EP1480532B1 - Vorrichtung zur gleichzeitigen, kontinuierlichen messung und regelung der acetat- und triacetinmenge in filterstäben in der zigarettenindustrie - Google Patents

Vorrichtung zur gleichzeitigen, kontinuierlichen messung und regelung der acetat- und triacetinmenge in filterstäben in der zigarettenindustrie Download PDF

Info

Publication number
EP1480532B1
EP1480532B1 EP03706558A EP03706558A EP1480532B1 EP 1480532 B1 EP1480532 B1 EP 1480532B1 EP 03706558 A EP03706558 A EP 03706558A EP 03706558 A EP03706558 A EP 03706558A EP 1480532 B1 EP1480532 B1 EP 1480532B1
Authority
EP
European Patent Office
Prior art keywords
sensor
filter
mass
sensors
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03706558A
Other languages
English (en)
French (fr)
Other versions
EP1480532A1 (de
Inventor
Eberhard Teufel
Wolfgang Sexauer
Manfred Gerlitzki
Rainer Herrmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerdia Produktions GmbH
Original Assignee
Rhodia Acetow GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Acetow GmbH filed Critical Rhodia Acetow GmbH
Publication of EP1480532A1 publication Critical patent/EP1480532A1/de
Application granted granted Critical
Publication of EP1480532B1 publication Critical patent/EP1480532B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • A24D3/0295Process control means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • A24D3/0204Preliminary operations before the filter rod forming process, e.g. crimping, blooming
    • A24D3/0212Applying additives to filter materials
    • A24D3/022Applying additives to filter materials with liquid additives, e.g. application of plasticisers

Definitions

  • the invention relates to a device for simultaneous, continuous measurement and control of the amount of acetate and triacetin in the manufacture of filter rods, especially for use in the cigarette industry.
  • Cigarette filters are an essential, quality-relevant component of cigarettes, which is why great effort is made in the process of making the Filter rods to optimize quality. It is important to pay attention to the most goal-oriented Regulation of the procedure, which of course depends on one precise and fast characterization of the quality of the products in the In an optimal case, this is done using an online procedure.
  • parameters such as diameter, acetate weight and triacetine content and draw resistance.
  • draw resistance and Triacetingehalt are usually used off-line methods.
  • the determination of the acetate weight takes place Gravimetric, by determining the gross weight of the bars and of which the Degradable mass of wrapping paper, glue and triacetin. Paper and glueing are also determined gravimetrically, this being largely is process-independent parameters.
  • To determine the triacetin content Different methods are used. First, the weight a defined number of filter rods with and without triacetin. The difference from both measurements then gives the triacin content.
  • a further method is the determination of the plasticizer content by measuring the reflection of infrared rays in the near infrared range (see, for example: CANON AB, HUGHES IW: On-line measurement of triacetin in cigarette filter rods using near infrared reflectance spectroscopy; Tob. Chem. Res. Conf., 1987.).
  • This method has the considerable disadvantage that it is arapnmeßmethode and the infrared beam only a few wavelengths deep into the material to be measured.
  • the measurement result is highly dependent on the migration behavior of the plasticizer, but also on the fiber fineness and the packing density of the filter material used.
  • Another disadvantage of this method is that when determining the amount of acetate the moisture of the acetate is not taken into account.
  • the equilibrium moisture of cellulose acetate under normal conditions is about 5.5% by weight.
  • the initial moisture of a filter may be conditional due to changed process parameters in the filter tow production between vary about 3.5 and 7 wt .-%. This variation leads to relative inaccuracy at the mentioned weight determinations for the amount of triacetin and acetate.
  • the final moisture, and thus the gross weight of the finished filter rods significantly affected can be by changing process parameters in the filter rod production.
  • parameters such as the room climate, the processing speed are mentioned here and the temperature and humidity of the air at the spreader nozzles.
  • the present invention is based on the object discussed above Disadvantages of the prior art remedy and a device for simultaneous, continuous measurement of acetate and triacetin mass and regulation of Describe manufacturing process.
  • the device according to the invention for the production of cigarette filters with simultaneous control of the filter material and plasticizer mass comprising a processing part AF for processing the supplied filter Tows, a format device F for forming a wrapped filter strand and an integrated in the processing part metering device for metering plasticizer, characterized in that sensors for detecting the mass flow of filter tow material M 1 , as well as sensors for detecting the sum of the mass flow of filter tow material and plasticizer mass M 2 , are present in the device, the device comprising a measuring and control device which is connected to the Sensors for measuring the mass flows M 1 and M 2 is coupled such that both the filter material and the plasticizer mass can be measured and controlled independently.
  • the sensors used S m1 , S m2 , S v1 and and. S v2 can in principle be arranged at different points of the overall apparatus, wherein it is essential for the invention that, viewed in each case at running speed of the filter strand, the sensors marked "1" are located in front of the metering device and the sensors labeled "2" are located after the same ,
  • the first mass sensor S m1 and speed sensor S v1 can thus be located at any point between the ball outlet and metering device.
  • the sensor S v1 for detecting the speed v 1 and the sensor S m1 for detecting the length-related mass m 1 are arranged directly adjacent.
  • immediately adjacent is meant that they are in the direction of the course of the filter strand are directly behind each other, without being between them another element of the device is located. If the sensors work without contact, it may also be possible to measure in the same place. This ensures that speed and length-related mass at a point of the filter strand detected on the identical overall conditions with respect to the state of stretching of the filter Tows.
  • the sensor S m2 seen in the direction of the filter strand, arranged immediately in front of the cutting device, and as a sensor S v2 , the measuring device is used for the tape speed.
  • the speeds v 1 and v 2 are preferably detected via optical sensors.
  • optical sensors have the advantage that the relative velocity between two objects can be measured without contact. Thus, no mechanical interference takes place in the barrel of the filter string by the measurement.
  • the surface structures of the filter strand are usually imaged on a grating where they produce a light modulation. With the aid of a photoelectric device, this light modulation is converted into a frequency proportional to the relative velocity.
  • Other possibilities for non-contact measurement of the speed of a continuous material strand can be used, but remain unmentioned here.
  • any sensors can be used as "mass sensors”, with which it is possible, directly or indirectly, to measure the length of a continuous To capture material strings.
  • the length-related masses m 1 and m 2 are therefore determined by means of microwave resonators as mass sensors.
  • EP 0 468 023 B1 describes how, by measuring two physical effects, the length-related mass and the humidity of a product which is located in the microwave field of a microwave resonator can be determined independently of one another.
  • Microwave resonators form a standing wave at the resonant frequency, through which, with the aid of special openings and with dielectric material lined product guides, the acetate or filter material to be measured is moved.
  • the special interaction between the standing microwave and the product changes the resonance characteristics of the microwave resonators.
  • a great advantage of these resonators is that you can adapt by geometric design to a wide variety of applications and so achieved a large measuring effect and a large penetration into the product.
  • a sensor type whose microwave measuring field is in one embodiment is particularly suitable up to 3 cm wide and up to 30 cm long measuring gap can be made very homogeneous, so that the position of the product in the sensor is indifferent to the strength of the interaction between microwave and product.
  • This "fork resonator” is an excited in the basic mode E 010 resonator, which has been cut in the direction of the wall currents, so that there is a measuring zone with extremely homogeneous measuring field.
  • a planar sensor with a standing wave above a planar one Surface whose stray field starting from the sensor surface in the room decreases exponentially up to a maximum extension of 10 cm.
  • a planar sensor with a standing wave above a planar one Surface whose stray field starting from the sensor surface in the room decreases exponentially up to a maximum extension of 10 cm.
  • the profile sensor is particularly suitable, with which, in particular, a high spatial resolution of less than 3 mm in the direction of the filter strand can be achieved, and which is also very good for measuring the homogeneity of the plasticizer application suitable is.
  • a profile sensor is disclosed for example in EP 0 889 321.
  • This sensor has a through hole perpendicular to its planar extension.
  • the throughbore is bounded by metallic, longitudinally extending walls and substantially flat.
  • This resonator is preferably filled with a dielectric. Its thickness is much smaller than its length, that is smaller than the thickness perpendicular to the transverse dimension.
  • the particular advantages of a microwave sensor with regard to the advantageous Embodiment according to claim 8 will be explained in more detail here.
  • the first effect of the resonance frequency detuning A depends mainly on the shortening of the wavelength by the dielectric product, which is currently in the measuring field of the resonator (ie from the so-called real part of the dielectric constant).
  • the second effect B stems from the Conversion of the microwave energy into heat, which only in Resonator compiler can be accurately measured (the "microwave oven effect" or the so-called. Imaginary part of the dielectric constant).
  • both sizes are proportional in the same way are to the mass of the product in the measuring field, they are both suitable for Mass measurement.
  • parameter A is used for this purpose.
  • Both measured variables are dependent on the humidity in different ways. Consequently
  • the quotient of both quantities B / A provides a mass - independent, only from the Humidity-dependent measured variable that can be calibrated against the moisture content of the material.
  • the moisture influence on the mass value A can be compensated be so that two independent measures can be output: The moisture-independent mass and mass independent of moisture.
  • the moisture information of the incoming acetate strand can be used be to moisture variations between different acetate bales like even within the bale by regulating the mass flow to compensate.
  • a big advantage of the microwave measuring method is the constancy of the once calibration, and their independence from variations in material parameters, such as changing the manufacturing parameters of the acetate, e.g. its total titre or thread size.
  • the measuring technique has been on recently the achievement of a high measuring speed and precision optimized so that each after 0.1 milliseconds, a new humidity and mass value are output can, that is 10,000 values per second.
  • a density measurement can be done via beta radiation.
  • mass sensor and an optical sensor in question in which the Density is detected by scattered light measurements with infrared radiation.
  • the mass flow M 1 can also be determined by means of a baling scale according to DE 31 49 670 A1; whereby the already mentioned restrictions on moisture balance apply.
  • the output signals of all sensors are either a control device and / or supplied to a display device. If a control device is present, an automatic control of the device according to the invention carried out procedure, resulting in production conditions proves to be particularly advantageous. Alternatively, it is also possible an operator displays the signals displayed on the display device self-determined and executes the corresponding regulation. If both of the above Facilities are present, via the display device, a control of automatic regulation.
  • the control device is coupled in an advantageous embodiment with the drive of the processing part (AF) and the gear pump that the metering the required Triacetinmenge supplies.
  • a conventional filter rod machine operates as follows:
  • the filter tow machine supplied filter tow is withdrawn from a bale 8 and introduced via a so-called gallows 9 from there into the processing device (AF).
  • the sensors S v1 and S m1 are arranged side by side in the order.
  • the processing device generally comprises two spreader nozzles 3 and 3 ', a pair of brake rollers 1, through which the filter train is given a pre-stretch As well as draw roller pairs 2, which run at different speeds and subject the filter strand to drawing.
  • the draw rolls can with be provided a thread-like surface, so that only parts of the spread continuous filter strand are detected and stretched. That way the individual filament groups, which make up the filter strand, shifted against each other.
  • the processing device at its output a Deflection roller pair 5, by means of which the processed filter strand in one direction which is deflected for entry into the inlet nozzle and the inlet finger of the after-arranged format device F is suitable.
  • the drafting rollers 2, as well as the guide roller 5 are driven rollers, which with a Fixed speed ratio are operated to each other.
  • the filter strand is gathered to the diameter of the future cigarette filter, wrapped with paper, and then cut the filter rods in a cutter 7 to the required length.
  • the sensor S m2 is arranged.
  • a textile tape called a format tape is used, which tightly encloses the filter strand during the bonding process.
  • the speed of this conveyor corresponds to the speed of the filter strand in the format part and thus after the metering device 4. This speed is measured by means of the sensor S v2 .
  • the dosage of the acetate mass takes place in the filter rod machines according to the state of Technique in that the speed difference between processing part (AF) and format part (F) is changed, wherein usually the format part (F) is constant is held.
  • the acetate mass can also be changed by other measures. So describes EP 0 629 356 B1, the regulation of the acetate mass by changing the Brake roller pressure on the brake roller pair 1.
  • the metering device 4 is preferably between the drafting rollers and the deflecting rollers arranged in the processing device.
  • the order of the plasticizer thus takes place on the completely spread filter strand.
  • the metering device consists of a spray box in which, for example, rotating Brushes are attached, which serve to finely atomize the plasticizer and to fling on the spreading fiber strand.
  • a softening agent usually triacetin or TEGDA (triethylene glycol diaceate) used.
  • TEGDA triethylene glycol diaceate
  • the amount of plasticizer required for the process is usually by means of a gear pump of the metering device 4 is supplied.
  • the dosage of the amount of plasticizer takes place by changing the speed of the drive of this gear pump.
  • M 1 ⁇ M 2 M 1 ⁇ M 2 .
  • the difference between M 1 and M 2 represents a measure of the amount of plasticizer per filter rod.
  • W K x (M 2 - M 1 ) + C
  • W the amount of plasticizer in mg per filter rod
  • K and C are factors determined by calibration. These calibration factors are quantities that result from the sensor characteristic.
  • This calibration makes it possible, not only the plasticizer content per Filter rod to regulate, but also, regardless of filter tow specification used, to measure quantitatively continuously.
  • M K 1 M 1 + C 1 where K 1 and C 1 in turn must be determined by calibration according to the sensor characteristic.
  • a control carried out with the device according to the invention is to be carried out so that the products M 1 and M 2 are kept constant in each case.
  • the speed of the processing part (AF) is to be regulated so that the product M 1 is returned to its original value.

