EP1470633A1 - Circuit con u pour etre utilise dans une installation d'energie eolienne - Google Patents

Circuit con u pour etre utilise dans une installation d'energie eolienne

Info

Publication number
EP1470633A1
EP1470633A1 EP03704240A EP03704240A EP1470633A1 EP 1470633 A1 EP1470633 A1 EP 1470633A1 EP 03704240 A EP03704240 A EP 03704240A EP 03704240 A EP03704240 A EP 03704240A EP 1470633 A1 EP1470633 A1 EP 1470633A1
Authority
EP
European Patent Office
Prior art keywords
circuit
circuit arrangement
current
arrangement according
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP03704240A
Other languages
German (de)
English (en)
Inventor
Lorenz Feddersen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vestas Wind Systems AS
Original Assignee
Vestas Wind Systems AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27664545&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1470633(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE10206828A external-priority patent/DE10206828A1/de
Application filed by Vestas Wind Systems AS filed Critical Vestas Wind Systems AS
Priority to EP09012812.5A priority Critical patent/EP2244372B1/fr
Publication of EP1470633A1 publication Critical patent/EP1470633A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/105Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for increasing the stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a circuit arrangement, in particular for use in a wind power plant with variable speed, comprising a double-fed asynchronous generator, an additional resistor and a converter.
  • the invention has for its object to provide a circuit arrangement for use in wind turbines with an asynchronous machine, by means of which the increased demands on modern wind turbines, in particular with regard to grid stabilization, can be met.
  • a circuit arrangement in which the additional resistance can be regulated by means of a fast switch in such a way that the converter can be switched off at least partially temporarily in the event of a mains short circuit in order to temporarily take over the rotor current by means of the additional resistance, and after the rotor short-circuit current has subsided for the active coupling of a short-circuit current can be connected to the network again.
  • the increased network requirements during operation of the wind power plant equipped with an asynchronous generator for network stabilization can be optimally met, because in the event of a network short-circuit at the medium-voltage level, there is no disconnection from the network.
  • an additional resistor designed as a controllable load resistor or a crow bar, which is equipped with the additional resistor has been inserted in the rotor circuit, which absorbs the rotor short-circuit energy when the mains short-circuit occurs and is then switched off after the short-circuit current has decayed.
  • the load resistance is controlled by a switch that can be switched off, in particular, which is not a naturally commutated thyristor.
  • the existing rotor inverter of the four-quadrant converter is briefly deactivated immediately after the mains short-circuit occurs and after the short-circuit compensation process has subsided, the threshold value advantageously being below a rotor alternating current, and then feeds the current during the mains short-circuit and with recurring mains voltage required power in the network.
  • a modification of the present invention in which the circuit arrangement has a plurality of resistances which can be switched independently or independently of one another has proven to be particularly advantageous. This ensures that the high rotor short-circuit current, which often exceeds 1000 A, can be divided among several switches, as these switchable switches for the total current must be connected in parallel in a very complex manner.
  • a circuit arrangement with a two-point controller for regulating the additional resistor is also particularly advantageous because it enables a very simple, fast and robust regulation to be set up.
  • a further modification proves to be particularly expedient if the regulation of the active switch is carried out with pulse width modulation with a fixed clock frequency, because in this way digital regulation can take place with a fixed clock frequency.
  • capacitive current or inductive current is supplied to the short circuit in the event of a network short-circuit, because this allows the network to be optimally stabilized depending on the requirements of the network operator.
  • a capacitive current is usually desired in order to supply the inductive network consumers.
  • an additional impedance is briefly inserted in the stator circuit in order to limit the stator and rotor current.
  • the stator and rotor current can be limited with recurring mains voltage.
  • An embodiment is also particularly expedient in which a fast contactor is used in the stator circuit in parallel with the additional impedance, in order to bridge the additional impedance in normal operation and to generate no losses. Furthermore, it is particularly promising if at least one thyristor with natural commutation is used in the stator circuit in parallel with the resistor. This ensures that, compared to switches that can be switched off actively, there are reduced losses in normal operation and the costs are lower.
  • circuit arrangement can be designed in a particularly advantageous manner in such a way that a regulated resistor is operated on the intermediate circuit of the converter, because this saves some components in the crowbar and the regulation of the rotor inverter permanently measures the rotor phase current.
  • Another particularly expedient embodiment of the invention is also achieved if a regulated resistor is operated both in the crow bar and on the intermediate circuit of the converter. This ensures that power is divided and that smaller individual switches can be used. Towards the end of the balancing process of the rotor short-circuit current, the entire rotor current is taken over, and the control of the rotor inverter then measures the total phase current.
  • a particularly advantageous embodiment of the invention is also achieved when the rotor inverter is switched off when the mains voltage is recurring, the overcurrent is then taken over by the controllable resistor in order to actively take over the rotor current after the overcurrent has died down and the regulated resistor has been switched off. This avoids a possible shutdown or disconnection of the wind power installation in the case of a suddenly recurring mains voltage.
  • FIG. 4 shows a voltage and current-time curve with additional resistance
  • FIG. 1 shows a circuit arrangement according to the invention.
  • a switch V15 for example IGBT, GTO, IGCT
  • the crow bar is completely inactive.
