EP1470633A1 - Circuit to be used in a wind power plant - Google Patents

Circuit to be used in a wind power plant

Info

Publication number
EP1470633A1
EP1470633A1 EP03704240A EP03704240A EP1470633A1 EP 1470633 A1 EP1470633 A1 EP 1470633A1 EP 03704240 A EP03704240 A EP 03704240A EP 03704240 A EP03704240 A EP 03704240A EP 1470633 A1 EP1470633 A1 EP 1470633A1
Authority
EP
European Patent Office
Prior art keywords
circuit
circuit arrangement
current
arrangement according
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP03704240A
Other languages
German (de)
French (fr)
Inventor
Lorenz Feddersen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vestas Wind Systems AS
Original Assignee
Vestas Wind Systems AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27664545&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1470633(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE10206828A external-priority patent/DE10206828A1/en
Application filed by Vestas Wind Systems AS filed Critical Vestas Wind Systems AS
Priority to EP09012812.5A priority Critical patent/EP2244372B1/en
Publication of EP1470633A1 publication Critical patent/EP1470633A1/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/06Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric generators; for synchronous capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/105Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for increasing the stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a circuit arrangement, in particular for use in a wind power plant with variable speed, comprising a double-fed asynchronous generator, an additional resistor and a converter.
  • the invention has for its object to provide a circuit arrangement for use in wind turbines with an asynchronous machine, by means of which the increased demands on modern wind turbines, in particular with regard to grid stabilization, can be met.
  • a circuit arrangement in which the additional resistance can be regulated by means of a fast switch in such a way that the converter can be switched off at least partially temporarily in the event of a mains short circuit in order to temporarily take over the rotor current by means of the additional resistance, and after the rotor short-circuit current has subsided for the active coupling of a short-circuit current can be connected to the network again.
  • the increased network requirements during operation of the wind power plant equipped with an asynchronous generator for network stabilization can be optimally met, because in the event of a network short-circuit at the medium-voltage level, there is no disconnection from the network.
  • an additional resistor designed as a controllable load resistor or a crow bar, which is equipped with the additional resistor has been inserted in the rotor circuit, which absorbs the rotor short-circuit energy when the mains short-circuit occurs and is then switched off after the short-circuit current has decayed.
  • the load resistance is controlled by a switch that can be switched off, in particular, which is not a naturally commutated thyristor.
  • the existing rotor inverter of the four-quadrant converter is briefly deactivated immediately after the mains short-circuit occurs and after the short-circuit compensation process has subsided, the threshold value advantageously being below a rotor alternating current, and then feeds the current during the mains short-circuit and with recurring mains voltage required power in the network.
  • a modification of the present invention in which the circuit arrangement has a plurality of resistances which can be switched independently or independently of one another has proven to be particularly advantageous. This ensures that the high rotor short-circuit current, which often exceeds 1000 A, can be divided among several switches, as these switchable switches for the total current must be connected in parallel in a very complex manner.
  • a circuit arrangement with a two-point controller for regulating the additional resistor is also particularly advantageous because it enables a very simple, fast and robust regulation to be set up.
  • a further modification proves to be particularly expedient if the regulation of the active switch is carried out with pulse width modulation with a fixed clock frequency, because in this way digital regulation can take place with a fixed clock frequency.
  • capacitive current or inductive current is supplied to the short circuit in the event of a network short-circuit, because this allows the network to be optimally stabilized depending on the requirements of the network operator.
  • a capacitive current is usually desired in order to supply the inductive network consumers.
  • an additional impedance is briefly inserted in the stator circuit in order to limit the stator and rotor current.
  • the stator and rotor current can be limited with recurring mains voltage.
  • An embodiment is also particularly expedient in which a fast contactor is used in the stator circuit in parallel with the additional impedance, in order to bridge the additional impedance in normal operation and to generate no losses. Furthermore, it is particularly promising if at least one thyristor with natural commutation is used in the stator circuit in parallel with the resistor. This ensures that, compared to switches that can be switched off actively, there are reduced losses in normal operation and the costs are lower.
  • circuit arrangement can be designed in a particularly advantageous manner in such a way that a regulated resistor is operated on the intermediate circuit of the converter, because this saves some components in the crowbar and the regulation of the rotor inverter permanently measures the rotor phase current.
  • Another particularly expedient embodiment of the invention is also achieved if a regulated resistor is operated both in the crow bar and on the intermediate circuit of the converter. This ensures that power is divided and that smaller individual switches can be used. Towards the end of the balancing process of the rotor short-circuit current, the entire rotor current is taken over, and the control of the rotor inverter then measures the total phase current.
  • a particularly advantageous embodiment of the invention is also achieved when the rotor inverter is switched off when the mains voltage is recurring, the overcurrent is then taken over by the controllable resistor in order to actively take over the rotor current after the overcurrent has died down and the regulated resistor has been switched off. This avoids a possible shutdown or disconnection of the wind power installation in the case of a suddenly recurring mains voltage.
  • FIG. 4 shows a voltage and current-time curve with additional resistance
  • FIG. 1 shows a circuit arrangement according to the invention.
  • a switch V15 for example IGBT, GTO, IGCT
  • the crow bar is completely inactive.
  • the full rotor current flows into an inverter and is regulated by it. If a mains short-circuit occurs on the medium voltage, an asynchronous generator supplies a compensating short-circuit current for the short circuit due to the full excitation.
  • the current is only limited by the leakage inductances of the asynchronous generator and medium-voltage transformer, the maximum current reaching the following value:
  • Xtr is the total leakage impedance of the transformer, X1 the leakage impedance of the stator and X2 'the leakage impedance of the rotor.
  • the maximum stator current in the event of a short circuit at the medium voltage is of the order of up to 8 times the nominal stator current.
  • the rotor current is coupled to the stator current in a transformer and also reaches up to 8 times the nominal rotor current. This high compensation current cannot be conducted or absorbed by the converter in a technically sensible manner.
  • a rotor inverter is switched off due to the overcurrent.
  • the rotor current continues to flow via free-wheeling diodes of the rotor inverter and charges an intermediate circuit C3.
  • the voltage rises across a capacitor C10 in the crow bar.
  • the switch V15 is switched on.
  • a resistor R15 takes over the entire rectified rotor current, and the voltage across the capacitor C10 drops below the voltage limit, so that the switch V15 is switched off.
  • the voltage then rises again via the capacitor C10, due to the rotor current, and the switch V15 is switched on again.
  • the current change rate and thus the clock frequency are determined by L15.
  • the clock frequency is in the kHz range and cannot be achieved by natural commutation of thyristors, since the rotor frequency is a maximum of 15 Hz.
  • switch V15 is switched off completely and the rotor current commutates back into the converter.
  • the converter starts operation and control and actively feeds into the short circuit.
  • the grid inverter can be switched off while the adjustable resistor is active, but simultaneous operation is also possible.
  • a thyristor V10 is provided in the crow bar, which independently measures the voltage and is triggered by the switch V15 in the event of failure or in the event of a direct generator short circuit.
  • L10 prevents the current from rising too quickly in order not to destroy the thyristor V10.
  • D10 prevents a rapid discharge from a capacitor C10 through the switch V15.
  • Switch V15 can be regulated either directly in the crow bar or via the control card of the converter.
  • FIG. 2 A possible course of the short circuit is shown in FIG. 2, the dashed line representing the medium voltage and the solid line representing the mains voltage.
  • the short circuit occurs at the moment 0 msec. on.
  • the current immediately jumps to the maximum value and then decays due to the compensation process.
  • the high current is absorbed by the crow bar or resistance. If the rotor current falls below the nominal current, the current is again taken over and regulated by the converter.
  • the generator is overexcited and supplies capacitive reactive power to the grid during the short circuit.
  • inductive current can also be fed into the short circuit. The default can be chosen freely. Due to the voltage drop across the medium-voltage transformer, the mains voltage is approximately 20% of the nominal voltage.
  • the voltage does not suddenly rise to the nominal value, but via a dU / dt edge. Due to the slope of the recurring line voltage and the time constant of the generator, a dynamic overcurrent occurs in the stator and rotor. This overcurrent must be able to be supplied by the converter and does not lead to the rotor inverter being switched off. If the slope is too large or there is a phase error between the generator voltage and the recurring mains voltage, the dynamic overcurrent or compensation current becomes too high and the rotor inverter is switched off.
  • the adjustable resistor also takes over the compensating current for a short time and after falling below the nominal rotor current the resistor is switched off and the rotor inverter takes over its regulation again. During the voltage dip and with When the voltage returns, the controllable resistance is activated briefly. The rotor inverter is switched off during this time.
  • an additional impedance can be inserted into the stator circuit, for example by means of a resistor or a choke.
  • a resistor or a choke Such a system is shown in FIG. 3.
  • a K20 contactor is inserted between the medium-voltage transformer and the generator-converter system.
  • a resistor R20 is connected in parallel across the contactor K20. If the short circuit occurs, contactor K20 is opened and the stator current flows through resistor R20.
  • FIG. 4 shows the voltage-time curve with additional resistance.
  • the stator current is limited and decays faster than with the regulated crow bar.
  • the contactor must switch very quickly so that the resistor is active in the event of very short voltage dips.
  • An anti-parallel thyristor switch with natural commutation can also be used, which has a switch-off time of 6.7 msec, for example. at 50 Hz. This results in a fast switch, but has the disadvantage of high losses compared to the contactor solution.
  • the switch is after 10 msec. open. After the compensation process, the converter takes over the control. Due to the additional voltage drop across the resistor, the residual network voltage is higher than without additional impedance in the stator. With the recurring voltage, the additional resistance limits the dynamic stator current rise and allows higher voltage edges or lower overcurrents.
  • the freewheeling diodes of IGBT modules are not designed for very high pulse currents. Therefore, the components of the regulated resistor were placed in the crow bar.
  • a circuit arrangement with powerful free-wheeling diodes is shown in FIG. 5.
  • the switch V15 is coupled directly to the intermediate circuit of the converter and directly regulates the intermediate circuit voltage. This would simplify the entire structure. The additional standard crow bar is retained for extreme situations.
  • the additional resistance must be designed for all extreme situations.
  • the rotor inverters IGBTs are switched off and the rotor short-circuit current flows through the freewheeling diodes into the intermediate circuit. If a limit value is exceeded, the additional resistance is activated and the short-circuit energy is absorbed in the additional resistance. After the short-circuit current has subsided, the rotor inverter is reactivated and the set resistance is switched off.
  • the additional resistor can also be switched off first and the rotor inverter switched on. Simultaneous operation of the additional resistor and the rotor inverter is also possible.

