EP1482073A2 - Verfahren zur Erzeugung von ultradünnen homogenen Metallschichten - Google Patents
Verfahren zur Erzeugung von ultradünnen homogenen Metallschichten Download PDFInfo
- Publication number
- EP1482073A2 EP1482073A2 EP04011671A EP04011671A EP1482073A2 EP 1482073 A2 EP1482073 A2 EP 1482073A2 EP 04011671 A EP04011671 A EP 04011671A EP 04011671 A EP04011671 A EP 04011671A EP 1482073 A2 EP1482073 A2 EP 1482073A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- metal layer
- metal
- layer
- ultra
- deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 117
- 239000002184 metal Substances 0.000 title claims abstract description 117
- 238000000034 method Methods 0.000 title claims abstract description 51
- 230000008569 process Effects 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 238000000151 deposition Methods 0.000 claims abstract description 11
- 230000008021 deposition Effects 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims abstract description 9
- 230000004913 activation Effects 0.000 claims abstract description 5
- 238000001465 metallisation Methods 0.000 claims description 30
- 239000010949 copper Substances 0.000 claims description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 21
- 229910052802 copper Inorganic materials 0.000 claims description 21
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 13
- 229910052715 tantalum Inorganic materials 0.000 claims description 12
- 238000005234 chemical deposition Methods 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 238000005240 physical vapour deposition Methods 0.000 claims description 5
- 239000003638 chemical reducing agent Substances 0.000 claims description 4
- 239000007800 oxidant agent Substances 0.000 claims description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 description 15
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000003989 dielectric material Substances 0.000 description 3
- 238000002493 microarray Methods 0.000 description 3
- 238000007704 wet chemistry method Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000011165 process development Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
Definitions
- the present invention relates to a method for training an ultra-thin homogeneous metal layer, which in particular is able to form as a basic metallization Contact points or contact pads or wiring on one integrated electronic component such as microchips or Serve microarrays, wherein at least on a substrate (10) a first metal layer (20) is deposited in regions and then a second one at least in some areas Metal layer (30) is produced, the component (s) of the second metal layer (30) has a more positive redox potential than the component (s) of the first metal layer (20) (t / en) and the ultra-thin homogeneous deposition of the second Metal layer (30) by means of wet chemical, electroless, electrochemical redox processes, if necessary under simultaneous activation of the surface of the first Metal layer (20), by element exchange of one or several metal salts as an oxidizing agent with at least the uppermost metal atom layer of the first metal layer (20) as Reducing agent takes place.
- Base metallization (seed layer) on the corresponding Substrate are applied.
- the specific resistance and the The morphology of the base metallization determines the properties which then for the formation of appropriate contact points or contact pads or rewiring electrochemically deposited copper layer.
- a barrier layer between the Base metallization and the insulator for example Lower silica or dielectrics Dielectric constant
- Barrier layer and base metallization are usually in two independent steps using physical Vapor deposition or chemical deposition ("Chemical Vapor Deposition ", CVD).
- CVD chemical Vapor Deposition
- a method to solve the problems described above is the introduction of another Process step in which a non-homogeneous Base metallization is optimized ("seed repair"). Such a additional process step is always costly.
- a method for Formation of an ultra-thin homogeneous metal layer is particularly capable of forming as a basic metallization of contact points or contact pads or wiring an integrated electronic component, such as one Microchip to serve provided, wherein on a substrate (10) at least in some areas a first metal layer (20) is deposited and then at least subsequently a second metal layer (30) is produced in regions, wherein the component (s) of the second metal layer (30) more positive redox potential than the component (s) of the first Metal layer (20) exhibit (t / en) and the ultra-thin homogeneous Deposition of the second metal layer (30) by means of wet chemical, electroless, electrochemical redox processes, if necessary with simultaneous activation of the surface the first metal layer (20), by exchanging elements from one or more metal salts as an oxidizing agent with at least the uppermost metal atom layer of the first metal layer (20) as Reducing agent takes place.
- the method according to the invention is generally the generation of ultra-thin homogene
- the first metal layer is used in the method according to the invention even as a reducing agent.
- This first layer of metal is made by a corresponding precursor compound (s), i.e. (A) Oxidizing agent (s) such as metal salt (s), the second metal layer to be deposited at least in the top metal atom layer oxidized, the corresponding from ions formed in the first metal layer go into solution and simultaneously depositing the second metal layer the corresponding precursor compound (s) by reduction he follows.
- Redox process can usually take place on the surface activated the first metal layer at the same time. This can for example when removing a passivating oxide layer done on the first metal layer.
- Such activation can, for example, in the process according to the invention
- Treatment with hydrofluoric acid (HF) can be achieved, which in corresponding concentration in addition to the above-mentioned Precursor compound (s) of the second metal layer in the solution for the wet chemical, currentless, electrochemical Redox processes according to the method of the present invention is available.
- HF hydrofluoric acid
- Wet chemical deposition of the second metal layer requires a chemical potential gradient between one Metal salt of the metal forming the second metal layer and the metal of the previously applied first metal layer, the serves as a barrier layer.
- the interaction of kinetics and Thermodynamics is an essential factor, which is this Influenced by the redox reaction, the base metal of the Barrier layer oxidized, while the metal cations from the Metal salt of the metal forming the second metal layer be reduced and thus by exchanging at least the topmost metal atom layer of the first metal layer thereon form an ultra-thin metal layer (second metal layer).
