EP1423953A2 - Verschachtelung zur datenübertragung - Google Patents
Verschachtelung zur datenübertragungInfo
- Publication number
- EP1423953A2 EP1423953A2 EP02767109A EP02767109A EP1423953A2 EP 1423953 A2 EP1423953 A2 EP 1423953A2 EP 02767109 A EP02767109 A EP 02767109A EP 02767109 A EP02767109 A EP 02767109A EP 1423953 A2 EP1423953 A2 EP 1423953A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- data
- random
- pseudo
- transmitter
- receiver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03828—Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
- H04L25/03834—Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
Definitions
- the invention relates to transmission systems for the transmission of digital data.
- Electromagnetic emissions are particularly critical in the case of wired transmission lines and devices for the transmission of signals between mutually movable units.
- transmitters / receivers and repeaters of fiber-optic transmission links can also emit electromagnetic fields.
- bit sequence 1 0 1 0. This generates the known rectangular spectrum with the fundamental wave of the transmitted frequency, which corresponds to half the bit rate and its odd multiples. Here the fundamental wave has the highest amplitude.
- the data are often encoded by the standard chipsets for serial data transmission. Common types of coding are the 4B / 5B or 8B / 10B coding. These are described, for example, in the CYPRESS data sheet CY7C9689A ed. Cypress Semicon- ductor Corporation, San Jose, USA, June 11, 2001.
- the invention is based on the object of designing a device for modifying signals on digital transmission links in such a way that they encode any signals in such a way that their EMC properties are significantly improved.
- the object is achieved with the means mentioned in claim 1. Further embodiments of the invention form part of the subclaims.
- a pseudo-random generator is provided in one of the units which emit signals, the pseudo-random values of which are linked to the signals to be transmitted in a linking unit.
- the signal spectrum of which ideally resembles white noise the gaps between the spectral lines of the useful signal can be filled and at the same time the spectral power density can be reduced. This significantly improves the EMC properties.
- An improvement over the coding methods cited above is also possible here, since longer random sequences can also be implemented across several data packets.
- the link to the random data can, for example, be word by word before serialization of the data Stream or only be made in a serial data stream.
- synchronization patterns are regularly transmitted here. This pattern has a constant value, ie the same bit sequence is always transmitted for a long time. This is extremely negative in terms of interference suppression. This is remedied by sending random numbers, which can be generated with a simple random generator. Since the synchronization pattern contains invalid values anyway and is used exclusively for the synchronization of the high-speed data link, the transmitted information plays no role.
- a simple redesign of the transmitter, which generates a pseudo-random sequence instead of the image data in the case of the idle state, can thus lead to a significant improvement in the EMC properties.
- a random generator which generates real random values can also be used.
- gate can consist, for example, of a noise generator that feeds a comparator. If the noise signal exceeds a predetermined limit value at the time of sampling, the signal becomes, for example, logic one, in the other case logic zero.
- Real noise generators can always be used when it is not necessary to correlate the transmit and receive signals with a noise signal in order to recover the information.
- a particularly good spectral distribution is obtained through particularly long code sequences. As a rule, these cannot be achieved by sending individual short data packets. Therefore, an arrangement is proposed which the data stream with a conventional coding, such as. B. 4B / 5B in a noise-like signal with a very long repetition time.
- the implementation takes place by means of a pseudo-random generator, which generates a deterministic pseudo-random sequence, and a linkage of this bit sequence with the data stream.
- a link can be, for example, the exclusive-OR (EXOR) link.
- the output signal now has the sequence length of the pseudo random number sequence and can lead to a substantial reduction in noise in the case of a high random number sequence.
- a second identical pseudo-random generator is used in the receiver, which generates the identical sequence and in turn links it to the transmitted signal of the data link, so that the original signal can be reconstructed.
- an exclusive or link is particularly easy to implement.
- the bit clock of the pseudo random number signal must be synchronous with the bit clock of the data link. It is preferably of the same size, but can also represent a multiple or a fraction of the corresponding bit clock. So it would be z. B. conceivable that the bit clock generator is clocked with the word clock of the transmission device, so that it only for each data word, the z. B. in the case of 4B / 5B coding consists of five individual bits, a new output value is generated.