Abstract

The invention relates to a circuit with a variable rotational speed to be used particularly in a wind power plant, comprising a double fed asynchronous generator (DASM), a crow-bar, an additional resistor (R15) and a converter. In order to meet the requirements of the network provider, whereby a particularly permanent coupling to the network should be ensured so that the wind power plant can start up and stabilize the network during and after medium voltage short circuit in the network, the additional resistor can be regulated with the aid of a fast switch in such a way that the converter can be provisionally disconnected at least partly in case of a short circuit in the network. The rotor current is momentarily assumed by the additional resistor and disconnected after the rotor short circuit current dies out so that the converter can be subsequently connected once again and so that it can supply the desired active short circuit current to the network.

Description

Schaltungsanordnung zum Einsatz bei einer Windenergieanlage Circuit arrangement for use in a wind turbine
Die Erfindung betrifft eine insbesondere zum Einsatz bei einer Windenergieanlage mit variabler Drehzahl bestimmte Schaltungsanordnung umfassend einen doppeltgespeisten Asyn- chrongenerator, einen Zusatzwiderstand und einen Umrichter.The invention relates to a circuit arrangement, in particular for use in a wind power plant with variable speed, comprising a double-fed asynchronous generator, an additional resistor and a converter.
Solche zum Einsatz bei drehzahlvariablen Windenergieanlagen vorgesehene Schaltungsanordnungen werden in der Praxis vielfach eingesetzt und zählen daher durch offenkundige Vorbenutzung zum Stand der Technik. Im Betrieb erweist es sich jedoch beim Einsatz dop- peltgespeister Asynchronmaschinen (DASM) als hinderlich, dass diese sich im Falle eines Netzkurzschlusses auf der Mittelspannungsebene vom Netz trennen. Daher kann die erwünschte Netzstabilisierung durch eine Windkraftanlage, die mit einer doppeltgespeisten Asynchronmaschine betrieben wird, nicht realisiert werden.Such circuit arrangements intended for use in variable-speed wind energy plants are widely used in practice and are therefore prior art due to their obvious prior use. In operation, however, when double-fed asynchronous machines (DASM) are used, it proves to be a hindrance that they disconnect from the network in the event of a network short-circuit at the medium-voltage level. Therefore, the desired grid stabilization cannot be achieved by a wind power plant that is operated with a double-fed asynchronous machine.
In der Vergangenheit erfolgte die erforderliche Netzstabilisierung daher durch die Netzbetreiber mit konventionellen Kraftwerken. Aufgrund der schnell steigenden Anzahl der Windkraftanlagen und der damit verbundenen rasch ansteigenden Leistung, die inzwischen die Größe konventioneller Kraftwerke erreicht haben, müssen jedoch auch die Anforderungen der Windkraftanlagen an diejenigen der konventionellen Kraftwerke angepasst werden. Insbe- sondere wird zunehmend eine dauerhafte Netzkoppelung verlangt, damit die Windenergieanlage während und nach beendetem Mittelspannungsnetzkurzschluss das Netz wieder aufbauen und stabilisieren kann. Der Erfindung liegt die Aufgabe zugrunde, eine Schaltungsanordnung zum Einsatz bei Windkraftanlagen mit einer Asynchronmaschine zu schaffen, mittels der die erhöhten Anforderungen an moderne Windkraftanlagen, insbesondere hinsichtlich der Netzstabilisierung, erfüllt werden können.In the past, the grid stabilization required was therefore carried out by the grid operators with conventional power plants. Due to the rapidly increasing number of wind turbines and the associated rapidly increasing output, which have now reached the size of conventional power plants, the requirements of the wind power plants must also be adapted to those of the conventional power plants. In particular, permanent grid coupling is increasingly required so that the wind turbine can rebuild and stabilize the grid during and after the medium voltage grid short has ended. The invention has for its object to provide a circuit arrangement for use in wind turbines with an asynchronous machine, by means of which the increased demands on modern wind turbines, in particular with regard to grid stabilization, can be met.
Diese Aufgabe wird erfindungsgemäß mit einer Schaltungsanordnung gemäß den Merkmalen des Patentanspruchs 1 gelöst. Die Unteransprüche betreffen besonders zweckmäßige Weiterbildungen der Erfindung.This object is achieved with a circuit arrangement according to the features of claim 1. The subclaims relate to particularly expedient developments of the invention.
Erfindungsgemäß ist also eine Schaltungsanordnung vorgesehen, bei welcher der Zusatzwiderstand mittels eines schnellen Schalters derart regelbar ist, dass der Umrichter im Netzkurzschlussfall zumindest teilweise vorübergehend abschaltbar ist, um den Rotorstrom mittels des Zusatzwiderstandes kurzzeitig zu übernehmen, und nach Abklingen des Rotorkurzschlussstromes zur aktiven Einkopplung eines Kurzschlussstromes ins Netz wieder zu- schaltbar ist.According to the invention, a circuit arrangement is thus provided in which the additional resistance can be regulated by means of a fast switch in such a way that the converter can be switched off at least partially temporarily in the event of a mains short circuit in order to temporarily take over the rotor current by means of the additional resistance, and after the rotor short-circuit current has subsided for the active coupling of a short-circuit current can be connected to the network again.
Hierdurch können die erhöhten Netzanforderungen im Betrieb der mit einem Asynchrongenerator ausgestatteten Windkraftanlage zur Netzstabilisierung optimal erfüllt werden, weil dabei im Falle eines Netzkurzschlusses auf der Mittelspannungsebene keine Trennung vom Netz eintritt. Hierzu ist im Rotorkreis beispielsweise ein als regelbarer Lastwiderstand ausgeführter Zusatzwiderstand oder ein Crow-Bar, der hierzu mit dem Zusatzwiderstand ausgestattet ist, eingefügt worden, der beim Eintreten des Netzkurzschlussfalls die Rotorkurzschlussenergie aufnimmt und anschließend, nach Abklingen des Kurzschlussstromes, abgeschaltet wird. Der Lastwiderstand wird mit einem insbesondere aktiv abschaltbaren Schalter geregelt, der insbesondere kein natürlich kommutierter Thyristor ist. Der vorhandene Rotorwechselrichter des Vier-Quadranten-Umrichters wird sofort nach Eintreten des Netzkurzschlusses kurzzeitig deaktiviert und nach Abklingen des Kurzschlussausgleichsvorganges, wobei der Schwellenwert vorteilhafter Weise unterhalb eines Rotorwechselrichtemennstro- mes liegt, wieder aktiviert und speist dann während des Netzkurzschlusses und bei wieder- kehrender Netzspannung die erforderliche Leistung in das Netz.As a result, the increased network requirements during operation of the wind power plant equipped with an asynchronous generator for network stabilization can be optimally met, because in the event of a network short-circuit at the medium-voltage level, there is no disconnection from the network. For this purpose, an additional resistor designed as a controllable load resistor or a crow bar, which is equipped with the additional resistor, has been inserted in the rotor circuit, which absorbs the rotor short-circuit energy when the mains short-circuit occurs and is then switched off after the short-circuit current has decayed. The load resistance is controlled by a switch that can be switched off, in particular, which is not a naturally commutated thyristor. The existing rotor inverter of the four-quadrant converter is briefly deactivated immediately after the mains short-circuit occurs and after the short-circuit compensation process has subsided, the threshold value advantageously being below a rotor alternating current, and then feeds the current during the mains short-circuit and with recurring mains voltage required power in the network.