- the first Metal layer preferably made of at least one component, selected from tantalum, titanium or aluminum or their Alloys with e.g. Magnesium, built up, their production by means of physical vapor deposition or chemical Deposition (CVD) can take place.
- CVD chemical Deposition
- Elements or alloys can be used, provided that they are Fulfill the barrier function and a correspondingly more negative one Redox potential than that forming the second metal layer Have metal.
- the method according to the invention is based on the generation of a ultra-thin metal layer or base metallization Element exchange using a wet chemical, electroless, electrochemical redox process.
- the second metal layer is by exchanging the top metal atom layers of the as Barrier layer serving first metal layer with metal atoms of the metal forming the second metal layer. Consequently becomes the separate separation conventionally provided of two metal layers (diffusion barrier and Base metallization) by only one deposition of the Barrier layer and a subsequent wet chemical Exchange reaction to form the ultra-thin, homogeneous second metal layer as the actual base metallization replaced.
- the method according to the invention requires in advantageously no additional "seed repair" process step.
- conventional deposition of a base metallization replaced an inexpensive wet chemical process.
- the first metal layer which acts as a barrier layer, can for example in a thickness of 5 nm to 100 nm, preferred from 10 to 50 nm and more preferably from 10 to 20 nm, be applied.
- the second metal layer which is used as the basic metallization for the subsequent electrochemical metal deposition for filling the trenches and holes to form contact points or Contact pads on, for example, a microchip is used preferably copper, silver, gold, platinum or nickel or corresponding alloys thereof.
- the second metal layer can are contiguous or island-like.
- wet chemical Deposition of this second metal layer can be done within the inventive method for the aforementioned metals conventionally used metal salts or Electrolyte compositions are used.
- the second Metal layer can be deposited in such a way that it is only one or more layers of metal atoms. she can thus for example in a thickness of 0.5 nm to 10 nm, in particular 1 nm to 10 nm.
- the substrate materials are not specifically limited.
- the dielectrics such as SiO 2
- the substrates can be unstructured. Usually, however, they are structured with the trenches or holes customary in the context of microchip production, for example by means of appropriate lift-off techniques or lithography techniques.
- a first layer of metal made of tantalum, which serves as a barrier layer, and then one second metal layer made of copper, which in particular as Base metallization can serve.
- the Base metallization by exchanging the top Ta atoms Atomic layers by copper atoms, which together form one for the subsequent electrochemical deposition of corresponding Suitable contact points or pads or wiring Form basic metallization.
- first 20% hydrofluoric acid (HF) with 20 g / l CuSO 4 .5H 2 O can be prepared at room temperature, with which a substrate with a barrier layer already deposited thereupon takes a few seconds until a layer appears Darkening (copper deposition) is treated.
- HF hydrofluoric acid
- the wet chemical process can be divided into the following reaction steps within the scope of the process according to the invention: First the native, passivating tantalum oxide layer is removed with hydrofluoric acid according to the following reaction equations: Ta 2 O 5 + 10HF + 2F - ⁇ 5H 2 O + 2TaF 6 - Ta 2 O 5 + 10HF + 4F - ⁇ 5H 2 O + 2TaF 7 2- (both reactions are in balance)
- copper is generated according to the invention: 2Ta + 5Cu 2+ ⁇ 2Ta 5+ + 5Cu (Redox potentials: Ta ⁇ Ta 2 O 5 : -0.75 V and Cu ⁇ Cu 2+ : +0.34 V)
- the advantages of the method according to the invention are in the Saving costs through expensive process steps and Saving additional process steps to a faulty one Optimize base metallization.
- Advantageously can in particular very much by the inventive method thin base metallizations for those to be applied subsequently Metallization systems are generated.
- the thickness of the barrier or the barrier-to-base metallization ratio is over the concentration of the corresponding solutions in wet chemical Process and the parameters of the chemical reaction such as time and temperature adjustable.
- a liability between the first Metal layer and the second metal layer favors what conducive to the reliability of Metallization systems and thus on the lifespan of corresponding, from the inventive method resulting products such as microchips or microarrays effect.
- Figure 1a shows schematically one in the context of the invention Process used substrate with trench structure.
- Figure 1b shows schematically the substrate of Figure 1a, on the the first metal layer has been applied.
- Figure 1c shows schematically the substrate of Figure 1b, with on the first metal layer a homogeneous ultra-thin second Metal layer has been created.
- FIG. 2 shows light micrographs in the upper row of a substrate (SiO 2 ) provided with a tantalum barrier layer before and after production of a thin copper layer, and enlarged scanning electron microscope photos of the corresponding tantalum and copper surfaces in the lower row.
- FIG. 1a schematically shows a substrate (10) with a trench or contact hole structure. That in the method according to the invention
- the substrate (10) used can be an insulator, for example (e.g. silicon dioxide or dielectrics with lower Dielectric constant) as part of an integrated electronic Component like a microchip or microarray.
- Figure 1b shows schematically the substrate (10) with the on it deposited first metal layer (20), which as Serves as a barrier layer.
- This first metal layer (20) is According to the invention from at least one metal, such as Tantalum, titanium or aluminum, preferably built up tantalum, their generation by physical vapor deposition or chemical deposition (CVD).
- Figure 1c shows schematically the substrate (10) with the deposited first Metal layer (20) and the wet chemical applied thereon second metal layer (30).
- the second metal layer (30) can for example made of copper, silver, gold, platinum or nickel, preferably copper, be built up and coherent or island-like.
