EP1458977B1 - Micropompe peristaltique - Google Patents

Micropompe peristaltique Download PDF

Info

Publication number
EP1458977B1
EP1458977B1 EP03792417A EP03792417A EP1458977B1 EP 1458977 B1 EP1458977 B1 EP 1458977B1 EP 03792417 A EP03792417 A EP 03792417A EP 03792417 A EP03792417 A EP 03792417A EP 1458977 B1 EP1458977 B1 EP 1458977B1
Authority
EP
European Patent Office
Prior art keywords
membrane
valve
membrane region
pump body
pumping chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03792417A
Other languages
German (de)
English (en)
Other versions
EP1458977A1 (fr
EP1458977B2 (fr
Inventor
Martin Richter
Martin Wackerle
Yücel CONGAR
Julia Nissen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31197271&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1458977(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1458977A1 publication Critical patent/EP1458977A1/fr
Publication of EP1458977B1 publication Critical patent/EP1458977B1/fr
Application granted granted Critical
Publication of EP1458977B2 publication Critical patent/EP1458977B2/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • F04B43/14Machines, pumps, or pumping installations having flexible working members having peristaltic action having plate-like flexible members

Definitions

  • the present invention relates to a micropump and in particular a micropump following a peristaltic Pump principle works.
  • Micropumps that operate on a peristaltic pumping principle are known from the prior art. So busy the article “Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology ", by Li Cao et al., Sensors and Actuators, A94 (2001), pages 117 to 125, with a peristaltic Micropump, one inlet, three pumping chambers, three Silicon membranes, three normally-closed active valves, three piezo stack actuators made of PZT, microchannels between the pumping chambers and an outlet. The three pumping chambers are of equal size and are in one Etched silicon wafer.
  • WO 87/07218 is also a peristaltic micropump known, the three membrane areas in a continuous Substrate surface has.
  • a carrier layer the the substrate and an associated support layer carries is a pumping channel formed with a fluid reservoir in Connection stands.
  • In the pumping channel is in the range of Inlet valves and an outlet valve each have a transverse rib formed on the associated membrane portion in the unactuated state rests to in the unactuated state to close the inlet valve and the outlet valve.
  • the third membrane area which can also be operated separately is arranged. By actuating the third membrane area the chamber volume between the two valve areas elevated.
  • the object of the present invention is to provide a to create peristaltic micromembrane pump that easy can be built and the one bubble-tolerant, self-priming operation allows.
  • this object is achieved by a peristaltic Micropump solved according to claim 1.
  • the present invention thus provides a peristaltic Micropump, with the first and the second valve in the unactuated State are open, and at the first and the second valve by moving the membrane to the pump body can be closed while the volume the pumping chamber by moving the second membrane area can also be reduced to the pump body.
  • the peristaltic invention allows Micropump the realization bubble tolerant, self-priming pumps, even when placed on a diaphragm Piezo elements are used as a piezoelectric actuator.
  • piezo actuators also so-called Piezo Stacks (Piezo Stacks) can be used however disadvantageous to piezo membrane transducers are that they are big and expensive, problems concerning the connection technology between stack and membrane and Problems in adjusting the stack deliver and thus overall associated with a higher cost.
  • the peristaltic Micropump is bubble-tolerant and self-priming can, it is preferably dimensioned such that the ratio of stroke volume and dead volume is greater than one Ratio of delivery pressure and atmospheric pressure is, where the stroke volume the volume displaceable by the pump membrane is, the dead volume between the inlet port and outlet port the micropump remaining volume when the Pump diaphragm is actuated and one of the valves closed and one is open, the atmospheric pressure is maximum is about 1050 hPa (worst case consideration), and the Delivery pressure in the fluid chamber region of the micropump, d. H. in the pressure chamber, necessary pressure is to one Liquid / gas interface in one place, the one Flow restriction in the microperistaltic pump, i. between the pumping chamber and the passage opening of the first or second valve, including this passage opening, represents moving past.
  • the peristaltic Micropump is bubble-tolerant and self-priming. This applies both when using the peristaltic micropump for conveying liquids when a gas bubble, usually an air bubble, in the fluid area of the pump as well as when using the micropump according to the invention as a gas pump when inadvertently damp condensed from the gas to be pumped and thus a Gas / liquid interface in the fluid region of the pump can occur.
  • Compression ratios satisfying the above condition can be realized according to the invention, for example, by making the volume of the pumping chamber larger than that of between the respective valve membrane areas and opposite valve body sections formed valve chambers. In preferred embodiments, this can be realized by the distance between membrane and Surface and pump body surface in the area of the pumping chamber larger than in the area of the valve chambers.
  • a Peristaltic micropump Another increase in the compression ratio of a Peristaltic micropump according to the invention can be achieved be characterized by the contour of a structured in the pump body Pumping chamber to the bending line of the pumping membrane, d. H. the curved contour of the same in the actuated state, adapted is, so that the pumping diaphragm in the actuated state in essentially displace the entire volume of the pumping chamber can. Furthermore, the contours of in the pump body can also formed valve chambers according to the bending line adapted to the respective opposite membrane sections be, so that in the optimal case in the closed state of actuated membrane area substantially the entire valve chamber volume repressed.
  • FIG. 1 A first embodiment of a peristaltic according to the invention Micropump integrated into a fluid system is shown in Fig. 1.
  • the micromembrane pump includes a membrane element 10, the three membrane sections 12, 14th and 16.
  • Each of the membrane sections 12, 14 and 16 is provided with a piezoelectric element 22, 24 and 26 and forms together with the same a piezo-membrane transducer.
  • the Piezo elements 22, 24, 26 can be applied to the respective membrane sections be glued or can by screen printing or other thick film techniques may be formed on the membrane.
  • the membrane element is circumferential at outer regions thereof joined to a pump body 30, so that between the same is a fluid-tight connection.
  • two fluid passages 32 and 34 are formed, one of which, depending on the pumping direction, a fluid inlet and the other is a fluid outlet.
  • the fluid passages 32, 34 each surrounded by a sealing lip 36.
  • the underside of the membrane element 10 and the top of the Pump body 30 structured to a fluid chamber 40 between to define it.
  • both the membrane element 10 and the pump body 30 in a respective Silicon wafer implemented, so that the same example joined together by Silicon Fusion Bonding could be.
  • the membrane element 10 in the top of the same three recesses and in the bottom of the same a recess on to the three membrane areas 12, 14 and 16 to define.
  • the membrane sections 12, 14 and 16 are each in the direction on the pump body 30 to be actuated, so that the Membrane section 12 together with the fluid passage 32 a Inlet valve 62 is that by actuating the membrane portion 12 can be closed.
  • a Inlet valve 62 is that by actuating the membrane portion 12 can be closed.
  • an outlet valve 64 which by pressing the Diaphragm section 16 closed by means of the piezoelectric element 26 can be.
  • the pump Prior to the operation of the peristaltic shown in FIG Micropump is received, initially short the fluid system environment into which the micropump of FIG. 1 is installed described.
