CN102055207B - 低电压穿越智能功率控制单元及其应用 - Google Patents

低电压穿越智能功率控制单元及其应用 Download PDF

Info

Publication number
CN102055207B
CN102055207B CN2010105908804A CN201010590880A CN102055207B CN 102055207 B CN102055207 B CN 102055207B CN 2010105908804 A CN2010105908804 A CN 2010105908804A CN 201010590880 A CN201010590880 A CN 201010590880A CN 102055207 B CN102055207 B CN 102055207B
Authority
CN
China
Prior art keywords
port
voltage
control unit
low
power control
Prior art date
Application number
CN2010105908804A
Other languages
English (en)
Other versions
CN102055207A (zh
Inventor
王中
廖恩荣
李更生
李志国
黄晓辉
辛志远
Original Assignee
南京飓能电控自动化设备制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京飓能电控自动化设备制造有限公司 filed Critical 南京飓能电控自动化设备制造有限公司
Priority to CN2010105908804A priority Critical patent/CN102055207B/zh
Publication of CN102055207A publication Critical patent/CN102055207A/zh
Application granted granted Critical
Publication of CN102055207B publication Critical patent/CN102055207B/zh

Links

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • H02J3/382Dispersed generators the generators exploiting renewable energy
    • H02J3/386Wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

本发明涉及的低电压穿越智能功率控制单元IPCU设有A端口、B端口和C端口,以及穿越瞬间稳定定子电压及提供无功功率的内置辅助变频器和吸收有功功率的可控有功负载;A、B端口之间设有高速开关;A、C端口之间设有内置辅助变频器;内置辅助变频器与可控有功负载依次串接在A、C端口之间或自A端口通过三相桥式整流与可控有功负载连接,使内置辅助变频器支路与可控有功负载支路并联。应用时,A端口与风力发电机组定子绕组连接,B端口与电网连接,C端口与外接辅助变频器的直流母线连接。