- Figure 2 shows light microscope images of the invention a tantalum barrier layer (40) coated substrates and a copper layer partially deposited on it like an island (50).
- FIG. 2 shows Scanning electron microscope images of the tantalum layer (40a) and the copper layer (50a) is shown.
- the different components the first metal layer (20) and the second metal layer (30) are different due to their Different surface morphologies.
- the inventive method enables the otherwise usual, complex process steps of a separate Base metallization on, for example, integrated electronic components can be avoided.
- the inventive method is not only for applications in Framework of the metallization of structured substrates limited, but is for all applications where thin Metal layers for further processes - but above all electrochemical deposition of various metals - are needed, usable and expandable.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Chemically Coating (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Die vorliegende Erfindung betrifft ein Verfahren zur Ausbildung einer ultradünnen homogenen Metallschicht, die insbesondere befähigt ist, als Grundmetallisierung zur Bildung von Kontaktstellen bzw. Kontaktpads bzw. Verdrahtungen auf einem integrierten elektronischen Bauelement zu dienen, worin auf einem Substrat (10) mindestens bereichsweise eine erste Metallschicht (20) abgeschieden wird und darauf anschließend mindestens bereichsweise eine zweite Metallschicht (30) erzeugt wird, wobei die Komponente(n) der zweiten Metallschicht (30) ein positiveres Redox-Potential als die Komponente(n) der ersten Metallschicht (20) aufweis(t/en) und die ultradünne homogene Abscheidung der zweiten Metallschicht (30) mittels naßchemischer, stromloser, elektrochemischer Redoxprozesse, gegebenenfalls unter gleichzeitiger Aktivierung der Oberfläche der ersten Metallschicht (20), durch Elementaustausch von einem oder mehreren Metallsalzen als Oxidationsmittel mit mindestens der obersten Metallatomlage der ersten Metallschicht (20) als Reduktionsmittel erfolgt. <IMAGE>
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Ausbildung
einer ultradünnen homogenen Metallschicht, die insbesondere
befähigt ist, als Grundmetallisierung zur Bildung von
Kontaktstellen bzw. Kontaktpads bzw. Verdrahtungen auf einem
integrierten elektronischen Bauelement wie Mikrochips bzw.
Mikroarrays zu dienen, worin auf einem Substrat (10) mindestens
bereichsweise eine erste Metallschicht (20) abgeschieden wird
und darauf anschließend mindestens bereichsweise eine zweite
Metallschicht (30) erzeugt wird, wobei die Komponente(n) der
zweiten Metallschicht (30) ein positiveres Redox-Potential als
die Komponente(n) der ersten Metallschicht (20) aufweis (t/en)
und die ultradünne homogene Abscheidung der zweiten
Metallschicht (30) mittels naßchemischer, stromloser,
elektrochemischer Redoxprozesse, gegebenenfalls unter
gleichzeitiger Aktivierung der Oberfläche der ersten
Metallschicht (20), durch Elementaustausch von einem oder
mehreren Metallsalzen als Oxidationsmittel mit mindestens der
obersten Metallatomlage der ersten Metallschicht (20) als
Reduktionsmittel erfolgt.
Die Einführung von Kupfer als Metallisierungsmaterial in
integrierten Schaltkreisen, d.h. zur Bildung entsprechender
Kontaktstellen bzw. Kontaktpads bzw. Umverdrahtungen bei der
Mikrochipfertigung, hat eine Reihe von Änderungen in der
Prozeßtechnologie in den verschiedenen Verdrahtungsebenen mit
sich gebracht. Die derzeit übliche Methode zur Herstellung von
Kupferbahnen ist die sogenannte "damascene"-Technologie. Im
Gegensatz zur Strukturierung der Metallschichten durch
Trockenätzverfahren werden bei dieser Technologie die Grabenund
Kontaktlochstrukturen zuerst in den Isolator übertragen und
anschließend mit dem gewünschten Metall, üblicherweise Kupfer,
gefüllt. Für diesen Abscheideprozeß wird eine elektrochemische
Abscheidung, d.h. eine Elektroplattierung, aufgrund der
besseren Fülleigenschaften und wegen seiner mikrostrukturellen
und elektrischen Vorteile bevorzugt. Für eine solche
Elektroplattierung muß jedoch zuvor eine elektrisch leitende
Grundmetallisierung ("seed layer") auf das entsprechende
Substrat aufgebracht werden. Der spezifische Widerstand und die
Morphologie der Grundmetallisierung bestimmen die Eigenschaften
der anschließend zur Bildung von entsprechenden Kontaktstellen
bzw. Kontaktpads bzw. Umverdrahtungen elektrochemisch
abgeschiedenen Kupferschicht. Um die Haftung zu verbessern und
die Diffusion von Kupfer in den Isolator zu verhindern und
daraus resultierende Ausfälle von Transistoren zu vermeiden,
ist der Aufbau einer Barriereschicht zwischen der
Grundmetallisierung und dem Isolator (beispielsweise
Siliciumdioxid oder Dielektrika mit niedrigerer
Dielektrizitätszahl) notwendig.