  • the pump is with the Pump body 30 glued to a support block 50, optionally, As shown in Fig. 1, grooves 52 in the support block 50 may be provided to excess adhesive take.
  • the grooves 52 may be in the support block 50 formed fluid channels 54 and 56 surrounding provided be to pick up excess glue and to prevent the same in the fluid channels 54, 56 and the Fluid passages 32, 34 passes.
  • the pump body 30 is glued or joined to the support block such that the fluid passage 32 in fluid communication with the fluid channel 54 and that the fluid passage in fluid communication with the fluid channel 56 is.
  • a cross leak protection be provided between the fluid channels 54 and 56 between the fluid channels 54 and 56 between the fluid channels 54 and 56 between the fluid channels 54 and 56.
  • another channel 58 as a cross leak protection be provided.
  • fittings 60 are provided, for example for attaching hose lines to that shown in Fig. 1 Serve fluid system.
  • a housing 61 for example, below Use of an adhesive bond to the carrier block 50 is added to provide protection for the micropump and complete the piezo elements moisture-proof.
  • the in Fig. 1 pump is initially of an initial state assumed that the inlet valve 62 is closed is the second diaphragm section 14 corresponding Pumping diaphragm is in the de-energized state and the exhaust valve 64 is open. Starting from this state is through Actuate the piezoelectric element 24, the pumping membrane 14 down moves, which corresponds to the pressure stroke, causing the stroke volume through the open exhaust valve into the outlet, d. H. the fluid channel 56 is conveyed. Compressing the Pumping chamber 42 during the pressure stroke to the displacement leads to an overpressure in the pumping chamber that gets through reduces the fluid movement through the outlet valve.
  • piezo actuators preferably piezo-membrane transducers or piezo bending transducer used.
  • An optimal Hub performs such a bending transducer when the lateral dimensions of the piezoceramic about 80% of the underlying Correspond membrane.
  • the membrane which typically has side lengths of 4 mm to 12 mm, can thus deflections of several 10 ⁇ m stroke and thus volume strokes in the range of 0.1 ⁇ l to 10 ⁇ l.
  • the present invention has volume strokes at least in such an area, as in such an area Volume stroke advantageous bubble tolerant peristaltic pumps can be realized.
  • Fig. 2a shows a piezoceramic 100 on both surfaces the same is provided with metallizations 102.
  • the piezoceramic preferably comprises a large d31 coefficient and is polarized in the direction of arrow 104 in FIG. 2a. According to Fig. 2a, no voltage is applied to the piezoceramic.
  • a piezo-membrane transducer is now in Fig. 2a shown piezoceramic 100 fixed on a membrane 106 mounted, for example glued, as shown in Fig. 2b is.
  • the illustrated membrane is around a silicon membrane, but with the membrane may be formed by any other materials, as long as they can be contacted electrically, for example as a metallized silicon membrane, as a metal foil or made conductive by a two-component injection molding Plastic membrane.
  • a bending transducer is a preferred embodiment of the present invention, since this form of transducer has numerous advantages.
  • they have a fast response, on the order of about 1 millisecond with low power consumption.
  • a scaling with dimensions of piezoceramic and membrane over large areas is possible, so that a large stroke (10 .... 200 microns) and a large force (switching pressures 10 4 Pa to 10 6 Pa) are possible, with a larger Hub decreases the achievable force and vice versa.
  • the medium to be switched is separated from the piezoceramic by the membrane.
  • the micro-peristaltic pumps of the invention are to be used in applications where bubble-tolerant, self-priming behavior is required, the micro-peristaltic pumps must be designed to comply with a compression ratio design rule that defines the ratio of stroke volume to dead volume.
  • a compression ratio design rule that defines the ratio of stroke volume to dead volume.
  • Fig. 3a shows schematically a pump body 200 with a the upper surface thereof, in which a pumping chamber 202 is structured.
  • a membrane 204 shown with an inlet valve piezoelectric actuator 206, a pumping chamber piezoelectric actuator 208 and a Exhaust valve piezoelectric actuator 210 is provided.
  • the Piezoactuators 206, 208 and 210 may be respective areas of the Membrane 204 down, d. H. towards the pump body 200 to be moved, as shown by arrows in Fig. 3a is shown.
  • Through the line 212 is in Fig. 3a also the the pumping chamber 200 opposite portion of the membrane 204, d. H. the pumping membrane, in its deflected, d.
  • FIG. 3a the under the intake valve piezoelectric actuator 206 and disposed below the exhaust valve piezoelectric actuator 210 Channel areas 214 and 216 by a respective actuation of the corresponding piezoelectric actuator are closed by the respective membrane areas on the underlying Resting areas of the pump body.
  • the figures 3a to 3c only rough schematic representations, wherein the respective elements are configured such that a Closing respective valve openings is possible. Consequently are in turn an inlet valve 62 and an exhaust valve 64th educated.
  • a situation is shown in which the volume of the pumping chamber 202 is reduced by operating the pumping chamber piezoelectric actuator 208 and in which the inlet valve 62 is closed.
  • the situation shown in Fig. 3b thus represents the state after the discharge of a fluid amount from the exhaust valve 64, wherein the volume of the remaining between the closed inlet valve 62 and the passage opening of the open exhaust valve 64 fluid area represents the dead volume V 0 with respect to the pressure stroke, such as is shown by the hatched area in Fig. 3b.
  • the dead volume with respect to a suction stroke in which the inlet valve 62 is opened and the outlet valve 64 is closed is defined by the volume of the fluid area remaining between the closed outlet valve 64 and the passage opening of the open inlet valve 62, as shown in Fig. 3c by the hatched area is.
  • the respective dead volume is defined by the respective closed valve up to the passage opening at which a significant pressure drop occurs at the moment of a respective change in volume of the pumping chamber.
  • the dead volumes V 0 for the pressure stroke and the suction stroke are identical. If different dead volumes occur due to an asymmetry for a pressure stroke and a suction stroke, then, in the sense of a worst-case analysis, it is assumed in the following that the larger of the two dead volumes is used to determine the respective compression ratio.
  • the overpressure p Ü during the pressure stroke, and the negative pressure p U during the suction stroke a minimum value must exceed or fall below during the pressure stroke during the intake stroke.
  • the pressure amount during the compression stroke and the suction stroke must exceed a minimum value, which may be referred to as delivery pressure p F.
  • This delivery pressure is the pressure in the pressure chamber which must at least prevail to move past a liquid / gas interface at a location which is a flow point between the pump chamber and the passage opening of the first or second valve, including this passage opening.
  • This delivery pressure can be determined as follows, depending on the size of this flow point.
  • Capillary forces must be overcome if free surfaces, for example in the form of gas bubbles (eg air bubbles), are moved in the fluid areas within the pump.
  • the pressure that must be applied to overcome such capillary forces depends on the surface tension of the liquid at the liquid / gas interface and the maximum radius of curvature r 1 and the minimum radius of curvature r 2 of the meniscus of that interface:
  • the delivery pressure to be provided is defined by Equation 2 at the location within the flow path of the microperistaltic pump where the sum of the inverse radii of curvature r 1 and r 2 of a liquid / gas interface having a given surface tension is at a maximum. This point corresponds to the Flu touchgstelle.