Landscapes

  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)
  • Manufacturing Of Cigar And Cigarette Tobacco (AREA)

Description

Die Erfindung betrifft eine Vorrichtung zur gleichzeitigen, kontinuierlichen Messung und Regelung der Acetat- und Triacetinmenge bei der Herstellung von Filterstäben, insbesondere für die Anwendung in der Zigarettenindustrie.
Zigarettenfilter sind ein wesentlicher, qualitätsrelevanter Bestandteil von Zigaretten, weshalb man große Anstrengungen unternimmt, das Verfahren zur Herstellung der Filterstäbe qualitätsoptimiert zu gestalten. Dabei ist zu achten auf eine möglichst zielgerichtete Regelung des Verfahrens, die selbstverständlich abhängig ist von einer möglichst präzisen und schnellen Charakterisierung der Qualität der Produkte. Im optimalen Fall erfolgt dies nach einem Online - Verfahren.
Zur Charakterisierung von Filterstäben in der Zigarettenindustrie werden Parameter, wie Durchmesser, Acetatgewicht und Triacetingehalt und Zugwiderstand bestimmt. Zur Bestimmung von Acetatgewicht, Zugwiderstand und Triacetingehalt werden üblicherweise off - line Methoden benutzt. Die Bestimmung des Acetatgewichtes erfolgt dabei gravimetrisch, indem man das Bruttogewicht der Stäbe bestimmt und davon die Masse an Umhüllungspapier, Leim und Triacetin in Abzug bringt. Papier und Leimmengen werden ebenfalls gravimetrisch bestimmt, wobei es sich hierbei weitestgehend um verfahrensunabhängige Parameter handelt. Zur Bestimmung des Triacetingehaltes kommen unterschiedliche Methoden zur Anwendung. Zum einen wird das Gewicht einer definierten Anzahl von Filterstäben mit und ohne Triacetin bestimmt. Die Differenz aus beiden Messungen ergibt dann den Triacetingehalt. Dieses Verfahren hat den Nachteil, daß es nur selten angewandt werden kann, oder bei häufiger Anwendung zu, zu hohen Abfallmengen führt. Es gibt darüber hinaus auch Verfahren zur Triacetinbestimmung an fertigen Filterstäben. Hier sind beispielhaft zu nennen die Extraktion des Triacetins mit einem geeigneten Lösungsmittel und Bestimmung des Triacetingehaltes durch eine Labormethode, wie zum Beispiel die Gaschromatographie.
Ein weiters Verfahren, welches zu nennen wäre, ist die Bestimmung des Weichmachergehaltes durch Messung der Reflexion von Infrarotstrahlen im nahen Infrarotbereich (siehe z. B.: CANON A.B.;HUGHES I.W.: On-line measurement of triacetin in cigarette filter rods using near infrared reflectance spectroscopy;
Tob. Chem. Res. Conf., 1987.). Dieses Verfahren hat den erheblichen Nachteil, daß es eine Oberflächenmeßmethode ist und der Infrarotstrahl nur wenige Wellenlängen tief in das Meßgut eintritt. Somit ist das Meßergebniss stark abhängig vom Migrationsverhalten des Weichmachers, aber auch von der Faserfeinheit und der Packungsdichte des verwendeten Filtermaterials.
Alle diese Verfahren haben den Nachteil, daß sie, da sie off - line geführt werden, nur Momentaufnahmen der aktuellen Produktion wiedergeben.
Aus diesem Grund kommen seit einiger Zeit auch on - line Bestimmungsverfahren des Acetatgewichtes zum Einsatz, die ebenfalls zur Verfahrensregelung genutzt werden können. So beschreibt beispielsweise die DE 28 15 025 die Messung der Dichte und damit der Masse des fertigen Filterstrangs mittels eines Beta - Strahlers. Dieses Verfahren erlaubt es also, die Masse des fertigen Filterstabes zu ermitteln, wobei sich die Masse in diesem Fall additiv zusammensetzt aus der Acetatmasse und der aufgebrachten Triacetinmenge. Die Bestimmung des Triacetingehaltes erfolgt bei diesem Verfahren entsprechend der oben bereits beschriebenen off - line Verfahren. Die Methode eignet sich mit Einschränkungen auch schon zur Regelung der Gesamtmasse der Filterstäbe, allerdings mit der Einschränkung, daß die Dichtebestimmung mittels Beta - Strahler Feuchteschwankungen des Meßgutes nicht erfassen kann.
Eine weitere, quasi, on - line Bestimmung wird in der DE 31 49 670 A1 beschreiben. Hierbei wird die eingebrachte Acetatmenge dadurch bestimmt, daß man den Filter Tow Ballen auf einer Waage positioniert und während des Herstellungsvorganges kontinuierlich den Verbrauch an Material erfaßt. Bei gleichzeitiger Bestimmung der Anzahl der Schnitte (Filterstabschnitte) pro Zeiteinheit läßt sich durch Kombination dieser beiden Meßgrößen auf die verbrauchte Acetatmenge pro Filterstab schließen.
Wird zusätzlich das Endgewicht der Filterstäbe durch eine externe Wägung bestimmt, ergibt sich aus der Differenz zwischen verbrauchtem Material und tatsächlicher Filterstabmasse die aufgebrachte Triacetin-Menge. Auch dieses Verfahren hat den Nachteil, daß es nur bedingt als on - line Verfahren bezeichnet werden kann, da es einer zusätzlichen off - line Gewichtsbestimmung der fertigen Filterstäbe bedarf. Die Frequenz der nach dieser Methode erhältlichen Triacetinwerte ist bestimmt durch die Frequenz der extern ermittelten Brutogewichtsbestimmungen. Da hierfür wiederum Filterstäbe dem Produktstrom entnommen werden müssen, ist diese Bestimmung ebenfalls mit einer nicht vernachlässigbaren Abfallmenge verbunden. Die Waage hat zudem den Nachteil, daß Störungen, die durch gewisse Tow-Defekte auftreten, nicht detektiert werden können. Einer dieser Störfaktoren wäre z.B. der Ausfall einer Spinndüse beim Herstellungsprozess des Filter Tows mit der Auswirkung, daß kurzzeitig 2 bis 5 % des nominalen Gesamttiters fehlen. Dieses führt im Endeffekt dazu, daß bei gleicher Verbrauchsmenge, gemessen durch die Gewichtsabnahme des Ballens, die Filterstäbe etwa 2,5 % leichter werden. Dies würde im Ergebnis einen zu geringen Triacetin - Gehalt vortäuschen. Außerdem lassen sich mit Hilfe dieses Verfahrens Kurzzeitschwankungen sowohl der Acetatmenge als auch der Triacetinmenge nicht ermitteln.
Ein weiter Nachteil dieses Verfahrens besteht darin, daß bei der Ermittlung der Acetatmenge die Feuchtigkeit des Acetats nicht berücksichtigt wird. Die Gleichgewichtsfeuchte von Celluloseacetat unter Normalbedingungen beträgt etwa 5,5 Gew.%. Unter üblicher Produktionspraxis kann die Ausgangsfeuchte eines Filter Tows bedingt durch veränderte Verfahrensparameter bei der Filter Tow Herstellung zwischen etwa 3,5 und 7 Gew.-% variieren. Diese Variation führt zu einer relativen Ungenauigkeit bei den angesprochenen Gewichtsbestimmungen für die Triacetin - und Acetatmenge. Der Vollständigkeit halber sei hier noch erwähnt, daß außerdem die Endfeuchte, und damit das Bruttogewicht der fertigen Filterstäbe, signifikant beeinflußt werden kann durch wechselnde Verfahrensparameter bei der Filterstabherstellung. Beispielhaft zu erwähnen sind hier Parameter wie das Raumklima, die Verarbeitungsgeschwindigkeit und die Temperatur und Luftfeuchte der Luft an den Ausbreiterdüsen.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die vorstehend besprochenen Nachteile des Standes der Technik zu beheben und eine Vorrichtung für die gleichzeitige, kontinuierlichen Messung der Acetat und Triacetinmasse und der Regelung des Herstellungsprozesses zu beschreiben.