Üblicherweise werden Barriereschicht und Grundmetallisierung in
zwei unabhängigen Schritten mittels physikalischem
Aufdampfverfahren oder chemischer Abscheidung ("Chemical Vapor
Deposition", CVD) hergestellt. Für die Abscheidung von
beispielsweise Kupfer-Grundmetallisierungen, die homogen und
frei von Fehlstellen sein müssen, sind spezielle physikalische
oder chemische Abscheideprozesse entwickelt worden. Bei CVD-Methoden
zur Metallabscheidung tritt dabei jedoch generell das
Problem auf, daß die abgeschiedenen Metallschichten Anteile von
Fremdatomen (d.h. Precursor-Verunreinigungen) aufweisen. Dies
hat einen unerwünschten Anstieg des spezifischen Widerstandes
der Grundmetallisierung zur Folge.
Aufgrund von immer kleiner werdenden Strukturen ist zudem die
Reduzierung der Schichtdicken aller Metallschichten im Rahmen
der Herstellung derartiger integrierter elektronischer
Bauelemente bzw. Mikrochips notwendig. Im Hinblick auf die
Prozeßentwicklung und -optimierung ist dies aber meist mit
großem Aufwand verbunden. Zusätzlich kommen mit kleineren
Strukturgrößen und somit größeren Aspektverhältnissen
(Grabenhöhe zu Grabenbreite) weitere Probleme wie
beispielsweise eine unvollständige Seitenwandbedeckung bei
Sputterprozessen hinzu. Eine Abscheidung von dünnen, nur einige
Metallatomlagen dicken Metallschichten ist zwar für künftige
Technologien eine mögliche, jedoch sehr kostenintensive
Technik.
Eine Methode zur Lösung der vorstehend beschriebenen Probleme
ist beispielsweise die Einführung eines weiteren
Prozeßschrittes, in welchem eine nicht-homogene
Grundmetallisierung optimiert wird ("seed repair"). Ein solcher
zusätzlicher Prozeßschritt ist jedoch immer kostenaufwendig.
Somit ist es Aufgabe der vorliegenden Erfindung, im Rahmen der
Herstellung integrierter elektronischer Bauelemente, wie z.B.
Mikrochips, die gezielte Erzeugung von ultradünnen homogenen
Metallschichten, insbesondere solchen, die als
Grundmetallisierung für die nachfolgende elektrochemische
Metallabscheidung zum Füllen von Gräben bzw. Löchern unter
Bildung von entsprechenden Kontaktstellen bzw. Kontaktpads
dienen, bereitzustellen.
Diese Aufgabe wird durch die in den Ansprüchen gekennzeichneten
Ausführungsformen gelöst.
Gemäß der vorliegenden Erfindung wird ein Verfahren zur
Ausbildung einer ultradünnen homogenen Metallschicht, die
insbesondere befähigt ist, als Grundmetallisierung zur Bildung
von Kontaktstellen bzw. Kontaktpads bzw. Verdrahtungen auf
einem integrierten elektronischen Bauelement, wie einem
Mikrochip, zu dienen, bereitgestellt, worin auf einem Substrat
(10) mindestens bereichsweise eine erste Metallschicht (20)
abgeschieden wird und darauf anschließend mindestens
bereichsweise eine zweite Metallschicht (30) erzeugt wird,
wobei die Komponente(n) der zweiten Metallschicht (30) ein
positiveres Redox-Potential als die Komponente(n) der ersten
Metallschicht (20) aufweis(t/en) und die ultradünne homogene
Abscheidung der zweiten Metallschicht (30) mittels
naßchemischer, stromloser, elektrochemischer Redoxprozesse,
gegebenenfalls unter gleichzeitiger Aktivierung der Oberfläche
der ersten Metallschicht (20), durch Elementaustausch von einem
oder mehreren Metallsalzen als Oxidationsmittel mit mindestens
der obersten Metallatomlage der ersten Metallschicht (20) als
Reduktionsmittel erfolgt. Durch das erfindungsgemäße Verfahren
wird generell die Erzeugung von ultradünnen homogenen
Metallschichten vereinfacht.
Im erfindungsgemäßen Verfahren dient die erste Metallschicht
selbst als Reduktionsmittel. Diese erste Metallschicht wird von
(einer) entsprechenden Vorläuferverbindung(en), d.h. (einem)
Oxidationsmittel(n) wie beispielsweise Metallsalz(e), der
abzuscheidenden zweiten Metallschicht mindestens in der
obersten Metallatomlage oxidiert, wobei die entsprechend aus
der ersten Metallschicht gebildeten Ionen in Lösung gehen und
gleichzeitig eine Abscheidung der zweiten Metallschicht aus
de(r/n) entsprechenden Vorläuferverbindung(en) durch Reduktion
erfolgt. Damit im erfindungsgemäßen Verfahren der vorstehende
Redoxprozess ablaufen kann, wird üblicherweise die Oberfläche
der ersten Metallschicht gleichzeitig aktiviert. Dies kann
beispielsweise beim Entfernen einer passivierenden Oxidschicht
auf der ersten Metallschicht erfolgen. Eine solche Aktivierung
kann im erfindungsgemäßen Verfahren beispielsweise durch
Behandlung mit Flußsäure (HF) erreicht werden, welche in
entsprechender Konzentration neben de(r/n) vorstehend genannten
Vorläuferverbindung(en) der zweiten Metallschicht in der Lösung
für die naßchemischen, stromlosen, elektrochemischen
Redoxprozesse gemäß dem Verfahren der vorliegenden Erfindung
vorhanden ist.