  • the full rotor current flows into an inverter and is regulated by it. If a mains short-circuit occurs on the medium voltage, an asynchronous generator supplies a compensating short-circuit current for the short circuit due to the full excitation.
  • the current is only limited by the leakage inductances of the asynchronous generator and medium-voltage transformer, the maximum current reaching the following value:
  • Xtr is the total leakage impedance of the transformer, X1 the leakage impedance of the stator and X2 'the leakage impedance of the rotor.
  • the maximum stator current in the event of a short circuit at the medium voltage is of the order of up to 8 times the nominal stator current.
  • the rotor current is coupled to the stator current in a transformer and also reaches up to 8 times the nominal rotor current. This high compensation current cannot be conducted or absorbed by the converter in a technically sensible manner.
  • a rotor inverter is switched off due to the overcurrent.
  • the rotor current continues to flow via free-wheeling diodes of the rotor inverter and charges an intermediate circuit C3.
  • the voltage rises across a capacitor C10 in the crow bar.
  • the switch V15 is switched on.
  • a resistor R15 takes over the entire rectified rotor current, and the voltage across the capacitor C10 drops below the voltage limit, so that the switch V15 is switched off.
  • the voltage then rises again via the capacitor C10, due to the rotor current, and the switch V15 is switched on again.
  • the current change rate and thus the clock frequency are determined by L15.
  • the clock frequency is in the kHz range and cannot be achieved by natural commutation of thyristors, since the rotor frequency is a maximum of 15 Hz.
  • switch V15 is switched off completely and the rotor current commutates back into the converter.
  • the converter starts operation and control and actively feeds into the short circuit.
  • the grid inverter can be switched off while the adjustable resistor is active, but simultaneous operation is also possible.
  • a thyristor V10 is provided in the crow bar, which independently measures the voltage and is triggered by the switch V15 in the event of failure or in the event of a direct generator short circuit.
  • L10 prevents the current from rising too quickly in order not to destroy the thyristor V10.
  • D10 prevents a rapid discharge from a capacitor C10 through the switch V15.
  • Switch V15 can be regulated either directly in the crow bar or via the control card of the converter.
  • FIG. 2 A possible course of the short circuit is shown in FIG. 2, the dashed line representing the medium voltage and the solid line representing the mains voltage.
  • the short circuit occurs at the moment 0 msec. on.
  • the current immediately jumps to the maximum value and then decays due to the compensation process.
  • the high current is absorbed by the crow bar or resistance. If the rotor current falls below the nominal current, the current is again taken over and regulated by the converter.
  • the generator is overexcited and supplies capacitive reactive power to the grid during the short circuit.
  • inductive current can also be fed into the short circuit. The default can be chosen freely. Due to the voltage drop across the medium-voltage transformer, the mains voltage is approximately 20% of the nominal voltage.
  • the voltage does not suddenly rise to the nominal value, but via a dU / dt edge. Due to the slope of the recurring line voltage and the time constant of the generator, a dynamic overcurrent occurs in the stator and rotor. This overcurrent must be able to be supplied by the converter and does not lead to the rotor inverter being switched off. If the slope is too large or there is a phase error between the generator voltage and the recurring mains voltage, the dynamic overcurrent or compensation current becomes too high and the rotor inverter is switched off.
  • the adjustable resistor also takes over the compensating current for a short time and after falling below the nominal rotor current the resistor is switched off and the rotor inverter takes over its regulation again. During the voltage dip and with When the voltage returns, the controllable resistance is activated briefly. The rotor inverter is switched off during this time.
  • an additional impedance can be inserted into the stator circuit, for example by means of a resistor or a choke.
  • a resistor or a choke Such a system is shown in FIG. 3.
  • a K20 contactor is inserted between the medium-voltage transformer and the generator-converter system.
  • a resistor R20 is connected in parallel across the contactor K20. If the short circuit occurs, contactor K20 is opened and the stator current flows through resistor R20.
  • FIG. 4 shows the voltage-time curve with additional resistance.
  • the stator current is limited and decays faster than with the regulated crow bar.
  • the contactor must switch very quickly so that the resistor is active in the event of very short voltage dips.
  • An anti-parallel thyristor switch with natural commutation can also be used, which has a switch-off time of 6.7 msec, for example. at 50 Hz. This results in a fast switch, but has the disadvantage of high losses compared to the contactor solution.
  • the switch is after 10 msec. open. After the compensation process, the converter takes over the control. Due to the additional voltage drop across the resistor, the residual network voltage is higher than without additional impedance in the stator. With the recurring voltage, the additional resistance limits the dynamic stator current rise and allows higher voltage edges or lower overcurrents.
  • the freewheeling diodes of IGBT modules are not designed for very high pulse currents. Therefore, the components of the regulated resistor were placed in the crow bar.
  • a circuit arrangement with powerful free-wheeling diodes is shown in FIG. 5.
  • the switch V15 is coupled directly to the intermediate circuit of the converter and directly regulates the intermediate circuit voltage. This would simplify the entire structure. The additional standard crow bar is retained for extreme situations.
  • the additional resistance must be designed for all extreme situations.
  • the rotor inverters IGBTs are switched off and the rotor short-circuit current flows through the freewheeling diodes into the intermediate circuit. If a limit value is exceeded, the additional resistance is activated and the short-circuit energy is absorbed in the additional resistance. After the short-circuit current has subsided, the rotor inverter is reactivated and the set resistance is switched off.
  • the additional resistor can also be switched off first and the rotor inverter switched on. Simultaneous operation of the additional resistor and the rotor inverter is also possible.