Description

低电压穿越智能功率控制单元及其应用
技术领域
[0001 ] 本发明涉及一种低电压穿越智能功率控制单元及其应用,尤其是针对不具有低电压穿越功能的各类风力发电机设计的低电压穿越智能功率控制单元。即适用于改造现有的异步风力发电机,也可适用于改进含有变频器的双馈型风力发电机。
背景技术
[0002] 随着风力发电的迅速发展,风电装机容量不断增大,在发电容量中所占的比例也不断提高。当电力系统中风电装机容量比例较大时,电力系统故障导致电压跌落后,风电场切除会严重影响系统运行的稳定性。有研究表明,当风力发电机具有低电压穿越(Low Voltage Ride Through,LVRT)能力时,能提高整个电力系统的稳定性。因此世界上风电装机比例较大的国家,如丹麦、德国、美国等颁布的风电并网规定中,都要求风电机组都具备 LVRT能力,保证电力系统发生故障后风电机组能够不间断并网运行。
[0003] 尽管各国对风电机组低电压穿越能力的要求各不相同,但都包含如下几个方面的内容,以我国颁布的风电场接入电力系统技术规定(Q/GDW392-2009)为例,在风电场接入电力系统的技术规定在明确要求:
[0004] a)风电场必须具有在电压跌至20%额定电压时能够维持并网运行625ms的低电压穿越能力;
[0005] b)风电场电压在发生跌落后3s内能够恢复到额定电压的90%时,风电场必须保持并网运行;
[0006] c)风电场升压变高压侧电压不低于额定电压的90%时,风电场必须不间断并网运行。
[0007]目前我国的风电机组主要的类型有以下四种:恒速恒频异步发电机组、有限变速异步发电机组、变速恒频双馈发电机组和变速恒频直驱发电机组。其中恒速恒频异步发电机组和有限变速异步发电机组本身不具备LVRT能力;变速恒频双馈发电机组目前可以通过在转子侧加入Crowbar来使其具备LVRT能力,不仅需要对主控制器和变桨控制器等设备做较大改动,而且控制比较复杂,在穿越过程中还需要从电网吸收无功功率;变速恒频直驱发电机组由于系统中采用了全功率变频器,实现LVRT相对比较简单。
[0008]目前我国风电场中安装的绝大多数风电机组都是恒速恒频异步发电机组或者变速恒频双馈发电机组,而这些机组大多数都没有低电压穿越能力。因此对这些机组进行改造,使其具备低电压穿越能力对于电网的稳定运行有着十分重要的意义。
发明内容
[0009] 本发明的目的在于:针对目前风力发电机并网运行中普遍存在的低电压穿越能力差,尤其是恒速恒频异步发电机组或者变速恒频双馈发电机组低电压穿越能力差的实际问题,提供一种低电压穿越智能功率控制单元及其应用。
[0010] 本发明的目的是这样实现的:一种低电压穿越智能功率控制单元(IntelligentPower Control Unit for Low Voltage Ride Through,简称 IPCU,下同),其特征在于:
[0011] a) IP⑶设有A端口、B端口和C端口,控制单元中还设有穿越瞬间稳定定子电压及提供无功功率的内置辅助变频器和吸收有功功率的可控有功负载;
[0012] b)所述A端口与所述B端口之间设有高速开关;
[0013] c)所述A端口与所述C端口之间设有内置辅助变频器,其中,内置辅助变频器的交流母线与所述A端口连接,直流侧与所述C端口连接; [0014] d)可控有功负载与内置辅助变频器的直流输出端连接,使内置辅助变频器与可控有功负载依次串接在A端口与C端口之间;或自A端口通过三相桥式整流与可控有功负载连接,使内置辅助变频器支路与可控有功负载支路并联。
[0015] 在本发明中:所述的可控有功负载由制动开关和制动电阻组成,所述的制动开关为绝缘门极双极性晶体管IGBT。
[0016] 在本发明中:所述三相桥式整流电路交流侧设有LC滤波电路。
[0017] 在本发明中:所述的高速开关为门极可关断晶闸管GT0,或者配有关断电路的晶闸管。
[0018] 一种上述IP⑶的应用,其特征在于:所述的A端口与风力发电机组定子绕组连接, 所述的B端口与电网连接,所述的C端口与外接辅助变频器的直流母线连接。
[0019] 在IPCU的应用中,所述的外接辅助变频器为连接电网的辅助变频器,或双馈风力发电机转子侧变频器,或将连接电网的辅助变频器和双馈风力发电机转子侧变频器的直流母线对接后的组合。
[0020] 在IPCU的应用中:所述C端口和外接辅助变频器直流母线之间设有电容。
[0021] 在IP⑶的应用中:并网开关设在A端口侧,风力发电机组定子绕组通过并网开关与A端口连接。
[0022] 本发明的优点在于:IP⑶适用于各种类型风力发电机。采用IP⑶之后,风力发电系统将具有以下优点:
[0023] 风力发电系统将具有完美的低电压穿越能力,包含零电压跌落和电网跳闸等在内的故障均能可靠穿越;
[0024] 对风力发电机的运行无影响,主控制器和变桨控制器不需要做任何的改动,应用
非常简单;
[0025] 故障结束后,风机恢复正常运行的速度快,故障后,风机能够在2s之内恢复到之前的工作状态,满足电网对低电压穿越的要求;
[0026] 对风机的机械传动系统无影响,大大避免电网故障对轴系产生的扭曲、振荡等影响,提闻风机的使用寿命;
[0027] 故障期间可以给电网提供有功和无功支持(可选功能);
[0028] 成本低、可靠性高。IP⑶选用的元件价格比较低,因此采用IP⑶改造风机的成本也很低,同时双向晶闸管等元器件也能够满足并网风机高可靠性的要求。