Die naßchemische Abscheidung der zweiten Metallschicht
erfordert ein chemisches Potentialgefälle zwischem einem
Metallsalz des die zweite Metallschicht bildenden Metalls und
dem Metall der zuvor aufgebrachten ersten Metallschicht, die
als Barriereschicht dient. Bei entsprechend ausreichendem
Potentialgefälle, wobei das Zusammenspiel von Kinetik und
Thermodynamik ein wesentlicher Faktor ist, welcher diese
Redoxreaktion beeinflusst, wird das unedlere Metall der
Barriereschicht oxidiert, während die Metallkationen von dem
Metallsalz des die zweite Metallschicht bildenden Metalls
reduziert werden und somit unter Austausch von mindestens der
obersten Metallatomlage der ersten Metallschicht darauf eine
ultradünne Metallschicht (zweite Metallschicht) bilden.
Im Rahmen des erfindungsgemäßen Verfahrens wird die erste
Metallschicht vorzugsweise aus mindestens einer Komponente,
ausgewählt aus Tantal, Titan oder Aluminium bzw. deren
Legierungen mit z.B. Magnesium, aufgebaut, wobei ihre Erzeugung
mittels physikalischem Aufdampfverfahren oder chemischer
Abscheidung (CVD) erfolgen kann. Es sind aber auch andere
Elemente bzw. Legierungen einsetzbar, soweit sie eine
Barrierefunktion erfüllen und ein entsprechend negativeres
Redox-Potential als das die zweite Metallschicht bildende
Metall aufweisen.
Das erfindungsgemäße Verfahren basiert auf der Erzeugung einer
ultradünnen Metallschicht bzw. Grundmetallisierung durch
Elementaustausch mittels eines naßchemischen, stromlosen,
elektrochemischen Redoxprozesses. Die zweite Metallschicht wird
durch Austausch der obersten Metallatomlagen der als
Barriereschicht dienenden ersten Metallschicht mit Metallatomen
des die zweite Metallschicht bildenden Metalls gebildet. Somit
wird die herkömmlicherweise vorgesehene, separate Abscheidung
von zwei Metallschichten (Diffusionsbarriere und
Grundmetallisierung) durch nur eine Abscheidung der
Barriereschicht und eine anschließende naßchemische
Austauschreaktion unter Bildung der ultradünnen, homogenen
zweiten Metallschicht als eigentliche Grundmetallisierung
ersetzt. Das erfindungsgemäße Verfahren erfordert in
vorteilhafter Weise keinen zusätzlichen "seed repair"-Verfahrensschritt.
Somit wird erfindungsgemäß eine
konventionelle Abscheidung einer Grundmetallisierung durch
einen kostengünstigen naßchemischen Prozeß ersetzt.
Die erste Metallschicht, welche als Barriereschicht wirkt, kann
beispielsweise in einer Dicke von 5 nm bis 100 nm, bevorzugt
von 10 bis 50 nm und mehr bevorzugt von 10 bis 20 nm,
aufgebracht werden.
Die zweite Metallschicht, welche als Grundmetallisierung für
die nachfolgende elektrochemische Metallabscheidung zum Füllen
der Gräben und Löcher unter Bildung von Kontaktstellen bzw.
Kontaktpads auf beispielsweise einem Mikrochip dient, umfasst
vorzugsweise Kupfer, Silber, Gold, Platin oder Nickel oder
entsprechende Legierungen davon. Die zweite Metallschicht kann
zusammenhängend oder inselartig vorliegen. Zur naßchemischen
Abscheidung dieser zweiten Metallschicht können im Rahmen des
erfindungsgemäßen Verfahrens die für die vorgenannten Metalle
herkömmlicherweise eingesetzten Metallsalze bzw.
Elektrolytzusammensetzungen verwendet werden. Die zweite
Metallschicht kann dergestalt abgeschieden werden, daß sie
lediglich eine oder mehrere Metallatomlagen dick ist. Sie kann
somit beispielsweise in einer Dicke von 0,5 nm bis 10 nm,
insbesondere 1 nm bis 10 nm, gebildet werden.
Die Substratmaterialien unterliegen keiner spezifischen
Beschränkung. So können beispielsweise die im Rahmen der
Mikrochipfertigung üblicherweise eingesetzten Dielektrika, wie
z.B. SiO2, eingesetzt werden. Die Substrate können
unstrukturiert sein. Üblicherweise sind sie jedoch mit den im
Rahmen der Mikrochipfertigung üblichen Gräben bzw. Löcher, z.B.
mittels entsprechenden Lift-Off-Techniken bzw. Lithographie-Techniken,
strukturiert.
In einer bevorzugten Ausführungsform des erfindungsgemäßen
Verfahrens wird zunächst eine erste Metallschicht aus Tantal,
die als Barriereschicht dient, und darauf anschließend eine
zweite Metallschicht aus Kupfer, die insbesondere als
Grundmetallisierung dienen kann, erzeugt. Dabei wird die
Grundmetallisierung durch Austausch von Ta-Atomen der obersten
Atomlagen durch Kupferatome, die zusammen eine für die
nachfolgende elektrochemische Abscheidung von entsprechenden
Kontaktstellen bzw. -pads bzw. Verdrahtungen geeignete
Grundmetallisierung bilden, erzeugt.
Zur Bildung der zweiten Metallschicht kann gemäß der
vorliegenden Erfindung beispielsweise zunächst 20 %ige
Flußsäure (HF) mit 20 g/l CuSO4•5H2O bei Raumtemperatur
angesetzt werden, womit anschließend ein Substrat mit bereits
darauf abgeschiedener Barriereschicht einige Sekunden bis zum
Erscheinen einer Dunkelfärbung (Kupferabscheidung) behandelt
wird.