Abstract

L'invention concerne un circuit conçu en particulier pour être utilisé dans une installation d'énergie éolienne présentant une vitesse de rotation variable, et comprenant un générateur asynchrone à double alimentation (DASM), un protecteur à thyristor, une résistance supplémentaire (R15) et un convertisseur. L'objectif de l'invention est de répondre aux exigences de l'exploitant du réseau, à savoir garantir un couplage réseau durable de façon que, pendant et après un court-circuit du réseau moyenne tension, l'installation d'énergie éolienne puisse rétablir et stabiliser le réseau. A cet effet, la résistance supplémentaire est réglage au moyen d'un commutateur à action rapide de façon, que le convertisseur puisse être mis hors circuit de manière au moins partiellement temporaire en cas de court-circuit du réseau. Le courant rotor est alors momentanément pris en charge par la résistance supplémentaire et coupé après l'affaiblissement du courant de court-circuit du rotor, de façon que le convertisseur puisse ensuite être remis en circuit et fournir au réseau le courant de court-circuit actif souhaité.
EP03704240A 2002-01-29 2003-01-23 Circuit con u pour etre utilise dans une installation d'energie eolienne Ceased EP1470633A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09012812.5A EP2244372B1 (fr) 2002-01-29 2003-01-23 Dispositif de circuit pour une installation éolienne