Erfindungsgemäß wird diese Aufgabe durch eine Vorrichtung nach Anspruch 1 gelöst. Die erfindungsgemäße Vorrichtung zur Herstellung von Zigarettenfiltern unter gleichzeitiger Regelung der Filtermaterial- und Weichmachermasse, aufweisend ein Aufbereitungsteil AF zum Aufbereiten des zugeführten Filter Tows, eine Formateinrichtung F zum Ausbilden eines umhüllten Filterstrangs und eine in das Aufbereitungsteil integrierte Dosiereinrichtung zum Zudosieren von Weichmacher, ist dadurch gekennzeichnet, daß in der Vorrichtung Sensoren zum Erfassen des Massenstromes an Filter Tow Material M1, sowie Sensoren zum Erfassen der Summe des Massenstromes aus Filter Tow Material und Weichmachermasse M2, vorhanden sind, wobei die Vorrichtung eine Meß- und Regeleinrichtung enthält, die mit den Sensoren zur Messung der Massenströme M1 und M2 derart gekoppelt ist, daß sowohl die Filtermaterial- als auch die Weichmachermasse unabhängig voneinander gemessen und geregelt werden können.
In einer bevorzugten Ausführung der Erfindung befinden sich, in Laufrichtung des Filterstranges gesehen, vor und nach der Dosiereinrichtung für den Weichmacher Sensoren Sm1; Sm2 zum Erfassen der längenbezogenen Masse m1, m2 des fortlaufenden Filterstranges und Sensoren Sv1; Sv2 zum Erfassen der aktuellen Geschwindigkeiten v1 und v2 des fortlaufenden Filterstranges, wobei sich der jeweilige Massenfluss aus den Produkten aus m1 x v1= M1 und m2 x v2 = M2 ergibt.
Die eingesetzten Sensoren Sm1, Sm2, Sv1 und und. Sv2 können prinzipiell an verschiedenen Stellen der Gesamtvorrichtung angeordnet werden, wobei für die Erfindung wesentlich ist, daß sich, jeweils in Laufgeschwindigkeit des Filterstranges gesehen, die mit "1" indizierten Sensoren vor der Dosiereinrichtung befinden und die mit "2" indizierten Sensoren nach derselben. Der erste Massensensor Sm1 und Geschwindigkeitsensor Sv1 kann sich somit an einer beliebigen Stelle zwischen Ballenablauf und Dosiereinrichtung befinden.
In einer vorteilhaften Ausführung sind der Sensor Sv1 zum Erfassen der Geschwindigkeit v1 und der Sensor Sm1 zum Erfassen der längenbezogenen Masse m1 unmittelbar benachbart angeordnet.
Unter "unmittelbar benachbart" ist zu verstehen, daß sie sich in Richtung des Verlaufs des Filterstranges unmittelbar hintereinander befinden, ohne daß sich zwischen ihnen ein weiteres Element der Vorrichtung befindet. Falls die Sensoren berührungslos arbeiten, ist es ggf. auch möglich, an der gleichen Stelle zu messen. So wird gewährleistet, daß Geschwindigkeit und längenbezogene Masse an einen Punkt des Filterstrangs erfaßt, an dem identische Gesamtbedingungen bezüglich des Verstreckungszustandes des Filter Tows herrschen.
Aus Gründen der Meßempfindlichkeit, insbesondere betreffenden den Sensor Sm1, hat es sich als besonders vorteilhaft herausgestellt, wenn der Massenfluß M1 vor Eintritt des Filter Tows in das Aufbereitungsteil AF bestimmt wird.
In einer weiteren vorteilhaften Ausführung der Erfindung ist der Sensor Sm2, in Laufrichtung des Filterstranges gesehen, unmittelbar vor der Schneideinrichtung angeordnet, und als Sensor Sv2 wird die Meßeinrichtung für die Formatbandgeschwindigkeit eingesetzt.
Die Geschwindigkeiten v1 und v2 werden vorzugsweise über optische Sensoren erfaßt. Derartige optische Sensoren haben den Vorteil, daß die Messung der Relativgeschwindigkeit zwischen zwei Objekten berührungslos erfolgen kann. Somit findet durch die Messung kein mechanischer Eingriff in den Lauf des Filterstrangs statt. Bei solchen optischen Sensoren wird üblicherweise die Oberflächenstrukturen des Filterstranges auf einem Gitter abgebildet, wo sie eine Lichtmodulation erzeugen. Mit Hilfe eines photoelektrischen Bauelements wird diese Lichtmodulation in eine der Relativgeschwindigkeit proportionalen Frequenz umgewandelt. Andere Möglichkeiten zu berührungslosen Messung der Geschwindigkeit eines fortlaufenden Materialstranges sind einsetzbar, bleiben hier aber unerwähnt.
Als "Massensensoren" können prinzipiell jegliche Sensoren eingesetzt werden, mit dem es möglich ist, direkt oder indirekt die längenbezogene Masse eines fortlaufenden Materialstranges zu erfassen.
Von besonderem Vorteil ist es, wenn neben der längenbezogenen Masse, gleichzeitig und unabhängig von der Massenbestimmung, auch noch der Feuchtegehalt des Meßgutes bestimmt werden kann, da dadurch erst eine vollständige Massenbilanz beim Verarbeitungsprozess (Feuchte, Acetat - Triacetinmasse) ermittelt werden kann.
Vorzugsweise werden die längenbezogenen Massen m1 und m2 deshalb mit Hilfe von Mikrowellenresonatoren als Massensensoren bestimmt.
In der EP 0 468 023 B1 wird dargelegt, wie durch Messung zweier physikalischer Effekte die längenbezogene Masse und die Feuchte eines Produktes, das sich im Mikrowellenfeld eines Mikrowellenresonators befindet, unabhängig voneinander bestimmt werden können. Mikrowellenresonatoren bilden bei der Resonanzfrequenz eine stehende Welle, durch die, mit Hilfe spezieller Öffnungen und mit dielektrischem Material ausgekleideter Produktführungen, das zu vermessende Acetat- bzw. Filtermaterial bewegt wird. Durch die spezielle Wechselwirkung zwischen der stehenden Mikrowelle und dem Produkt werden die Resonanzeigenschaften der Mikrowellenresonatoren verändert. Ein großer Vorteil dieser Resonatoren ist, daß man durch geometrische Ausgestaltung sich an unterschiedlichste Applikationen anpassen kann und so einen großen Meßeffekt und eine große Eindringtiefe ins Produkt erreicht. Außerdem hat im Gegensatz zu Meßtechniken, die das Resonanzprinzip nicht verwenden (wie die Durchstrahlungs- oder Streu-Meßtechniken), die Messung der Verluste von Mikrowellenenergie infolge der Absorption ins Produkt die Qualität einer exakten Meßgröße, was bei Durchstrahlungsmessungen infolge der nicht erfassbaren Streuverluste nicht gegeben ist. Eine ganze Reihe von Ausführungsbeispielen für derartige Resonatoren sind in der genannten Patentschrift aufgeführt: Für flächenhafte Materialformen, wie sie der Filter Tow Strang im ganzen Bereich der Aufbereitungsteils (AF) vor der Dosiereinrichtung darstellt, eignet sich besonders ein Sensortyp, dessen Mikrowellen - Meßfeld in einem bis zu 3 cm breiten und bis zu 30 cm langen Messpalt sehr homogen ausgebildet werden kann, so daß für die Stärke der Wechselwirkung zwischen Mikrowelle und Produkt die Lage des Produktes im Sensor gleichgültig ist. Dieser "Gabelresonator" ist ein im Grundmodus E010 angeregter Resonator, der in Richtung der Wandströme aufgeschnitten wurde, so daß sich eine Meßzone mit äußerst homogenem Meßfeld ergibt.
