8083853B2 (en) 2004-05-12 2011-12-27 Applied Materials, Inc. Plasma uniformity control by gas diffuser hole design
JP5046334B2 (ja) * 2004-10-11 2012-10-10 ソレラス・アドヴァンスト・コーティングス・ナムローゼ・フェンノートシャップ 長型ガス分配システム
DE102006018515A1 (de) 2006-04-21 2007-10-25 Aixtron Ag CVD-Reaktor mit absenkbarer Prozesskammerdecke
DE102007024798A1 (de) 2007-05-25 2008-11-27 Aixtron Ag Vorrichtung zum Abscheiden von GaN mittels GaCI mit einem molybdänmaskierten Quarzteil, insbesondere Gaseinlassorgan
US20080317973A1 (en) 2007-06-22 2008-12-25 White John M Diffuser support
KR101065747B1 (ko) * 2009-06-22 2011-09-19 주식회사 티지솔라 균일한 가스 공급수단을 구비하는 플라즈마 장치
DE102009043840A1 (de) * 2009-08-24 2011-03-03 Aixtron Ag CVD-Reaktor mit streifenförmig verlaufenden Gaseintrittszonen sowie Verfahren zum Abscheiden einer Schicht auf einem Substrat in einem derartigen CVD-Reaktor
CN102766902B (zh) * 2011-05-05 2015-12-02 北京北方微电子基地设备工艺研究中心有限责任公司 工艺腔室装置和具有该工艺腔室装置的基片处理设备
DE102011107894A1 (de) 2011-07-18 2013-01-24 Creaphys Gmbh Beschichtungseinrichtung, insbesondere für die Innenbeschichtung von Hohlkörpern, und Beschichtungsverfahren
DE102012110125A1 (de) 2012-10-24 2014-04-24 Aixtron Se Vorrichtung zum Behandeln von Substraten mit einer auswechselbaren Deckenplatte sowie Verfahren zum Auswechseln einer derartigen Deckenplatte
DE102014118704A1 (de) 2014-01-10 2015-07-16 Aixtron Se Gaseinlassorgan eines CVD-Reaktors mit gewichtsverminderter Gasaustrittsplatte
CN117004928B (zh) * 2023-09-21 2023-12-26 上海谙邦半导体设备有限公司 一种化学气相沉积晶圆保护系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3927133A1 (de) * 1989-08-17 1991-02-21 Philips Patentverwaltung Verfahren zur abscheidung mikrokristalliner festkoerperpartikel aus der gasphase mittels chemical vapour deposition
GB2241250A (en) * 1990-01-26 1991-08-28 Fuji Electric Co Ltd RF plasma CVD employing an electrode with a shower supply surface
JP2837993B2 (ja) * 1992-06-19 1998-12-16 松下電工株式会社 プラズマ処理方法およびその装置
US5595602A (en) * 1995-08-14 1997-01-21 Motorola, Inc. Diffuser for uniform gas distribution in semiconductor processing and method for using the same
JP3310171B2 (ja) * 1996-07-17 2002-07-29 松下電器産業株式会社 プラズマ処理装置
JP4422295B2 (ja) * 2000-05-17 2010-02-24 キヤノンアネルバ株式会社 Cvd装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03078681A1 *

Also Published As

Publication number Publication date
DE10211442A1 (de) 2003-09-25
TW200305658A (en) 2003-11-01
AU2003212349A1 (en) 2003-09-29
WO2003078681A1 (de) 2003-09-25
KR20040101261A (ko) 2004-12-02
JP2005520932A (ja) 2005-07-14

Similar Documents

Publication Publication Date Title
EP2406411B1 (de) Mocvd-reaktor mit zylindrischem gaseinlassorgan
DE60024146T2 (de) Methode und apparatfür die gleichmä ige gaszufuhr zu substraten bei cvd und pecvd verfahren
DE69630484T2 (de) Reaktivgasinjektor für Vorrichtung zur chemischen Gasphasenabscheidung
EP1041169B1 (de) Vorrichtung und Verfahren zur Beschichtung von Substraten durch Aufdampfen mittels eines PVD-Verfahrens
EP1252363B1 (de) Vorrichtung und verfahren zum abscheiden einer oder mehrerer schichten auf ein substrat
EP1485518A1 (de) Vorrichtung zum abscheiden von d nnen schichten auf einem su bstrat
DE4014351C2 (de) Vorrichtung zum Ätzen der oder zum Bilden von Schichten auf der Oberfläche von Halbleitern
EP0787822B1 (de) Verfahren zum Herstellen von SiC durch CVD mit verbesserter Gasausnutzung
DE69629980T2 (de) Methode mit Temperaturreglung zum Abscheiden eines Werkstoffes
EP2470684B1 (de) Cvd-verfahren und cvd-reaktor
DE102006018515A1 (de) CVD-Reaktor mit absenkbarer Prozesskammerdecke
EP2470685B1 (de) Cvd-reaktor und verfahren zum abscheiden einer schicht
EP1625243B1 (de) Cvd-beschichtungsvorrichtung
DE2049229A1 (de) Einrichtung fur das epitaktische Aufwachsen einer Halbleiterschicht
EP1718784A1 (de) Einlasssystem für einen mocvd-reaktor
EP0089382B1 (de) Plasmareaktor und seine Anwendung beim Ätzen und Beschichten von Substraten
DE3540628C2 (de) Herstellen eines Epitaxiefilms durch chemische Dampfabscheidung
EP3871245B1 (de) Cvd-reaktor, schirmplatte für einen cvd-reaktor und verfahren zur beeinflussung der temperatur einer schirmplatte
EP1347868A1 (de) Vorrichtung zur durchführung von stoffaustauschprozessen
EP1349968A1 (de) Fluidverteilungseinheit zum verteilen eines fluidstromes auf mehrere teilströme
DE60222224T3 (de) Flüssigkeitsverteiler mit innerem Leitelement
EP1145290A1 (de) Vorrichtung und verfahren zum behandeln von substraten
EP1939329B1 (de) Bausatz zur Herstellung eines Prozessreaktors für die Ausbildung metallischer Schichten auf einem oder auf mehreren Substraten
DE102006013801A1 (de) Gaseinlassorgan mit gelochter Isolationsplatte
DE19755902C1 (de) Verfahren und Vorrichtung zum Vergüten von Oberflächen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIXTRON AG

17Q First examination report despatched

Effective date: 20100624

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110105