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10203468 2002-01-29
DE10203468 2002-01-29
DE10206828A DE10206828A1 (de) 2002-01-29 2002-02-18 Schaltungsanordnung zum Einsatz bei einer Windenergieanlage
DE10206828 2002-02-18
PCT/DE2003/000172 WO2003065567A1 (fr) 2002-01-29 2003-01-23 Circuit conçu pour etre utilise dans une installation d'energie eolienne

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP09012812.5A Division EP2244372B1 (fr) 2002-01-29 2003-01-23 Dispositif de circuit pour une installation éolienne

Publications (1)

Publication Number Publication Date
EP1470633A1 true EP1470633A1 (fr) 2004-10-27

Family

ID=27664545

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03704240A Ceased EP1470633A1 (fr) 2002-01-29 2003-01-23 Circuit con u pour etre utilise dans une installation d'energie eolienne

Country Status (7)

Country Link
US (1) US7102247B2 (fr)
EP (1) EP1470633A1 (fr)
JP (1) JP2005516577A (fr)
CN (1) CN100356683C (fr)
AU (1) AU2003206633B2 (fr)
CA (1) CA2472144C (fr)
WO (1) WO2003065567A1 (fr)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6954004B2 (en) * 2003-01-23 2005-10-11 Spellman High Voltage Electronics Corporation Doubly fed induction machine
ATE442701T1 (de) * 2003-02-07 2009-09-15 Vestas Wind Sys As Steuerverfahren für einen an ein hochspannungsnetz angeschlossenen windturbinengenerator während eines netzdefekts und vorrichtung zur implementierung dieses verfahrens
DE10320087B4 (de) * 2003-05-05 2005-04-28 Aloys Wobben Verfahren zum Betreiben eines Windparks
DE10327344A1 (de) * 2003-06-16 2005-01-27 Repower Systems Ag Windenergieanlage
DE10330473A1 (de) * 2003-07-05 2005-01-27 Alstom Technology Ltd Frequenzumwandler für Hochgeschwindigkeitsgeneratoren
PT1499009E (pt) * 2003-07-15 2008-01-14 Gamesa Innovation & Tech Sl Controlo e protecção de um sistema gerador de indução de dupla alimentação
DK1665495T3 (da) 2003-09-23 2012-03-26 Aloys Wobben Fremgangsmåde til drift af et vindenergianlæg under en forstyrrelse i nettet
DE102004003657B4 (de) 2004-01-24 2012-08-23 Semikron Elektronik Gmbh & Co. Kg Stromrichterschaltungsanordnung und zugehöriges Ansteuerverfahren für Generatoren mit dynamisch veränderlicher Leistungsabgabe
MX2007006440A (es) * 2004-12-28 2008-03-11 Vestas Wind Sys As Metodo para controlar una turbina eolica conectada a una red de distribucion electrica.
JP4449775B2 (ja) * 2005-02-17 2010-04-14 株式会社日立製作所 二次励磁用電力変換装置
DE102005012762A1 (de) * 2005-03-19 2006-09-21 Alstom Elektrische Anlage zur Abgabe von Energie an ein elektrisches Netz sowie Verfahren zu dessen Betrieb
US7514907B2 (en) * 2005-05-24 2009-04-07 Satcon Technology Corporation Device, system, and method for providing a low-voltage fault ride-through for a wind generator farm
US7239036B2 (en) * 2005-07-29 2007-07-03 General Electric Company System and method for power control in wind turbines
DE102005036317B4 (de) 2005-07-29 2010-02-11 Aloys Wobben Verfahren und Vorrichtung zum Bestimmen der Verlustleistung eines elektronischen Schalters, Wechselrichter, Windenergieanlage mit Verfahren zur Steuerung
ES2296483B1 (es) 2005-11-21 2009-03-01 Ingeteam Technology, S.A. Un sistema de control y proteccion ante faltas simetricas y asimetricas, para generadores de tipo asincrono.
US7253537B2 (en) * 2005-12-08 2007-08-07 General Electric Company System and method of operating double fed induction generators
ES2298014B1 (es) * 2005-12-30 2009-07-23 Universidad Publica De Navarra Metodo y sistema para la proteccion de una instalacion de generacion electrica conectada a una red electrica ante la presencia de huecos de tension en dicha red.
ES2291103B1 (es) * 2005-12-30 2009-02-01 Universidad Publica De Navarra Metodo y sistema de control del convertidor de una instalacion de generacion electrica conectada a una red electrica ante la presencia de huecos de tension en dicha red.
US7276807B2 (en) * 2006-01-19 2007-10-02 General Electric Company Wind turbine dump load system and method