Nachdem in einem ersten Schritt zunächst beispielsweise eine
Tantalschicht mittels PVD- oder CVD-Verfahren auf ein bereits
strukturiertes Substrat aufgebracht worden ist, kann sich der
naßchemische Prozeß im Rahmen des erfindungsgemäßen Verfahrens
in folgende Reaktionsschritte aufteilen:
Zunächst wird die native, passivierende Tantaloxidschicht mit Flußsäure gemäß folgenden Reaktionsgleichungen entfernt:Ta2O5 + 10HF + 2F- → 5H2O + 2TaF6 -
Ta2O5 + 10HF + 4F- → 5H2O + 2TaF7 2-
(beide Reaktionen stehen im Gleichgewicht)
Zunächst wird die native, passivierende Tantaloxidschicht mit Flußsäure gemäß folgenden Reaktionsgleichungen entfernt:
Im anschließenden Schritt wird erfindungsgemäß Kupfer
generiert:
2Ta + 5Cu2+ → 2Ta5+ + 5Cu
(Redox-Potentiale: Ta → Ta2O5: -0,75 V und Cu → Cu2+ : +0,34 V)
Die Vorteile des erfindungsgemäßen Verfahrens liegen in der
Einsparung von Kosten durch teure Prozeßschritte sowie der
Ersparung von zusätzlichen Prozeßschritten, um eine fehlerhafte
Grundmetallisierung zu optimieren. In vorteilhafter Weise
können durch das erfindungsgemäße Verfahren insbesondere sehr
dünne Grundmetallisierungen für nachfolgend aufzubringende
Metallisierungssysteme erzeugt werden. Die Dicke der Barriere
bzw. das Barriere-zu-Grundmetallisierungs-Verhältnis ist über
die Konzentration der entsprechenden Lösungen im naßchemischen
Verfahren und die Parameter der chemischen Reaktion wie Zeit
und Temperatur einstellbar. Darüber hinaus wird durch das
erfindungsgemäße Verfahren eine Haftung zwischen der ersten
Metallschicht und der zweiten Metallschicht begünstigt, was
sich förderlich auf die Zuverlässigkeit von
Metallisierungssystemen und somit auf die Lebensdauer von
entsprechenden, aus dem erfindungsgemäßen Verfahren
resultierenden Produkten wie Mikrochips bzw. Mikroarrays
auswirkt.
Figur 1a zeigt schematisch ein im Rahmen des erfindungsgemäßen
Verfahrens eingesetztes Substrat mit Grabenstruktur.
Figur 1b zeigt schematisch das Substrat aus Figur 1a, auf dem
die erste Metallschicht aufgebracht worden ist.
Figur 1c zeigt schematisch das Substrat aus Figur 1b, wobei auf
der ersten Metallschicht eine homogene ultradünne zweite
Metallschicht erzeugt worden ist.
Figur 2 zeigt in der oberen Reihe Lichtmikroskopaufnahmen eines
mit einer Tantal-Barriereschicht versehenen Substrats (SiO2)
vor und nach Erzeugung einer dünnen Kupferschicht sowie in der
unteren Reihe vergrößerte Rasterelektronenmikroskopaufnahmen
der entsprechenden Tantal- und Kupferoberflächen.
Figur 1a zeigt schematisch ein Substrat (10) mit einer Graben-
bzw. Kontaktlochstruktur. Das im erfindungsgemäßen Verfahren
verwendete Substrat (10) kann dabei beispielsweise ein Isolator
(beispielsweise Siliciumdioxid oder Dielektrika mit niedrigerer
Dielektrizitätszahl) als Teil eines integrierten elektronischen
Bauelements wie ein Mikrochip bzw. Mikroarray sein. Figur 1b
zeigt schematisch das Substrat (10) mit der darauf
abgeschiedenen ersten Metallschicht (20), die als
Barriereschicht dient. Diese erste Metallschicht (20) ist
erfindungsgemäß aus mindestens einem Metall, wie beispielsweise
Tantal, Titan oder Aluminium, vorzugsweise Tantal aufgebaut,
wobei ihre Erzeugung mittels physikalischem Aufdampfverfahren
oder chemischer Abscheidung (CVD) erfolgen kann. Figur 1c zeigt
schematisch das Substrat (10) mit der abgeschiedenen ersten
Metallschicht (20) und der darauf naßchemisch aufgebrachten
zweiten Metallschicht (30). Die zweite Metallschicht (30) kann
beispielsweise aus Kupfer, Silber, Gold, Platin oder Nickel,
vorzugsweise Kupfer, aufgebaut sein und zusammenhängend oder
inselartig vorliegen.
Figur 2 zeigt Lichtmikroskopaufnahmen von erfindungsgemäß mit
einer Tantal-Barriereschicht (40) beschichteten Substraten und
einer teilweise inselartig darauf abgeschiedenen Kupferschicht
(50). Darüberhinaus sind vergrößerte
Rasterelektronenmikroskopaufnahmen der Tantalschicht (40a) und
der Kupferschicht (50a) gezeigt. Die verschiedenen Komponenten
der ersten Metallschicht (20) und der zweiten Metallschicht
(30) sind aufgrund ihrer unterschiedlichen
Oberflächenmorphologien voneinander unterscheidbar.