[0029] 采用了 IP⑶后,由于在故障期间将电网和风机隔离开来,避免因电网电压突变在电机的定转子上产生的一系列复杂的电磁和机电暂态过程,在保证可靠穿越的前提下,不仅避免了传动系统的冲击,而且不需要修改主控制器和变桨控制器程序,大大简化了整个风机系统的设计,提高了低电压穿越过程的可靠性。附图说明[0030] 图I是本发明在涉及的一种IP⑶实施例结构示意图;
[0031] 图2是本发明在涉及的另一种IP⑶实施例结构示意图;
[0032] 图3是IP⑶的一种应用方式;
[0033] 图4是IP⑶与辅助网侧变频器匹配的应用方式;
[0034] 图5是IP⑶与双馈风力发电系统中转子侧变频器匹配的应用方式;
[0035] 图6是IP⑶、网侧变频器和转子侧变频器的双馈风力发电机变频器匹配的应用方式。
具体实施方式
[0036] 附图非限制性地公开了本发明实施例的具体结构和其几种应用,下面结合附图对本发明作进一步的描述。
[0037] 由图I可见,IP⑶设有A端口、B端口和C端口,控制单元中还设有穿越瞬间稳定定子电压及提供无功功率的内置辅助变频器Al和吸收有功功率的可控有功负载;所述A端口与所述B端口之间设有高速开关GK ;所述A端口与所述C端口之间设有内置辅助变频器 Al,其中,内置辅助变频器Al的交流母线与所述A端口连接,直流侧与所述C端口连接;
[0038] 在本实施例中,可控有功负载与内置辅助变频器Al的直流输出端连接,使内置辅助变频器Al与可控有功负载依次串接在A端口与C端口之间,所述的可控有功负载由制动开关ZK和制动电阻ZR组成。
[0039] 具体实施时,所述的闻速开关GK为门极可关断晶闸管GTO或者配有关断电路的晶闸管,制动开关ZK选择IGBT。
[0040] 由图2可见,IP⑶的另一种实施方式与图I公开的实施方式存在的唯一差别在于: 自A端口通过三相桥式整流RF与可控有功负载连接,使稳定定子电压及提供无功功率的内置辅助变频器Al支路与可控有功负载支路并联。
[0041] 具体实施时,由于整流桥在工作的过程中会产生谐波电流,这些谐波会影响内置辅助变频器输出的电压质量,因此,可以在三相桥式整流电路RF交流侧设有LC滤波电路 FL0
[0042] 在图I和图2所述的IP⑶中,闻速开关GK(门极可关断晶闸管GTO或者配有关断电路的晶闸管)的选择应该满足关断时间在Ims之内,并与风力发电机的输出电流匹配;制动开关ZK的选择应该满足制动电路允许的最大电压和电流的要求;制动电阻ZR的选择应该满足释放能量大于风力发电机的输出能量,内置辅助变频器Al的功率等级应该与风力发电机匹配。
[0043] 图3是IP⑶在风力发电机中的一种应用,所述的IP⑶即可以选择图I所示的实施例,也可以采用实施例2所示的实施例,为了便于表述,仅以图I所示实施例为例予以说明。
[0044] 在图3中,IP⑶的A端口与风力发电机组定子绕组连接,B端口与电网连接。
[0045] 使用中,当电网正常工作时,IP⑶中的门极可关断晶闸管GTO或者配有关断电路的晶闸管导通,制动开关IGBT截止,由于电网中的奇次谐波比较少,滤波器基本不起作用,IPCU整体等效为闭合的交流开关。内置辅助变频器工作在准备模式,即控制其直流母线电压保持恒定、输出的无功功率等于O。此时内置辅助变频器基本不消耗有功和无功功率,对风力发电机的正常工作没有影响。
[0046] 电网电压跌落的深度对风力发电机的运行有很大影响,当跌落深度不大时,电网电压跌落对风力发电机正常运行的影响比较小,此时靠风机自身的能力就可以穿越过去。
[0047] 而深度很大时,可以根据风机的特点设定电压跌落的容许范围,该容许范围一般为电网额定电压的90%。当超过容许范围时,IPCU强制关断门极可关断晶闸管GTO或者配有关断电路的晶闸管,关断过程可以在Ims左右完成。门极可关断晶闸管GTO或晶闸管截止后,制动开关IGBT导通,由制动电阻提供了风力发电机的有功功率释放通道,同时内置辅助逆变器稳定了电机定子电压并提供了风力发电机运行所需的无功功率,使风力发电机的能够稳定运行。
[0048] 如果电网电压能够在低电压穿越要求 时间内恢复正常,门极可关断晶闸管GTO或晶闸管重新闭合,同时制动开关IGBT截止,使得风力发电机并入电网,恢复正常工作;如果电网电压不能够在低电压穿越要求的时间内恢复正常,IPCU也将停止工作,使得风力发电机脱网并停机。
[0049] 图4所示的应用方式与图3的区别在于,IPCU的C端口与外接辅助变频器的直流母线连接,在本实施例中,外接辅助变频器为网侧辅助变频器,采用这种应用方式的优势在于:穿越过程中,网侧辅助变频器可以和制动电阻共同提供了风力发电机的有功功率释放通道,同时,网侧辅助变频器也可以在故障穿越期间为电网提供有功和无功功率支持。
[0050] 图5所示的应用方式与图4的区别在于,外接辅助变频器为风力发电机转子侧双馈变频器,采用这种应用方式的优势在于:由于双馈风力发电机本身就配有变频器,这样就可以充分利用已有的部件,减少改造成本。在穿越过程中,双馈电机转子侧变频器仍然保持之前的控制策略,内置辅助变频器保持定子电压稳定并提供双馈电机运行所需的无功功率。
[0051] 图6所不的应用方式实际上是图4和图5两种应用方式的结合,其结合点在于:夕卜接辅助变频器是将网侧辅助变频器和转子侧双馈变频器的直流母线对接后,在与IPCU的C 端口连接。在这种实施方式中,双馈电机转子侧变频器仍然保持之前的控制策略,制动电阻和网侧辅助变频器共同提供了风力发电机的有功功率释放通道,内置辅助变频器保持定子电压稳定并提供双馈电机运行所需的无功功率。同时,网侧辅助变频器也可以在故障穿越期间为电网提供有功和无功功率支持。