Für eine seitliche einseitige Vermessung des Acetatstranges vor der Weichmacherauftragung eignet sich auch ein Planarsensor mit einer stehenden Welle über einer planaren Oberfläche, dessen Streufeld ausgehend von der Sensoroberfläche in den Raum hinein exponentiell bis zu einer maximalen Ausdehnung von 10 cm hin abnimmt. Ein solcher Sensor ist in der EP 0 908 718 beschrieben.
Vor der ersten Ausbreiterdüse, bevor das Filter Tow Material zu einem flächigen Strang ausgerichtet wird, ist auch der Einsatz eines geschlossenen, durch eine Kunststoff - Probenführung durchbrochenen Resonators möglich, der im E010 Grundmodus angeregt ist und damit im Probenbereich ein maximales Meßfeld, d.h. eine maximale Empfindlichkeit besitzt.
Im Bereich des ausgebildeten Filterstranges nach der Weichmacherauftragung, der Position Sm2, eignet sich besonders der Profilsensor, mit dem insbesondere eine hohe Ortsauflösung von unter 3mm in Richtung des Filterstranges erreicht werden kann, und der darüber hinaus auch sehr gut zur Messung der Homogenität des Weichmacherauftrages geeignet ist. Ein solcher Profilsensor ist beispielsweise in der EP 0 889 321 offenbart. Dieser Sensor weist eine Durchgangsbohrung senkrecht zu seiner flächigen Erstreckung auf. Die Durchgangsbohrung ist durch metallische, sich in Längsrichtung erstreckende Wandungen begrenzt und im wesentlichen flach. Dieser Resonator ist vorzugsweise mit einem Dielektrikum gefüllt. Seine Dicke ist wesentlich kleiner als seine Länge, das heißt kleiner als die zur Dicke senkrechte Querabmessung.
Die besonderen Vorteile eines Mikrowellensensors im Hinblick auf die vorteilhafte Ausführung nach Anspruch 8 sei hier nochmals näher erläutert. Als direkte Messgrössen fallen bei der Mikrowellenresonatormesstechnik zwei Größen an: die Veränderung der Resonanzfrequenz A und die Zunahme der Halbwertsbreite B der Resonanzkurve gegenüber dem Leerzustand des Resonators. Der erste Effekt der Resonanzfrequenzverstimmung A hängt vor allem von der Verkürzung der Wellenlänge durch das dielektrische Produkt ab, das sich gerade im Messfeld des Resonators befindet (also vom sog. Realteil der Dielektrizitätskonstanten). Der zweite Effekt B rührt von der Umwandlung der Mikrowellenenergie in Wärme her, die nur beim Resonatorverfahren exakt vermessen werden kann (der "Mikrowellen-Ofen-Effekt" oder der sog. Imaginärteil der Dielektrizitätskonstanten). Da beide Größen in gleicher Weise proportional zur Masse des Produktes im Messfeld sind, eignen sie sich auch beide zur Massenmessung. In der Regel wird dafür der Parameter A verwandt. Andererseits sind beide Meßgrößen in unterschiedlicher Weise von der Feuchte abhängig. Somit liefert also der Quotient beider Größen B/A eine Masse - unabhängige, nur von der Feuchte abhängige Meßgröße, die gegen die Materialfeuchte kalibriert werden kann. Mit dieser Größe kann andererseits der Feuchteeinfluß auf den Massewert A kompensiert werden, so daß zwei unabhängige Meßgrößen ausgegeben werden können: Die von der Masse unabhängige Feuchte und die von der Feuchte unabhängige Masse. Darüber hinaus kann die Feuchte - Information des einlaufenden Acetatstranges genutzt werden, um Feuchteschwankungen zwischen unterschiedlichen Acetatballen wie auch innerhalb des Ballens durch die Regelung des Massenstromes auszugleichen.
Ein großer Vorteil des Mikrowellen- Meßverfahrens ist die Konstanz der einmal durchgeführten Kalibration, und ihre Unabhängigkeit von Schwankungen von Materialparametern, wie etwa die Veränderung der Herstellungsparameter des Acetats, z.B. sein Gesamttiter oder seine Fadenstärke. Die Meßtechnik wurde in jüngster Zeit auf die Erreichung einer hohen Meßgeschwindigkeit und Präzision optimiert, so daß jeweils nach 0.1 Millisekunden ein neuer Feuchte- und Massewert ausgegeben werden können, also pro Sekunde jeweils 10.000 Werte.
Alternativ dazu, kann auch eine Dichtemessung über Beta - Strahlung erfolgen. Schließlich kommt als Massensensor auch ein optischer Sensor in Frage, bei dem die Dichte über Streulichtmessungen mit Infrarotstrahlung erfaßt wird. Diese Sensoren sind Fachleuten auf dem Gebiet der Meßtechnik wohl bekannt und sollen deshalb hier nicht näher erörtert werden. Allerdings haben die beiden letzteren Verfahren den Nachteil, daß sie die Feuchte des Filter Tows nicht erfassen, weshalb insbesondere die Triacetinbestimmung mit einer höheren Ungenauigkeit behaftet ist, als bei dem Mikrowellenverfahren.
Nach einer weiteren bevorzugten Ausführung der Erfindung kann der Massenfluß M1 auch mittels einer Ballenwaage gemäß DE 31 49 670 A1 bestimmt werden; wobei die schon erwähnten Einschränkungen bezüglich Feuchtebilanz gelten.
Erfindungsgemäß werden die Ausgangssignale aller Sensoren entweder einer Regeleinrichtung und/oder einer Anzeigevorrichtung zugeführt. Falls eine Regeleinrichtung vorhanden ist, kann eine automatische Regelung des mit der erfindungsgemäßen Vorrichtung durchgeführten Verfahrens vorgenommen werden, was sich unter Produktionsbedingungen als besonders vorteilhaft erweist. Alternativ dazu ist es auch möglich, daß eine Bedienungsperson die über die Anzeigevorrichtung dargestellten Signale selbst erfaßt und die entsprechende Regelung ausführt. Wenn beide der genannten Einrichtungen vorhanden sind, kann über die Anzeigevorrichtung eine Kontrolle der automatischen Regelung durchgeführt werden.
Die Regeleinrichtung ist in einer vorteilhaften Ausführung gekoppelt mit dem Antrieb des Aufbereitungsteils (AF) und der Zahnradpumpe die der Dosiereinrichtung die erforderliche Triacetinmenge liefert.
Die Funktionsweise der erfindungsgemäßen Vorrichtung wird im folgenden exemplarisch mit Bezug auf die beigefügte Zeichnung näher beschrieben. Die einzige Figur der Zeichnung zeigt eine Ausführungsform einer erfindungsgemäßen Vorrichtung zur Herstellung von Zigarettenfiltern.
Eine herkömmliche Filterstabmaschine, wie sie aus dem Stand der Technik bekannt ist, funktioniert wie folgt:
Das der Filterstabmaschine zugeführte Filter Tow wird von einem Ballen 8 abgezogen und über einen sogenannten Galgen 9 von dort in die Aufbereitungseinrichtung (AF) eingeleitet. Vor der Ausbreiterdüse 3'' sind in der Reihenfolge nebeneinander die Sensoren Sv1 und Sm1 angeordnet.
Die Aufbereitungseinrichtung (AF) umfaßt im allgemeinen zwei Ausbreiterdüsen 3 und 3', ein Bremswalzenpaar 1, durch das dem Filterstrang eine Vorverstreckung erteilt wird, sowie Streckwalzenpaare 2, die mit unterschiedlicher Geschwindigkeit laufen und den Filterstrang einer Verstreckung unterziehen. Die Streckwalzen können mit einer gewindeartigen Oberfläche versehen sein, so daß nur Teile des ausgebreiteten durchlaufenden Filterstranges erfaßt und verstreckt werden. Auf diese Weise werden die einzelnen Filamentgruppen, aus denen der Filterstrang besteht, gegeneinander verschoben. Des weiteren weist die Aufbereitungseinrichtung an ihrem Ausgang einen Umlenkwalzenpaar 5 auf, mittels dessen der aufbereitete Filterstrang in eine Richtung umgelenkt wird, die für den Eintritt in die Einlaufdüse und den Einlauffinger der nachangeordneten Formateinrichtung F geeignet ist.