  • a channel 220 (Fig 5a) viewed with a width d, wherein the height of the Channels also d.
  • the channel 220 has at both Channel ends 222, for example, under the valve diaphragm or the pumping membrane, a change in cross section.
  • the channel is completely filled with a liquid 224, which flows in the direction of the arrow 226.
  • FIG. 5 b an air bubble 228 now encounters the change in cross section at the entrance of the channel 220.
  • a wetting angle ⁇ occurs.
  • FIG. 5 c illustrates the situation when the air bubble or meniscus 230 reaches the change in cross section 222 at the end of the channel 220.
  • This pressure barrier is not negligible in microperistaltic pumps of the type according to the invention due to the small dimensions of geometry, if such a channel represents the bottleneck of the pump.
  • the mentioned constriction is generally defined by the distance between the valve membrane and the opposite region of the pump body (for example a sealing lip) when the valve is open.
  • r d 2
  • the smallest occurring radius of curvature can therefore be independent from the tilt angle ⁇ , wetting angle ⁇ or abrupt cross-sectional changes half the smallest be alsetschreib wall distance.
  • the present invention are therefore connecting channels within the peristaltic pump designed so that the diameter of the channel at least twice the valve throat, i. the Distance between diaphragm and pump body in open Valve state, exceeds.
  • the Valve gap the Flu togstelle the Mikroperistaltikpumpe For example, at a valve lift of 20 ⁇ m Connecting channels with a smallest dimension, i. Bottleneck, be provided by 50 ⁇ m.
  • the upper limit of the Channel diameter is determined by the dead volume of the channel.
  • the capillary force to be overcome depends on the surface tension at the liquid / gas interface. These Surface tension in turn depends on the involved Partners. For a water / air interface is the Surface tension about 0.075 N / m and slightly varies with the temperature. Organic solvents usually possess a significantly lower surface tension while the Surface tension at a mercury / air interface for example, about 0.475 N / m.
  • a peristaltic pump, which is designed to withstand the capillary force at a surface tension of 0.1 N / m is thus suitable Bubble-tolerant to almost all known liquids and gases and self-priming to pump. Alternatively, you can the compression ratio of a Mikroperistaltikpumpe invention be made higher accordingly to one to allow such pumping, for example, for mercury.
  • Equation 11 The left side of Equation 11 represents the state before expansion, while the right side represents the state after expansion.
  • the negative pressure p U during the pressure stroke must be smaller than the necessary negative delivery pressure p F.
  • the discharge pressure p F in terms of absolute value in the consideration of the pressure stroke, in terms of absolute value in the consideration of the suction stroke. It follows: p U ⁇ p F
  • Preferred embodiments of microperistaltic pumps according to the invention are thus designed so that the compression ratio satisfies the above condition, wherein the minimum necessary delivery pressure as defined in Equation 8 Pressure equals when occurring in the peristaltic pump Kanalengstellen have minimal dimensions, the at least twice the size of the valve gap.
  • the minimum required delivery pressure in the Equation 3 or Equation 7 defined pressure correspond, if the Flu typegstelle the microperistaltic pump is not is defined by a gap but a channel.
  • a microperistaltic pump according to the invention is to be used when pressure boundary conditions of a negative pressure p 1 at the inlet or a counterpressure p 2 prevail at the outlet, the compression ratio of a microperistaltic pump must be correspondingly greater in order to allow pumping against these inlet pressures or outlet pressures.
  • the pressure boundary conditions are defined by the intended application of the microperistaltic pump and can range from a few hPa to several 1000 hPa. For such cases occurring in the pumping chamber pressure p T, or negative pressure must reach p U these back pressures at least, so that a pumping action occurs. For example, only the height difference of a possible inlet vessel or outlet vessel of 50 cm in water leads to counter pressures of 50 hPa.
  • the desired delivery rate is a constraint which makes additional demands.
  • Q ⁇ V ⁇ f.
  • Foamy substances can be pumped, so it may be necessary be that a plurality of capillary forces, like them described above, must be overcome, as several corresponding liquid / gas interfaces occur.
  • the micro-peristaltic pump must be designed be to have a compression ratio to accordingly To produce higher discharge pressures.
  • the compression ratio of a microperistaltic invention must be appropriately higher when necessary in the microperistaltic delivery pressure p F also depends in addition to the aforementioned capillary forces on the boundary conditions of the application.
  • the delivery pressure is considered relative to the atmospheric pressure, that is, a positive delivery pressure p F is assumed in the pressure stroke, while a negative delivery pressure p F is assumed in the intake stroke.
  • an amount of the delivery pressure of at least p F 100 hPa can be assumed for a suction stroke and a pressure stroke.
  • Fig. 6b shows a schematic cross-sectional view of a peristaltic micropump with membrane element 300 and pump body 302 along the line b-b of Fig. 6a and Fig. 6c
  • Fig. 6a is a schematic plan view of the Membrane element 300
  • Fig. 6c is a schematic plan view on the pump body 302 shows.
  • the membrane element 300 has again three membrane sections 12, 14 and 16, the are each provided with piezo actuators 22, 24 and 26.
  • an inlet port 32 and an outlet opening 34 is formed, such that the inlet opening 32 together with the membrane portion 12 an inlet valve defined while the outlet opening 34 with the membrane area 16 defines an exhaust valve.
  • a pumping chamber 304 in the pump body 302 is formed below the membrane section 14 . Further, fluid channels 306 are in the pump body 302 formed with the membrane areas 12 and 16 associated valve chamber 308 and 310 fluidly connected are.
  • the valve chambers 308 and 310 are shown in the FIG Embodiment by recesses in the membrane element 300, wherein in the membrane element 300 further a recess 312 contributing to the pumping chamber 304 is formed is.
  • the pumping chamber volume 304 is made larger than the volume the valve chambers 308 and 310. This is shown in the Embodiment achieved by a pumping chamber lowering in which a structuring in the form of a Pumping chamber lowering is formed in the pump body 302.
  • the stroke of the pumping membrane 14 is preferably designed to that they largely the volume of the pumping chamber 304 can displace.
  • FIG. 6a to 6c A further increase in the pumping chamber volume compared to Valve chamber volume is in that shown in Figs. 6a to 6c Embodiment achieved by the pumping chamber membrane 14 in terms of area (in the plane of the membrane element 300 and the pump body 302) is designed to be larger than the valve chamber membranes, as best seen in Fig. 6a is. Thus, there is an area compared with the valve chambers larger pumping chamber.
  • valve chambers 308th and 310 and the pumping chamber 304 To the flow resistance between the valve chambers 308th and 310 and the pumping chamber 304 are the supply passages 306 in the surface of the pump body 302 structured. These fluid channels 306 provide a reduced Flow resistance, without the compression ratio significantly degrade the peristaltic micropump.
  • FIGS. 6a to 6c could be the surface of the pump body 302 be realized with three-stage subsidence to the pumping chamber increased depth (compared to the valve chambers) implement while the top chip is essentially one unstructured membrane is. Such two-stage reductions are technologically more difficult to implement than that in the Fig. 6a to 6c embodiment shown.
  • FIG. 7 An enlarged view of the left part of FIG. 6b is shown in FIG. 7, wherein in Fig. 7, the height H of the Pümpsch 304 is displayed is.