JP4736871B2 (ja) * 2006-03-10 2011-07-27 株式会社日立製作所 二次励磁発電システム用電力変換装置
US7425771B2 (en) * 2006-03-17 2008-09-16 Ingeteam S.A. Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
CN101401294B (zh) * 2006-03-17 2013-04-17 英捷电力技术有限公司 具有激励器设备和不连接至电网的功率变换器的变速风机
US7586216B2 (en) * 2006-06-02 2009-09-08 General Electric Company Redundant electrical brake and protection system for electric generators
US7629705B2 (en) 2006-10-20 2009-12-08 General Electric Company Method and apparatus for operating electrical machines
DE102006053367A1 (de) * 2006-11-10 2008-05-21 Repower Systems Ag Verfahren und Vorrichtung zum Betrieb eines Umrichters, insbesondere für Windenergieanlagen
US7622815B2 (en) 2006-12-29 2009-11-24 Ingeteam Energy, S.A. Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid
ES2341820B1 (es) * 2007-01-31 2011-05-13 GAMESA INNOVATION & TECHNOLOGY, S.L. Un metodo para eliminar el impacto de los retrocesos en la multiplicadora de un aerogenerador.
EP1959554B1 (fr) * 2007-02-14 2010-06-16 SEMIKRON Elektronik GmbH & Co. KG Circuit convertisseur pour un générateur asynchrone à double alimentation avec puissance fournie variable et son procédé de fonctionnement
DE102007014728A1 (de) * 2007-03-24 2008-10-02 Woodward Seg Gmbh & Co. Kg Verfahren und Vorrichtung zum Betrieb einer doppeltgespeisten Asynchronmaschine bei transienten Netzspannungsänderungen
JP2008306776A (ja) 2007-06-05 2008-12-18 Hitachi Ltd 風力発電システムおよびその制御方法
DE602007009966D1 (de) * 2007-07-16 2010-12-02 Gamesa Innovation & Tech Sl Windkraftsystem und Betriebsverfahren dafür
DE102008017715A1 (de) * 2008-04-02 2009-10-15 Nordex Energy Gmbh Verfahren zum Betreiben einer Windenergieanlage mit einer doppelt gespeisten Asynchronmaschine sowie Windenergieanlage mit einer doppelt gespeisten Asynchronmaschine
CN102187567B (zh) * 2008-10-20 2014-05-28 伍德沃德肯彭有限公司 双馈感应电机的保护系统
US7786608B2 (en) * 2008-11-17 2010-08-31 General Electric Company Protection system for wind turbine
DE102008064079A1 (de) * 2008-12-19 2010-06-24 Converteam Technology Ltd., Rugby Verfahren und elektrische Schaltung zur Erzeugung elektrischer Energie
US8299642B2 (en) 2009-02-10 2012-10-30 Hitachi, Ltd. Wind power generation system
ES2378964B1 (es) * 2009-03-02 2013-02-22 Ingeteam Power Technology, S.A. Método para operar un convertidor de un generador eólico.
CN101515721B (zh) * 2009-04-07 2011-02-09 东南大学 带有功率镇定装置的10kv高压风电机组系统
EP2270331B1 (fr) * 2009-06-30 2020-03-04 Vestas Wind Systems A/S Eolienne comprenant un dispositif de contrôle de puissance pendant une panne du réseau
US8154833B2 (en) * 2009-08-31 2012-04-10 General Electric Company Line side crowbar for energy converter
JP5128568B2 (ja) * 2009-09-30 2013-01-23 株式会社日立製作所 風力発電システムおよび制御法
US8018082B2 (en) * 2009-11-25 2011-09-13 General Electric Company Method and apparatus for controlling a wind turbine
US7978445B2 (en) * 2009-12-31 2011-07-12 General Electric Company Systems and apparatus relating to wind turbine electrical control and operation
US8120885B2 (en) * 2010-02-03 2012-02-21 General Electric Company Circuit for use with energy converter
WO2011110193A1 (fr) * 2010-03-11 2011-09-15 Powerwind Gmbh Procédé de commande de l'alimentation d'un réseau alternatif en puissance électrique à partir d'une éolienne
ES2427793T3 (es) 2010-05-20 2013-11-04 FeCon GmbH Circuito inversor trifásico y procedimiento de funcionamiento de un circuito inversor trifásico
WO2012000508A2 (fr) 2010-06-30 2012-01-05 Vestas Wind Systems A/S Eolienne
PL2599213T3 (pl) * 2010-07-27 2014-09-30 Abb Technology Ag System przetwornicy oraz sposób pracy takiego systemu przetwornicy
CN101924357A (zh) * 2010-07-29 2010-12-22 许继集团有限公司 一种水轮机交流励磁电源保护方法及实现该方法的水轮机
CN101917013B (zh) * 2010-08-10 2012-07-04 华中科技大学 带储能的双馈风力发电系统
US8471534B2 (en) * 2010-08-26 2013-06-25 General Electric Company Fault ride through switch for power generation system