Als besonders vorteilhaft erweist sich dabei eine Abwandlung der vorliegenden Erfindung, bei welcher die Schaltungsanordnung mehrere abhängig oder unabhängig voneinander schaltbare Widerstände aufweist. Hierdurch wird erreicht, dass der hohe Rotorkurzschluss- ström, der häufig 1000 A übersteigt, auf mehrere Schalter aufgeteilt werden kann, da diese abschaltbaren Schalter für den Gesamtstrom sehr aufwendig parallel geschaltet werden müssen.A modification of the present invention in which the circuit arrangement has a plurality of resistances which can be switched independently or independently of one another has proven to be particularly advantageous. This ensures that the high rotor short-circuit current, which often exceeds 1000 A, can be divided among several switches, as these switchable switches for the total current must be connected in parallel in a very complex manner.
Besonders vorteilhaft ist auch eine Schaltungsanordnung mit einem Zweipunktregler, zur Regelung des Zusatzwiderstandes, weil dadurch eine sehr einfache, schnelle und robuste Regelung aufgebaut werden kann.A circuit arrangement with a two-point controller for regulating the additional resistor is also particularly advantageous because it enables a very simple, fast and robust regulation to be set up.
Hierbei erweist sich eine weitere Abwandlung als besonders zweckmäßig, wenn die Regelung des aktiven Schalters mit einer Pulsweitenmodulation mit einer festen Taktfrequenz erfolgt, weil auf diese Weise eine digitale Regelung mit einer festen Taktfrequenz erfolgen kann.Here, a further modification proves to be particularly expedient if the regulation of the active switch is carried out with pulse width modulation with a fixed clock frequency, because in this way digital regulation can take place with a fixed clock frequency.
Weiterhin ist es auch besonders Erfolg versprechend, wenn die Regelung des aktiven Schalters mit einem P-Regler, Pl-Regler oder PID-Regler erfolgt. Hierdurch wird erreicht, dass beim Eintreten des Netzkurzschlusses der Rotorkurzschlussstrom bzw. die Rotorklemmspannung optimal geregelt werden können.Furthermore, it is also particularly promising if the control of the active switch is carried out with a P controller, PI controller or PID controller. This ensures that the rotor short-circuit current or the rotor clamping voltage can be optimally controlled when the mains short-circuit occurs.
Besonders vorteilhaft ist auch eine Ausgestaltung der erfindungsgemäßen Schaltungsanordnung, bei der im Netzkurzschlussfall kapazitiver Strom oder induktiver Strom in den Kurz- schluss geliefert wird, weil dadurch je nach Anforderung der Netzbetreiber das Netz optimal stabilisiert werden kann. Üblicherweise wird ein kapazitiver Strom erwünscht, um die induktiven Netzverbraucher zu versorgen.Also particularly advantageous is an embodiment of the circuit arrangement according to the invention, in which capacitive current or inductive current is supplied to the short circuit in the event of a network short-circuit, because this allows the network to be optimally stabilized depending on the requirements of the network operator. A capacitive current is usually desired in order to supply the inductive network consumers.
Weiterhin ist es besonders sinnvoll, wenn im Netzkurzschlussfall eine Übertragung von Blindleistung in den Kurzschluss ausgeschlossen ist, weil dann der geringste Strom in den Kurzschluss gespeist wird, um vorhandene Mittelspannungsschalter nicht zu überlasten.Furthermore, it is particularly useful if a transmission of reactive power to the short circuit is excluded in the event of a network short circuit, because then the lowest current is fed into the short circuit in order not to overload existing medium-voltage switches.
Außerdem ist nach einer weiteren besonders vorteilhaften Ausgestaltung im Statorkreis kurzzeitig eine Zusatzimpedanz eingefügt, um den Stator und Rotorstrom zu begrenzen. Durch das bedarfsweise Einfügen der Zusatzimpedanz kann der Stator- und Rotorstrom bei wiederkehrender Netzspannung begrenzt werden.In addition, according to a further particularly advantageous embodiment, an additional impedance is briefly inserted in the stator circuit in order to limit the stator and rotor current. By inserting the additional impedance as required, the stator and rotor current can be limited with recurring mains voltage.
Besonders zweckmäßig ist auch eine Ausführungsform, bei der im Statorkreis parallel zur Zusatzimpedanz ein schnelles Schütz eingesetzt ist, um so die Zusatzimpedanz im normalen Betrieb zu überbrücken und keine Verluste zu erzeugen. Ferner ist es auch besonders Erfolg versprechend, wenn im Statorkreis parallel zum Widerstand zumindest ein Thyristor mit natürlicher Kommutierung eingesetzt ist. Hierdurch wird erreicht, dass, verglichen mit aktiv abschaltbaren Schaltern, reduzierte Verluste im Normalbetrieb entstehen und die Kosten geringer sind.An embodiment is also particularly expedient in which a fast contactor is used in the stator circuit in parallel with the additional impedance, in order to bridge the additional impedance in normal operation and to generate no losses. Furthermore, it is particularly promising if at least one thyristor with natural commutation is used in the stator circuit in parallel with the resistor. This ensures that, compared to switches that can be switched off actively, there are reduced losses in normal operation and the costs are lower.
Weiterhin kann die Schaltungsanordnung in besonders vorteilhafter Weise so ausgeführt sein, dass am Zwischenkreis des Umrichters ein geregelter Widerstand betrieben wird, weil dadurch einige Bauteile in der Crow-Bar gespart werden können und die Regelung des Rotorwechselrichters dauerhaft den Rotorphasenstrom misst.Furthermore, the circuit arrangement can be designed in a particularly advantageous manner in such a way that a regulated resistor is operated on the intermediate circuit of the converter, because this saves some components in the crowbar and the regulation of the rotor inverter permanently measures the rotor phase current.
Eine andere besonders zweckmäßige Ausgestaltung der Erfindung wird auch dann erreicht, wenn sowohl in der Crow-Bar als auch am Zwischenkreis des Umrichters ein geregelter Widerstand betrieben wird. Hierdurch wird erreicht, dass eine Leistungsaufteilung erfolgt und kleinere Einzelschalter eingesetzt werden können. Gegen Ende des Ausgleichsvorganges des Rotorkurzschlussstromes erfolgt die Übernahme des gesamten Rotorstromes, und die Regelung des Rotorwechselrichters misst dann den gesamten Phasenstrom.Another particularly expedient embodiment of the invention is also achieved if a regulated resistor is operated both in the crow bar and on the intermediate circuit of the converter. This ensures that power is divided and that smaller individual switches can be used. Towards the end of the balancing process of the rotor short-circuit current, the entire rotor current is taken over, and the control of the rotor inverter then measures the total phase current.
Weiterhin wird eine besonders vorteilhafte Ausführungsform der Erfindung auch dann erreicht, wenn bei wiederkehrender Netzspannung der Rotorwechselrichter abgeschaltet, der Überstrom dann durch den regelbaren Widerstand übernommen wird, um nach Abklingen des Überstromes und Abschalten des geregelten Widerstandes den Rotorstrom aktiv zu ü- bernehmen. Hierdurch wird eine mögliche Abschaltung bzw. Netztrennung der Windenergieanlage bei insbesondere plötzlich wiederkehrender Netzspannung vermieden.Furthermore, a particularly advantageous embodiment of the invention is also achieved when the rotor inverter is switched off when the mains voltage is recurring, the overcurrent is then taken over by the controllable resistor in order to actively take over the rotor current after the overcurrent has died down and the regulated resistor has been switched off. This avoids a possible shutdown or disconnection of the wind power installation in the case of a suddenly recurring mains voltage.
Die Erfindung lässt verschiedene Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips ist eine davon in der Zeichnung dargestellt und wird nachfolgend beschrieben. Diese zeigt inThe invention permits various embodiments. To further clarify its basic principle, one of these is shown in the drawing and is described below. This shows in
Fig.1 eine erfindungsgemäße Schaltungsanordnung;1 shows a circuit arrangement according to the invention;
Fig.2 einen möglichen Kurzschlussverlauf;2 shows a possible short circuit course;
Fig.3 Schaltungsanordnung mit regelbarem Rotorwiderstand und Zusatzstatorwiderstand;3 circuit arrangement with adjustable rotor resistance and additional stator resistance;