Claims (10)

1. 一种低电压穿越智能功率控制单元,其特征在于:a)低电压穿越智能功率控制单元设有A端口、B端口和C端口,控制单元中还设有穿越瞬间稳定定子电压及提供无功功率的内置辅助变频器和吸收有功功率的可控有功负载;b)所述A端口与所述B端口之间设有高速开关;c)所述A端口与所述C端口之间设有内置辅助变频器,其中,内置辅助变频器的交流母线与所述A端口连接,直流侧与所述C端口连接;d)可控有功负载与内置辅助变频器的直流输出端连接,使内置辅助变频器与可控有功负载依次串接在A端口与C端口之间;或自A端口通过三相桥式整流与可控有功负载连接, 使内置辅助变频器支路与可控有功负载支路并联。
2.根据权利要求I所述的低电压穿越智能功率控制单元,其特征在于:所述的可控有功负载由制动开关和制动电阻组成。
3.根据权利要求2所述的低电压穿越智能功率控制单元,其特征在于:所述的制动开关为绝缘门极双极性晶体管IGBT。
4.根据权利要求I所述的低电压穿越智能功率控制单元,其特征在于:所述三相桥式整流电路交流侧设有LC旁路滤波电路。
5.根据权利要求r4之一所述的低电压穿越智能功率控制单元,其特征在于:所述的高速开关为门极可关断晶闸管GTO,或者配有反向关断电路的晶闸管。
6. 一种如权利要求广4之一所述的低电压穿越智能功率控制单元的应用,其特征在于:所述的A端口与风力发电机组定子绕组连接,所述的B端口与电网连接。
7.根据权利要求6所述的低电压穿越智能功率控制单元的应用,其特征在于:所述的C 端口与外接辅助变频器的直流母线连接。
8.根据权利要求7所述的低电压穿越智能功率控制单元的应用,其特征在于:所述的外接辅助变频器为连接电网的辅助变频器,或双馈风力发电机转子侧双馈变频器,或将连接电网的辅助变频器和双馈风力发电机转子侧双馈变频器的直流母线对接后的组合。
9.根据权利要求7所述的低电压穿越智能功率控制单元的应用,其特征在于:所述C 端口的外接辅助变频器直流母线之间设有电容。
10.根据权利要求7或8所述的低电压穿越智能功率控制单元的应用,其特征在于:风力发电机组定子绕组通过并网开关与A端口连接。
CN2010105908804A 2010-12-16 2010-12-16 低电压穿越智能功率控制单元及其应用 CN102055207B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105908804A CN102055207B (zh) 2010-12-16 2010-12-16 低电压穿越智能功率控制单元及其应用