- the synchronization of the two random generators on the transmitter and receiver side is particularly important.
- the synchronization can take place via a low-frequency auxiliary signal.
- This signal can be via additional transmission paths, such as. B. mechanical sliding contacts are transmitted. So the requirement for the slope respectively . If the time difference of this signal does not become too high, it makes sense to place the beginning of a new sequence at the beginning of a data word.
- a quiescent signal is transmitted over the data link for a certain time. This is modulated by the pseudo random generator on the transmission side.
- the pseudo random generator on the secondary side now begins to initialize the sequence at different start times until it can recognize the idle state signal. From this point on, the two pseudo random generators run synchronously.
- the transmitter-side pseudo-random generator can first start with a relatively short sequence, which, for. B. corresponds to the length of a data packet. After a specified time, it switches to its longer standard sequence length. This can be recognized by the receiver-side pseudo-random generator by changing the bit pattern and can also be used by the latter to switch over to the correspondingly longer pseudo-random number sequence.
- a method is specified in which a first data stream generated by the transmitter is linked to a second random data stream.
- this does not only refer to a continuous data stream, but also to a sequence of data packets.
- the Random data stream is a stream of real random data or just pseudo-random data.
- the exclusive or function is preferably selected as the linking function.
- This combination with a random data stream fills the gaps in the spectrum between the individual spectral lines of the data signal, which leads to a lower spectral power density with the same transmission power. A corresponding link for the reconstruction of the original signals is necessary in the receiver.
- a random sequence (pseudo-random sequence) is inserted in the pauses between the signals. This results in a low spectral power density, in particular for transmission links in which there are relatively long transmission pauses.
- the synchronization between transmitter and receiver can also be maintained here during the breaks by the continuous transmission of signals.
- Fig. 1 arrangement according to the invention
- Fig. 2 Time diagram of an arrangement in which random data is transmitted during the breaks
- Fig. 4 Output signal spectrum of a 200 Mbaud PCM transmission link
- Fig. 5 Output signal spectrum of an 8B / 10B coded signal
- the overall system consists of a first unit (1), which communicates with a second unit (2). The connection is established using a transmission link (3).
- the first unit (1) contains a data transmitter for communication
- the number of data packets to be transmitted can be fixed to pseudorandom data or can be transmitted in a special data packet from the data transmitter to the data receiver.
- An optional signaling line (7) can also be used to exchange information between the data transmitter and the data receiver.
- the data transmitter can use a special logic level on this line to signal the presence of user data or pseudo random data to the data receiver. If, on the other hand, the communication is controlled by the data receiver, it can request useful data from the data transmitter by means of a signaling line (7).
- pseudo random data is transmitted in the event that no user data is sent.
- FIG. 2 shows an example in the time diagram, plotted along a time axis (t), of the transmission of user data or pseudo random data.
- the curve (20) shows the transmission of user data during the thick hatched periods. In the pauses in between, as shown in curve (21), pseudo random numbers are generated by the pseudo random number generator and transmitted by means of the data transmitter.
- the curve (31) shows the original data stream as it is generated by the data transmitter.
- Curve (32) shows a pseudo random sequence of the first pseudo random generator shown.
- the curve (33) finally shows the output signal which is transmitted over the data link.
- This output signal is generated here, for example, by an exclusive or combination of signals (31) and (32).
- the input signal of the second movable unit (34) corresponds to the transmitted signal (33).
- the original data signal (36) can be restored by means of a second pseudo random signal (35) from a second pseudo random generator. In this case, too, there is again an exclusive or link.
- FIG. 4 shows an example of a typical output signal spectrum of a 200 Mbaud PCM transmission path during the transmission of a 1 0 1 0 signal.
- the frequency range from 0 - 1 GHz with a division of 100 MHz is plotted on the horizontal frequency axis.
- the maximum signal amplitude in this example is -14.7 dBm.
- the signal amplitude on the top horizontal line (limit of the diagram) is 0 dBm.
- the amplitude decreases by 10 dB per unit.
- FIG. 5 shows a typical output signal spectrum of a PCM signal which is coded 8B / 10B, again in the frequency range from 0-1 GHz.
- a PCM signal which is coded 8B / 10B, again in the frequency range from 0-1 GHz.