Fig.4 einen Spannungs- und Strom-Zeitverlauf mit Zusatzwiderstand; Fig.5 Schaltungsanordnung mit verstärkten Inverterdioden und regelbarem Lastwiderstand im Zwischenkreis.4 shows a voltage and current-time curve with additional resistance; Fig.5 Circuit arrangement with reinforced inverter diodes and adjustable load resistance in the intermediate circuit.
Figur 1 zeigt eine erfindungsgemäße Schaltungsanordnung. Im Normalbetrieb ist ein Schalter V15, beispielsweise IGBT, GTO, IGCT, abgeschaltet und die Crow-Bar ist völlig inaktiv. Der volle Rotorstrom fließt in einen Umrichter und wird von diesem geregelt. Sofern ein Netzkurzschluss auf der Mittelspannung auftritt, liefert ein Asynchrongenerator bedingt durch die volle Erregung einen Ausgleichskurzschlussstrom zum Kurzschluss. Der Strom wird nur durch die Streuinduktivitäten des Asynchrongenerators und Mittelspannungstransformators begrenzt, wobei der maximale Strom folgenden Wert erreicht:Figure 1 shows a circuit arrangement according to the invention. In normal operation, a switch V15, for example IGBT, GTO, IGCT, is switched off and the crow bar is completely inactive. The full rotor current flows into an inverter and is regulated by it. If a mains short-circuit occurs on the medium voltage, an asynchronous generator supplies a compensating short-circuit current for the short circuit due to the full excitation. The current is only limited by the leakage inductances of the asynchronous generator and medium-voltage transformer, the maximum current reaching the following value:
UU
« 1.8 « Net: s,a,or " " " Xtr + X\ + X2'«1.8« Net: s, a, or """ Xtr + X \ + X2 '
Dabei ist Xtr die gesamte Streuimpedanz des Transformators, X1 die Streuimpedanz des Stators und X2' die Streuimpedanz des Rotors. Der maximale Statorstrom liegt bei einem Kurzschluss an der Mittelspannung in der Praxis in der Größenordnung von bis zu dem 8- fachen Statornennstrom. Der Rotorstrom ist transformatorisch mit dem Statorstrom gekoppelt und erreicht auch bis zu dem 8-fachen des Rotornennstromes. Dieser hohe Ausgleichstrom kann nicht technisch sinnvoll vom Umrichter geführt bzw. aufgenommen werden. Beim Eintritt des Kurzschlusses wird ein Rotorwechselrichter bedingt durch den Überstrom abgeschaltet. Der Rotorstrom fließt weiter über Freilaufdioden des Rotorwechselrichters und lädt einen Zwischenkreis C3 auf. Gleichzeitig steigt die Spannung über einen Kondensator C10 in der Crow-Bar. Beim Erreichen eines Spannungsgrenzwertes über den Kondensator C10 wird der Schalter V15 eingeschaltet. Ein Widerstand R15 übernimmt den gesamten gleichge- richteten Rotorstrom, und die Spannung über den Kondensator C10 sinkt unter den Spannungsgrenzwert, so dass der Schalter V15 abgeschaltet wird. Die Spannung steigt anschließend über den Kondensator C10, bedingt durch den Rotorstrom, wieder an und der Schalter V15 wird wieder eingeschaltet. Die Stromänderungsgeschwindigkeit und damit auch die Taktfrequenz werden durch L15 bestimmt. Die Taktfrequenz liegt bis in den kHz-Bereich und kann nicht durch natürliche Kommutierung von Thyristoren erfolgen, da die Rotorfrequenz bei maximal 15 Hz liegt. Mit dieser Zweipunkt-Regelung wird eine konstante Gegenspannung für die Rotorspannung erzeugt und der Ausgleichstrom klingt bedingt durch die konstant hohe Gegenspannung in kürzester Zeit ab. Der gesamte Strom ist vom Rotorwechselrichter in die Crow-Bar kommutiert. Der Umrichterstrom ist nahe null. Der Crow-Bar Strom wird von der Steuerkarte gemessen und ausgewertet. Der Lastwiderstand ist für den maxi- malen Strom ausgelegt und die Einschaltdauer des Schalters V15 ist anfangs nahe 100 %. Mit sinkendem Ausgleichstrom wird die Einschaltdauer geringer und liegt beim Rotornennstrom bei ca. 12 %, was in etwa 1/8 des maximalen Stromes entspricht. Denkbar wären auch mehrere Widerstände, die einzeln zu und abgeschaltet werden können. Unterschreitet der Ausgleichstrom den Rotornennstrom, so wird der Schalter V15 ganz abgeschaltet und der Rotorstrom kommutiert in den Umrichter zurück. Der Umrichter nimmt seinen Betrieb und die Regelung auf und speist aktiv in den Kurzschluss. Während der regelbare Widerstand aktiv ist, kann der Netzwechselrichter abgeschaltet werden, es ist aber auch der gleichzeitige Betrieb möglich. In der Crow-Bar ist aus Sicherheitsgründen ein Thyristor V10 vorgesehen, der selbständig die Spannung misst und bei Versagen von dem Schalter V15 oder beim direkten Generatorkurzschluss gezündet wird. L10 verhindert einen zu schnellen Stromanstieg, um den Thyristor V10 nicht zu zerstören. Dabei verhindert D10 eine Schnellentladung von einem Kondensator C10 durch den Schalter V15. Die Regelung des Schalters V15 kann entweder direkt in der Crow-Bar oder durch die Steuerkarte des Umrichters erfolgen.Xtr is the total leakage impedance of the transformer, X1 the leakage impedance of the stator and X2 'the leakage impedance of the rotor. In practice, the maximum stator current in the event of a short circuit at the medium voltage is of the order of up to 8 times the nominal stator current. The rotor current is coupled to the stator current in a transformer and also reaches up to 8 times the nominal rotor current. This high compensation current cannot be conducted or absorbed by the converter in a technically sensible manner. When the short circuit occurs, a rotor inverter is switched off due to the overcurrent. The rotor current continues to flow via free-wheeling diodes of the rotor inverter and charges an intermediate circuit C3. At the same time, the voltage rises across a capacitor C10 in the crow bar. When a voltage limit value is reached via the capacitor C10, the switch V15 is switched on. A resistor R15 takes over the entire rectified rotor current, and the voltage across the capacitor C10 drops below the voltage limit, so that the switch V15 is switched off. The voltage then rises again via the capacitor C10, due to the rotor current, and the switch V15 is switched on again. The current change rate and thus the clock frequency are determined by L15. The clock frequency is in the kHz range and cannot be achieved by natural commutation of thyristors, since the rotor frequency is a maximum of 15 Hz. With this two-point control, a constant counter voltage for the rotor voltage is generated and the compensation current decays in a very short time due to the constant high counter voltage. All of the current is commutated from the rotor inverter into the crow bar. The converter current is close to zero. The crowbar current is measured and evaluated by the control card. The load resistance is for the maxi- paint current and the duty cycle of switch V15 is close to 100% initially. As the compensating current drops, the duty cycle becomes shorter and is approximately 12% for the nominal rotor current, which corresponds to approximately 1/8 of the maximum current. It would also be conceivable to have several resistors that can be switched on and off individually. If the compensation current falls below the nominal rotor current, switch V15 is switched off completely and the rotor current commutates back into the converter. The converter starts operation and control and actively feeds into the short circuit. The grid inverter can be switched off while the adjustable resistor is active, but simultaneous operation is also possible. For safety reasons, a thyristor V10 is provided in the crow bar, which independently measures the voltage and is triggered by the switch V15 in the event of failure or in the event of a direct generator short circuit. L10 prevents the current from rising too quickly in order not to destroy the thyristor V10. D10 prevents a rapid discharge from a capacitor C10 through the switch V15. Switch V15 can be regulated either directly in the crow bar or via the control card of the converter.