  • the pumping chamber 304 forming structuring in the pump body 302 and in the membrane element 300 have the same depths, it is preferred that structuring in the pump body 302 with a greater depth than that in the membrane element to provide the flow channel 306 with sufficient River cross section to provide, but without the compression ratio overly impaired.
  • the structurings in the pump body 302 that belong to the fluid channel 306 and the pumping chamber 304 contribute a Depth of 22 microns
  • the structuring in the membrane element 300 defining the valve chambers 308 contribute to the pressure chamber 304
  • a depth of 8 may have .mu.m.
  • Fig. 8 shows a schematic cross-sectional view of a Enlargement of the section A of Fig. 7, but in one modified form.
  • the bridge of the Opening 32 spaced toward the channel 206 arranged.
  • This allows mounting tolerances in a double-sided Lithography to be considered.
  • the Valve openings with different cross-sectional sizes for Can have no adverse effects.
  • the compression ratio of the peristaltic pump is large be a self-filling behavior and a to ensure robust operation with respect to a bubble tolerance.
  • a first way to realize such an adaptation is to implement a round pumping chamber, i.e. a pumping chamber whose peripheral shape to the deflection the pumping membrane is adapted.
  • a schematic Top view of the pumping chamber and fluid channel section of a Pump body with such a pumping chamber is shown in Fig. 9a shown.
  • the fluid channels 306, which fluidly connects to valve chambers, for example again structured in a membrane element can be produced.
  • the pumping chamber under the pumping membrane can do so be designed that their pump diaphragm facing contour Precisely following the bending line of the pumping membrane.
  • a Such contour of the pumping chamber for example, by a correspondingly shaped injection molding tool or by a Embossing stamp can be achieved.
  • a schematic plan view on a pump body 340, in which such a bending line the actuator membrane, the following fluid chamber 342 structured is shown in Fig. 9b. Further, in Fig. 9b in the Pump body structured fluid channels 344 shown, the lead to the fluid chamber 342 toward and away from the same.
  • FIG. 9b is shown in Fig. 9c, wherein in Fig. 9c further a diaphragm 346 with the same associated piezoelectric actuator 348 shown.
  • a flow through the fluid channels 344 is in Fig. 9c indicated by arrows 350.
  • the membrane 346 facing the bending line of the membrane (in the actuated state) adapted contour 352 of the fluid chamber or pumping chamber 342 to recognize.
  • This form of fluid chamber 352 allows that upon actuation of the diaphragm 346th by the piezoelectric actuator 348 substantially the entire volume the fluid chamber 342 is displaced, whereby a high Compression ratio can be achieved.
  • FIG. 10a An embodiment of a peristaltic micropump, in which both the pumping chamber 342 and valve chambers 360 to the bending lines of the respective associated membrane sections 12, 14 and 16 is adapted in Figs. 10a and Fig. 10b, wherein Fig. 10b is a schematic plan view on the pump body 340, while Fig. 10a a schematic cross-sectional view along the line a-a of Fig. 10b shows.
  • FIGS. 10a and 10b are shape and contour of the valve chamber 360 and 362 as above Referring to pumping chamber 342, the bending line is explained of the respectively associated membrane section 12 or 16 adapted.
  • FIG. 10a and 10b are shape and contour of the valve chamber 360 and 362 as above Referring to pumping chamber 342, the bending line is explained of the respectively associated membrane section 12 or 16 adapted.
  • fluid channels 344a, 344b, 344c and 344d are in the Pump body 340 formed.
  • the fluid channel 344a provides a The input fluid channel
  • the fluid channel 344b connects the Valve chamber 360 with the pumping chamber 342
  • the fluid channel 344th connects the pumping chamber 342 to the valve chamber 362
  • the fluid channel 344d represents an output channel.
  • the membrane element is 380 in this embodiment, an unstructured Membrane element, which in a provided in the pump body 340 Recess is inserted to together with the in The fluid chambers formed the pump body 340, the valve chambers and define the pumping chamber.
  • connection channels 344b and 344c between the actuator chambers are switched so that they are compared to the displacement include low dead volume. Simultaneously reduce these fluid channels between the flow resistance the actuator chambers significantly, so that larger Pümpfrequenzen and thus larger flow rates, one such Current is again indicated by arrows 350 in Fig. 10a, be possible.
  • the valve chambers 360 and 362 be the fluid channels by operating the membrane sections 12 and 16 through the fully deflected membrane sections separated, so that a fluid separation between the Fluid channels 344a and 344b and between the fluid channels 344c and 344d occurs.
  • the contour of the valve chambers must exactly to the bending line of the respective membrane sections be adapted to achieve a dense fluid separation.
  • a Bridge 390 in the respective valve chamber in the area of largest stroke of the diaphragm portion 12 may be provided, the is shaped accordingly, so that it completely through the Bend the membrane portion 12 can be sealed. More specifically, the bridge bends to the edges of the valve chamber towards the top, corresponding to the bending line adapted shape of the valve chamber.
  • This jetty can in the projecting respective valve chamber, wherein alternatively, as it 11, the depth of the connection channels 344 may be greater than the stroke y of the membrane portion 12, in which the membrane section bears against the pump body, so that the bridge 390 is sunk, so to speak. Is the depth the connection channels is greater than the maximum stroke, goes this at the cost of the compression ratio enabled but low flow resistance between the actuator chambers.
  • FIG. 12 An alternative embodiment of a valve chamber 360 is shown in Fig. 12, where the depth of the connecting channels 344 is smaller than the maximum lift y of the Membrane section 12, and thus as the depth of the Bend line of the diaphragm portion 12 adapted valve chamber 360 in the region of the largest stroke of the membrane section 12. This allows a secure seal in the closed state of the valve can be achieved.
  • a web 390 a not the maximum possible bending line of the Actuator element, d. H. the membrane portion 12 together with the piezoelectric actuator 22, as shown in Fig. 13 is shown.
  • the maximum possible bending line of the membrane section 12 is shown by a dashed line 400 in FIG. 13, while line 410 is the maximum possible deflection of the Membrane portion 12 due to the provision of the web 390 a equivalent.
  • the membrane 12 sits in fully deflected Condition when the web 390 is sealed, with a Residual force on the web 390a, this residual force dimensioned can be used to print requests that the Seal must endure to suffice.
  • the bending line of the Membrane often not perfectly concentric to the membrane center be, for example due to mounting tolerances the piezoceramics and due to inhomogeneities of the Glue application, through which the piezoceramics on the membranes are attached. Therefore, the area of the web seal something, for example, around 5 to 20 microns, depending on the stroke of the actuator, be increased over the rest of the fluid chamber, for a secure contact of the membrane with the web and thus ensuring a secure seal. This matches with also the situation shown in Fig. 13. To note, however, that thereby increases the dead volume and the compression ratio is reduced.
  • fluid chamber material may be used at least in the area under the moving Membrane a plastically deformable material, for example Silicone, to be used.
  • a plastically deformable material for example Silicone
  • the thickness of the membrane sections 12, 14 and 16 and thus the thickness of the membrane element 380 can For example, 40 microns, while the thickness of the piezoelectric actuators may be for example 100 microns.
  • a piezoceramic can be a PZT ceramic with a large d31 coefficient be used.