Die Streckwalzen 2, sowie die Umlenkwalze 5 sind angetriebene Walzen, die mit einem festgelegten Drehzahlverhältniss zueinander betrieben werden.
In der nachgeschalteten Formateinrichtung F wird der Filterstrang auf den Durchmesser des zukünftigen Zigarettenfilters zusammengerafft, mit Papier umhüllt, und anschließend die Filterstäbe in einer Schneideinrichtung 7 auf die erforderliche Länge geschnitten. Direkt vor der Schneideinrichtung 7 ist der Sensor Sm2 angeordnet. Als Beförderungsmittel für den Filterstrang wird, wie schon erwähnt, ein textiles Band, Formatband genannt, benutzt, welches den Filterstrang während der Klebeprozesses fest umhüllt. Wie bereits erwähnt, entspricht die Geschwindigkeit dieses Beförderungsmittels der Geschwindigkeit des Filterstranges im Formatteil und somit nach der Dosiereinrichtung 4. Gemessen wird diese Geschwindigkeit mittels des Sensors Sv2.
Die Dosierung der Acetatmasse erfolgt in den Filterstabmaschinen nach dem Stand der Technik dadurch, daß die Geschwindigkeitsdifferenz zwischen Aufbereitungsteil (AF) und Formatteil (F) verändert wird, wobei in der Regel die des Formatteiles (F) konstant gehalten wird.
Die Acetatmasse kann aber auch durch andere Maßnahmen verändert werden. So beschreibt die EP 0 629 356 B1 die Regelung der Acetatmasse durch Veränderung des Bremswalzendruckes am Bremswalzenpaar 1.
Die Dosiereinrichtung 4 ist vorzugsweise zwischen den Streckwalzen und den Umlenkwalzen in der Aufbereitungseinrichtung angeordnet. Der Auftrag des Weichmachers erfolgt somit auf dem vollständig ausgebreiteten Filterstrang. Für gewöhnlich besteht die Dosiereinrichtung aus einem Sprühkasten, in dem beispielsweise rotierende Bürsten angebracht sind, die dazu dienen, den Weichmacher fein zu zerstäuben und auf den ausgebreiteten Faserstrang zu schleudern. Als Weichmachermittel werden überlicherweise Triacetin oder TEGDA (Triethylenglykoldiaceat) eingesetzt. Eine vollständige Liste möglicher Weichmacher ist in der DE 19951062 A1 zu finden.
Die für den Prozeß erforderliche Menge an Weichmacher wird üblicherweise mittels einer Zahnradpumpe der Dosiereinrichtung 4 zugeführt. Die Dosierung der Weichmachermenge erfolgt dabei durch Veränderung der Drehzahl des Antriebs dieser Zahnradpumpe.
Mit der erfindungsgemäßen Vorrichtung wird es ermöglicht, bei der Herstellung von Filterstäben gleichzeitig die Filtermaterial- bzw. Acetatmenge und die Weichmachermenge zu regeln.
Generell gilt, daß der Massenfluß an Filter Tow Material an allen Stellen der Vorrichtung konstant ist. Für die Produkte M1 und M2 aus Masse und Geschwindigkeit gilt, solange ohne Weichmacher gearbeitet wird: M1 = M2
Und sobald mit Weichmacher gearbeitet wird: M1 < M2, wobei die Differenz zwischen M1 und M2 ein Maß für die Weichmachermenge pro Filterstab darstellt.
Es gilt: W = K x (M2 - M1) + C wobei W die Weichmachermenge in mg pro Filterstab ist, und K und C Faktoren sind, die durch eine Kalibrierung bestimmt werden. Diese Eichfaktoren sind Größen, die sich aus der Sensorcharakteristik ergeben.
Über diese Eichung wird es somit möglich, nicht nur den Weichmachergehalt pro Filterstab zu regeln, sondern ihn auch, unabhängig von verwendeten Filter Tow Spezifikation, quantitativ kontinuierlich zu messen.
Ähnliches gilt für die Masse an verbrauchtem Filter Tow Material M pro Filterstab. Diese ist linear abhängig vom Produkt M1.
Es gilt: M= K1 M1 + C1 wobei K1 und C1 wiederum entsprechend der Sensorcharakteristik durch Eichung bestimmt werden müssen.
Eine mit der erfindungsgemäßen Vorrichtung ausgeführte Regelung ist so zu führen, dass die Produkte M1 und M2 jeweils konstant gehalten werden.
In der Praxis hat sich herausgestellt, daß bei der Regelung im wesentlichen drei Fälle auftreten können:
  • 1. Bei gleichbleibender Geschwindigkeit von Aufbereitungsteil (AF) und Formatteil (F) verändert sich das Produkt M2, wobei M1 gleich bleibt. Dies ist ein Anzeichen dafür, daß zuwenig oder zuviel Weichmacher zudosiert wird. In diesem Fall ist die Drehzahl der Zahnradpumpe der Dosiereinrichtung so zu regeln, daß das Produkt M2 auf den ursprünglichen Wert zurückgeführt wird.
  • 2. Es ändert sich sowohl das Produkt M1 als auch das Produkt M2, und das Signal des Geschwindigkeitssensors Sv1 bleibt konstant, wobei sich das Signal Sm1 ändert. In diesem Fall handelt es sich um einen Fadenbruch. Hierunter versteht man den Ausfall einer Spinndüse beim Herstellungsprozess des Filter Tows mit der Auswirkung, daß kurzzeitig 2 bis 5 % des nominalen Gesamtfilters fehlen. Für den Fachmann sind die Auswirkungen eines solchen Störfalles klar vorhersehbar. Ohne Regelung führt dies zu einem Abfall von Acetatmenge im Filterstab, verbunden mit einer Verminderung des Zugwiderstandes.
  • 3. Es ändert sich sowohl das Produkt M1 als auch das Produkt M2. wobei sich das Signal des Geschwindigkeitssensors Sv1 ändert und Sm1 konstant bleibt. In diesem Fall liegt als Ursache eine Änderung des Kräuselindex des Filterstranges vor. Auch dieser Störfall führt ohne Regelung, für den Fachmann klar erkennbar, zu einer Veränderung von Acetatmenge im Filterstab und Zugwiderstand.
  • In beiden letzeren Fällen ist die Geschwindigkeit des Aufbereitungsteils (AF) so zu regeln, daß das Produkt M1 auf den ursprünglichen Wert zurückgeführt wird.
    Selbstverständlich können theoretisch auch alle drei Fälle gleichzeitig auftreten. In diesem sehr unwahrscheinlichen Fall wird zunächst M1, wie beschrieben auf den Ursprungswert zurückgeführt und anschließend wie im Fall 1 beschriebenM2 nachgeregelt.
    Mit einigem zusätzlichen Rechenaufwand, läßt sich bei Verwendung von Mikrowellensensoren, wie schon erwähnt, auch eine produkt - und verfahrensbedingte Feuchtekorrektur durchführen. Dazu ist es allerdings notwendig sensorspezifische Kalibrierkurven zu erstellen. Auf eine eingehendere Darstellung des Verfahrens wird hier allerdings verzichtet.
    Im Falle eines Fadenbruches (Fall 2) läßt sich, ebenfalls mit einigem Rechenaufwand, die Regelung so auslegen, daß nicht ein konstantes Acetatgewicht als Zielgröße, sondern ein konstanter Zugwiderstand erzielt wird. Diese Art von Regelung setzt voraus, daß die Abhängigkeit von Zugwiderstand, Acetatgewicht und Gesamttiter bekannt sind. Solche Rechenmodelle existieren. Eines davon wird von Rhodia Acetow unter dem Namen "Cable©" vertrieben.