Ein möglicher Kurzschlussverlauf ist in Fig. 2 dargestellt, wobei die gestrichelte Linie die Mittelspannung und die durchgezogene Linie die Netzspannung darstellt. Der Kurzschluss tritt im Augenblick 0 msec. auf. Der Strom springt sofort auf den Maximalwert und klingt dann, bedingt durch den Ausgleichsvorgang, ab. Der hohe Strom wird von der Crow-Bar bzw. Wi- derstand aufgenommen. Beim Unterschreiten des Rotornennstromes wird der Strom wieder durch den Umrichter übernommen und geregelt. Der Generator wird übererregt und liefert während des Netzkurzschlusses kapazitive Blindleistung ans Netz. Es kann aber auch induktiver Strom in den Kurzschluss gespeist werden. Die Vorgabe kann frei gewählt werden. Die Netzspannung liegt, bedingt durch den Spannungsabfall über den Mittelspannungstransfor- mator, in der Größe von ~ 20 % von der Nennspannung. Im Augenblick der Spannungswiederkehr steigt die Spannung nicht schlagartig auf den Nennwert, sondern über eine dU/dt Flanke. Durch die Flankensteilheit der wiederkehrenden Netzspannung und der Zeitkonstante des Generators tritt ein dynamischer Überstrom im Stator und Rotor auf. Dieser Überstrom muss vom Umrichter geliefert werden können und führt nicht zur Abschaltung des Rotor- Wechselrichters. Ist die Flankensteilheit zu groß oder liegt ein Phasenfehler zwischen der Generatorspannung und der wiederkehrenden Netzspannung vor, so wird der dynamische Überstrom bzw. Ausgleichsstrom zu hoch, der Rotorwechselrichter wird abgeschaltet. Der regelbare Widerstand übernimmt auch hier kurzzeitig den Ausgleichsstrom und nach Unterschreiten des Rotornennstromes wird der Widerstand abgeschaltet und der Rotorwechsel- richter übernimmt wieder seine Regelung. Während des Spannungseinbruches und bei wie- derkehrender Spannung wird der regelbare Widerstand kurzeitig aktiviert. Der Rotorwechselrichter ist während dieser Zeit abgeschaltet.A possible course of the short circuit is shown in FIG. 2, the dashed line representing the medium voltage and the solid line representing the mains voltage. The short circuit occurs at the moment 0 msec. on. The current immediately jumps to the maximum value and then decays due to the compensation process. The high current is absorbed by the crow bar or resistance. If the rotor current falls below the nominal current, the current is again taken over and regulated by the converter. The generator is overexcited and supplies capacitive reactive power to the grid during the short circuit. However, inductive current can also be fed into the short circuit. The default can be chosen freely. Due to the voltage drop across the medium-voltage transformer, the mains voltage is approximately 20% of the nominal voltage. At the moment of voltage recovery, the voltage does not suddenly rise to the nominal value, but via a dU / dt edge. Due to the slope of the recurring line voltage and the time constant of the generator, a dynamic overcurrent occurs in the stator and rotor. This overcurrent must be able to be supplied by the converter and does not lead to the rotor inverter being switched off. If the slope is too large or there is a phase error between the generator voltage and the recurring mains voltage, the dynamic overcurrent or compensation current becomes too high and the rotor inverter is switched off. The adjustable resistor also takes over the compensating current for a short time and after falling below the nominal rotor current the resistor is switched off and the rotor inverter takes over its regulation again. During the voltage dip and with When the voltage returns, the controllable resistance is activated briefly. The rotor inverter is switched off during this time.
Bei extrem schnellen Spannungsanstiegszeiten kann in den Statorkreis eine Zusatzimpe- danz, beispielsweise durch einen Widerstand oder eine Drossel, eingefügt werden. Ein solches System ist in der Figur 3 dargestellt. Zwischen dem Mittelspannungstransformator und dem Generator- Umrichter -System ist ein Schütz K20 eingefügt. Über dem Schütz K20 liegt parallel ein Widerstand R20. Tritt der Kurzschlussfall auf, so wird der Schütz K20 geöffnet und der Statorstrom fließt durch den Widerstand R20.With extremely fast voltage rise times, an additional impedance can be inserted into the stator circuit, for example by means of a resistor or a choke. Such a system is shown in FIG. 3. A K20 contactor is inserted between the medium-voltage transformer and the generator-converter system. A resistor R20 is connected in parallel across the contactor K20. If the short circuit occurs, contactor K20 is opened and the stator current flows through resistor R20.
In der Figur 4 ist der Spannungs-Zeitverlauf mit Zusatzwiderstand dargestellt. Der Statorstrom wird begrenzt und klingt schneller, als nur mit der geregelten Crow-Bar, ab. Das Schütz muss sehr schnell schalten, damit bei sehr kurzen Spannungseinbrüchen der Widerstand aktiv ist. Es kann auch ein antiparalleler Thyristorschalter mit natürlicher Kommutie- rung eingesetzt werden, der beispielsweise eine Abschaltzeit von 6,7 msec. bei 50 Hz aufweist. Dieses ergibt einen schnellen Schalter, aber hat den Nachteil von hohen Verlusten, verglichen mit der Schütz-Lösung. In der Figur 4 ist der Schalter nach 10 msec. geöffnet. Nach dem Ausgleichsvorgang übernimmt der Umrichter wiederum die Regelung. Die Restnetzspannung ist, bedingt durch den zusätzlichen Spannungsabfall über den Widerstand, höher als ohne Zusatzimpedanz im Stator. Bei der wiederkehrenden Spannung begrenzt der zusätzliche Widerstand den dynamischen Statorstromanstieg und erlaubt höhere Spannungsflanken bzw. geringere Überströme.FIG. 4 shows the voltage-time curve with additional resistance. The stator current is limited and decays faster than with the regulated crow bar. The contactor must switch very quickly so that the resistor is active in the event of very short voltage dips. An anti-parallel thyristor switch with natural commutation can also be used, which has a switch-off time of 6.7 msec, for example. at 50 Hz. This results in a fast switch, but has the disadvantage of high losses compared to the contactor solution. In Figure 4, the switch is after 10 msec. open. After the compensation process, the converter takes over the control. Due to the additional voltage drop across the resistor, the residual network voltage is higher than without additional impedance in the stator. With the recurring voltage, the additional resistance limits the dynamic stator current rise and allows higher voltage edges or lower overcurrents.
Die Freilaufdioden von IGBT-Modulen sind nicht für sehr hohe Pulsströme ausgelegt. Daher wurden die Bauteile des geregelten Widerstandes in die Crow-Bar gelegt. Eine Schaltungsanordnung mit leistungsstarken Freilaufdioden zeigt Figur 5. Der Schalter V15 wird direkt mit dem Zwischenkreis des Umrichters gekoppelt und regelt direkt die Zwischenkreisspannung. Dieses würde den gesamten Aufbau vereinfachen. Die zusätzliche Standard-Crow-Bar bleibt für Extremsituationen erhalten.The freewheeling diodes of IGBT modules are not designed for very high pulse currents. Therefore, the components of the regulated resistor were placed in the crow bar. A circuit arrangement with powerful free-wheeling diodes is shown in FIG. 5. The switch V15 is coupled directly to the intermediate circuit of the converter and directly regulates the intermediate circuit voltage. This would simplify the entire structure. The additional standard crow bar is retained for extreme situations.
Denkbar ist auch der völlige Verzicht der Crow-Bar. In diesem Fall muss der Zusatzwiderstand für alle Extremsituationen ausgelegt werden. Im Kurzschlussfall werden die Rotorwechselrichter IGBTs abgeschaltet und der Rotorkurzschlussstrom fließt durch die Freilaufdioden in den Zwischenkreis. Beim Überschreiten eines Grenzwertes wird der Zusatzwider- stand aktiviert und die Kurzschlussenergie im Zusatzwiderstand aufgenommen. Nach Abklingen des Kurzschlussstromes wird der Rotorwechselrichter wieder aktiviert und der Zu- satzwiderstand wird abgeschaltet. Es kann auch zuerst der Zusatzwiderstand abgeschaltet und der Rotorwechselrichter zugeschaltet werden. Es ist auch ein gleichzeitiger Betrieb des Zusatzwiderstandes und des Rotorwechselrichters möglich. It is also conceivable to forego the crow bar altogether. In this case, the additional resistance must be designed for all extreme situations. In the event of a short circuit, the rotor inverters IGBTs are switched off and the rotor short-circuit current flows through the freewheeling diodes into the intermediate circuit. If a limit value is exceeded, the additional resistance is activated and the short-circuit energy is absorbed in the additional resistance. After the short-circuit current has subsided, the rotor inverter is reactivated and the set resistance is switched off. The additional resistor can also be switched off first and the rotor inverter switched on. Simultaneous operation of the additional resistor and the rotor inverter is also possible.