  • the side length of the membranes can For example, be 10 mm, while the side length of Piezo actuators may be 8 mm, for example.
  • the voltage swing for actuating the actuators in the aforementioned actuator geometry can be for example 140 V, which is a maximum Stroke of approx. 100 to 200 ⁇ m with a stroke volume of Pumping membrane of about 2 to 4 ul result.
  • the membrane drops the dead volume of the three for the peristaltic pump needed fluid chambers away, so that only the connecting channels connecting the valve chambers with the pumping chamber connect, remain.
  • connecting channels with a depth of 100 microns, a width of 100 microns and a Length of 10 mm, so that a total length for gives the fluid channels 344b and 344c of 20 mm, gives the a pumping chamber dead volume of 0.2 ⁇ l.
  • Such fluid modules are bubble tolerant and self-priming and can deliver both liquids and gases.
  • Such fluid pumps can also be used for compressible and liquid media basically build up several bar pressure, depending on the design of the piezoelectric actuator. In such a micropump the maximum pressure that can be generated is no longer limits the compression ratio, but by the maximum Force of the drive element and the tightness the valves defined. Despite these properties can by a suitable channel dimensioning with a low Flow resistance can be promoted several ml / min.
  • Fig. 14 is an embodiment of an inventive Microperistaltic pump shown in which the inlet fluid channel 412 and the outlet fluid passage 414 in the pump body 340 vertically sunk.
  • the fluid channels 412 and 414 have a substantially vertical portion 412a and 414a, each substantially centrally located below the associated Diaphragm sections 12 and 16 in the valve chambers 360 and 362, respectively.
  • the advantage of the one shown in FIG Embodiment of the fluid channels is that the fluid channels can be sealed defined.
  • the disadvantage, however, is that such vertically submerged fluid channels Manufacturing technology are difficult to produce.
  • the peristaltic micropumps according to the invention are preferably driven by the membrane, for example the metal membrane or the semiconductor membrane, on one Ground potential, while the piezoceramics by a typical peristaltic cycle are moved by each corresponding voltages applied to the piezoceramics become.
  • peristaltic micropump further fluid chambers have, for example, a further fluid chamber 420, which via a fluid passage 422 with the pumping chamber 342 connected is.
  • a further fluid chamber 420 which via a fluid passage 422 with the pumping chamber 342 connected is.
  • a first reservoir 424 via the Fluid passage 344a is connected to the valve chamber 360
  • a second reservoir 426 via a fluid passage 428 with the Valve chamber 420 is connected
  • a third reservoir 430 is connected to the valve chamber 362 via the fluid passage 344d is.
  • a structure with four fluid chambers, as shown in FIG is, for example, a branching structure or form a mixer in which the mixed streams are active can be promoted.
  • a single Membrane element covers all fluid chambers and reservoir container, wherein for each fluid chamber a separate piezoelectric actuator is provided.
  • the entire fluidics can be very flat be designed, with the functional, fluidic Structures including fluid chambers, channels, membranes, piezoactuators and support structures an overall height of the order of magnitude 200 to 400 microns may have.
  • systems are conceivable that can be integrated into smart cards.
  • even flexible fluidic systems are conceivable.
  • fluid chambers be interconnected in any plane. So can for example, different reservoirs z. B. one each Microperistaltic be assigned, which then, for example Reagents to a chemical reaction (For example, in a fuel cell), or a calibration sequence for an analysis system, for example in a water analysis.
  • the piezoceramics for example, to the respective membrane sections to be glued.
  • PZT applied directly in thick film technology be, for example by screen printing with suitable intermediate layers.
  • FIG. 16 An alternative embodiment of an inventive microperistaltic pump with recessed inlet fluid channel 412 and recessed outlet fluid channel 414 is shown in FIG. 16 shown.
  • the inlet flow channel 412 again opens substantially centrally under the membrane section 12 in a Valve chamber 442, while the Auslwithfluidkanal 414 substantially centrally under the membrane portion 16 in a Valve chamber 444 opens.
  • the respective mouth openings the inlet channel 412 and the outlet channel 414 are provided with a Sealing lip 450 provided.
  • a pumping chamber 452 formed by fluid channels in Walls 454 with the valve chambers 442 and 444 fluidly connected is.
  • a membrane element 456 According to the embodiment shown in Fig. 16 form the three membrane sections 12, 14 and 16th in turn, a membrane element 456.
  • the membrane sections are by piezo stack actuators 460, 462 and 464 driven on the corresponding Membrane sections can be placed.
  • the piezo stack actuators are using appropriate Housing parts 470 and 472, in Fig. 16 away from the Pump body and the membrane element are shown used.
  • Piezostapelaktoren are advantageous in that the same not be firmly connected to the membrane element so that they allow a modular design.
  • the actuators do not actively retract a membrane section, when an operation of the same is terminated. Much more can a return movement of the membrane portion only by the Restoring force of the elastic membrane itself done.
  • the peristaltic micropumps according to the invention can using a variety of manufacturing materials and manufacturing techniques are manufactured.
  • the pump body can be made of silicon, for example, made of plastic by injection molding or precision engineering produced by machining.
  • the membrane element, the drive diaphragm for the two valves and forms the pumping chamber can be made of silicon, Can through a metal foil, such as stainless steel or titanium, may be formed by a two-component injection molding technique manufactured with conductive coatings provided plastic membrane may be formed, or may be realized by an elastomeric membrane.
  • a non-silicone Silicon Fusion Bonding can be used.
  • a silicon-glass combination may preferably Anodic bonding can be used. More options are a eutectic wafer bonding or a wafer life.
  • the basic structure is made of plastic and the Membrane element is a metal foil, can be a lamination be performed when a bonding agent between membrane element and basic structure is used.
  • alternative may be gluing with a high shear adhesive take place, in which case in the basic structure preferably Kapillarstopgräben be formed to prevent penetration To avoid adhesive in the fluid structure.
  • both membrane element and pump body off Plastic can be used to connect the same ultrasonic welding be used. If one of the two Structures is optically transparent, can alternatively laser welding respectively. In the case of an elastomeric membrane can the sealing properties of the membrane are also used be to ensure a seal by clamping.
  • the bonding layer material that is an adhesive or an adhesive may be e.g. by dispensing or by a correspondingly shaped stamp on the joining layer applied.
  • the membrane fitted to the base body After the order of the joining material is the membrane fitted to the base body. Possible burrs, the e.g. when singulating at the edge of the membrane, find a place for the ridge, so that a defined position of the membrane especially in the Direction perpendicular to the surface of the same ensured is what matters in terms of dead volume and tightness is.
  • a capillary stop trench may be used be provided, which in the pump body surrounds formed fluid areas.
  • excess Glue does not get into the fluid chambers.
  • the adhesive can be defined and cure thinly. The curing can be carried out at room temperature or accelerated in the oven or by UV irradiation when using UV-curing adhesives.
  • connection technique a solving of the main body or pump body by suitable solvents and a joining of a Plastic membrane to the main body done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Claims (18)