- FIG. 5 shows a typical output signal spectrum of a PCM signal which is coded 8B / 10B, again in the frequency range from 0-1 GHz.
- the amplitude of the individual spectral lines lowered.
- the maximum amplitude of this signal is now at a level of -20.6 dBm. This corresponds to an improvement of almost 6 dB compared to the signal from FIG. 4.
- the frequency range from 0 - 1 GHz is plotted with a division of 100 MHz on the horizontal frequency axis.
- the signal amplitude on the top horizontal line (limit of the diagram) is 0 dBm.
- the amplitude decreases by 10 dB per unit.
- the frequency range from 0 - 1 GHz is plotted with a division of 100 MHz on the horizontal frequency axis.
- the signal amplitude on the top horizontal line (limit of the diagram) is 0 dBm.
- the amplitude decreases by 10 dB per unit.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Dc Digital Transmission (AREA)
- Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
- Time-Division Multiplex Systems (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10142102 | 2001-08-30 | ||
DE10142102A DE10142102A1 (de) | 2001-08-30 | 2001-08-30 | Vorrichtung zur störarmen Signalübertragung |
PCT/DE2002/003024 WO2003028325A2 (de) | 2001-08-30 | 2002-08-19 | Verschachtelung zur datenübertragung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1423953A2 true EP1423953A2 (de) | 2004-06-02 |
Family
ID=7696849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02767109A Withdrawn EP1423953A2 (de) | 2001-08-30 | 2002-08-19 | Verschachtelung zur datenübertragung |
Country Status (5)
Country | Link |
---|---|
US (1) | US8396093B2 (de) |
EP (1) | EP1423953A2 (de) |
AU (1) | AU2002331554A1 (de) |
DE (1) | DE10142102A1 (de) |
WO (1) | WO2003028325A2 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102185810A (zh) * | 2004-06-18 | 2011-09-14 | 马维尔西班牙有限责任公司 | 在通过电网传输信号的过程中获得频谱空隙的方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60205128T2 (de) * | 2001-10-19 | 2006-05-24 | Matsushita Electric Industrial Co., Ltd., Kadoma | Vorrichtung und verfahren zur spreizspektrumübertragung |
GB0320352D0 (en) * | 2003-09-01 | 2003-10-01 | Secr Defence | Digital modulation waveforms for use in ranging systems |
DE102005035802A1 (de) * | 2005-07-27 | 2007-02-01 | Schleifring Und Apparatebau Gmbh | Datenübertragungssystem für Computertomographen |
DE102005022825A1 (de) * | 2005-05-12 | 2007-03-01 | Schleifring Und Apparatebau Gmbh | Datenübertragungssystem für Computertomographen |
US7466791B2 (en) | 2005-05-12 | 2008-12-16 | Schleifring Und Apparatebau Gmbh | Data transmission system for computer tomographs |
DE102008042697A1 (de) | 2008-10-09 | 2009-11-05 | Schleifring Und Apparatebau Gmbh | Kontaktloser Drehübertrager mit Taktmodulation |
JP6003102B2 (ja) * | 2012-03-06 | 2016-10-05 | ソニー株式会社 | データ受信回路、データ送信回路、データ送受信装置、データ伝送システムおよびデータ受信方法 |
US8781039B2 (en) | 2012-10-26 | 2014-07-15 | Deere & Company | Receiver and method for receiving a composite signal |
US9048964B2 (en) | 2012-10-26 | 2015-06-02 | Deere & Company | Receiver and method for receiving a composite signal |
US8942157B2 (en) | 2012-10-26 | 2015-01-27 | Deere & Company | Receiver and method for receiving a composite signal |
US8942264B2 (en) | 2012-10-26 | 2015-01-27 | Deere & Company | Receiver and method for receiving a composite signal |
US11764805B2 (en) | 2021-10-06 | 2023-09-19 | Samsung Display Co., Ltd. | System and method for transition encoding with reduced error propagation |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2516029A1 (de) * | 1975-04-12 | 1976-10-21 | Licentia Gmbh | Verfahren zum verwuerfeln digitaler nachrichtenfolgen |