Claims

PATENTANSPRÜCHE
1. Eine insbesondere zum Einsatz bei einer Windenergieanlage mit variabler Drehzahl bestimmte Schaltungsanordnung umfassend einen doppelt gespeisten Asynchrongenerator, einen Zusatzwiderstand und einen Umrichter, dadurch gekennzeichnet, dass der Zusatzwiderstand mittels eines Schalters derart regelbar ist, dass der Umrichter im Netzkurzschlussfall zumindest teilweise vorübergehend abschaltbar ist, um den Rotorstrom mittels des Zusatzwiderstandes kurzzeitig zu übernehmen, und nach Abklingen des Rotorkurzschlussstromes zur aktiven Einkopplung eines Kurzschlussstromes ins Netz wieder zuschaltbar ist.1. A circuit arrangement, in particular for use in a wind turbine with variable speed, comprising a double-fed asynchronous generator, an additional resistor and a converter, characterized in that the additional resistor can be regulated by means of a switch in such a way that the converter can be at least partially temporarily switched off in the event of a short-circuit in the network, in order to temporarily accept the rotor current by means of the additional resistor, and after the rotor short-circuit current has decayed, it can be switched on again for active coupling of a short-circuit current into the network.
2. Schaltungsanordnung nach Anspruch 1 , dadurch gekennzeichnet, dass der Umrichter nach Abklingen des Rotorkurzschlussstromes unterhalb eines Rotorwechselrichternennstro- mes zuschaltbar ist.2. Circuit arrangement according to claim 1, characterized in that the converter can be switched on after the rotor short-circuit current has subsided below a rotor inverter nominal current.
3. Schaltungsanordnung nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass die Schaltungsanordnung mehrere abhängig oder unabhängig voneinander schaltbare Widerstände aufweist.3. Circuit arrangement according to claims 1 or 2, characterized in that the circuit arrangement has a plurality of resistors which can be switched independently or independently of one another.
4. Schaltungsanordnung nach zumindest einem der vorhergehenden Ansprüche, gekenn- zeichnet durch einen Zweipunktregler zur Regelung des Zusatzwiderstandes.4. Circuit arrangement according to at least one of the preceding claims, characterized by a two-point controller for regulating the additional resistance.
5. Schaltungsanordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Regelung des Schalters mit einer Pulsweitenmodulation mit einer festen Taktfrequenz erfolgt. 5. Circuit arrangement according to at least one of the preceding claims, characterized in that the switch is regulated by means of pulse width modulation with a fixed clock frequency.
6. Schaltungsanordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Regelung des Schalters mit einem P-Regler, Pl-Regler oder PID- Regler erfolgt.6. Circuit arrangement according to at least one of the preceding claims, characterized in that the control of the switch is carried out with a P controller, PI controller or PID controller.
7. Schaltungsanordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Zusatzwiderstand als Bestandteil eines Crow-Bars ausgeführt ist.7. Circuit arrangement according to at least one of the preceding claims, characterized in that the additional resistor is designed as part of a crow bar.
8. Schaltungsanordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Regelung des aktiven Schalters direkt von der Crow-Bar erfolgt.8. Circuit arrangement according to at least one of the preceding claims, characterized in that the regulation of the active switch takes place directly from the crow bar.
9. Schaltungsanordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Regelung des Crow-Bar-Schalters direkt von der Umrichtersteuerkarte erfolgt.9. Circuit arrangement according to at least one of the preceding claims, characterized in that the control of the crow bar switch takes place directly from the converter control card.
10. Schaltungsanordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Netzkurzschlussfall kapazitiver Strom oder induktiver Strom in den Kurzschluss geliefert wird.10. Circuit arrangement according to at least one of the preceding claims, characterized in that capacitive current or inductive current is supplied in the short circuit in the event of a network short circuit.
11. Schaltungsanordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Netzkurzschlussfall eine Übertragung von Blindleistung in den Kurzschluss ausgeschlossen ist.11. Circuit arrangement according to at least one of the preceding claims, characterized in that in the case of a network short circuit, a transfer of reactive power into the short circuit is excluded.
12. Schaltungsanordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Statorkreis kurzzeitig eine Zusatzimpedanz eingefügt ist, um den12. Circuit arrangement according to at least one of the preceding claims, characterized in that an additional impedance is briefly inserted in the stator circuit to the
Stator und Rotorstrom zu begrenzen.Limit stator and rotor current.
13. Schaltungsanordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Statorkreis parallel zum Widerstand ein schnelles Schütz einge- setzt ist.13. Circuit arrangement according to at least one of the preceding claims, characterized in that a fast contactor is used in the stator circuit parallel to the resistor.
14. Schaltungsanordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Statorkreis parallel zum Widerstand zumindest ein Thyristor mit natürlicher Kommutierung eingesetzt ist. 14. Circuit arrangement according to at least one of the preceding claims, characterized in that at least one thyristor with natural commutation is used in the stator circuit parallel to the resistor.
15. Schaltungsanordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass am Zwischenkreis des Umrichters ein geregelter Widerstand betrieben wird.15. Circuit arrangement according to at least one of the preceding claims, characterized in that a regulated resistor is operated at the intermediate circuit of the converter.
16. Schaltungsanordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sowohl in der Crow-Bar als auch am Zwischenkreis des Umrichters ein geregelter Widerstand betrieben wird.16. Circuit arrangement according to at least one of the preceding claims, characterized in that a regulated resistor is operated both in the crow bar and on the intermediate circuit of the converter.
17. Schaltungsanordnung nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei wiederkehrender Netzspannung der Rotorwechselrichter abgeschaltet wird und der Überstrom durch den regelbaren Widerstand übernommen wird und nach Abklingen des Überstromes der geregelte Widerstand abgeschaltet wird und der Rotorwechselrichter aktiv den Rotorstrom übernimmt.17. Circuit arrangement according to at least one of the preceding claims, characterized in that when the mains voltage recurs, the rotor inverter is switched off and the overcurrent is taken over by the controllable resistor, and after the overcurrent has subsided the regulated resistor is switched off and the rotor inverter actively takes over the rotor current.
18. Schaltungsanordnung zum Einsatz bei einer Windenergieanlage mit variabler Drehzahl umfassend einen doppelt gespeisten Asynchrongenerator, einen Zusatzwiderstand und einen Umrichter, dadurch gekennzeichnet, dass bei ansteigender Netzspannung der Rotorwechselrichter abgeschaltet wird und der Überstrom durch den regelbaren Widerstand übernommen wird und nach Abklingen des Überstromes der geregelte Widerstand abgeschaltet wird und der Rotorwechselrichter aktiv den Rotorstrom übernimmt. 18. Circuit arrangement for use in a wind turbine with variable speed comprising a double-fed asynchronous generator, an additional resistor and a converter, characterized in that when the mains voltage rises, the rotor inverter is switched off and the overcurrent is taken over by the adjustable resistor and, after the overcurrent has subsided, the regulated one Resistance is switched off and the rotor inverter actively takes over the rotor current.
EP03704240A 2002-01-29 2003-01-23 Circuit to be used in a wind power plant Ceased EP1470633A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09012812.5A EP2244372B1 (en) 2002-01-29 2003-01-23 Switching device for a wind power plant

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10203468 2002-01-29
DE10203468 2002-01-29
DE10206828 2002-02-18
DE10206828A DE10206828A1 (en) 2002-01-29 2002-02-18 Circuit arrangement for use in a wind turbine
PCT/DE2003/000172 WO2003065567A1 (en) 2002-01-29 2003-01-23 Circuit to be used in a wind power plant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP09012812.5A Division EP2244372B1 (en) 2002-01-29 2003-01-23 Switching device for a wind power plant

Publications (1)

Publication Number Publication Date
EP1470633A1 true EP1470633A1 (en) 2004-10-27

Family

ID=27664545

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03704240A Ceased EP1470633A1 (en) 2002-01-29 2003-01-23 Circuit to be used in a wind power plant

Country Status (7)