Das erfindungsgemäße Verfahren ermöglicht, daß die sonst
üblichen, aufwändigen Prozeßschritte einer separaten
Grundmetallisierung auf beispielsweise integrierten
elektronischen Bauelementen vermieden werden können. Das
erfindungsgemäße Verfahren ist nicht nur auf Anwendungen im
Rahmen der Metallisierung von strukturierten Substraten
beschränkt, sondern ist für alle Anwendungen, bei denen dünne
Metallschichten für weitere Prozesse - vor allem aber
elektrochemische Abscheidungen von diversen Metallen -
gebraucht werden, einsetzbar und erweiterbar.
- 10
- Substrat
- 20
- erste Metallschicht
- 30
- zweite Metallschicht
- 40
- erste Metallschicht aus Tantal
- 40a
- erste Metallschicht aus Tantal (vergrößert)
- 50
- zweite Metallschicht aus Kupfer
- 50a
- zweite Metallschicht aus Kupfer (vergrößert)
Claims (7)
- Verfahren zur Ausbildung einer ultradünnen homogenen Metallschicht, die insbesondere befähigt ist, als Grundmetallisierung zur Bildung von Kontaktstellen bzw. Kontaktpads bzw. Verdrahtungen auf einem integrierten elektronischen Bauelement zu dienen, worin auf einem Substrat (10) mindestens bereichsweise eine erste Metallschicht (20) abgeschieden wird und darauf anschließend mindestens bereichsweise eine zweite Metallschicht (30) erzeugt wird, wobei die Komponente(n) der zweiten Metallschicht (30) ein positiveres Redox-Potential als die Komponente(n) der ersten Metallschicht (20) aufweis(t/en) und die ultradünne homogene Abscheidung der zweiten Metallschicht (30) mittels naßchemischer, stromloser, elektrochemischer Redoxprozesse, gegebenenfalls unter gleichzeitiger Aktivierung der Oberfläche der ersten Metallschicht (20), durch Elementaustausch von einem oder mehreren Metallsalzen als Oxidationsmittel mit mindestens der obersten Metallatomlage der ersten Metallschicht (20) als Reduktionsmittel erfolgt.
- Verfahren nach Anspruch 1, worin die erste Metallschicht (20) aus mindestens einer Komponente, ausgewählt aus der Gruppe, bestehend aus Tantal, Titan und Aluminium, aufgebaut ist.
- Verfahren nach Anspruch 1 oder 2, worin die zweite Metallschicht (30) aus mindestens einer Komponente, ausgewählt aus der Gruppe, bestehend aus Kupfer, Silber, Gold, Platin und Nickel, aufgebaut ist.
- Verfahren nach einem der Ansprüche 1 bis 3, worin die erste Metallschicht aus Tantal und die zweite Metallschicht aus Kupfer aufgebaut ist.
- Verfahren nach einem der Ansprüche 1 bis 4, worin die erste Metallschicht mittels physikalischem Aufdampfverfahren oder chemischer Abscheidung (CVD) erzeugt wird.
- Verfahren nach einem der Ansprüche 1 bis 5, worin die erste Metallschicht in einer Dicke von 5 nm bis 100 nm aufgebracht wird.
- Verfahren nach einem der Ansprüche 1 bis 6, worin die zweite Metallschicht in einer Dicke von 0,5 nm bis 10 nm gebildet wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10323905A DE10323905A1 (de) | 2003-05-26 | 2003-05-26 | Verfahren zur Erzeugung von ultradünnen homogenen Metallschichten |
DE10323905 | 2003-05-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1482073A2 true EP1482073A2 (de) | 2004-12-01 |
Family
ID=33103595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04011671A Withdrawn EP1482073A2 (de) | 2003-05-26 | 2004-05-17 | Verfahren zur Erzeugung von ultradünnen homogenen Metallschichten |
Country Status (3)
Country | Link |
---|---|
US (1) | US6946386B2 (de) |
EP (1) | EP1482073A2 (de) |
DE (1) | DE10323905A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6696746B1 (en) * | 1998-04-29 | 2004-02-24 | Micron Technology, Inc. | Buried conductors |
KR100574560B1 (ko) * | 2004-12-31 | 2006-04-27 | 동부일렉트로닉스 주식회사 | 반도체 소자의 금속배선 형성 방법 |
EP1909320A1 (de) * | 2006-10-05 | 2008-04-09 | ST Microelectronics Crolles 2 SAS | Kupferdiffusions-Barriere |
US7759241B2 (en) * | 2006-09-15 | 2010-07-20 | Intel Corporation | Group II element alloys for protecting metal interconnects |
KR101516215B1 (ko) | 2013-11-15 | 2015-05-04 | 한국지질자원연구원 | 장력계를 포함하는 시추시스템 및 이를 이용한 정확한 시추의 판단방법 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5824599A (en) * | 1996-01-16 | 1998-10-20 | Cornell Research Foundation, Inc. | Protected encapsulation of catalytic layer for electroless copper interconnect |
US6268289B1 (en) * | 1998-05-18 | 2001-07-31 | Motorola Inc. | Method for protecting the edge exclusion of a semiconductor wafer from copper plating through use of an edge exclusion masking layer |
US6479902B1 (en) * | 2000-06-29 | 2002-11-12 | Advanced Micro Devices, Inc. | Semiconductor catalytic layer and atomic layer deposition thereof |
JP2002053971A (ja) * | 2000-08-03 | 2002-02-19 | Sony Corp | めっき方法及びめっき構造、並びに半導体装置の製造方法及び半導体装置 |