FR2358061A1 (fr) * | 1976-07-08 | 1978-02-03 | Ibm France | Procede et dispositif d'egalisation utilisant la transformee de fourier |
CA1226914A (en) * | 1984-01-26 | 1987-09-15 | The University Of British Columbia | Modem for pseudo noise communication on a.c. lines |
DE3403650A1 (de) | 1984-02-02 | 1985-08-08 | Siemens AG, 1000 Berlin und 8000 München | Selbstsynchronisierender verwuerfler (scrambler) |
JPH0783337B2 (ja) * | 1988-03-01 | 1995-09-06 | 日本電気株式会社 | スクランブル−デスクランブル方式 |
JPH0744511B2 (ja) * | 1988-09-14 | 1995-05-15 | 富士通株式会社 | 高郊率多重化方式 |
US5365585A (en) * | 1993-08-30 | 1994-11-15 | Motorola, Inc. | Method and apparatus for encryption having a feedback register with selectable taps |
DE4340330A1 (de) | 1993-11-26 | 1995-06-01 | Telefonbau & Normalzeit Gmbh | Schaltungsanordnung für einen Verwürfler (Scrambler) zur digitalen Datenübertragung |
GB2288102B (en) * | 1994-03-23 | 1997-10-08 | Motorola Ltd | Mobile radio with transmit command control and mobile radio system |
US5592555A (en) * | 1994-04-12 | 1997-01-07 | Advanced Micro Devices, Inc. | Wireless communications privacy method and system |
JP3418463B2 (ja) * | 1994-10-27 | 2003-06-23 | 富士通株式会社 | ディジタル移動電話通信方法と通話チャネル切換方法及びそれらを実現するための移動局と基地局 |
GB2294614B (en) * | 1994-10-28 | 1999-07-14 | Int Maritime Satellite Organiz | Communication method and apparatus |
US6014446A (en) * | 1995-02-24 | 2000-01-11 | Motorola, Inc. | Apparatus for providing improved encryption protection in a communication system |
SE9500858L (sv) * | 1995-03-10 | 1996-09-11 | Ericsson Telefon Ab L M | Anordning och förfarande vid talöverföring och ett telekommunikationssystem omfattande dylik anordning |
JP2921446B2 (ja) * | 1995-08-30 | 1999-07-19 | 日本電気株式会社 | スペクトラム拡散通信用csk通信装置及び通信方法 |
US6044068A (en) * | 1996-10-01 | 2000-03-28 | Telefonaktiebolaget Lm Ericsson | Silence-improved echo canceller |
US5793318A (en) * | 1997-02-05 | 1998-08-11 | Hewlett-Packard Company | System for preventing of crosstalk between a raw digital output signal and an analog input signal in an analog-to-digital converter |
US7295594B1 (en) | 1997-12-31 | 2007-11-13 | Schleifring Und Apparatebau Gmbh | Device for low-interfernce signal transmission |
JP3856261B2 (ja) * | 1998-03-18 | 2006-12-13 | ソニー株式会社 | 同期検出装置 |
US6345073B1 (en) * | 1998-10-08 | 2002-02-05 | The Aerospace Corporation | Convolutional despreading method for rapid code phase determination of chipping codes of spread spectrum systems |
US6188714B1 (en) * | 1998-12-29 | 2001-02-13 | Texas Instruments Incorporated | Parallel M-sequence generator circuit |
US6747969B1 (en) * | 1999-11-23 | 2004-06-08 | Olaf Hirsch | Transmission gap interference measurement |
US6985521B1 (en) * | 2000-01-07 | 2006-01-10 | Ikanos Communication, Inc | Method and apparatus for channel estimation for X-DSL communications |
WO2001076077A2 (en) * | 2000-03-31 | 2001-10-11 | Ted Szymanski | Transmitter, receiver, and coding scheme to increase data rate and decrease bit error rate of an optical data link |
US7072289B1 (en) * | 2001-06-01 | 2006-07-04 | Lin Yang | Pseudo-random sequence padding in an OFDM modulation system |
-
2001
- 2001-08-30 DE DE10142102A patent/DE10142102A1/de not_active Withdrawn
-
2002
- 2002-08-19 WO PCT/DE2002/003024 patent/WO2003028325A2/de not_active Application Discontinuation
- 2002-08-19 EP EP02767109A patent/EP1423953A2/de not_active Withdrawn
- 2002-08-19 AU AU2002331554A patent/AU2002331554A1/en not_active Abandoned