Country Link
US (1) US7102247B2 (en)
EP (1) EP1470633A1 (en)
JP (1) JP2005516577A (en)
CN (1) CN100356683C (en)
AU (1) AU2003206633B2 (en)
CA (1) CA2472144C (en)
WO (1) WO2003065567A1 (en)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6954004B2 (en) * 2003-01-23 2005-10-11 Spellman High Voltage Electronics Corporation Doubly fed induction machine
CN1748356B (en) * 2003-02-07 2010-04-28 维斯塔斯风力系统公司 Method and apparatus for controlling power-grid connected wine turbine generator during grid faults
DE10320087B4 (en) 2003-05-05 2005-04-28 Aloys Wobben Process for operating a wind park consisting of a number of wind energy plants comprises controlling the operations of each plant until the net electrical power is supplied up to a predetermined maximum value
DE10327344A1 (en) * 2003-06-16 2005-01-27 Repower Systems Ag Wind turbine
DE10330473A1 (en) * 2003-07-05 2005-01-27 Alstom Technology Ltd Frequency converter for high-speed generators
EP1499009B1 (en) * 2003-07-15 2007-10-31 Gamesa Innovation & Technology, S.L. Unipersonal Control and protection of a doubly-fed induction generator system
BRPI0414588A (en) 2003-09-23 2006-11-07 Aloys Wobben process for operating a wind power installation, and, wind power installation
DE102004003657B4 (en) 2004-01-24 2012-08-23 Semikron Elektronik Gmbh & Co. Kg Converter circuit arrangement and associated drive method for dynamically variable output generators
EP1831987B2 (en) * 2004-12-28 2020-02-05 Vestas Wind Systems A/S Method of controlling a wind turbine connected to an electric utility grid
JP4449775B2 (en) * 2005-02-17 2010-04-14 株式会社日立製作所 Secondary excitation power converter
DE102005012762A1 (en) * 2005-03-19 2006-09-21 Alstom Energy delivery system for electric power system , has resistor, provided in rotor circuit of asynchronous machine, which has first value before short circuit in network and second value after short circuit in network
WO2006127844A2 (en) * 2005-05-24 2006-11-30 Satcon Technology Corporation Device, system, and method for providing a low-voltage fault ride-through for a wind generator farm
US7239036B2 (en) * 2005-07-29 2007-07-03 General Electric Company System and method for power control in wind turbines
DE102005036317B4 (en) * 2005-07-29 2010-02-11 Aloys Wobben Method and device for determining the power loss of an electronic switch, inverter, wind turbine with methods of control
ES2296483B1 (en) * 2005-11-21 2009-03-01 Ingeteam Technology, S.A. A CONTROL AND PROTECTION SYSTEM BEFORE SYMBOLIC AND ASYMETRIC FAULTS, FOR ASYNCHRONOUS GENERATORS.
US7253537B2 (en) * 2005-12-08 2007-08-07 General Electric Company System and method of operating double fed induction generators
ES2298014B1 (en) * 2005-12-30 2009-07-23 Universidad Publica De Navarra METHOD AND SYSTEM FOR THE PROTECTION OF AN ELECTRICAL GENERATION INSTALLATION CONNECTED TO AN ELECTRICAL NETWORK BEFORE THE PRESENCE OF VOLTAGE HOLES IN THE NETWORK.
ES2291103B1 (en) * 2005-12-30 2009-02-01 Universidad Publica De Navarra CONVERTER CONTROL METHOD AND SYSTEM OF AN ELECTRICAL GENERATION INSTALLATION CONNECTED TO AN ELECTRICAL NETWORK BEFORE THE PRESENCE OF VOLTAGE HOLES IN THE NETWORK.
US7276807B2 (en) * 2006-01-19 2007-10-02 General Electric Company Wind turbine dump load system and method
JP4736871B2 (en) * 2006-03-10 2011-07-27 株式会社日立製作所 Power converter for secondary excitation power generation system
US7425771B2 (en) * 2006-03-17 2008-09-16 Ingeteam S.A. Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
CN101401294B (en) * 2006-03-17 2013-04-17 英捷电力技术有限公司 Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
US7586216B2 (en) * 2006-06-02 2009-09-08 General Electric Company Redundant electrical brake and protection system for electric generators
US7629705B2 (en) 2006-10-20 2009-12-08 General Electric Company Method and apparatus for operating electrical machines
DE102006053367A1 (en) * 2006-11-10 2008-05-21 Repower Systems Ag Method and device for operating an inverter, in particular for wind energy installations
US7622815B2 (en) 2006-12-29 2009-11-24 Ingeteam Energy, S.A. Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid
ES2341820B1 (en) * 2007-01-31 2011-05-13 GAMESA INNOVATION & TECHNOLOGY, S.L. A METHOD TO ELIMINATE THE IMPACT OF BACKWARDS ON THE MULTIPLIER OF AN AEROGENERATOR.
EP1959554B1 (en) * 2007-02-14 2010-06-16 SEMIKRON Elektronik GmbH & Co. KG Converter circuit for a doubly-fed asynchronous generator with variable output power and method for its operation
DE102007014728A1 (en) * 2007-03-24 2008-10-02 Woodward Seg Gmbh & Co. Kg Method and device for operating a double-fed asynchronous machine in transient mains voltage changes
JP2008306776A (en) * 2007-06-05 2008-12-18 Hitachi Ltd Wind power generation system and control method thereof
EP2017936B1 (en) * 2007-07-16 2010-10-20 Gamesa Innovation & Technology, S.L. Wind power system and method of operating it
DE102008017715A1 (en) * 2008-04-02 2009-10-15 Nordex Energy Gmbh Method for operating a wind turbine with a double-fed asynchronous machine and wind turbine with a double-fed asynchronous machine
BRPI0823132A2 (en) * 2008-10-20 2015-06-16 Woodward Kempen Gmbh Protection system of a double power induction machine
US7786608B2 (en) * 2008-11-17 2010-08-31 General Electric Company Protection system for wind turbine
DE102008064079A1 (en) * 2008-12-19 2010-06-24 Converteam Technology Ltd., Rugby Electrical circuit producing method for producing electrical energy in e.g. gas turbine-power plant, involves interconnecting two poles of intermediate circuit by adjustable resistor when intermediate circuit voltage increases
CN101800510B (en) * 2009-02-10 2013-09-18 株式会社日立制作所 Wind power generation system
ES2378964B1 (en) * 2009-03-02 2013-02-22 Ingeteam Power Technology, S.A. METHOD FOR OPERATING A CONVERTER OF A WIND GENERATOR.
CN101515721B (en) * 2009-04-07 2011-02-09 东南大学 10KV high voltage wind-powered generator set system with power stabilizing device
EP2270331B1 (en) * 2009-06-30 2020-03-04 Vestas Wind Systems A/S Wind turbine with control means to manage power during grid faults
US8154833B2 (en) * 2009-08-31 2012-04-10 General Electric Company Line side crowbar for energy converter
JP5128568B2 (en) * 2009-09-30 2013-01-23 株式会社日立製作所 Wind power generation system and control method
US8018082B2 (en) * 2009-11-25 2011-09-13 General Electric Company Method and apparatus for controlling a wind turbine
US7978445B2 (en) * 2009-12-31 2011-07-12 General Electric Company Systems and apparatus relating to wind turbine electrical control and operation
US8120885B2 (en) * 2010-02-03 2012-02-21 General Electric Company Circuit for use with energy converter
WO2011110193A1 (en) * 2010-03-11 2011-09-15 Powerwind Gmbh Method for controlling the feeding of electrical power of a wind turbine into an alternating-current network
ES2427793T3 (en) 2010-05-20 2013-11-04 FeCon GmbH Three-phase inverter circuit and operating procedure of a three-phase inverter circuit
CN103081273B (en) 2010-06-30 2016-05-11 维斯塔斯风力系统有限公司 Wind turbine
BR112013002006A2 (en) 2010-07-27 2019-09-24 Abb Technology Ag converter system and process for operating such a converter system
CN101924357A (en) * 2010-07-29 2010-12-22 许继集团有限公司 Water turbine AC excitation power source protection method and water turbine for realizing same
CN101917013B (en) * 2010-08-10 2012-07-04 华中科技大学 Double-feed wind power generating system with energy storage function
US8471534B2 (en) * 2010-08-26 2013-06-25 General Electric Company Fault ride through switch for power generation system
EP2453133B1 (en) 2010-11-11 2017-10-11 Ingeteam Power Technology, S.A. Power converter control method
EP2463976A1 (en) 2010-12-08 2012-06-13 Siemens Aktiengesellschaft Circuit and method for regulating a DC voltage and power con-verter
CN102055207B (en) * 2010-12-16 2012-08-01 南京飓能电控自动化设备制造有限公司 Intelligent power control unit for low voltage ride through and application thereof
EP2466715A3 (en) 2010-12-20 2017-08-30 FeCon GmbH UPS circuit unit and method for continuous power supply for consumers of a power generation assembly
DE102011001786A1 (en) 2011-04-04 2012-10-04 Woodward Kempen Gmbh Control cabinet arrangement of a device for generating electrical energy
WO2013120212A1 (en) 2012-02-17 2013-08-22 Woodward Ids Switzerland Ag Protective device for a doubly fed three-phase generator and method for operating such a protective device
US9041234B2 (en) 2012-03-26 2015-05-26 Rockwell Automation Technologies, Inc. Double fed induction generator (DFIG) converter and method for improved grid fault ridethrough
US9312682B2 (en) 2012-05-14 2016-04-12 General Electric Company System and method for overvoltage protection
DE102012212366A1 (en) 2012-07-13 2014-01-30 Wobben Properties Gmbh Method for controlling an electric generator
US9564750B2 (en) * 2012-11-30 2017-02-07 Siemens Aktiengesellschaft Device and method for increasing fault clearing time
US8941961B2 (en) 2013-03-14 2015-01-27 Boulder Wind Power, Inc. Methods and apparatus for protection in a multi-phase machine
EP3004637B2 (en) 2013-06-04 2020-12-02 General Electric Company Methods for operating wind turbine system having dynamic brake
US8975768B2 (en) 2013-06-05 2015-03-10 General Electic Company Methods for operating wind turbine system having dynamic brake
US20150115902A1 (en) * 2013-10-29 2015-04-30 General Electric Company Power generation system and method with fault ride through capability
US9972993B2 (en) * 2013-10-31 2018-05-15 General Electric Company System and method for controlling wind power generation systems
US9231509B2 (en) 2013-11-25 2016-01-05 General Electric Company System and method for operating a power generation system within a power storage/discharge mode or a dynamic brake mode
WO2015092553A2 (en) * 2013-12-18 2015-06-25 Ingeteam Power Technology, S.A. Variable impedance device for a wind turbine
US9337685B2 (en) 2013-12-23 2016-05-10 General Electric Company Optimized filter for battery energy storage on alternate energy systems
JP6071912B2 (en) * 2014-01-27 2017-02-01 株式会社東芝 Overvoltage protection device and current adjustment circuit
CN106537717B (en) * 2014-05-30 2020-02-14 维斯塔斯风力系统有限公司 Method for controlling a wind power plant, wind power plant system and storage medium
US10050433B2 (en) 2014-12-11 2018-08-14 General Electric Company Power generation system and method with resistive braking capability
US9705440B2 (en) * 2015-07-16 2017-07-11 Hamilton Sundstrand Corporation Fault tolerant electric power generating system
CN108604871A (en) * 2016-01-07 2018-09-28 丹佛斯电力电子有限公司 Electric machine control system and method
US10447169B2 (en) * 2016-01-20 2019-10-15 General Electric Company Independent power factor and frequency control of electrical power generator
US9847733B2 (en) 2016-05-12 2017-12-19 Rockwell Automation Technologies, Inc. Power conversion system with DC bus regulation for abnormal grid condition ride through
US10615727B2 (en) * 2018-08-27 2020-04-07 General Electric Company Dynamic brake circuit assembly for a wind turbine
US11394324B2 (en) 2019-12-17 2022-07-19 General Electric Company Selective crowbar response for a power converter to mitigate device failure
CN111245011A (en) * 2020-02-06 2020-06-05 东方电气风电有限公司 Wind generating set operation mode and device thereof
EP3954896A1 (en) * 2020-08-14 2022-02-16 Wobben Properties GmbH Pendulum damping in wind turbines
US11843325B2 (en) 2020-08-24 2023-12-12 General Electric Company Crowbar module for an active neutral point clamped power conversion assembly