  1. Micropompe péristaltique aux caractéristiques suivantes :
    une première zone de membrane (12) avec un premier actionneur piézoélectrique (22 ; 460) destiné à actionner la première zone de membrane ;
    une deuxième zone de membrane (14) avec un deuxième actionneur piézoélectrique (24 ; 462) destiné à actionner la deuxième zone de membrane ;
    une troisième zone de membrane (16) avec un troisième actionneur piézoélectrique (26 ; 464) destiné à actionner la troisième zone de membrane ; et
    un corps de pompe (30 ; 302 ; 340 ; 440),
    qui constitue, ensemble avec la première zone de membrane (12), une première soupape (62) dont l'ouverture de passage (32) est ouverte à l'état non actionné de la première zone de membrane et dont l'ouverture de passage peut être obturée en actionnant la première zone de membrane,
    qui constitue, ensemble avec la deuxième zone de membrane (14), une chambre de pompage (42 ; 304 ; 330 ; 342 ; 452) dont le volume peut être réduit en actionnant la deuxième zone de membrane, et
    qui constitue, ensemble avec la troisième zone de membrane (16), une deuxième soupape (64) dont l'ouverture de passage est (34) ouverte à l'état non actionné de la troisième zone de membrane et dont l'ouverture de passage peut être obturée en actionnant la troisième zone de membrane,
    les première et deuxième soupapes (62, 64) étant reliées en fluide à la chambre de pompage.
  2. Micropompe péristaltique selon la revendication 1, dans laquelle est d'application, entre un volume de déplacement ΔV, un volume mort V0, une pression de refoulement Pr et la pression atmosphérique P0, le rapport suivant : ΔV/V0 > pr/P0,    le volume de déplacement ΔV étant le volume refoulé en cas d'actionnement de la deuxième zone de membrane (14), le volume mort V0 étant un volume qui est présent entre l'ouverture de passage (32 ; 34) ouverte de l'une des soupapes (62, 64) et de l'ouverture de passage (32, 34) fermée de l'autre des soupapes (62, 54) à l'état actionné de la deuxième zone de membrane (14), et la pression de refoulement pr étant la pression nécessaire dans la chambre de pompage (42 ; 304 ; 330 ; 342 ; 452) pour faire passer une interface liquide/gaz par un étranglement d'écoulement dans la micropompe péristaltique.
  3. Micropompe péristaltique selon la revendication 1 ou 2, dans laquelle est formée, entre la première zone de membrane (12) et le corps de pompe (302 ; 340 ; 440), une première chambre de soupape (308 ; 360 ; 442) et dans laquelle est formée, entre la troisième zone de membrane (16) et le corps de pompe (302 ; 340 ; 440), une deuxième chambre de soupape (310 ; 362 ; 444), les chambres de soupape étant reliées en fluide à la chambre de pompage (42 ; 304 ; 330 ; 342 ; 452).
  4. Micropompe péristaltique selon la revendication 3, dans laquelle le volume de la chambre de pompage (304) est supérieur au volume de la première ou de la deuxième chambre de soupape (308, 310).
  5. Micropompe péristaltique selon la revendication 4, dans laquelle une distance entre la surface de membrane et la surface de corps de pompe est plus grande à l'endroit de la chambre de pompage (304) qu'à l'endroit de la chambre de soupape (308, 310).
  6. Micropompe péristaltique selon la revendication 4 ou 5, dans laquelle la deuxième zone de membrane (14) et la chambre de pompage est, quant à la surface, plus grande que la première ou la troisième zone de membrane (12, 16) et les chambres de soupape associées.
  7. Micropompe péristaltique selon l'une des revendications 3 à 6, dans laquelle les zones de membrane {12, 14, 16) sont formées dans un élément de membrane (10 ; 300 ; 380 ; 456), la chambre de soupape (308, 310 ; 360, 362 ; 442, 444), la chambre de pompage (42 ; 304 ; 330 ; 342 ; 452) et les canaux à fluide (306 ; 344) sont formés entre les chambres de soupape et la chambre de pompage par des structurations dans le corps de pompe et/ou dans l'élément de membrane.
  8. Micropompe péristaltique selon l'une des revendications 1 à 7, dans laquelle la chambre de pompage (330 ; 342) présente une structuration dans le corps de pompe (340), le contour de la structuration étant adapté au contour courbe du deuxième segment de membrane (14) à l'état actionné.
  9. Micropompe péristaltique selon l'une des revendications 3 à 7, dans laquelle la chambre de pompage (342) et les chambres de soupape (360, 362) présentent des structurations dans le corps de pompe (340), les contours des structurations étant adaptés au contour courbe respectif du segment de membrane correspondant (12, 14, 16) à l'état actionné.
  10. Micropompe péristaltique selon l'une des revendications 1 à 9, dans laquelle la première et la troisième zone de membrane (12, 16) et les actionneurs piézoélectriques (22, 26 ; 460, 464) de ces dernières sont disposées de sorte que, à l'état actionné, ils poussent avec une force prédéterminée sur un élément antagoniste (390 ; 390a), pour fermer la soupape respective.
  11. Micropompe péristaltique selon la revendication 9, qui présente des conduits d'amenée de fluide latéraux (344a, 344d) vers les chambres de soupape (360, 362) qui sont formées dans le corps de pompage (340) et qui sont obturées en actionnant le segment de membrane correspondant.
  12. Micropompe péristaltique selon la revendication 11, dans laquelle est prévue, à l'endroit d'une chambre de soupape (360, 362), une bretelle (390 ; 390a) sur laquelle s'appuie le segment de membrane actionné correspondant, pour obturer le conduit à fluide latéral correspondant.
  13. Micropompe péristaltique selon la revendication 11, dans laquelle les chambres de soupape présentent un matériau déformable plastiquement situé face au segment de membrane respectif, contre lequel s'appuie, à l'état actionné, le segment de membrane respectif.
  14. Micropompe péristaltique selon l'une des revendications 1 à 13, présentant, par ailleurs, au moins une autre zone de membrane avec un autre actionneur piézoélectrique destiné à actionner l'autre zone de membrane, l'autre zone de membrane formant, ensemble avec le corps de pompe, une autre soupape dont l'ouverture de passage est, à l'état non actionné de l'autre zone de membrane, ouverte et dont l'ouverture de passage peut être obturée en actionnant l'autre zone de membrane, l'autre soupape étant reliée en fluide à la chambre de pompage.
  15. Micropompe péristaltique selon l'une des revendications 1 à 14, dans laquelle les actionneurs piézoélectriques sont des transformateurs de membrane piézoélectriques qui sont formés par des éléments piézoélectriques respectifs placés sur une zone de membrane.
  16. Micropompe péristaltique selon la revendication 15, dans laquelle les éléments piézoélectriques sont collés sur la zone de membrane respective ou formés selon la technique de couche épaisse sur la zone de membrane respective.
  17. Micropompe péristaltique selon l'une des revendications 1 à 14, dans laquelle les actionneurs piézoélectriques sont formés par des piles piézoélectriques respectives.
  18. Système à fluide avec une pluralité de micropompes péristaltiques selon l'une des revendications 1 à 17 et une pluralité de réservoirs qui sont reliés en fluide aux micropompes péristaltiques.
EP03792417A 2002-08-22 2003-08-22 Micropompe peristaltique Expired - Fee Related EP1458977B2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10238600 2002-08-22
DE10238600A DE10238600A1 (de) 2002-08-22 2002-08-22 Peristaltische Mikropumpe
PCT/EP2003/009352 WO2004018875A1 (fr) 2002-08-22 2003-08-22 Micropompe péristaltique