    Claims (15)

    1. Vorrichtung zur Herstellung von Zigarettenfiltern, aufweisend einen Aufbereitungsteil (AF) zum Aufbereiten des zugeführten Filter Tows, eine Formateinrichtung (F) zum Ausbilden eines umhüllten Filterstrangs und eine in das Aufbereitungsteil integrierte Dosiereinrichtung (4) zum Zudosieren von Weichmacher, dadurch gekennzeichnet, daß in der Vorrichtung Sensoren zum Erfassen des Massenstromes an Filter Tow Material M1 sowie Sensoren zum Erfassen der Summe des Massenstromes aus Filter Tow Material und Weichmachermasse M2 vorhanden sind, wobei die Vorrichtung eine Meß- und Regeleinrichtung enthält, die mit den Sensoren zur Messung der Massenströme (M1 und M2) derart gekoppelt ist, daß sowohl die Filtermaterial- als auch die Weichmachermasse unabhängig voneinander gemessen und geregelt werden können.
    2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß, in Laufrichtung des Filterstranges gesehen, vor und nach der Dosiereinrichtung (4) für den Weichmacher Sensoren (Sm1; Sm2) zum Erfassen der längenbezogenen Masse m1, m2 des fortlaufenden Filterstranges und Sensoren (Sv1; Sv2) zum Erfassen der aktuellen Geschwindigkeiten v1 und v2 des fortlaufenden Filterstranges vorhanden sind, wobei sich der jeweilige Massenfluss aus den Produkten aus m1 x v1 = M1 und m2 x v2 = M2 ergibt.
    3. Vorrichtung nach einem der Ansprüche 1 oder 2, daß der Sensor (Sv1) zum Erfassen der Geschwindigkeit v1 und der Sensor (Sm1) zum Erfassen der längenbezogenen Masse m1 unmittelbar benachbart angeordnet sind.
    4. Vorrichtung nach mindestens einem der vorstehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Sensoren (Sm1; Sv1) zum Erfassen der längenbezogenen Masse m1 bzw. der Geschwindigkeit v1 vor dem Eintritt in das Aufbereitungsteil (AF) angeordnet sind.
    5. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Formateinrichtung (F) eine Schneideinrichtung aufweist und der Sensor (Sm2), in Laufrichtung des Filterstranges gesehen, unmittelbar vor der Schneideinrichtung angeordnet ist und als Sensor (Sv2) die Meßeinrichtung für die Formatbandgeschwindigkeit eingesetzt wird.
    6. Vorrichtung nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Sensoren (Sv1; Sv2) zum Erfassen der aktuellen Geschwindigkeit v1 und v2 des fortlaufenden Faserstranges optische Geschwindigkeitssensoren sind.
    7. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß als Sensor (Sm1 und/oder Sm2) zum Erfassen der längenbezogenen Masse m1 und/oder m2 ein Sensor gewählt wird, der geeignet ist, neben den längenbezogenen Massen auch den Feuchtegehalt des aktuellen Meßgutes zu bestimmen.
    8. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Sensor (Sm1 und/oder Sm2) ein Mikrowellensensor ist.
    9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Mikrowellensensor einen Gabelresonator umfaßt.
    10. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Mikrowellensensor einen geschlossenen, rohrförmigen, durch eine Kunststoff - Probenführung durchbrochenen Resonator umfaßt.
    11. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Mikrowellensensor als Planarsensor ausgebildet ist.
    12. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Mikrowellensensor als Profilsensor ausgebildet ist.
    13. Vorrichtung nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Sensor (Sm1 und/oder Sm2) zum Erfassen der längenbezogenen Masse m1 und/oder m2 des fortlaufenden Filterstranges eine β-Strahlungsquelle sowie ein β-Strahlungsdetektor ist.
    14. Vorrichtung nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß zur Ermittlung des Massenflusses M1 eine Ballenwaage als Sensor genutzt wird.
    15. Vorrichtung nach mindestens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß diese eine Regeleinrichtung zur automatischen Regelung der Filtermaterial- und Weichmachermasse enthält, welche an ihrem Ausgang sowohl an das Aufbereitungsteil (AF) als auch an die Dosiereinrichtung (4) gekoppelt ist.
    EP03706558A 2002-02-21 2003-02-21 Vorrichtung zur gleichzeitigen, kontinuierlichen messung und regelung der acetat- und triacetinmenge in filterstäben in der zigarettenindustrie Expired - Lifetime EP1480532B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10207357A DE10207357A1 (de) 2002-02-21 2002-02-21 Vorrichtung zur gleichzeitigen, kontinuierlichen Messung und Regelung der Acetat- und Triacetinmenge in Filterstäben in der Zigarettenindustrie
    DE10207357 2002-02-21
    PCT/EP2003/001821 WO2003070030A1 (de) 2002-02-21 2003-02-21 Vorrichtung zur gleichzeitigen, kontinuierlichen messung und regelung der acetat-und triacetinmenge in filterstäben in der zigarettenindustrie