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812729A (en) 1986-08-19 1989-03-14 Hitachi Ltd. Protecting apparatus for secondary excitation type variable speed AC generator/motor
FI882228A (en) 1987-09-28 1989-03-29 Siemens Ag ANORDNING FOER ALSTRANDE AV ELEKTRISK ENERGI.
US4891744A (en) * 1987-11-20 1990-01-02 Mitsubishi Denki Kaubshiki Kaisha Power converter control circuit
US5278773A (en) * 1990-09-10 1994-01-11 Zond Systems Inc. Control systems for controlling a wind turbine
JP3100805B2 (en) 1993-08-24 2000-10-23 東京電力株式会社 Overvoltage protection device for variable speed pumped storage power generation system
US5583420A (en) * 1993-10-01 1996-12-10 Lucas Aerospace Power Equipment Corporation Microprocessor controller for starter/generator
JP3348944B2 (en) * 1993-12-27 2002-11-20 株式会社東芝 Control device for winding induction machine
US5650705A (en) * 1995-02-13 1997-07-22 Hart; John Roger Apparatus and method for controlling currents in an inductor
US6137187A (en) * 1997-08-08 2000-10-24 Zond Energy Systems, Inc. Variable speed wind turbine generator
DE19735742B4 (en) 1997-08-18 2007-11-08 Siemens Ag Over- and under-synchronous power converter cascade
US5943223A (en) * 1997-10-15 1999-08-24 Reliance Electric Industrial Company Electric switches for reducing on-state power loss
US6285533B1 (en) 1999-12-13 2001-09-04 Kabushiki Kaisha Toshiba Method of and apparatus for controlling the operation of variable speed gearing
JP2001268992A (en) 2000-03-17 2001-09-28 Toshiba Corp Variable speed controller
AU2001274396A1 (en) * 2000-05-23 2001-12-03 Vestas Wind Systems A/S Variable speed wind turbine having a matrix converter
DE50110759D1 (en) * 2001-09-25 2006-09-28 Abb Schweiz Ag Energy generator
US7015595B2 (en) * 2002-02-11 2006-03-21 Vestas Wind Systems A/S Variable speed wind turbine having a passive grid side rectifier with scalar power control and dependent pitch control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03065567A1 *

Also Published As

Publication number Publication date
US20050116476A1 (en) 2005-06-02
CN100356683C (en) 2007-12-19
AU2003206633B2 (en) 2006-11-02
CN1625831A (en) 2005-06-08
CA2472144A1 (en) 2003-08-07
WO2003065567A1 (en) 2003-08-07
JP2005516577A (en) 2005-06-02
CA2472144C (en) 2010-09-28
US7102247B2 (en) 2006-09-05

Similar Documents

Publication Publication Date Title
EP1470633A1 (en) Circuit to be used in a wind power plant
EP1244203B1 (en) Power converter circuit for generators with dynamically varying outputpower
DE60317183T2 (en) Control and protection device for a double-fed induction generator system
EP2244372B1 (en) Switching device for a wind power plant
WO2003008802A1 (en) Method and device for speed-variable power electronic adjustment of a gearless wind power plant
EP3644497B1 (en) Method and device for virtual inertia control for power stations with double-fed asynchronous machine
DE19735742B4 (en) Over- and under-synchronous power converter cascade
EP3444937B1 (en) System and method for operating a pumped-storage power plant comprising a double fed induction machine
DE19651364A1 (en) Device for improving mains compatibility of wind-power plants with asynchronous generators
DE10117212A1 (en) Method for operating a wind turbine
WO2013020148A2 (en) Energy generation plant, in particular a wind power plant
EP2200169B1 (en) Method for starting a doubly-fed induction machine
WO2009012776A2 (en) Double-fed asynchronous generator and method for its operation
EP1513251B1 (en) Method and device for operating double fed ac machine as generator in a wind power station
WO2004030199A2 (en) Generator system having a generator that is directly coupled to the mains, and method for controlling mains interruptions
EP2599213A2 (en) Converter system and method for operating such a converter system
DE19624809A1 (en) Active filter for compensating rapid power fluctuations in three=phase network
WO2019015777A1 (en) Arrangement for feeding electric power into an ac network by means of an asynchronous machine, and method for operating the asynchronous machine
WO2020160841A1 (en) Drive system with inverter and electric motor and method for operating a drive system
WO2009030692A1 (en) Method and control unit for the short circuit current reduction in a double-fed asynchronous machine
WO2003028203A1 (en) Cascade with electronic disconnection and an enlarged rotational speed range
WO2018029309A1 (en) Method for operating a current converter and a current converter operating according to said method
EP1011189B1 (en) Method and circuit for adjusting the intermediate link voltage to the supply voltage
DE102011051732B3 (en) Wind turbine
EP3349350A1 (en) Method for operating an asynchronous machine in generator operation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20040317

17Q First examination report despatched

Effective date: 20050215

17Q First examination report despatched

Effective date: 20050215

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20091116