Publications (3)

Publication Number Publication Date
EP1458977A1 EP1458977A1 (fr) 2004-09-22
EP1458977B1 true EP1458977B1 (fr) 2005-04-20
EP1458977B2 EP1458977B2 (fr) 2008-11-12

Family

ID=31197271

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03792417A Expired - Fee Related EP1458977B2 (fr) 2002-08-22 2003-08-22 Micropompe peristaltique

Country Status (7)

Country Link
US (1) US7104768B2 (fr)
EP (1) EP1458977B2 (fr)
JP (1) JP4531563B2 (fr)
CN (1) CN100389263C (fr)
AU (1) AU2003255478A1 (fr)
DE (2) DE10238600A1 (fr)
WO (1) WO2004018875A1 (fr)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9033920B2 (en) * 2003-10-02 2015-05-19 Medtronic, Inc. Determining catheter status
US7320676B2 (en) * 2003-10-02 2008-01-22 Medtronic, Inc. Pressure sensing in implantable medical devices
US9138537B2 (en) 2003-10-02 2015-09-22 Medtronic, Inc. Determining catheter status
US8323244B2 (en) * 2007-03-30 2012-12-04 Medtronic, Inc. Catheter malfunction determinations using physiologic pressure
CN100458152C (zh) * 2004-03-24 2009-02-04 中国科学院光电技术研究所 一种微机械往复膜片泵
DE102005001807A1 (de) * 2005-01-13 2006-07-20 Air Liquide Deutschland Gmbh Verfahren zum Erhitzen eines Industrieofens und dafür geeignete Vorrichtung
DE102005038483B3 (de) * 2005-08-13 2006-12-14 Albert-Ludwigs-Universität Freiburg Mikropumpe
DE102005055697B4 (de) * 2005-11-23 2011-12-29 Allmendinger Elektromechanik Gmbh Vorrichtung zur dosierten Abgabe eines Fluids und Gerät mit einer solchen Vorrichtung
JP4638820B2 (ja) * 2006-01-05 2011-02-23 財団法人神奈川科学技術アカデミー マイクロポンプ及びその製造方法
US7976795B2 (en) 2006-01-19 2011-07-12 Rheonix, Inc. Microfluidic systems
EP1834658B1 (fr) * 2006-03-14 2009-12-30 F. Hoffmann-La Roche AG Micropompe péristaltique avec capteur de débit
EP2010250A2 (fr) * 2006-04-06 2009-01-07 Medtronic, Inc. Systèmes et procédés permettant d'identifier un dysfonctionnement de cathéter au moyen d'une détection de pression
DE102006028986B4 (de) 2006-06-23 2019-06-27 Albert-Ludwigs-Universität Freiburg Konträrmembranantrieb zur Effizienzsteigerung von Mikropumpen
US7842426B2 (en) * 2006-11-22 2010-11-30 Gm Global Technology Operations, Inc. Use of a porous material in the manifolds of a fuel cell stack
CN101542122B (zh) 2006-12-09 2011-05-04 株式会社村田制作所 压电微型鼓风机
JP4946464B2 (ja) * 2007-01-30 2012-06-06 ブラザー工業株式会社 液体移送装置及び液体移送装置の製造方法
US9044537B2 (en) 2007-03-30 2015-06-02 Medtronic, Inc. Devices and methods for detecting catheter complications
DE102007045637A1 (de) * 2007-09-25 2009-04-02 Robert Bosch Gmbh Mikrodosiervorrichtung zum Dosieren von Kleinstmengen eines Mediums
US8746130B2 (en) 2007-10-22 2014-06-10 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Diaphragm pump
US8353682B2 (en) * 2007-11-23 2013-01-15 Stichting Imec Nederland Microfluidic-device systems and methods for manufacturing microfluidic-device systems
JP5027930B2 (ja) 2007-11-23 2012-09-19 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 安全弁を含むポンプ装置
WO2010014824A2 (fr) 2008-07-30 2010-02-04 Hydrate, Inc. Vaporiseur en ligne
US9968733B2 (en) * 2008-12-15 2018-05-15 Medtronic, Inc. Air tolerant implantable piston pump
WO2010073020A1 (fr) * 2008-12-24 2010-07-01 Heriot-Watt University Système et procédé microfluidiques
US8267885B2 (en) * 2008-12-31 2012-09-18 Fresenius Medical Care Holdings, Inc. Methods and apparatus for delivering peritoneal dialysis (PD) solution with a peristaltic pump
JP5456904B2 (ja) * 2009-10-21 2014-04-02 バイオカルティス、ソシエテ、アノニム 平行空気圧インターフェース・プレートを備えたミクロ流体カートリッジ
FR2952628A1 (fr) * 2009-11-13 2011-05-20 Commissariat Energie Atomique Procede de fabrication d'au moins une micropompe a membrane deformable et micropompe a membrane deformable
US8757511B2 (en) 2010-01-11 2014-06-24 AdvanJet Viscous non-contact jetting method and apparatus
DE102010001369B4 (de) * 2010-01-29 2013-10-10 Paritec Gmbh Peristaltisches System, Fluidfördervorrichtung, Pipettiervorrichtung, Manschette und Verfahren zum Betrieb des peristaltischen Systems
US8879775B2 (en) 2010-02-17 2014-11-04 Viking At, Llc Smart material actuator capable of operating in three dimensions
CN102884352B (zh) 2010-03-05 2014-06-18 弗兰霍菲尔运输应用研究公司 弯曲换能器、微型泵和微型阀的制造方法以及微型泵和微型阀
EP2542809A1 (fr) 2010-03-05 2013-01-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Soupape, structure de couche comprenant une première et une seconde soupape, micro-pompe et procédé de production d'une soupape
DE102010028524A1 (de) * 2010-05-04 2011-11-10 Robert Bosch Gmbh Mikrofluidisches Bauteil, insbesondere peristaltische Mikropumpe, und Verfahren zu dessen Herstellung
GB2481425A (en) 2010-06-23 2011-12-28 Iti Scotland Ltd Method and device for assembling polynucleic acid sequences
KR20130132527A (ko) 2010-12-09 2013-12-04 바이킹 에이티 엘엘씨 제2 스테이지를 갖는 다중암 스마트 재료 액추에이터
US9139316B2 (en) 2010-12-29 2015-09-22 Cardinal Health 414, Llc Closed vial fill system for aseptic dispensing
FR2974598B1 (fr) * 2011-04-28 2013-06-07 Commissariat Energie Atomique Micropompe a debitmetre et son procede de realisation
JP6306502B2 (ja) * 2011-05-10 2018-04-04 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 制御可能な流体サンプル・ディスペンサおよびそれを用いた方法
WO2012152319A2 (fr) * 2011-05-10 2012-11-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Distributeur d'échantillon d'odeur pouvant être commandé et système d'entraînement et de test d'animal pour détecter des odeurs
KR101197208B1 (ko) * 2011-06-29 2012-11-02 한국과학기술원 마이크로 펌프 및 그 구동 방법
US20130000759A1 (en) * 2011-06-30 2013-01-03 Agilent Technologies, Inc. Microfluidic device and external piezoelectric actuator
US20130000758A1 (en) * 2011-06-30 2013-01-03 Agilent Technologies, Inc. Microfluidic device and external piezoelectric actuator
DE102011107046B4 (de) 2011-07-11 2016-03-24 Friedrich-Schiller-Universität Jena Mikropumpe
US20130020727A1 (en) 2011-07-15 2013-01-24 Cardinal Health 414, Llc. Modular cassette synthesis unit
US9417332B2 (en) 2011-07-15 2016-08-16 Cardinal Health 414, Llc Radiopharmaceutical CZT sensor and apparatus
WO2013012822A1 (fr) 2011-07-15 2013-01-24 Cardinal Health 414, Llc Systèmes, procédés et dispositifs de production, fabrication et contrôle de préparations radiopharmaceutiques
US9346075B2 (en) 2011-08-26 2016-05-24 Nordson Corporation Modular jetting devices
US9254642B2 (en) 2012-01-19 2016-02-09 AdvanJet Control method and apparatus for dispensing high-quality drops of high-viscosity material
GB2500658A (en) 2012-03-28 2013-10-02 Dna Electronics Ltd Biosensor device and system
DE102012106848A1 (de) * 2012-07-27 2014-01-30 Prominent Dosiertechnik Gmbh Dosieranlage sowie Dosierpumpe hierfür
JP5770391B2 (ja) * 2012-12-21 2015-08-26 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ 安全弁装置を含むポンプ装置
DE102013100559A1 (de) 2013-01-21 2014-07-24 Allmendinger Elektromechanik KG Vorrichtung zur dosierten Abgabe eines Fluids, sowie Gerät und Verfahren mit einer solchen Vorrichtung
WO2015100280A1 (fr) 2013-12-24 2015-07-02 Viking At, Llc Actionneur en matériau intelligent amplifié mécaniquement utilisant un assemblage de toile en couches
FR3020632B1 (fr) * 2014-04-30 2017-09-29 Commissariat Energie Atomique Systeme de modulation de la quantite de liquide delivre par une micro-pompe a commande piezo-electrique
US10473668B2 (en) * 2014-06-06 2019-11-12 The Regents Of The University Of California Self-shielded, benchtop radio chemistry system with a plurality shielded carriers containing a disposable chip cassette
BR112016029149A2 (pt) * 2014-06-13 2017-08-22 Formulatrix Inc sistema para entrega de fluido de um aparelho de injeção in ovo
KR102151030B1 (ko) 2014-07-28 2020-09-02 이종희 압전 펌프를 이용한 맥동억제 펌핑 방법
KR102151025B1 (ko) 2014-07-28 2020-09-02 이종희 압전 펌프를 이용한 펌핑 방법
KR102099790B1 (ko) 2014-07-28 2020-04-10 이종희 압전 펌프
DE102015218468A1 (de) 2015-09-25 2017-03-30 Robert Bosch Gmbh Pumpvorrichtung zum Pumpen eines Fluids, Verfahren zum Betreiben einer Pumpvorrichtung und Verfahren zum Herstellen einer Pumpvorrichtung
DE102015224619A1 (de) 2015-12-08 2017-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrodosiersystem
DE102015224622A1 (de) 2015-12-08 2017-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Freistrahldosiersystem
DE102016201718B4 (de) 2016-02-04 2022-02-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Pumpe mit polygonförmigem Piezo-Membranwandler
US11020524B1 (en) 2016-02-19 2021-06-01 University Of South Florida Peristaltic micropumps and fluid delivery devices that incorporate them
US20170285858A1 (en) * 2016-03-30 2017-10-05 Intel Corporation Intelligent pressure sensitive display
CN109681414A (zh) * 2018-03-09 2019-04-26 常州威图流体科技有限公司 一种基于光学透射焊的微型压电泵、压电泵组及装配方法
JP7069875B2 (ja) 2018-03-14 2022-05-18 セイコーエプソン株式会社 液体吐出ヘッドおよび液体吐出装置
DE102018217744A1 (de) * 2018-10-17 2020-04-23 Robert Bosch Gmbh Verfahren zum Befördern mindestens eines ersten Mediums innerhalb eines Kanalsystems einer mikrofluidischen Vorrichtung
US11965762B2 (en) * 2019-10-21 2024-04-23 Flusso Limited Flow sensor
US20220259037A1 (en) * 2021-02-12 2022-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. Arched Membrane Structure for MEMS Device
WO2023141079A1 (fr) * 2022-01-18 2023-07-27 Aita Bio Inc. Capteur de pression pour dispositif d'administration d'insuline à un utilisateur
WO2023141072A1 (fr) * 2022-01-19 2023-07-27 Aita Bio Inc. Micropompe mems à cavité à chambres multiples pour un dispositif d'administration d'insuline