DK2453133T3 (da) 2010-11-11 2017-11-20 Ingeteam Power Tech Sa Strømomformerstyringsfremgangsmåde
EP2463976A1 (fr) * 2010-12-08 2012-06-13 Siemens Aktiengesellschaft Circuit et procédé de régulation de tension CC et convertisseur d'alimentation
CN102055207B (zh) * 2010-12-16 2012-08-01 南京飓能电控自动化设备制造有限公司 低电压穿越智能功率控制单元及其应用
EP2466715A3 (fr) 2010-12-20 2017-08-30 FeCon GmbH Unité de commutation USV et procédé d'alimentation en électricité sans interruption d'utilisateurs d'une installation de production de courant
DE102011001786A1 (de) 2011-04-04 2012-10-04 Woodward Kempen Gmbh Schaltschrankanordnung einer Vorrichtung zur Erzeugung elektrischer Energie
WO2013120212A1 (fr) 2012-02-17 2013-08-22 Woodward Ids Switzerland Ag Dispositif de protection pour un générateur triphasé à double alimentation et procédé permettant de faire fonctionner un tel dispositif de protection
US9041234B2 (en) 2012-03-26 2015-05-26 Rockwell Automation Technologies, Inc. Double fed induction generator (DFIG) converter and method for improved grid fault ridethrough
US9312682B2 (en) 2012-05-14 2016-04-12 General Electric Company System and method for overvoltage protection
DE102012212366A1 (de) 2012-07-13 2014-01-30 Wobben Properties Gmbh Verfahren zum Steuern eines elektrischen Erzeugers
WO2014082766A2 (fr) * 2012-11-30 2014-06-05 Siemens Aktiengesellschaft Dispositif et procédé pour allonger le temps de déblocage d'un défaut
US8941961B2 (en) 2013-03-14 2015-01-27 Boulder Wind Power, Inc. Methods and apparatus for protection in a multi-phase machine
US9941687B2 (en) 2013-06-04 2018-04-10 General Electric Company Methods for operating wind turbine system having dynamic brake
US8975768B2 (en) 2013-06-05 2015-03-10 General Electic Company Methods for operating wind turbine system having dynamic brake
US20150115902A1 (en) * 2013-10-29 2015-04-30 General Electric Company Power generation system and method with fault ride through capability
DK3063851T3 (da) * 2013-10-31 2022-02-28 Gen Electric System og fremgangsmåde til styring af vindkraftgenereringssystemer
US9231509B2 (en) 2013-11-25 2016-01-05 General Electric Company System and method for operating a power generation system within a power storage/discharge mode or a dynamic brake mode
ES2950289T3 (es) 2013-12-18 2023-10-06 Ingeteam Power Tech Sa Dispositivo de impedancia variable para una turbina eólica
US9337685B2 (en) 2013-12-23 2016-05-10 General Electric Company Optimized filter for battery energy storage on alternate energy systems
JP6071912B2 (ja) * 2014-01-27 2017-02-01 株式会社東芝 過電圧保護装置および電流調整回路
WO2015180727A1 (fr) * 2014-05-30 2015-12-03 Vestas Wind Systems A/S Centrale éolienne présentant des pertes réduites
US10050433B2 (en) 2014-12-11 2018-08-14 General Electric Company Power generation system and method with resistive braking capability
US9705440B2 (en) * 2015-07-16 2017-07-11 Hamilton Sundstrand Corporation Fault tolerant electric power generating system
US10461679B2 (en) * 2016-01-07 2019-10-29 Danfoss Power Electronics A/S Motor control system and method
US10447169B2 (en) * 2016-01-20 2019-10-15 General Electric Company Independent power factor and frequency control of electrical power generator
US9847733B2 (en) 2016-05-12 2017-12-19 Rockwell Automation Technologies, Inc. Power conversion system with DC bus regulation for abnormal grid condition ride through
US10615727B2 (en) * 2018-08-27 2020-04-07 General Electric Company Dynamic brake circuit assembly for a wind turbine
US11394324B2 (en) 2019-12-17 2022-07-19 General Electric Company Selective crowbar response for a power converter to mitigate device failure
CN111245011A (zh) * 2020-02-06 2020-06-05 东方电气风电有限公司 一种风力发电机组运行方式及其装置
EP3954896A1 (fr) * 2020-08-14 2022-02-16 Wobben Properties GmbH Amortissement des balancements dans les éoliennes
US11843325B2 (en) 2020-08-24 2023-12-12 General Electric Company Crowbar module for an active neutral point clamped power conversion assembly