-
2004
- 2004-02-26 US US10/787,432 patent/US8396093B2/en active Active
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO03028325A3 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102185810A (zh) * | 2004-06-18 | 2011-09-14 | 马维尔西班牙有限责任公司 | 在通过电网传输信号的过程中获得频谱空隙的方法 |
CN102185810B (zh) * | 2004-06-18 | 2014-12-31 | 马维尔西班牙有限责任公司 | 在通过电网传输信号的过程中获得频谱空隙的方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2003028325A3 (de) | 2003-08-14 |
AU2002331554A1 (en) | 2003-04-07 |
WO2003028325A2 (de) | 2003-04-03 |
US8396093B2 (en) | 2013-03-12 |
DE10142102A1 (de) | 2003-03-27 |
US20040165652A1 (en) | 2004-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69922972T2 (de) | System und verfahren zum senden und empfängen von datensignalen über eine taktsignalleitung | |
DE2648273C2 (de) | Einseitenband-Verfahren zur Informationsübertragung und Vorrichtung zur Durchführung des Verfahrens | |
DE69313802T2 (de) | Empfangsgerät für ein bandgespreiztes Signal | |
EP3530038B1 (de) | Variable teilpaketlängen für telegram splitting in netzwerken mit geringem stromverbrauch | |
EP0874472A2 (de) | Verfahren und Vorrichtung zur Informationsübertragung über Stromversorgungsleitungen | |
EP1051816B1 (de) | Vorrichtung zur störarmen signalübertragung | |
EP3529939A1 (de) | Optimierte kombination aus präambel und datenfeldern für sensornetzwerke mit geringem stromverbrauch auf basis des telegram splitting verfahrens | |
DE2907182A1 (de) | Funksignal-uebertragungssystem | |
EP2633638B1 (de) | Übertragung eines datenpakets mit zwei referenzsequenzen und entsprechender empfänger mit einem entzerrer | |
EP1423953A2 (de) | Verschachtelung zur datenübertragung | |
DE2757171B2 (de) | Verfahren und Anordnung zur Übertragung zweier unterschiedlicher Informationen in einem einzigen Übertragungskanal vorgegebener Bandbreite auf einer Trägerwelle | |
DE60022165T2 (de) | Verfahren zur Erzeugung einer pseudozufälligen Sequenz von Mehrträger-Datensymbolen und Sender und Empfänger dafür | |
DE4009458C2 (de) | Spreizspektrum-Nachrichtenverbindungsanordnung | |
DE3215783A1 (de) | Steuerung fuer leitungsschutzschaltung | |
EP0009586B1 (de) | Verfahren zur Synchronisierung von Sende- und Empfangseinrichtungen | |
DE2437873C2 (de) | Vorrichtung zur Erstellung eines Neutralisierungssignals für einen Echounterdrücker | |
EP1671429B1 (de) | Ultrabreitband-kommunikationssystem fuer sehr hohe datenraten | |
EP0898818B1 (de) | Verfahren zur übertragung von information | |
DE2827615B2 (de) | Verfahren und Schaltungsanordnung zum Synchronisieren zwei oder mehrerer räumlich voneinander entfernter digital arbeitender nachrichtentechnischer Einrichtungen | |
DE2040339B2 (de) | System zum codieren eines eingangssignals | |
DE68918676T2 (de) | Sende-Empfangssynchronisationsvorrichtung einer Station eines Kommunikationsnetzes, insbesondere für ein Kraftfahrzeug. | |
DE19837658B4 (de) | Übertragungssignal-Empfängerschaltung | |
DE102009052107B4 (de) | Frequenzsprungverfahren für ein Funkgerät | |
DE102008057445B4 (de) | Feldbussystem mit Spread-Spektrum | |
DE3304300A1 (de) | Verfahren und einrichtung zur busanforderung und sammelquittierung in einem prozessbus-system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040330 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20080820 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SCHLEIFRING GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04L 25/03 20060101AFI20030408BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20210119 |