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227073A (ja) * 1988-07-15 1990-01-29 Shiroki Corp 自動車のロックシステム
JPH0242184A (ja) * 1988-08-02 1990-02-13 Nec Corp 圧電型マイクロポンプ
JPH02126860A (ja) * 1988-11-08 1990-05-15 Olympus Optical Co Ltd 体内埋込み型マイクロポンプ
WO1996011339A1 (fr) * 1994-10-07 1996-04-18 Northrop Grumman Corporation Pompe a membrane piezo-electrique microminiature servant a effectuer le pompage de gaz a basse pression
DE19637928A1 (de) * 1996-02-10 1997-08-14 Fraunhofer Ges Forschung Bistabile Mikro-Aktivierungseinrichtung
DE19719862A1 (de) * 1997-05-12 1998-11-19 Fraunhofer Ges Forschung Mikromembranpumpe
US6247908B1 (en) * 1998-03-05 2001-06-19 Seiko Instruments Inc. Micropump

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3618106A1 (de) * 1986-05-30 1987-12-03 Siemens Ag Piezoelektrisch betriebene fluidpumpe
US5171132A (en) * 1989-12-27 1992-12-15 Seiko Epson Corporation Two-valve thin plate micropump
EP0465229B1 (fr) * 1990-07-02 1994-12-28 Seiko Epson Corporation Micropompe et son procédé de fabrication
US5593290A (en) * 1994-12-22 1997-01-14 Eastman Kodak Company Micro dispensing positive displacement pump
US6074178A (en) * 1997-04-15 2000-06-13 Face International Corp. Piezoelectrically actuated peristaltic pump
SE9803848D0 (sv) * 1998-11-11 1998-11-11 Thomas Laurell Micropump

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227073A (ja) * 1988-07-15 1990-01-29 Shiroki Corp 自動車のロックシステム
JPH0242184A (ja) * 1988-08-02 1990-02-13 Nec Corp 圧電型マイクロポンプ
JPH02126860A (ja) * 1988-11-08 1990-05-15 Olympus Optical Co Ltd 体内埋込み型マイクロポンプ
WO1996011339A1 (fr) * 1994-10-07 1996-04-18 Northrop Grumman Corporation Pompe a membrane piezo-electrique microminiature servant a effectuer le pompage de gaz a basse pression
DE19637928A1 (de) * 1996-02-10 1997-08-14 Fraunhofer Ges Forschung Bistabile Mikro-Aktivierungseinrichtung
DE19719862A1 (de) * 1997-05-12 1998-11-19 Fraunhofer Ges Forschung Mikromembranpumpe
US6247908B1 (en) * 1998-03-05 2001-06-19 Seiko Instruments Inc. Micropump
EP0949418B1 (fr) * 1998-03-05 2004-12-01 Seiko Instruments Inc. Micropompe et procédé de fabrication de cette micropompe

Also Published As

Publication number Publication date
US7104768B2 (en) 2006-09-12
CN1675468A (zh) 2005-09-28
JP4531563B2 (ja) 2010-08-25
DE10238600A1 (de) 2004-03-04
WO2004018875A1 (fr) 2004-03-04
US20050123420A1 (en) 2005-06-09
DE50300465D1 (de) 2005-05-25
AU2003255478A1 (en) 2004-03-11
EP1458977A1 (fr) 2004-09-22
CN100389263C (zh) 2008-05-21
JP2005536675A (ja) 2005-12-02
EP1458977B2 (fr) 2008-11-12

Similar Documents

Publication Publication Date Title
EP1458977B1 (fr) Micropompe peristaltique
EP1320686B1 (fr) Microsoupape se trouvant normalement a l'etat ferme
EP2207963B1 (fr) Pompe et ensemble pompe
EP1331538B1 (fr) Micro-actionneur pour fluides à commande piezo-électrique
EP2205869B1 (fr) Pompe à membrane
US8382452B2 (en) Pump arrangement comprising a safety valve
DE19720482C5 (de) Mikromembranpumpe
DE4135655C2 (fr)
DE102010032799B4 (de) Mikroventil mit elastisch verformbarer Ventillippe, Herstellungsverfahren und Mikropumpe
EP1179139A1 (fr) Pompe micromecanique
EP1576294B1 (fr) Microvanne normalement doublement fermee
EP0613535B1 (fr) Soupape micromecanique pour dispositifs de dosage micromecaniques
DE102006028986B4 (de) Konträrmembranantrieb zur Effizienzsteigerung von Mikropumpen
DE102008004147A1 (de) Mikropumpe und Verfahren zum Pumpen eines Fluids
EP1488106B1 (fr) Module de dosage a jet libre et procede permettant de le produire
DE102010001410A1 (de) Mikromembranpumpe
DE10164474A1 (de) Mikropumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20040715

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50300465

Country of ref document: DE

Date of ref document: 20050525

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050613

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

ET Fr: translation filed
26 Opposition filed

Opponent name: ALBERT-LUDWIGS-UNIVERSITAET FREIBURG

Effective date: 20060118

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20081112

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200825

Year of fee payment: 18

Ref country code: FR

Payment date: 20200820

Year of fee payment: 18

Ref country code: DE

Payment date: 20200824

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50300465

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210822

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301