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812729A (en) 1986-08-19 1989-03-14 Hitachi Ltd. Protecting apparatus for secondary excitation type variable speed AC generator/motor
FI882228A (fi) * 1987-09-28 1989-03-29 Siemens Ag Anordning foer alstrande av elektrisk energi.
US4891744A (en) * 1987-11-20 1990-01-02 Mitsubishi Denki Kaubshiki Kaisha Power converter control circuit
US5278773A (en) * 1990-09-10 1994-01-11 Zond Systems Inc. Control systems for controlling a wind turbine
JP3100805B2 (ja) 1993-08-24 2000-10-23 東京電力株式会社 可変速揚水発電システムの過電圧保護装置
US5583420A (en) * 1993-10-01 1996-12-10 Lucas Aerospace Power Equipment Corporation Microprocessor controller for starter/generator
JP3348944B2 (ja) * 1993-12-27 2002-11-20 株式会社東芝 巻線形誘導機の制御装置
US5650705A (en) * 1995-02-13 1997-07-22 Hart; John Roger Apparatus and method for controlling currents in an inductor
US6137187A (en) * 1997-08-08 2000-10-24 Zond Energy Systems, Inc. Variable speed wind turbine generator
DE19735742B4 (de) * 1997-08-18 2007-11-08 Siemens Ag Über- und untersynchrone Stromrichterkaskade
US5943223A (en) * 1997-10-15 1999-08-24 Reliance Electric Industrial Company Electric switches for reducing on-state power loss
US6285533B1 (en) 1999-12-13 2001-09-04 Kabushiki Kaisha Toshiba Method of and apparatus for controlling the operation of variable speed gearing
JP2001268992A (ja) * 2000-03-17 2001-09-28 Toshiba Corp 可変速制御装置
EP1284045A1 (fr) * 2000-05-23 2003-02-19 Vestas Wind System A/S Eolienne a vitesse variable pourvue d'un convertisseur de matrice
EP1296441B1 (fr) * 2001-09-25 2006-08-16 ABB Schweiz AG Système de production d'énergie
US7015595B2 (en) * 2002-02-11 2006-03-21 Vestas Wind Systems A/S Variable speed wind turbine having a passive grid side rectifier with scalar power control and dependent pitch control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03065567A1 *