    Publications (2)

    Publication Number Publication Date
    EP1480532A1 EP1480532A1 (de) 2004-12-01
    EP1480532B1 true EP1480532B1 (de) 2005-07-27

    Family

    ID=27740286

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP03706558A Expired - Lifetime EP1480532B1 (de) 2002-02-21 2003-02-21 Vorrichtung zur gleichzeitigen, kontinuierlichen messung und regelung der acetat- und triacetinmenge in filterstäben in der zigarettenindustrie

    Country Status (9)

    Country Link
    US (1) US20050096202A1 (de)
    EP (1) EP1480532B1 (de)
    JP (1) JP3866714B2 (de)
    CN (1) CN100423660C (de)
    AT (1) ATE300194T1 (de)
    AU (1) AU2003208749A1 (de)
    DE (2) DE10207357A1 (de)
    MX (1) MXPA04008059A (de)
    WO (1) WO2003070030A1 (de)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102011006414A1 (de) 2011-03-30 2012-10-04 Hauni Maschinenbau Ag Verfahren und Vorrichtung zur Ermittlung von Gewichtsanteilen in einem Filtermaterial
    DE102011006416A1 (de) 2011-03-30 2012-10-04 Hauni Maschinenbau Ag Verfahren und System zum Herstellen eines Filterstrangs
    EP2587253A1 (de) 2011-10-26 2013-05-01 TEWS Elektronik GmbH & Co. KG Verfahren und Vorrichtung zur Online-Messung des Weichmachergehalts in einem Endlosfilterstab

    Families Citing this family (19)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ATE331943T1 (de) * 2003-04-08 2006-07-15 Tews Elektronik Verfahren und vorrichtung zum bestimmen der masse von portionierten wirkstoffeinheiten
    DE102004051926A1 (de) * 2004-10-25 2006-04-27 Hauni Maschinenbau Ag Filterherstellungsverfahren sowie -vorrichtung
    DE102006041191C5 (de) * 2006-08-30 2016-08-04 Tews Elektronik Dipl.-Ing. Manfred Tews Filtermeßstabstation sowie Verfahren zur Messung der Masse eines Weichmachers in einem Filterstab
    DE202007001196U1 (de) * 2006-08-30 2007-05-31 Tews Elektronik Dipl.-Ing. Manfred Tews Filterstabmeßstation zur Messung der Masse eines Weichmachers, der Feuchtigkeit und/oder des trockenen Filtermaterials in einem Filterstab
    ITBO20060874A1 (it) * 2006-12-22 2007-03-23 Gd Spa Macchina confezionatrice di filtri per articoli da fumo
    DE102008057457A1 (de) * 2008-11-14 2010-05-20 Hauni Maschinenbau Aktiengesellschaft Vorrichtung zum Transport eines Filtertowstreifens
    DE102009017963A1 (de) * 2009-04-21 2010-10-28 Hauni Maschinenbau Ag Kapselüberwachung und Kapselpositionsregelung in Filtern der Tabak verarbeitenden Industrie
    DE102009017962A1 (de) * 2009-04-21 2010-11-04 Hauni Maschinenbau Ag Verfahren und Vorrichtung zur Überprüfung der Qualität von mit Kapseln versehenen Filterstäben
    DE102011121918B3 (de) * 2011-12-22 2013-01-17 Tews Elektronik Gmbh & Co. Kg Verfahren und Vorrichtung zur Messung der Position von Segmenten mit absorbierenden Substanzen in Multisegmentfilterstäben der tabakverarbeitenden Industrie
    CN104055221B (zh) * 2014-06-19 2016-06-29 福建中烟工业有限责任公司 甘油施加防错控制方法、装置和系统
    EP3174410B1 (de) * 2014-08-01 2018-08-29 MONTRADE S.p.A. Vorrichtung und verfahren zur herstellung von filtern für zigaretten oder andere rauchwaren
    ES2768980T3 (es) * 2015-08-28 2020-06-24 Jt Int Sa Artículo para fumar
    DE102017101825A1 (de) * 2017-01-31 2018-08-02 Hauni Maschinenbau Gmbh Verfahren und Vorrichtung zum Überwachen und Herstellen eines Filterstrangs der Tabak verarbeitenden Industrie
    CN110006843B (zh) * 2019-04-15 2024-02-09 深圳烟草工业有限责任公司 一种在线实时检测滤棒的滤棒成型机
    CN111227299B (zh) * 2020-01-16 2022-05-31 浙江中烟工业有限责任公司 滤棒生产过程醋酸纤维和增塑剂在线连续检控系统和方法
    CN111257508A (zh) * 2020-01-16 2020-06-09 浙江中烟工业有限责任公司 滤棒在线生产过程增塑剂喷洒量实时定量检测方法
    CN111184254B (zh) * 2020-02-27 2021-10-15 贵州中烟工业有限责任公司 一种卷烟滤棒生产的数据监控方法及系统
    CN113933433B (zh) * 2021-10-25 2024-05-17 浙江中烟工业有限责任公司 一种针对滤棒增塑剂施加系统的验证方法
    CN114271539B (zh) * 2021-12-27 2024-04-02 浙江中烟工业有限责任公司 滤棒成型机功能检验方法

    Family Cites Families (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE2815025C2 (de) * 1978-04-07 1985-11-28 Hauni-Werke Körber & Co KG, 2050 Hamburg Verfahren und Anordnung zum Bilden eines Filterstranges
    US4511420A (en) * 1980-12-16 1985-04-16 Molins, Ltd. Continuous rod manufacture
    GB2102273B (en) * 1981-07-15 1985-08-07 Hauni Werke Koerber & Co Kg Method and machine for making filter rod sections for cigarettes or the like
    GB8320817D0 (en) * 1983-08-02 1983-09-01 Molins Plc Conveying continuous filter material
    US4724429A (en) * 1986-03-07 1988-02-09 Celanese Corporation Diagnostic and control system for cigarette filter rod making machine
    DE3738983C2 (de) * 1986-11-28 2002-02-14 Hauni Werke Koerber & Co Kg Verfahren und Vorrichtung zur Herstellung eines Faserstrangs der tabakverarbeitenden Industrie
    IT1235463B (it) * 1986-11-28 1992-07-30 Hauni Werke Koerber & Co Kg Procedimento e dispositivo per produrre un filone di fibre dell'industria di lavorazione del tabacco
    DE3725365A1 (de) * 1987-07-31 1989-02-09 Hauni Werke Koerber & Co Kg Verfahren und vorrichtung zum herstellen eines zigarettenstrangs
    DE4004119A1 (de) * 1990-02-10 1991-08-14 Tews Elektronik Dipl Ing Manfr Verfahren zur messung der feuchte eines messgutes mit hilfe von mikrowellen und vorrichtung zur durchfuehrung des verfahrens
    DE4109603A1 (de) * 1991-03-23 1992-09-24 Hauni Werke Koerber & Co Kg Verfahren und vorrichtung zum herstellen von filterstaeben fuer zigaretten
    DE4320317C2 (de) * 1993-06-18 1998-04-23 Rhodia Ag Rhone Poulenc Verfahren und Vorrichtung zum Herstellen von Fasersträngen
    US5736864A (en) * 1995-07-14 1998-04-07 Hauni Maschinenbau Ag Apparatus for ascertaining the complex dielectric constant of tobacco
    US6163158A (en) * 1996-02-20 2000-12-19 Hauni Maschinenbau Ag Method of and apparatus for ascertaining at least one characteristic of a substance
    DE19959034B4 (de) * 1999-12-08 2008-01-17 Hauni Maschinenbau Ag Verfahren und Vorrichtung zum Zuführen eines vorzugsweise flüssigen Zusatzstoffes auf eine bewegte Bahn
    US6837122B2 (en) * 2001-11-28 2005-01-04 Tews Elektronik Device and method for detecting the mass and the moisture content for spinning preparation machines
    US7027148B2 (en) * 2002-05-01 2006-04-11 Tews Elektronik Method and apparatus for determining the triacetin content in filter plugs