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CN2010105908804A CN102055207B (zh) 2010-12-16 2010-12-16 低电压穿越智能功率控制单元及其应用
JP2013543502A JP5895001B2 (ja) 2010-12-16 2011-08-19 低電圧乗切インテリジェント電力制御ユニット及びその使用
KR1020137018621A KR20130126961A (ko) 2010-12-16 2011-08-19 저 전압 라이드 스루용 인텔리전트 전력 제어 유닛 및 그의 애플리케이션
EP11849645.4A EP2637278A1 (en) 2010-12-16 2011-08-19 Intelligent power control unit for low voltage ride through and its application
CA2821020A CA2821020A1 (en) 2010-12-16 2011-08-19 Intelligent power control unit for low voltage ride through and its application
US13/994,657 US20130265806A1 (en) 2010-12-16 2011-08-19 Intelligent power control unit for low voltage ride through and its application
PCT/CN2011/076944 WO2012079363A1 (zh) 2010-12-16 2011-08-19 低电压穿越智能功率控制单元及其应用

Publications (2)

Publication Number Publication Date
CN102055207A CN102055207A (zh) 2011-05-11
CN102055207B true CN102055207B (zh) 2012-08-01

Family

ID=43959284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105908804A CN102055207B (zh) 2010-12-16 2010-12-16 低电压穿越智能功率控制单元及其应用

Country Status (7)

Country Link
US (1) US20130265806A1 (zh)
EP (1) EP2637278A1 (zh)
JP (1) JP5895001B2 (zh)
KR (1) KR20130126961A (zh)
CN (1) CN102055207B (zh)
CA (1) CA2821020A1 (zh)
WO (1) WO2012079363A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055207B (zh) * 2010-12-16 2012-08-01 南京飓能电控自动化设备制造有限公司 低电压穿越智能功率控制单元及其应用
CN102957163A (zh) * 2011-08-23 2013-03-06 台达电子企业管理(上海)有限公司 一种双馈型风力发电系统的直流斩波装置及其方法
CN102299644A (zh) * 2011-08-23 2011-12-28 东北电网有限公司 具有低电压穿越能力的变频器稳压电源装置
US20130057227A1 (en) * 2011-09-01 2013-03-07 Ingeteam Technology, S.A. Method and apparatus for controlling a converter
CN102790406B (zh) * 2012-08-07 2014-10-01 南京飓能电控自动化设备制造有限公司 具备可靠低电压穿越能力的双馈变流器
CN102820646B (zh) * 2012-08-10 2014-08-20 沈阳工业大学 一种柔性直流输电系统电网故障穿越控制装置及方法
CN102832641A (zh) * 2012-09-11 2012-12-19 南京飓能电控自动化设备制造有限公司 一种具备可靠低电压穿越能力的双馈变流器
CN106160606B (zh) * 2015-03-24 2019-09-17 台达电子工业股份有限公司 风力发电系统及其控制方法
JP6599700B2 (ja) * 2015-09-08 2019-10-30 マクセルホールディングス株式会社 系統連系装置
CN105743374A (zh) * 2016-04-27 2016-07-06 中国农业大学 一种拓扑结构及控制方法优化的变频器低电压穿越电源装置
CN106099903B (zh) * 2016-07-25 2018-11-30 国网河北省电力公司电力科学研究院 一种双馈风力发电机并入直流输配电网的并网系统及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299540A (zh) * 2007-04-30 2008-11-05 国网南京自动化研究院 用于实现风力发电机组低电压穿越的装置
CN101609992A (zh) * 2009-06-24 2009-12-23 北京利德华福电气技术有限公司 低压穿越型双馈风力发电机变流器
CN101710815A (zh) * 2009-11-26 2010-05-19 上海大学 电网三相短路故障时双馈感应风力发电机网侧变换器低电压穿越控制系统及方法
CN101860043A (zh) * 2010-05-17 2010-10-13 东南大学 串联型风力发电机组低电压穿越控制装置及控制方法
CN101895126A (zh) * 2009-05-20 2010-11-24 天津瑞能电气有限公司 双馈变速恒频风力发电机组的低电压穿越控制电路
CN201966629U (zh) * 2010-12-16 2011-09-07 南京飓能电控自动化设备制造有限公司 低电压穿越智能功率控制单元