Also Published As

Publication number Publication date
US7102247B2 (en) 2006-09-05
CA2472144C (fr) 2010-09-28
WO2003065567A1 (fr) 2003-08-07
CA2472144A1 (fr) 2003-08-07
AU2003206633B2 (en) 2006-11-02
CN1625831A (zh) 2005-06-08
JP2005516577A (ja) 2005-06-02
US20050116476A1 (en) 2005-06-02
CN100356683C (zh) 2007-12-19

Similar Documents

Publication Publication Date Title
EP1470633A1 (fr) Circuit con u pour etre utilise dans une installation d'energie eolienne
DE10114075B4 (de) Stromrichterschaltungsanordnung für Generatoren mit dynamisch veränderlicher Leistungsabgabe
DE60317183T2 (de) Steuer- und Schutzgerät für ein doppelgespeistes Induktionsgeneratorsystem
EP2244372B1 (fr) Dispositif de circuit pour une installation éolienne
WO2003008802A1 (fr) Procede et dispositif pour reguler la vitesse de rotation d'une eolienne sans multiplicateur, au moyen de dispositifs electroniques de puissance
EP3644497B1 (fr) Procédé et dispositif de commande virtuelle d'inertie de masse pour centrales pourvues de machine asynchrone à double alimentation
DE19735742B4 (de) Über- und untersynchrone Stromrichterkaskade
EP3444937B1 (fr) Système et procédé de fonctionnement d'une centrale de pompage pourvue d'une machine asynchrone à double alimentation
DE19651364A1 (de) Vorrichtung zur Verbesserung der Netzverträglichkeit von Windkraftanlagen mit Asynchrongeneratoren
DE10117212A1 (de) Verfahren zum Betrieb einer Windenergieanlage
WO2013020148A2 (fr) Installation d'extraction d'énergie, en particulier éolienne
EP2200169B1 (fr) Procédé de démarrage d'une machine asynchrone à double alimentation
WO2009012776A2 (fr) Générateur asynchrone à double alimentation et procédé pour le faire fonctionner
EP1513251B1 (fr) Procédé et dispositif d'exploitation d'une machine à courant alternatif à double alimentation en tant que génératrice dans une éolienne
WO2004030199A2 (fr) Systeme de generateur a generateur a couplage direct au reseau et procede pour maitriser des pannes de secteur
WO2012019834A2 (fr) Système convertisseur et procédé de fonctionnement d'un système convertisseur de ce type
DE19624809A1 (de) Aktives Filter und Verfahren zur Kompensation von Leistungsschwankungen in einem Drehstromnetz
WO2019015777A1 (fr) Dispositif d'injection d'une puissance électrique dans un réseau à tension alternative à l'aide d'une machine asynchrone et procédé de fonctionnement de la machine asynchrone
WO2020160841A1 (fr) Système d'entraînement pourvu d'un onduleur et d'un moteur électrique et procédé pour faire fonctionner un système d'entraînement
WO2009030692A1 (fr) Procédé et unité de régulation pour réduire le courant de court-circuit sur une machine asynchrone à double alimentation
WO2003028203A1 (fr) Cascade avec mise hors circuit electronique et presentant une plage de vitesse de rotation elargie
WO2018029309A1 (fr) Procédé pour faire fonctionner un convertisseur et convertisseur fonctionnant de manière correspondante
EP1011189B1 (fr) Procédé et circuit pour ajuster la tension de liaison intermediaire à la tension d'alimentation
DE102011051732B3 (de) Windkraftanlage
EP3349350A1 (fr) Procédé de fonctionnement d'une machine asynchrone en mode générateur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20040317

17Q First examination report despatched

Effective date: 20050215

17Q First examination report despatched

Effective date: 20050215

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20091116