    Cited By (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102011006414A1 (de) 2011-03-30 2012-10-04 Hauni Maschinenbau Ag Verfahren und Vorrichtung zur Ermittlung von Gewichtsanteilen in einem Filtermaterial
    DE102011006416A1 (de) 2011-03-30 2012-10-04 Hauni Maschinenbau Ag Verfahren und System zum Herstellen eines Filterstrangs
    DE102011006414B4 (de) 2011-03-30 2018-10-11 Hauni Maschinenbau Gmbh Verfahren und Vorrichtung zur Ermittlung von Gewichtsanteilen in einem Filtermaterial
    DE102011006416B4 (de) * 2011-03-30 2020-08-13 Hauni Maschinenbau Gmbh Verfahren und System zum Herstellen eines Filterstrangs
    DE102011006414C5 (de) * 2011-03-30 2021-02-18 Hauni Maschinenbau Gmbh Verfahren und Vorrichtung zur Ermittlung von Gewichtsanteilen in einem Filtermaterial
    EP2587253A1 (de) 2011-10-26 2013-05-01 TEWS Elektronik GmbH & Co. KG Verfahren und Vorrichtung zur Online-Messung des Weichmachergehalts in einem Endlosfilterstab
    WO2013060476A1 (en) 2011-10-26 2013-05-02 Tews Elektronik Gmbh & Co. Kg Method for online measurement of a plasticizer in an endless filter rod and a device for producing an endless filter rod of the tobacco processing industry
    US10324047B2 (en) 2011-10-26 2019-06-18 Tews Elektronik Gmbh & Co., Kg Method for online measurement of a plasticizer in an endless filter rod and a device for producing an endless filter rod of the tobacco processing industry

    Also Published As

    Publication number Publication date
    US20050096202A1 (en) 2005-05-05
    EP1480532A1 (de) 2004-12-01
    MXPA04008059A (es) 2004-11-26
    DE10207357A1 (de) 2003-09-11
    CN100423660C (zh) 2008-10-08
    AU2003208749A1 (en) 2003-09-09
    WO2003070030A1 (de) 2003-08-28
    ATE300194T1 (de) 2005-08-15
    CN1635840A (zh) 2005-07-06
    DE50300871D1 (de) 2005-09-01
    JP2005532040A (ja) 2005-10-27
    JP3866714B2 (ja) 2007-01-10

    Similar Documents

    Publication Publication Date Title
    EP1480532B1 (de) Vorrichtung zur gleichzeitigen, kontinuierlichen messung und regelung der acetat- und triacetinmenge in filterstäben in der zigarettenindustrie
    EP1809964B1 (de) Trocknungswaage
    EP2207027B1 (de) Verfahren und Vorrichtung zur Messung der Feuchte von Kapseln in einem Zigarettenfilterstrang, indem dieser durch einen Mikrowellenresonator geführt wird
    DE2910673C2 (de) Verfahren zum berührungslosen Messen des absoluten Gehaltes eines Stoffes(Beisubstanz) in einer die Form eines dünnen Filmes aufweisenden Mischung(Hauptsubstanz und Beisubstanz) mehrerer Stoffe, insbesondere zum Messen des absoluten Gehaltes von Wasser in Papier
    EP1895291B1 (de) Verfahren zur Messung der Masse eines Weichmachers und der Feuchtigkeit in einem Filterstab
    DE10214955B4 (de) Spinnereivorbereitungsmaschine
    DE102009016500B4 (de) Verfahren zum Betrieb einer Filterstrangmaschine und Filterstrangmaschine
    DE102011006416B4 (de) Verfahren und System zum Herstellen eines Filterstrangs
    EP0790006B1 (de) Verfahren und Vorrichtung zum Bestimmen der Dichte eines Faserstrangs der tabakverarbeitenden Industrie
    EP3354143B1 (de) Verfahren und vorrichtung zum überwachen und herstellen eines filterstrangs der tabak verarbeitenden industrie
    DE2635391C2 (de) Vorrichtung zum Bilden eines Zigarettenstranges
    DE2815025C2 (de) Verfahren und Anordnung zum Bilden eines Filterstranges
    DE3725365A1 (de) Verfahren und vorrichtung zum herstellen eines zigarettenstrangs
    EP1325683A2 (de) Verfahren und Vorrichtung zur Herstellung eines Faserstranges der Tabakverarbeitenden Industrie
    EP1316630B1 (de) Vorrichtung und Verfahren zur Erfassung der Masse und des Feuchtegehaltes des Fasermaterials in einer Spinnereivorbereitungsmaschine
    DE69423848T2 (de) Verfahren und Vorrichtung zur Ermittlung der Dichte eines Fasermaterialstromes in einer Zigarettenherstellungsmaschine
    EP2641481A1 (de) Herstellmaschine und Verfahren zum Betrieb einer Herstellmaschine von stabförmigen Artikeln der Tabak verarbeitenden Industrie
    EP1197746B1 (de) Verfahren und Vorrichtung zur Messung des Triacetingehalts in Filtersträngen
    DE3738983C2 (de) Verfahren und Vorrichtung zur Herstellung eines Faserstrangs der tabakverarbeitenden Industrie
    EP2745719A1 (de) Messanordnung und Messverfahren für ein Filterstabsegment in der Tabak verarbeitenden Industrie, Maschine zum Herstellen von Filterstäben, Maschine und Anlage zur Herstellung eines Multisegmentfilterprodukts
    DE102006041191C5 (de) Filtermeßstabstation sowie Verfahren zur Messung der Masse eines Weichmachers in einem Filterstab
    DE69229034T2 (de) Verfahren und System zur Messung des Druckabfalls von Zigaretten
    DE4023225A1 (de) Verfahren und anordnung zum bilden eines dem mengenstrom eines tabakstranges entsprechenden elektrischen signals
    WO2018024736A1 (de) Verfahren zur messung von absorbierenden hygieneartikeln
    DE3806320A1 (de) Verfahren und vorrichtung zum ueberwachen der geometrischen abmessungen von strang- oder stabfoermigen erzeugnissen der tabakverarbeitenden industrie

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20040812

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: SEXAUER, WOLFGANG

    Inventor name: TEUFEL, EBERHARD

    Inventor name: GERLITZKI, MANFRED

    Inventor name: HERRMANN, RAINER

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050727

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050727

    Ref country code: CZ

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050727

    Ref country code: EE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050727

    Ref country code: SK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050727

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050727

    Ref country code: SI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050727

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050727

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50300871

    Country of ref document: DE

    Date of ref document: 20050901

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051027

    Ref country code: BG

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051027

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051027

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051027

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051227

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: HU

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060128

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060221

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20050727

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060428

    EN Fr: translation not filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060922

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070228

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070228

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    BERE Be: lapsed

    Owner name: RHODIA ACETOW G.M.B.H.

    Effective date: 20060228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050727

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050727

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060228

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20150223

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20150223

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20160301

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160221

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160301

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50300871

    Country of ref document: DE

    Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20220217

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 50300871

    Country of ref document: DE