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3750004A (en) * 1972-02-23 1973-07-31 Esb Inc Instantaneous current control for static inverters
JP2877388B2 (ja) * 1989-11-01 1999-03-31 ニチコン株式会社 電圧補償機能付高調波抑制装置
JP3044894B2 (ja) * 1992-01-16 2000-05-22 富士電機株式会社 風車発電機
AU2003206633B2 (en) * 2002-01-29 2006-11-02 Vestas Wind Systems A/S Circuit to be used in a wind power plant
DE10232423A1 (de) * 2002-07-17 2004-01-29 Ge Wind Energy Gmbh Verfahren zum Betreiben einer Windenergieanlage und Windenergieanlage zum Ausführen derartiger Verfahren
CA2515436C (en) * 2003-02-07 2012-04-10 Vestas Wind Systems A/S Method for controlling a power-grid connected wind turbine generator during grid faults and apparatus for implementing said method
WO2007027141A1 (en) * 2005-08-30 2007-03-08 Abb Research Ltd Wind mill power flow control with dump load and power converter
US7253537B2 (en) * 2005-12-08 2007-08-07 General Electric Company System and method of operating double fed induction generators
JP4773850B2 (ja) * 2006-03-08 2011-09-14 三菱重工業株式会社 風力発電システム、及び風力発電システムの非常用電力供給方法
WO2008081049A1 (es) * 2006-12-28 2008-07-10 Wind To Power System, S.L. Generador asíncrono con control de la tensión aplicada al estator
US7622815B2 (en) * 2006-12-29 2009-11-24 Ingeteam Energy, S.A. Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid
WO2008131799A1 (en) * 2007-04-27 2008-11-06 Abb Technology Ag Method and system to influence the power generation of an adjustable speed generator
JP2008301584A (ja) * 2007-05-30 2008-12-11 Hitachi Ltd 風力発電システムおよび電力変換器の制御方法
JP2008306776A (ja) * 2007-06-05 2008-12-18 Hitachi Ltd 風力発電システムおよびその制御方法
JP4834691B2 (ja) * 2008-05-09 2011-12-14 株式会社日立製作所 風力発電システム
US8120932B2 (en) * 2008-07-01 2012-02-21 American Superconductor Corporation Low voltage ride through
CN102282756B (zh) * 2009-01-14 2016-01-06 东芝三菱电机产业系统株式会社 用于具有双馈感应发电机的风力发电系统的保护电路
BR112012027761B1 (pt) * 2010-04-29 2019-11-05 Ingeteam Power Technology, S.A. sistema de controle de gerador elétrico e método
CA2802810A1 (en) * 2010-06-14 2011-12-22 Jesus Mayor Lusarreta Electricity generation system that withstands voltage dips
CN102055207B (zh) * 2010-12-16 2012-08-01 南京飓能电控自动化设备制造有限公司 低电压穿越智能功率控制单元及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299540A (zh) * 2007-04-30 2008-11-05 国网南京自动化研究院 用于实现风力发电机组低电压穿越的装置
CN101895126A (zh) * 2009-05-20 2010-11-24 天津瑞能电气有限公司 双馈变速恒频风力发电机组的低电压穿越控制电路
CN101609992A (zh) * 2009-06-24 2009-12-23 北京利德华福电气技术有限公司 低压穿越型双馈风力发电机变流器
CN101710815A (zh) * 2009-11-26 2010-05-19 上海大学 电网三相短路故障时双馈感应风力发电机网侧变换器低电压穿越控制系统及方法
CN101860043A (zh) * 2010-05-17 2010-10-13 东南大学 串联型风力发电机组低电压穿越控制装置及控制方法
CN201966629U (zh) * 2010-12-16 2011-09-07 南京飓能电控自动化设备制造有限公司 低电压穿越智能功率控制单元