US6511912B1 (en) * | 2000-08-22 | 2003-01-28 | Micron Technology, Inc. | Method of forming a non-conformal layer over and exposing a trench |
US20020064592A1 (en) * | 2000-11-29 | 2002-05-30 | Madhav Datta | Electroless method of seed layer depostion, repair, and fabrication of Cu interconnects |
ATE466975T1 (de) * | 2000-12-13 | 2010-05-15 | Imec | Verfahren zur herstellung eines elektroplattierungsbad und zugehöriges kupfer- plattierungsverfahren |
US6977224B2 (en) * | 2000-12-28 | 2005-12-20 | Intel Corporation | Method of electroless introduction of interconnect structures |
-
2003
- 2003-05-26 DE DE10323905A patent/DE10323905A1/de not_active Withdrawn
-
2004
- 2004-05-17 EP EP04011671A patent/EP1482073A2/de not_active Withdrawn
- 2004-05-25 US US10/854,759 patent/US6946386B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE10323905A1 (de) | 2005-01-05 |
US20040253806A1 (en) | 2004-12-16 |
US6946386B2 (en) | 2005-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102012216153B4 (de) | Halbleiterbauelemente mit Kupferverbindungen und Verfahren zu deren Herstellung | |
DE102006001253B4 (de) | Verfahren zur Herstellung einer Metallschicht über einem strukturierten Dielektrikum mittels einer nasschemischen Abscheidung mit einer stromlosen und einer leistungsgesteuerten Phase | |
DE102005057075B4 (de) | Halbleiterbauelement mit einer Kupferlegierung als Barrierenschicht in einer Kupfermetallisierungsschicht und Verfahren zu dessen Herstellung | |
DE102008016431B4 (de) | Metalldeckschicht mit erhöhtem Elektrodenpotential für kupferbasierte Metallgebiete in Halbleiterbauelementen sowie Verfahren zu ihrer Herstellung | |
DE10296935T5 (de) | Barrierenverstärkungsprozess für Kupferdurchkontaktierungen(oder Zwischenverbindungen) | |
DE102015219012B4 (de) | Verfahren zur Herstellung einer Halbleiterstruktur, die eine Schicht aus einem ersten Metall zwischen einer Diffusionsbarrierenschicht und einem zweiten Metall umfasst | |
DE102006056624B4 (de) | Verfahren zur Herstellung einer selbstjustierten CuSiN-Deckschicht in einem Mikrostrukturbauelement | |
WO2004099467A1 (de) | Zusammensetzungen zur stromlosen abscheidung ternärer materialien für die halbleiterindustrie | |
DE112011101750T5 (de) | Verfahren und Struktur zur Verbesserung der Leitfähigkeit enger kupfergefüllter Durchkontaktierungen | |
DE10341059B4 (de) | Integrierte Schaltungsanordnung mit Kondensator und Herstellungsverfahren | |
DE69832380T2 (de) | Herstellungsmethode für die verdrahtung von halbleiteranordnungen | |
DE102007053600B4 (de) | Verfahren zur Herstellung eines Metalls direkt auf einer leitenden Barrierenschicht durch elektrochemische Abscheidung unter Anwendung einer sauerstoffarmen Umgebung | |
DE102007004884A1 (de) | Verfahren zur Herstellung einer Metallschicht über einem strukturierten Dielektrikum durch stromlose Abscheidung unter Anwendung einer selektiv vorgesehenen Aktivierungsschicht | |
DE10319135B4 (de) | Verfahren zum Elektroplattieren von Kupfer über einer strukturierten dielektrischen Schicht, um die Prozess-Gleichförmigkeit eines nachfolgenden CMP-Prozesses zu verbessern | |
DE3815569A1 (de) | Verfahren zum selektiven abscheiden eines leitenden materials bei der herstellung integrierter schaltungen | |
DE10339990B4 (de) | Verfahren zur Herstellung einer Metallleitung mit einer erhöhten Widerstandsfähigkeit gegen Elektromigration entlang einer Grenzfläche einer dielektrischen Barrierenschicht mittels Implantieren von Material in die Metalleitung | |
EP1482073A2 (de) | Verfahren zur Erzeugung von ultradünnen homogenen Metallschichten | |
DE10351005B4 (de) | Barrierenschicht mit einer Titannitridbeschichtung für eine Kupfermetallisierungsschicht, die ein Dielektrikum mit kleinem ε aufweist | |
DE10327618B4 (de) | Verfahren zur Ausbildung von Aluminiummetallverdrahtungen | |
DE10152202B4 (de) | Optimierte Dünnfilmdiffusionssperre aus TaCN für Kupfermetallisierung | |
DE112004001684T5 (de) | Seed-Reparatur tiefer Kontaktlöcher (Via) unter Verwendung stromloser Beschichtungschemie | |
DE10240116A1 (de) | Verfahren zur Herstellung lokaler Verbindungsbarrierenschichten | |
DE60036052T2 (de) | Verbesserung der Qualität einer in einem Plattierungsbad abgeschiedenen metallhaltigen Schicht | |
EP2028686B1 (de) | Verfahren zum galvanischen Aufbringen eines Metalls, insbesondere von Kupfer, und Verwendung dieses Verfahrens | |
DE112004002156T5 (de) | Verfahren zum Verhindern der Vergrößerung einer Kontaktlochbreite während der Kontaktherstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20061201 |