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP特开2007-239599A 2007.09.20
贺益康 等.变速恒频双馈异步风力发电系统低电压穿越技术综述.《电工技术学报》.2009,第24卷(第9期),140-146. *

Also Published As

Publication number Publication date
JP5895001B2 (ja) 2016-03-30
CN102055207A (zh) 2011-05-11
EP2637278A1 (en) 2013-09-11
US20130265806A1 (en) 2013-10-10
JP2014502136A (ja) 2014-01-23
CA2821020A1 (en) 2012-06-21
WO2012079363A1 (zh) 2012-06-21
KR20130126961A (ko) 2013-11-21

Similar Documents

Publication Publication Date Title
Fang et al. On the inertia of future more-electronics power systems
Blaabjerg et al. Wind energy systems
Islam et al. A review of offshore wind turbine nacelle: technical challenges, and research and developmental trends
Blaabjerg et al. Future on power electronics for wind turbine systems
Chen et al. Integrating wind farm to the grid using hybrid multiterminal HVDC technology
Baroudi et al. A review of power converter topologies for wind generators
Blaabjerg et al. Power electronics converters for wind turbine systems
US8344550B2 (en) Power conversion control with energy storage
Dai et al. A novel control scheme for current-source-converter-based PMSG wind energy conversion systems
EP2448079B1 (en) Method and System for Providing Increased Turbine Output for Doubly Fed Induction Generator
Chen et al. Grid interface options for variable-speed, permanent-magnet generators
Carrasco et al. Power-electronic systems for the grid integration of renewable energy sources: A survey
Faulstich et al. Medium voltage converter for permanent magnet wind power generators up to 5 MW
Dai et al. Unified DC-link current control for low-voltage ride-through in current-source-converter-based wind energy conversion systems
Erlich et al. Dynamic behaviour of DFIG-based wind turbines during grid faults
EP2315345B1 (en) Grid fault ride-through for current source converter-based wind energy conversion systems
US9837824B2 (en) Connection system for power generation system with DC output
CA2775623C (en) An electrical power conversion system and method
Qiao et al. Real-time implementation of a STATCOM on a wind farm equipped with doubly fed induction generators
US7605487B2 (en) Method for operating a frequency converter of a generator and wind energy turbine having a generator operated according to the method
Liserre et al. Overview of multi-MW wind turbines and wind parks
CN101136582B (zh) 一种全功率变流器直流侧卸荷电路的控制方法
US7939959B2 (en) Wind turbine with parallel converters utilizing a plurality of isolated transformer windings
Howlader et al. A comprehensive review of low voltage ride through capability strategies for the wind energy conversion systems
CN102810990B (zh) 用于动态变化输出功率发电机的整流电路及相应控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160302

Address after: 211113 Tao Dong Road, Jiangning economic and Technological Development Zone, Nanjing, Jiangsu

Patentee after: Nanjing High Accurate Drive Electromechanical Automation Equipment Co., Ltd.

Address before: 211113 Tao Dong Road, Jiangning economic and Technological Development Zone, Jiangning District, Jiangsu, Nanjing

Patentee before: Nanjing Juneng Electric Control Automation Equipment Manufacturing Co., Ltd.

Effective date of registration: 20160302

Address after: 211113 Tao Dong Road, Jiangning economic and Technological Development Zone, Nanjing, Jiangsu

Patentee after: Nanjing High Accurate Drive Electromechanical Automation Equipment Co., Ltd.

Address before: 211113 Tao Dong Road, Jiangning economic and Technological Development Zone, Jiangning District, Jiangsu, Nanjing

Patentee before: Nanjing Juneng Electric Control Automation Equipment Manufacturing Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120801

Termination date: 20191216